1
|
Chen D, Hagen SJ, Boyce M, Zhao CM. Neuroendocrine mechanism of gastric acid secretion: Historical perspectives and recent developments in physiology and pharmacology. J Neuroendocrinol 2023; 35:e13305. [PMID: 37317882 PMCID: PMC10656367 DOI: 10.1111/jne.13305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The physiology of gastric acid secretion is one of the earliest subjects in medical literature and has been continuously studied since 1833. Starting with the notion that neural stimulation alone drives acid secretion, progress in understanding the physiology and pathophysiology of this process has led to the development of therapeutic strategies for patients with acid-related diseases. For instance, understanding the physiology of parietal cells led to the developments of histamine 2 receptor blockers, proton pump inhibitors (PPIs), and recently, potassium-competitive acid blockers. Furthermore, understanding the physiology and pathophysiology of gastrin has led to the development of gastrin/CCK2 receptor (CCK2 R) antagonists. The need for refinement of existing drugs in patients have led to second and third generation drugs with better efficacy at blocking acid secretion. Further understanding of the mechanism of acid secretion by gene targeting in mice has enabled us to dissect the unique role for each regulator to leverage and justify the development of new targeted therapeutics for acid-related disorders. Further research on the mechanism of stimulation of gastric acid secretion and the physiological significances of gastric acidity in gut microbiome is needed in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Susan J Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Chun-Mei Zhao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Fakhry J, Stebbing MJ, Hunne B, Bayguinov Y, Ward SM, Sasse KC, Callaghan B, McQuade RM, Furness JB. Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell Tissue Res 2018; 376:37-49. [PMID: 30467709 DOI: 10.1007/s00441-018-2957-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Gastric endocrine cell hormones contribute to the control of the stomach and to signalling to the brain. In other gut regions, enteroendocrine cells (EECs) exhibit extensive patterns of colocalisation of hormones. In the current study, we characterise EECs in the human gastric fundus and corpus. We utilise immunohistochemistry to investigate EECs with antibodies to ghrelin, serotonin (5-HT), somatostatin, peptide YY (PYY), glucagon-like peptide 1, calbindin, gastrin and pancreastatin, the latter as a marker of enterochromaffin-like (ECL) cells. EECs were mainly located in regions of the gastric glands populated by parietal cells. Gastrin cells were absent and PYY cells were very rare. Except for about 25% of 5-HT cells being a subpopulation of ECL cells marked by pancreastatin, colocalisation of hormones in gastric EECs was infrequent. Ghrelin cells were distributed throughout the fundus and corpus; most were basally located in the glands, often very close to parietal cells and were closed cells i.e., not in contact with the lumen. A small proportion had long processes located close to the base of the mucosal epithelium. The 5-HT cells were of at least three types: small, round, closed cells; cells with multiple, often very long, processes; and a subgroup of ECL cells. Processes were in contact with their surrounding cells, including parietal cells. Mast cells had very weak or no 5-HT immunoreactivity. Somatostatin cells were a closed type with long processes. In conclusion, four major chemically defined EEC types occurred in the human oxyntic mucosa. Within each group were cells with distinct morphologies and relationships to other mucosal cells.
Collapse
Affiliation(s)
- Josiane Fakhry
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Martin J Stebbing
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Billie Hunne
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yulia Bayguinov
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Kent C Sasse
- School of Medicine, Universiity of Nevada, Reno, NV, 89557, USA.,Renown Regional Medical Center, Reno, NV, 89502, USA
| | - Brid Callaghan
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rachel M McQuade
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Fothergill LJ, Furness JB. Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem Cell Biol 2018; 150:693-702. [PMID: 30357510 DOI: 10.1007/s00418-018-1746-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Enteroendocrine cells were historically classified by a letter code, each linked to a single hormone, deduced to be the only hormone produced by the cell. One type, the L cell, was recognised to store and secrete two products, peptide YY (PYY) and glucagon-related peptides. Many other exceptions to the one-cell one-hormone classifications have been reported over the last 40 years or so, and yet the one-hormone dogma has persisted. In the last 6 years, a plethora of data has appeared that makes the concept unviable. Here, we describe the evidence that multiple hormone transcripts and their products reside in single cells and evidence that the hormones are often, but not always, processed into separate storage vesicles. It has become clear that most enteroendocrine cells contain multiple hormones. For example, most secretin cells contain 5-hydroxytryptamine (5-HT), and in mouse many of these also contain cholecystokinin (CCK). Furthermore, CCK cells also commonly store ghrelin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), neurotensin, and PYY. Several hormones, for example, secretin and 5-HT, are in separate storage vesicles at a subcellular level. Hormone patterns can differ considerably between species. Another complication is that relative levels of expression vary substantially. This means that data are significantly influenced by the sensitivities of detection techniques. For example, a hormone that can be detected in storage vesicles by super-resolution microscopy may not be above threshold for detection by conventional fluorescence microscopy. New nomenclature for cell clusters with common attributes will need to be devised and old classifications abandoned.
Collapse
Affiliation(s)
- Linda J Fothergill
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
| |
Collapse
|
4
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
5
|
Discovery of a novel target for the dysglycemic chromogranin A fragment pancreastatin: interaction with the chaperone GRP78 to influence metabolism. PLoS One 2014; 9:e84132. [PMID: 24465394 PMCID: PMC3896336 DOI: 10.1371/journal.pone.0084132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/12/2013] [Indexed: 11/19/2022] Open
Abstract
RATIONALE The chromogranin A-derived peptide pancreastatin (PST) is a dysglycemic, counter-regulatory peptide for insulin action, especially in liver. Although previous evidence for a PST binding protein has been reported, such a receptor has not been identified or sequenced. METHODS AND RESULTS We used ligand affinity to purify the PST target, with biotinylated human PST (hCHGA273-301-amide) as "bait" and mouse liver homogenate as "prey", and identified GRP78 (a.k.a. "78 kDa Glucose Regulated Protein", HSPA5, BIP) as a major interacting partner of PST. GRP78 belongs to the family of heat shock proteins (chaperones), involved in several cellular processes including protein folding and glucose metabolism. We analyzed expression of GRP78 in the absence of PST in a mouse knockout model lacking its precursor CHGA: hepatic transcriptome data revealed global over-expression of not only GRP78 but also other heat shock transcripts (of the "adaptive UPR") in CHGA(-/-) mice compared to wild-type (+/+). By contrast, we found a global decline in expression of hepatic pro-apoptotic transcripts in CHGA(-/-) mice. GRP78's ATPase enzymatic activity was dose-dependently inhibited by PST (IC50∼5.2 µM). PST also inhibited the up-regulation of GRP78 expression during UPR activation (by tunicamycin) in hepatocytes. PST inhibited insulin-stimulated glucose uptake in adipocytes, and increased hepatic expression of G6Pase (the final step in gluconeogenesis/glycogenolysis). In hepatocytes not only PST but also other GRP78-ATPase inhibitors (VER-155008 or ADP) increased G6Pase expression. GRP78 over-expression inhibited G6Pase expression in hepatocytes, with partial restoration by GRP78-ATPase inhibitors PST, VER-155008, or ADP. CONCLUSIONS Our results indicate that an unexpected major hepatic target of PST is the adaptive UPR chaperone GRP78. PST not only binds to GRP78 (in pH-dependent fashion), but also inhibits GRP78's ATPase enzymatic activity, and impairs its biosynthetic response to UPR activation. PST decreases insulin-stimulated cellular glucose uptake, and PST as well as other chaperone ATPase activity inhibitors augment expression of G6Pase; GRP78 over-expression antagonizes this PST action. Analysis of the novel PST/GRP78 interaction may provide a new avenue of investigation into cellular glycemic control as well as dysglycemia.
Collapse
|
6
|
Goetze JP, Alehagen U, Flyvbjerg A, Rehfeld JF. Chromogranin A as a biomarker in cardiovascular disease. Biomark Med 2014; 8:133-40. [DOI: 10.2217/bmm.13.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Valicherla GR, Hossain Z, Mahata SK, Gayen JR. Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genomics 2013; 45:1060-71. [PMID: 24064537 DOI: 10.1152/physiolgenomics.00131.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreastatin (PST) is a regulatory peptide containing 49 amino acids, first isolated from porcine pancreas. Intracellular and extracellular processing of the prohormone Chromogranin A (Chga) results various bioactive peptides of which PST has dysglycemic activity. PST regulates glucose, lipid, and protein metabolism in liver and adipose tissues. It also regulates the secretion of leptin and expression of leptin and uncoupling protein 2 in adipose tissue. In Chga knockout mice, PST induces gluconeogenesis in the liver. PST reduces glucose uptake in mice hepatocytes and adipocytes. In rat hepatocytes, PST induces glycogenolysis and glycolysis and inhibits glycogen synthesis. In rat adipocytes, PST inhibits lactate production and lipogenesis. These metabolic effects are confirmed in humans. In the dual signaling mechanism of PST receptor, mostly PST activates Gαq/11 protein leads to the activation of phospholipase C β3-isoform, therefore increasing cytoplasmic free calcium and stimulating protein kinase C. PST inhibits the cell growth in rat HTC hepatoma cells, mediated by nitric oxide and cyclic GMP production. Elevated levels of PST correlating with catecholamines have been found in gestational diabetes and essential hypertension. Rise in the blood PST level in Type 2 diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
- Guru Raghavendra Valicherla
- Pharmacokinetics and Metabolism Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
8
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
9
|
Jianu CS, Fossmark R, Syversen U, Hauso Ø, Fykse V, Waldum HL. Five-year follow-up of patients treated for 1 year with octreotide long-acting release for enterochromaffin-like cell carcinoids. Scand J Gastroenterol 2011; 46:456-63. [PMID: 21133821 DOI: 10.3109/00365521.2010.539255] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastric carcinoids type 1 (GC1) are neuroendocrine tumors (NETs) arising from the enterochromaffin-like (ECL) cells in patients with chronic atrophic gastritis (CAG). The treatment of GC1 has been endoscopic polypectomy or surgical tumor excision and antrectomy. One year treatment with somatostatin analogs (SSAs) diminished tumor load and ECL cell density. The effect persisted 1 year after treatment was discontinued. However, the optimal SSA dose and treatment duration are unknown. OBJECTIVES The aim of the present work was to study macroscopic and histopathological changes in the stomach and serum markers gastrin and chromogranin A (CgA) in GC1 patients 5 years after 1 year of octreotide long-acting release (LAR) treatment. MATERIAL AND METHODS Five patients with GC1 were included 5 years after the initial year of octreotide LAR treatment. All patients underwent upper gastrointestinal endoscopy including tumor and mucosal biopsies from oxyntic mucosa, chest and abdominal computer tomography and octreotide scintigraphy. Fasting serum gastrin and CgA were also measured. RESULTS At 5 years, one patient had a highly malignant gastric tumor, one patient had an increased number of GCs, regional and distant metastases and three patients had an increased number of GCs. Serum gastrin and CgA increased to pre-treatment levels after 1 year of follow-up and were unchanged at the 5-year follow-up. CONCLUSIONS The disease had progressed in all five GCs patients treated with octreotide for 12 months at 5 years of follow-up. This suggests that, if started, octreotide treatment should not be discontinued in these patients.
Collapse
Affiliation(s)
- Constantin S Jianu
- Department of Gastroenterology and Hepatology, St. Olavs Hospital, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
10
|
Gori G, Spinelli G, Spinelli C, Tuccori M, Blandizzi C, Del Tacca M. Esomeprazole-induced hyperchromograninemia in the absence of concomitant hypergastrinemia. Nat Rev Gastroenterol Hepatol 2010; 7:642-6. [PMID: 20938461 DOI: 10.1038/nrgastro.2010.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND A 37-year-old female, who had a neuroendocrine pancreatic neoplasm, underwent duodeno-cephalo-pancreatectomy. In the 2 years following surgery, she had normal levels of serum chromogranin A (CgA), gastrin and other tumor markers. About 3 years after surgery, owing to the onset of reflux-like dyspeptic symptoms, the patient started treatment with the PPI esomeprazole. During PPI treatment, the patient's serum CgA level rose to more than three times the upper limit of normal, although her gastrin levels remained in the normal range. These findings were interpreted as being suggestive of neuroendocrine tumor relapse. INVESTIGATIONS Thoraco-abdominal CT, In¹¹¹-octreotide total body scan, CT of sella turcica, Tc(99m)-sestamibi neck scan, mutational analysis of chromosome 11q13 (site of multiple endocrine neoplasia type 1 [MEN1] gene). Discontinuation of, and rechallenge with, esomeprazole. DIAGNOSIS Esomeprazole-induced hyperchromograninemia in the absence of elevated levels of fasting serum gastrin. MANAGEMENT Discontinuation of acid-suppressive treatment and continuation of oncologic follow-up.
Collapse
Affiliation(s)
- Giovanni Gori
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, via Roma, 55-56126 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Sánchez-Margalet V, González-Yanes C, Najib S, Santos-Álvarez J. Reprint of: Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. ACTA ACUST UNITED AC 2010; 165:71-7. [PMID: 20934461 DOI: 10.1016/j.regpep.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 01/12/2023]
Abstract
Pancreastatin is one of the regulatory peptides derived from intracellular and/or extracellular processing of chromogranin A, the soluble acidic protein present in the secretory granules of the neuroendocrine system. While the intracellular functions of chromogranin A include formation and maturation of the secretory granule, the major extracellular functions are generation of biologically active peptides with demonstrated autocrine, paracrine or endocrine activities. In this review, we will focus on the metabolic function of one of these peptides, pancreastatin, and the mechanisms underlying its effects. Many different reported effects have implicated PST in the modulation of energy metabolism, with a general counterregulatory effect to that of insulin. Pancreastatin induces glycogenolysis in liver and lipolysis in adipocytes. Metabolic effects have been confirmed in humans. Moreover, naturally occurring human variants have been found, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. Thus, qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose and lipid metabolism. Pancreastatin activates a receptor signaling system that belongs to the seven-spanning transmembrane receptor coupled to a Gq-PLCβ-calcium-PKC signaling pathway. Increased pancreastatin plasma levels, correlating with catecholamines levels, have been found in insulin resistance states, such as gestational diabetes or essential hypertension. Pancreastatin plays important physiological role in potentiating the metabolic effects of catecholamines, and may also play a pathophysiological role in insulin resistance states with increased sympathetic activity.
Collapse
Affiliation(s)
- Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Spain.
| | | | | | | |
Collapse
|
12
|
Jianu CS, Fossmark R, Syversen U, Hauso Ø, Waldum HL. A meal test improves the specificity of chromogranin A as a marker of neuroendocrine neoplasia. Tumour Biol 2010; 31:373-80. [PMID: 20480408 DOI: 10.1007/s13277-010-0045-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/22/2010] [Indexed: 11/25/2022] Open
Abstract
Chromogranin A (CgA) is a neuroendocrine tumor (NET) marker. Modest CgA elevation is found in subjects with enterochromaffin-like (ECL) cell hyperplasia due to hypergastrinemia. Somatostatin analogs reduce CgA levels in patients with NET. Meals may affect serum CgA levels. The aims of the study were to investigate meal-induced CgA release and the short-term effect of octreotide on serum CgA levels. Four groups were studied: group A, seven patients with ECL cell hyperplasia secondary to use of proton pump inhibitors (PPIs); group B, six patients with gastric carcinoid type 1/ECL hyperplasia due to chronic atrophic gastritis (CAG); group C, six patients with nongastric NETs; group D, seven controls. The subjects were studied on three separate days with the use of three exposures: a test meal, pentagastrin subcutaneously (not group C), and octreotide intravenously. Serum CgA and gastrin were analyzed. A test meal induced a significant CgA increase in long-term PPI users and in healthy controls. The meal did not affect CgA levels in patients with gastric carcinoid type 1 or patients with NETs. The test meal increased gastrin levels in all groups except in those with CAG. Pentagastrin increased CgA levels in all groups tested except in those with CAG, while octreotide, reduced CgA and gastrin levels in all groups. Serum CgA should be determined in fasting individuals. A test meal may distinguish between increased CgA levels in PPI users from nongastric NET patients. Concomitant gastrin determination may help to discriminate between nongastric NETs and CAG. Intravenous octreotide rapidly reduces serum CgA.
Collapse
Affiliation(s)
- Constantin S Jianu
- Department of Gastroenterology and Hepatology, St. Olav's Hospital, Olav Kyrres gt. 17, 7006, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
13
|
Sánchez-Margalet V, González-Yanes C, Najib S, Santos-Alvarez J. Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. REGULATORY PEPTIDES 2010; 161:8-14. [PMID: 20184923 DOI: 10.1016/j.regpep.2010.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 12/20/2022]
Abstract
Pancreastatin is one of the regulatory peptides derived from intracellular and/or extracellular processing of chromogranin A, the soluble acidic protein present in the secretory granules of the neuroendocrine system. While the intracellular functions of chromogranin A include formation and maturation of the secretory granule, the major extracellular functions are generation of biologically active peptides with demonstrated autocrine, paracrine or endocrine activities. In this review, we will focus on the metabolic function of one of these peptides, pancreastatin, and the mechanisms underlying its effects. Many different reported effects have implicated PST in the modulation of energy metabolism, with a general counterregulatory effect to that of insulin. Pancreastatin induces glycogenolysis in liver and lipolysis in adipocytes. Metabolic effects have been confirmed in humans. Moreover, naturally occurring human variants have been found, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. Thus, qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose and lipid metabolism. Pancreastatin activates a receptor signaling system that belongs to the seven-spanning transmembrane receptor coupled to a Gq-PLCbeta-calcium-PKC signaling pathway. Increased pancreastatin plasma levels, correlating with catecholamines levels, have been found in insulin resistance states, such as gestational diabetes or essential hypertension. Pancreastatin plays important physiological role in potentiating the metabolic effects of catecholamines, and may also play a pathophysiological role in insulin resistance states with increased sympathetic activity.
Collapse
Affiliation(s)
- Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Spain.
| | | | | | | |
Collapse
|
14
|
Helle KB. Chromogranins A and B and secretogranin II as prohormones for regulatory peptides from the diffuse neuroendocrine system. Results Probl Cell Differ 2010; 50:21-44. [PMID: 20217490 DOI: 10.1007/400_2009_26] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chromogranin A (CgA), chromogranin B (CgB), and secretogranin II (SgII) belong to a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These "granins" are characterized by numerous pairs of basic amino acids as potential sites for intra- and extragranular processing. In response to adequate stimuli, the granins are coreleased with neurotransmitters and hormones and appear in the circulation as potential modulators of homeostatic processes. This review is directed towards functional aspects of the secreted CgA, CgB, and SgII and their biologically active sequences. Widely different effects and targets have been reported for granin-derived peptides. So far, the CgA peptides vasostatin-I, pancreastatin, and catestatin, the CgB peptides CgB(1-41) and secretolytin, and the SgII peptide secretoneurin are the most likely candidates for granin-derived regulatory peptides. Most of their effects fit into patterns of direct or indirect modulations of major functions, in particular associated with inflammatory conditions.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, Division of Physiology, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
15
|
Helle KB. Regulatory peptides from chromogranin A and secretogranin II: putative modulators of cells and tissues involved in inflammatory conditions. ACTA ACUST UNITED AC 2009; 165:45-51. [PMID: 19800929 DOI: 10.1016/j.regpep.2009.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/16/2009] [Accepted: 09/24/2009] [Indexed: 11/16/2022]
Abstract
Chromogranin A (CgA) and secretogranin II (SgII) of the granin family of uniquely acidic proteins secreted from elements of the diffuse neuroendocrine system are also produced by cells involved in inflammation. CgA and the CgA-derived peptides vasostatin-I and catestatin are products of polymorphonuclear neutrophils accumulating at sites of injury or infections while SgII and the Sg II-derived secretoneurin may contribute to neurogenic inflammation when released from sensory nerve terminals. This review is directed towards vasostatin-I, catestatin and secretoneurin as modulators of cells and tissues associated with inflammatory conditions. The accumulated literature indicates that concerted effects of vasostatin-I and catestatin may be relevant for the first-line host-defence against invading microorganisms, contrasting the apparent lack of antibacterial potencies in secretoneurin. Oppositely directed effects of vasostatin-I and secretoneurin on endothelial permeability and transendothelial extravasation are particularly striking. While vasostatin-I protects the integrity of the endothelial barrier against the disruptive effects of proinflammatory agents, secretoneurin activates transendothelial extravasation, chemotaxis and migration of leukocytes. Oppositely directed effects of vasostatin-I and secretoneurin on formation of blood vessels are also indicated, vasostatin-I inhibiting angiogenetic parameters while secretoneurin activates not only angiogenesis but also vascularization.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway.
| |
Collapse
|
16
|
Ischemia mobilizes histamine but not pancreastatin from ECL cells of rat stomach: evidence for a cytosolic histamine compartment. Cell Tissue Res 2008; 333:405-15. [DOI: 10.1007/s00441-008-0648-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 05/19/2008] [Indexed: 01/29/2023]
|
17
|
Furnes M, Stenström B, Tømmerås K, Skoglund T, Dickson S, Kulseng B, Zhao CM, Chen D. Feeding Behavior in Rats Subjected to Gastrectomy or Gastric Bypass Surgery. Eur Surg Res 2008; 40:279-88. [DOI: 10.1159/000114966] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/26/2007] [Indexed: 12/29/2022]
|
18
|
Zhao CM, Martinez V, Piqueras L, Wang L, Taché Y, Chen D. Control of gastric acid secretion in somatostatin receptor 2 deficient mice: shift from endocrine/paracrine to neurocrine pathways. Endocrinology 2008; 149:498-505. [PMID: 17974627 PMCID: PMC2219299 DOI: 10.1210/en.2007-0238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gastrin-enterochromaffin-like (ECL) cell-parietal cell axis is known to play an important role in the regulation of gastric acid secretion. Somatostatin, acting on somatostatin receptor type 2 (SSTR(2)), interferes with this axis by suppressing the activity of the gastrin cells, ECL cells, and parietal cells. Surprisingly, however, freely fed SSTR(2) knockout mice seem to display normal circulating gastrin concentration and unchanged acid output. In the present study, we compared the control of acid secretion in these mutant mice with that in wild-type mice. In SSTR(2) knockout mice, the number of gastrin cells was unchanged; whereas the numbers of somatostatin cells were reduced in the antrum (-55%) and increased in the oxyntic mucosa (35%). The ECL cells displayed a reduced expression of histidine decarboxylase and vesicle monoamine transport type 2 (determined by immunohistochemistry), and an impaired transformation of the granules to secretory vesicles (determined by electron microscopic analysis), suggesting low activity of the ECL cells. These changes were accompanied by an increased expression of galanin receptor type 1 in the oxyntic mucosa. The parietal cells were found to respond to pentagastrin or to vagal stimulation (evoked by pylorus ligation) with increased acid production. In conclusion, the inhibitory galanin-galanin receptor type 1 pathway is up-regulated in the ECL cells, and the direct stimulatory action of gastrin and vagal excitation is enhanced on the parietal cells in SSTR(2) knockout mice. We suggest that there is a remodeling of the neuroendocrine mechanisms that regulate acid secretion in these mutant mice.
Collapse
Affiliation(s)
- Chun-Mei Zhao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7006, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
19
|
Fossmark R, Jianu CS, Martinsen TC, Qvigstad G, Syversen U, Waldum HL. Serum gastrin and chromogranin A levels in patients with fundic gland polyps caused by long-term proton-pump inhibition. Scand J Gastroenterol 2008; 43:20-4. [PMID: 18938772 DOI: 10.1080/00365520701561959] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Use of proton-pump inhibitors (PPIs) causes hypergastrinemia, and it is well known that gastrin has a trophic effect on the oxyntic mucosa. Some PPI users develop fundic gland polyps. The purpose of this study was to determine whether patients developing fundic gland polyps have a more pronounced gastric hypoacidity, hypergastrinemia or increased serum chromogranin A (CgA), which is an enterochromaffin-like (ECL) cell marker. MATERIAL AND METHODS Five PPI users who developed multiple fundic gland polyps during PPI use were included in the study. PPI users without fundic gland polyps (n = 6) as well as healthy individuals (n = 6) were used as controls. In PPI users, we measured 24-h gastric pH, serum gastrin and CgA during one day, with standardized meals, whereas only gastrin and CgA were measured in the healthy individuals. Helicobacter pylori status was determined. RESULTS Gastric pH, serum gastrin and CgA did not differ significantly between PPI users with and those without fundic gland polyps. All patients with fundic gland polyps were H. pylori negative, whereas 4 out of 6 PPI users without fundic gland polyps were H. pylori positive. Fasting CgA levels were elevated in all PPI users, and CgA more than doubled during the day in all groups. CONCLUSIONS Fundic gland polyps induced by PPIs are not related to the level of hypergastrinemia. Serum CgA is markedly affected by meals and should be measured in samples from fasting patients.
Collapse
Affiliation(s)
- Reidar Fossmark
- Department of Medicine, St. Olav's Hospital, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To summarize key aspects from recent research as well as review articles on the topic of genetic mouse models, particularly in knockout mice, that have considerably contributed to understanding the pathways and mechanisms underlying gastric physiology. RECENT FINDINGS A series of knockout mouse models has proven to be invaluable in elucidating the mechanism and validating the current model of acid secretion. The interaction between the gastrin-histamine and cholecystokinin-somatostatin pathways was identified using the genetic approach as being critical in regulating acid secretion. Curiously, neither ghrelin nor ghrelin receptor knockout mice displayed the expected lean phenotype. Importantly, the study of obestatin in GPR39 knockout mice could be misleading, as zinc rather than obestatin is the endogenous ligand for GPR39. The physiological roles of ghrelin and obestatin have yet to be confirmed using knockout mouse models. SUMMARY The knockout mouse continues to serve as an excellent model to dissect the complexity of the mechanism of gastric acid secretion and to study the physiological importance of gastric ghrelin.
Collapse
Affiliation(s)
- Duan Chen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
21
|
Cramer T, Jüttner S, Plath T, Mergler S, Seufferlein T, Wang TC, Merchant J, Höcker M. Gastrin transactivates the chromogranin A gene through MEK-1/ERK- and PKC-dependent phosphorylation of Sp1 and CREB. Cell Signal 2007; 20:60-72. [PMID: 17889508 DOI: 10.1016/j.cellsig.2007.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 08/27/2007] [Indexed: 11/16/2022]
Abstract
Our previous work revealed that gastrin regulates chromogranin A (CgA) transcription through enhanced binding of Sp1, CREB and Egr-1 to a proximal gastrin-responsive promoter element (Gas-RE). Here, we provide a detailed characterization of the signalling pathways transmitting the effect of gastrin on the CgA promoter. Gastrin treatment of gastric AGS-B cells potently stimulated MEK-1 as well as MAP kinases ERK-1/-2, JNK and p38 in a time-dependent manner. Interruption of ERK-1/-2/MEK-1 pathways abolished the transactivating effect of gastrin, whereas blockade of JNK or p38 activity was without effect. Functional promoter analysis revealed that the minimal element CgA-85/-64 was sufficient and necessary to confer MEK-1/ERK responsiveness. Analysis of proximal signalling pathways showed that activation of the MEK-1/ERK-1/2 module by gastrin does not require Ras, PI3-kinase or intracellular calcium signals, but depends on activation of kinases of the PKC family. This report demonstrates that a pathway comprising PKCs>Raf-1>MEK-1>ERK-1/-2 mediates the effect of gastrin on the CgA promoter, and strongly suggests that enhanced phosphorylation of Sp1 and CREB is crucial for CgA transactivation through the G protein-coupled CCK-B/gastrin receptor.
Collapse
Affiliation(s)
- Thorsten Cramer
- Laboratory for Angiogenesis and Tumor Metastasis, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Stenstrom B, Zhao CM, Tømmerås K, Arum CJ, Chen D. Is gastrin partially responsible for body weight reduction after gastric bypass? Eur Surg Res 2006; 38:94-101. [PMID: 16645284 DOI: 10.1159/000092851] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 03/20/2006] [Indexed: 12/18/2022]
Abstract
BACKGROUND The rationale for bariatric surgery is to reduce food intake by gastric restriction and/or malabsorption by intestinal bypass. Unlike ghrelin, gastrin is released in response to food intake. Here we studied the possible role of gastrin in the reduction of body weight after gastric bypass surgery. METHODS Rats were divided into four experimental groups and were subjected to different treatments: sham operation, gastric bypass, sham operation + gastrin infusion, and gastric bypass + gastrin infusion. The gastric bypass was done by anastomosing the esophagus to the duodenal bulb without bypassing the intestine. Gastrin-17 was infused continuously for 2 months via subcutaneously implanted osmotic minipumps. Body weights were recorded; serum gastrin and ghrelin levels were measured, and the stomachs were analyzed morphologically. RESULTS Gastric bypass resulted in reducing the body weight, stomach weight, thickness of the oxyntic mucosa, serum gastrin concentration, and activity of the ECL cells. Gastrin infusion prevented mucosal atrophy and ECL cell inactivation, and attenuated the body weight reduction that occurred following gastric bypass. Circulating ghrelin and ghrelin-producing A-like cells in stomachs that had undergone gastric bypass were unchanged with or without gastrin infusion and are thus unlikely to be responsible for the reduced body weight. CONCLUSION We suggest that hypogastrinemia and impaired ECL cell function in the oxyntic mucosa of the stomach might be partially responsible for the reduction in body weight that occurs after gastric bypass.
Collapse
Affiliation(s)
- Björn Stenstrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | |
Collapse
|
23
|
Tartaglia A, Portela-Gomes GM, Oberg K, Vezzadini P, Foschini MP, Stridsberg M. Chromogranin A in gastric neuroendocrine tumours: an immunohistochemical and biochemical study with region-specific antibodies. Virchows Arch 2006; 448:399-406. [PMID: 16408221 DOI: 10.1007/s00428-005-0113-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 10/04/2005] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to investigate ECLomas and enterochromaffin-like (ECL) cell hyperplasia in gastric human mucosa regarding the immunohistochemical expression of chromogranin A (CgA) epitopes and to measure the same CgA epitopes in plasma samples. Eight gastric biopsies from ECLomas, seven of type I and one of type III, and biopsies from one patient showing only ECL cell hyperplasia were included in the study. Our results revealed a varying expression of region-specific CgA epitopes in the ECLomas regarding both the frequency of immunoreactive cells and intensity of immunoreactivity. CgA284-301 (pancreastatin) was not revealed in any neoplasm, whereas CgA361-372 (catestatin) was expressed in all ECLomas. However, the number of immunoreactive cells to vesicular monoamino transporter 2 (VMAT 2) or the commercial monoclonal CgA (CgA250-284) antibodies were generally higher. The plasma concentrations of the region-specific CgA radioimmunoassays differed considerably, with highest concentrations of CgA1-17 and CgA116-130 epitopes and the lowest with the CgA17-37, CgA63-76, CgA238-247 and CgA441-424 epitopes. No relationship was found between tissue expression and plasma concentration of CgA epitopes. In conclusion, this study shows that VMAT 2 and the commercial CgA antibodies seem more useful for histopathological diagnosis of ECLomas than the antibodies to the other CgA regions.
Collapse
Affiliation(s)
- Andreas Tartaglia
- Department of Medicine and Gastroenterology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Curry WJ, Norlén P, Barkatullah SC, Johnston CF, Håkanson R, Hutton JC. Chromogranin A and Its Derived Peptides in the Rat and Procine Gastro-Entero-Pancreatic System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005. [DOI: 10.1007/0-306-46837-9_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
25
|
Qader SS, Salehi A, Håkanson R, Lundquist I, Ekelund M. Long-term infusion of nutrients (total parenteral nutrition) suppresses circulating ghrelin in food-deprived rats. ACTA ACUST UNITED AC 2005; 131:82-8. [PMID: 16102855 DOI: 10.1016/j.regpep.2005.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 06/30/2005] [Accepted: 07/05/2005] [Indexed: 01/23/2023]
Abstract
BACKGROUND Ghrelin derives from endocrine cells (A-like cells) in the stomach (mainly the oxyntic mucosa). Its concentration in the circulation increases during fasting and decreases upon re-feeding. This has fostered the notion that the absence of food in the upper gastrointestinal (GI) tract stimulates the secretion of ghrelin. The purpose of the present study was to determine the concentration of ghrelin in serum and oxyntic mucosa after replacing food with intravenous (iv) infusion of nutrients for 8 days using the technique known as total parenteral nutrition (TPN) MATERIALS AND METHODS: Male Sprague-Dawley rats (200-250 g) were given nutrients (lipids, glucose, amino acids, minerals and vitamins) by iv infusion for 8 days during which time they were deprived of food and water; another group was deprived of food for 24-48 h (fasted controls), while fed controls had free access to food and water. Serum ghrelin, gastrin and pancreastatin concentrations were measured together with the ghrelin content of the oxyntic mucosa. Plasma insulin and glucose as well as serum lipid concentrations were also determined. RESULTS Fasted rats had higher serum ghrelin than TPN rats and fed controls. The oxyntic mucosal ghrelin concentration (and content) was lower in TPN rats than in fasted rats or fed controls. The serum gastrin and pancreastatin concentrations were lower in TPN rats and fasted rats than in fed controls. The plasma insulin concentration was 87 pmol/l+/-8 (SEM) in TPN rats compared to 101+/-16 pmol/l in fed controls; it was 26+/-14 pmol/l in fasted rats. The basal plasma glucose level was 11+/-0.6 mmol/l in TPN rats and 12+/-0.8 mmol/l in fed controls; it was 7+/-0.3 mmol/l in fasted rats. In TPN rats, the serum concentrations of free fatty acids, triglycerides and cholesterol were increased by 100%, 50% and 25%, respectively, compared to fed controls. Fasted rats had higher circulating concentrations of free fatty acids (20%) and lower concentrations of triglycerides (-40%) than fed controls; fasted rats did not differ from fed controls with respect to serum cholesterol. CONCLUSION The circulating ghrelin concentration is high in situations of nutritional deficiency (starvation) and low in situations of nutritional plenty (free access to food or TPN). The actual presence or absence of food in the GI tract seems irrelevant. Circulating insulin and glucose concentrations did not differ much between TPN rats and fed controls; serum lipids, however, were elevated in the TPN rats. We suggest that elevated blood lipid levels contribute to the suppression of circulating ghrelin in rats subjected to TPN for 8 days.
Collapse
Affiliation(s)
- Saleem S Qader
- Department of Clinical Sciences, Division of Surgery, Lund University Hospital, SE-221 85, Sweden
| | | | | | | | | |
Collapse
|
26
|
Björkqvist M, Bernsand M, Eliasson L, Håkanson R, Lindström E. Somatostatin, misoprostol and galanin inhibit gastrin- and PACAP-stimulated secretion of histamine and pancreastatin from ECL cells by blocking specific Ca2+ channels. ACTA ACUST UNITED AC 2005; 130:81-90. [PMID: 15935492 DOI: 10.1016/j.regpep.2005.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 03/21/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
The oxyntic mucosa is rich in ECL cells. They secrete histamine and chromogranin A-derived peptides, such as pancreastatin, in response to gastrin and pituitary adenylate cyclase-activating peptide (PACAP). Secretion is initiated by Ca2+ entry. While gastrin stimulates secretion by opening L-type and N-type Ca2+ channels, PACAP stimulates secretion by activating L-type and receptor-operated Ca2+ channels. Somatostatin, galanin and prostaglandin E2 (PGE2) inhibit gastrin- and PACAP-stimulated secretion from the ECL cells. In the present study, somatostatin and the PGE2 congener misoprostol inhibited gastrin- and PACAP-stimulated secretion 100%, while galanin inhibited at most 60-65%. Bay K 8644, a specific activator of L-type Ca2+ channels, stimulated ECL-cell secretion, an effect that was inhibited equally effectively by somatostatin, misoprostol and galanin (75-80% inhibition). Pretreatment with pertussis toxin, that inactivates inhibitory G-proteins, prevented all three agents from inhibiting stimulated secretion (regardless of the stimulus). Pretreatment with nifedipine (10 microM), an L-type Ca2+ channel blocker, reduced PACAP-evoked pancreastatin secretion by 50-60%, gastrin-evoked secretion by approximately 80% and abolished the response to Bay K 8644. The nifedipine-resistant response to PACAP was abolished by somatostatin and misoprostol but not by galanin. Gastrin and PACAP raised the intracellular Ca2+ concentration in a biphasic manner, believed to reflect mobilization of internal Ca2+ followed by Ca2+ entry. Somatostatin and misoprostol blocked Ca2+ entry (and histamine and pancreastatin secretion) but not mobilization of internal Ca2+. The present observations on isolated ECL cells suggest that Ca2+ entry rather than mobilization of internal Ca2+ triggers exocytosis, that gastrin and PACAP activate different (but over-lapping) Ca2+ channels, that somatostatin, misoprostol and galanin interact with inhibitory G-proteins to block Ca2+ entry via L-type Ca2+ channels, and that somatostatin and misoprostol (but not galanin) in addition block N-type and/or receptor-operated Ca2+ channels.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Anti-Ulcer Agents/pharmacology
- Calcium/metabolism
- Calcium Channels/metabolism
- Cells, Cultured
- Chromogranin A
- Dose-Response Relationship, Drug
- Enterochromaffin-like Cells/metabolism
- Exocytosis
- Galanin/metabolism
- Galanin/pharmacology
- Gastrins/metabolism
- Histamine/metabolism
- Hormones/pharmacology
- Male
- Microscopy, Video
- Misoprostol/metabolism
- Misoprostol/pharmacology
- Models, Biological
- Nifedipine/pharmacology
- Pancreatic Hormones/metabolism
- Peptides, Cyclic/pharmacology
- Rats
- Rats, Sprague-Dawley
- Somatostatin/metabolism
- Somatostatin/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Maria Björkqvist
- Institute of Physiological Sciences, Department of Pharmacology, University of Lund, Sölvegatan 19, BMC F13, S-227 34 Lund, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Andersson N, Skrtic SM, Håkanson R, Ohlsson C. A gene expression fingerprint of mouse stomach ECL cells. Biochem Biophys Res Commun 2005; 332:404-10. [PMID: 15896709 DOI: 10.1016/j.bbrc.2005.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 05/02/2005] [Indexed: 12/28/2022]
Abstract
Many of the endocrine cells in the stomach are poorly characterized with respect to physiological significance. In some cases, the anticipated hormone has not yet been identified. Global gene expression analysis of mouse stomach was performed in an attempt to identify the ECL-cell peptide/protein. Specific functional activation (omeprazole-induced hypergastrinaemia) was used as a tool to generate a gene expression fingerprint of the ECL cells. The proposed fingerprint includes 14 genes, among them six are known to be expressed by ECL cells (=positive controls), and some novel ones, which are likely to be ECL-cell-related. The known ECL-cell-related genes are those encoding histidine decarboxylase, chromogranin A and B, vesicular monoamine transporter 2, synaptophysin, and the cholecystokinin-B receptor. In addition, the fingerprint included five genes, which might be involved in the process of secretion and three ESTs with unknown function. Interestingly, parathyroid hormone-like hormone (Pthlh) was identified as a candidate ECL-cell peptide hormone.
Collapse
Affiliation(s)
- Niklas Andersson
- Center for Bone Research at the Sahlgrenska Academy (CBS), Department of Internal Medicine, Division of Endocrinology, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
28
|
Fossmark R, Zhao CM, Martinsen TC, Kawase S, Chen D, Waldum HL. Dedifferentiation of enterochromaffin-like cells in gastric cancer of hypergastrinemic cotton rats. APMIS 2005; 113:436-49. [PMID: 15996161 DOI: 10.1111/j.1600-0463.2005.apm_134.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of enterochromaffin-like (ECL) cells in gastric carcinogenesis is not fully understood. Spontaneous tumours developing in hypergastrinemic female cotton rats have an adenocarcinoma phenotype, but numerous cells in the dysplastic mucosa as well as in the carcinomas are positive for neuroendocrine markers. In the present study of female cotton rats with 2 and 8 months' hypergastrinemia, the oxyntic mucosa of the stomach was examined histologically and immunolabelled for histidine decarboxylase (HDC) and pancreastatin, and hyperplastic and neoplastic ECL cells were evaluated by electron microscopy. These animals developed hyperplasia of the oxyntic mucosa in general and of the ECL cells in particular after 2 months and dysplasia and carcinomas after 8 months. The immunoreactivity of the ECL cells in the oxyntic mucosa was increased at 2 months and declined at 8 months. These histological changes were associated with progressive loss of secretory vesicles and granules in ECL cells. We suggest that ECL cells in hypergastrinemic cotton rats dedifferentiate with time and that the gastric carcinomas may develop from ECL cells.
Collapse
Affiliation(s)
- Reidar Fossmark
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
29
|
Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 2005; 79:769-94. [PMID: 15682870 DOI: 10.1017/s146479310400644x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III-VII are collectively referred to as 'granins' and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, Division of Physiology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
30
|
Fossmark R, Johnsen G, Johanessen E, Waldum HL. Rebound acid hypersecretion after long-term inhibition of gastric acid secretion. Aliment Pharmacol Ther 2005; 21:149-54. [PMID: 15679764 DOI: 10.1111/j.1365-2036.2004.02271.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rebound acid hypersecretion develops after the use of acid inhibitors. AIM To estimate the duration of hypersecretion and to elucidate the role of the enterochromaffin-like (ECL) cell in rebound acid hypersecretion. METHODS Patients waiting for anti-reflux surgery who had used a proton pump inhibitor daily > 1 year were included. All patients discontinued taking acid inhibiting drugs after the operation. Basal and pentagastrin stimulated acid output was measured at 4, 8, 16 and 26 weeks postoperatively. Oxyntic mucosal biopsies were collected before and 26 weeks after the operation for counting of histidine decarboxylase (HDC) immunoreactive cells. Serum chromogranin A (CgA) and gastrin were measured before and at 4, 8, 16 and 26 weeks after the operation. RESULTS Pentagastrin stimulated acid secretion was higher at 4 and 8 weeks than at 26 weeks after the operation. Gastrin and CgA were significantly reduced at 4 and 8 weeks, respectively. The number of HDC immunoreactive cells was reduced by 60% at 26 weeks postoperative. DISCUSSION Rebound acid hypersecretion lasts more than 8 weeks, but less than 26 weeks after long-term proton pump inhibition. CONCLUSION The findings indicate that not only the parietal cell mass, but also ECL cell mass and activity are involved in the mechanism of acid hypersecretion.
Collapse
Affiliation(s)
- R Fossmark
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|
31
|
Quinn JG, Curry WJ, Norlén P. Effect of reserpine on the generation of the chromogranin A-derived neuropeptide WE-14 in rat oxyntic mucosa. ACTA ACUST UNITED AC 2005; 124:1-6. [PMID: 15544835 DOI: 10.1016/j.regpep.2004.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
WE-14, a post-translational product of the neuroendocrine protein chromogranin A (CgA), is generated in distinct subpopulations of endocrine cells. The objective of this study was to investigate the generation of WE-14 in the endocrine cell types of the oxyntic mucosa of the stomach, after treatment with reserpine, an irreversible inhibitor of vesicular monoamine uptake 2 (VMAT2). Reserpine (10 mg/kg) was administered subcutaneously and tissue analysed 1, 3, 5 and 18 h following treatment. The oxyntic mucosa was analysed immunohistochemically employing a site-specific WE-14 antiserum, a region-specific CgA antiserum and an antiserum against histidine decarboxylase (HDC), a marker of the histamine-producing ECL cells in the oxyntic mucosa. The number of oxyntic endocrine cells exhibiting WE-14 immunostaining increased more than 100-fold 18 h after reserpine administration relative to vehicle treated controls. Double immunostaining with HDC revealed that most, but not all, of the WE-14 positive cells were ECL cells. These results suggest that reserpine has the ability to influence the post-translational processing of CgA to generate WE-14 in rat stomach ECL cells, presumably as a consequence of reduced VMAT2-driven accumulation of histamine.
Collapse
Affiliation(s)
- J G Quinn
- Ophthalmology and Vision Science Research Centre, Institute of Clinical Science, Queen's University Belfast, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland, United Kingdom
| | | | | |
Collapse
|
32
|
Abstract
Drugs inhibiting gastric acid secretion are widely used because of the high prevalence of acid-related disorders. However, from clinical experience it seems that symptom relapse is common after withdrawal of these drugs. Experimental as well as clinical studies have demonstrated an increased acid secretion after a period of treatment with either histamine 2 receptor antagonists or proton pump inhibitors. Rebound hypersecretion is likely to reflect the following sequence of events: Long-term inhibition of acid output is accompanied by elevated serum gastrin levels, leading to enterochromaffin-like cell activation and proliferation, resulting in increased amounts of histamine being mobilized from these cells to stimulate the parietal cells. The clinical consequences of rebound hypersecretion have not been settled.
Collapse
Affiliation(s)
- Gunnar Qvigstad
- Department of Medicine, Section of Gastroenterology, St. Olavs Hospital, Trondheim University Hospital, N-7006 Trondheim, Norway.
| | | |
Collapse
|
33
|
Ghia JE, Crenner F, Rohr S, Meyer C, Metz-Boutigue MH, Aunis D, Angel F. A role for chromogranin A (4–16), a vasostatin-derived peptide, on human colonic motility. An in vitro study. ACTA ACUST UNITED AC 2004; 121:31-9. [PMID: 15256271 DOI: 10.1016/j.regpep.2004.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/02/2004] [Accepted: 04/08/2004] [Indexed: 11/26/2022]
Abstract
The hypothesis that CgA-derived peptides may be involved in mechanisms modulating motility was tested. Human colonic smooth muscles were studied using an organ bath technique. Acetic acid (AA) effects were characterized on spontaneous mechanical activities (SMA) and on responses to transmural nerve stimulation (NS). AA induced a significant decrease in tone and abolished SMA; this effect was insensitive to either TTX or L-NAME/apamin. The AA-induced inhibitory effects were significantly reduced in the presence of CgA4-16. This effect was insensitive to TTX or L-NAME/apamin. Furthermore, AA-induced effects were blocked in the presence of BAYK8644 and CgA4-16 together. The inhibitory effect of nifedipine was delayed in the presence of CgA4-16. NS induced a triphasic response. Only the excitatory components were reduced in the presence of AA. This effect was dose-related and remained unchanged in the presence of CgA4-16 alone, but was blocked in the presence of simultaneous administration of CgA4-16 and L-NAME/apamin. AA application induced inhibition of human colon motility in vitro. This effect may be mediated through an action on L-type calcium channels. CgA4-16 may display a protective role, which prevents the inhibition of motility due to AA to occur, by acting on both smooth muscle and afferent terminals.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Acetic Acid/pharmacology
- Apamin/pharmacology
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Chromatography, High Pressure Liquid
- Chromogranin A
- Chromogranins/chemical synthesis
- Chromogranins/pharmacology
- Colon, Sigmoid/cytology
- Colon, Sigmoid/drug effects
- Colon, Sigmoid/innervation
- Electric Stimulation
- Gastrointestinal Motility/drug effects
- Humans
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- NG-Nitroarginine Methyl Ester/pharmacology
- Nifedipine/pharmacology
- Organ Culture Techniques
- Peptide Fragments/chemical synthesis
- Peptide Fragments/pharmacology
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- Jean-Eric Ghia
- INSERM Unit 575 Pavillon Poincaré 1 place de l'Hôpital Civil 67091 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Dornonville de la Cour C, Lindström E, Norlén P, Håkanson R. Ghrelin stimulates gastric emptying but is without effect on acid secretion and gastric endocrine cells. ACTA ACUST UNITED AC 2004; 120:23-32. [PMID: 15177917 DOI: 10.1016/j.regpep.2004.02.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 01/29/2004] [Accepted: 02/06/2004] [Indexed: 12/14/2022]
Abstract
Ghrelin, a recently discovered peptide hormone, is produced by endocrine cells in the stomach, the so-called A-like cells. Ghrelin binds to the growth hormone (GH) secretagogue receptor and releases GH. It is claimed to be orexigenic and to control gastric acid secretion and gastric motility. In this study, we examined the effects of ghrelin, des-Gln14-ghrelin, des-octanoyl ghrelin, ghrelin-18, -10 and -5 (and motilin) on gastric emptying in mice and on gastric acid secretion in chronic fistula rats and pylorus-ligated rats. We also examined whether ghrelin affected the activity of the predominant gastric endocrine cell populations, G cells, ECL cells and D cells. Ghrelin and des-Gln14-ghrelin stimulated gastric emptying in a dose-dependent manner while des-octanoyl ghrelin and motilin were without effect. The C-terminally truncated ghrelin fragments were effective but much less potent than ghrelin itself. Ghrelin, des-Gln14-ghrelin and des-octanoyl ghrelin neither stimulated nor inhibited gastric acid secretion, and ghrelin, finally, did not affect secretion from either G cells, ECL cells or D cells.
Collapse
|
35
|
Abstract
The peptide hormone gastrin is the key regulator of gastric acid secretion. Gastrin exerts its effects as acid secretagogue through functional activation of gastric enterochromaffin-like (ECL) cells, which control acid secretion through biosynthesis and release of histamine. In ECL cells, concerted activation of histidine decarboxylase (HDC), vesicular monoamine transporter 2 (VMAT2), and chromogranin A (CgA) genes by gastrin is a prerequisite for proper acid control. To elucidate the molecular pathways underlying gastrin-dependent control of ECL cell genes, we recently analyzed the signaling cascades, regulatory promoter elements, and transcription factors mediating the transcriptional effects of gastrin. Our studies identified the Raf>MEK1>ERK 1/-2 kinase module as the common signaling pathway mediating gastrin-dependent ECL cell gene transcription. In contrast to this uniform signaling cascade, pronounced heterogeneity was detected between cis- and trans-activating regulatory factors conferring gastrin responsiveness. The molecular diversity of transcription factors and regulatory enhancer elements transmitting gastrin-triggered gene transcription offers the molecular basis for synergistic, but differential, regulation of HDC, VMAT2, and CgA genes during a secretory challenge of ECL cells by gastrin and possibly other acid secretagogues.
Collapse
Affiliation(s)
- Michael Hocker
- Medizinische Klink mit Schwerpunkt Gastroenterologie und Hepatologie, Charité -- Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany.
| |
Collapse
|
36
|
Bernsand M, Ericsson P, Björkqvist M, Zhao CM, Håkanson R, Norlén P. Submucosal microinfusion of endothelin and adrenaline mobilizes ECL-cell histamine in rat stomach, and causes mucosal damage: a microdialysis study. Br J Pharmacol 2003; 140:707-17. [PMID: 14504142 PMCID: PMC1574064 DOI: 10.1038/sj.bjp.0705473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rat stomach ECL cells release histamine in response to gastrin. Submucosal microinfusion of endothelin or adrenaline, known to cause vasoconstriction and gastric lesions, mobilized striking amounts of histamine. While the histamine response to gastrin is sustainable for hours, that to endothelin and adrenaline was characteristically short-lasting (1-2 h). The aims of this study were to identify the cellular source of histamine mobilized by endothelin and adrenaline, and examine the differences between the histamine-mobilizing effects of gastrin, and of endothelin and adrenaline. Endothelin, adrenaline or gastrin were administered by submucosal microinfusion. Gastric histamine mobilization was monitored by microdialysis. Local pretreatment with the H1-receptor antagonist mepyramine and the H2-receptor antagonist ranitidine did not prevent endothelin- or adrenaline-induced mucosal damage. Submucosal microinfusion of histamine did not cause damage. Acid blockade by ranitidine or omeprazole prevented the damage, suggesting that acid back diffusion contributes. Gastrin raised histidine decarboxylase (HDC) activity close to the probe, without affecting the histamine concentration. Endothelin and adrenaline lowered histamine by 50-70%, without activating HDC. Histamine mobilization declined upon repeated administration. Endothelin reduced the number of histamine-immunoreactive ECL cells locally, and reduced the number of secretory vesicles. Thus, unlike gastrin, endothelin (and adrenaline) is capable of exhausting ECL-cell histamine. Microinfusion of alpha-fluoromethylhistidine (known to deplete ECL cells but not mast cells of histamine) reduced the histamine-mobilizing effect of endothelin by 80%, while 1-week pretreatment with omeprazole enhanced it, supporting the involvement of ECL cells. Somatostatin or the prostanoid misoprostol inhibited gastrin-, but not endothelin-stimulated histamine release, suggesting that endothelin and gastrin mobilize histamine via different mechanisms. While gastrin effectively mobilized histamine from ECL cells in primary culture, endothelin had no effect, and adrenaline, a modest effect. Hence, the striking effects of endothelin and adrenaline on ECL cells in situ are probably indirect, possibly a consequence of ischemia.
Collapse
Affiliation(s)
- M Bernsand
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund, BMC F13, Lund S-221 84, Sweden
| | - P Ericsson
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund, BMC F13, Lund S-221 84, Sweden
| | - M Björkqvist
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund, BMC F13, Lund S-221 84, Sweden
| | - C -M Zhao
- Department of Medical Technology, Faculty of Technology, Sør-Trøndelag University College, Trondheim 7006, Norway
| | - R Håkanson
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund, BMC F13, Lund S-221 84, Sweden
- Author for correspondence:
| | - P Norlén
- Department of Clinical Pharmacology, Lund University Hospital, Lund S-221 85, Sweden
| |
Collapse
|
37
|
Abstract
Enterochromaffin-like (ECL) cells are neuroendocrine cells in the gastric mucosa that control acid secretion by releasing histamine as a paracrine stimulant. The antral hormone gastrin and the neural messenger pituitary adenylyl cyclase-activating peptide (PACAP) potently stimulate histamine synthesis, storage, and secretion by ECL cells. Histamine is stored in secretory vesicles via V-type ATPases and vesicular monoamine transporters of subtype 2 (VMAT-2). Plasmalemmal calcium entry occurs via L-type calcium channels upon stimulation with secretagogues. K(+) and Cl(-) channels maintain the membrane potential. Calcium-triggered exocytosis of histamine is mediated by interacting SNARE proteins, especially by synaptobrevin and SNAP-25. Dynamins and amphiphysins appear to play a key role in endocytosis. ECL cells are under transcriptional control of various hormones. Gastrin stimulates transcriptional activity of the histidine decarboxylase (HDC), VMAT-2, and chromogranin A promoter by activation of Sp1 elements and CREB. During chronic Helicobacter pylori infection, pro-inflammatory cytokines are released that can also affect ECL cells, thus impairing their secretory function and viability, which can predispose to hypochlorhydria and gastric carcinogenesis.
Collapse
Affiliation(s)
- Christian Prinz
- II. Medizinische Klinik, Technische Universität München, D-81675 München, Germany.
| | | | | |
Collapse
|
38
|
Krüger PG, Mahata SK, Helle KB. Catestatin (CgA344-364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. REGULATORY PEPTIDES 2003; 114:29-35. [PMID: 12763637 DOI: 10.1016/s0167-0115(03)00069-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Catestatin (bovine CgA(344-364)) is a cationic peptide, which besides reducing catecholamine secretion from chromaffin cells in vitro also acts a potent vasodilator in the rat in vivo. The alleged histamine releasing effect of catestatin was tested in vitro in rat mast cells. The most active domain of catestatin (bovine CgA(344-358): RSMRLSFRARGYGFR) caused concentration-dependent (0.01-5 microM) release of histamine from peritoneal and pleural mast cells. The potency and efficacy of catestatin was higher than for the wasp venom peptide, mastoparan. Only in the pleural cells was neurotensin (NT) more potent than catestatin, mastoparan and substance P (SP), consistent with a receptor-mediated histamine release by neurotensin. Amongst these cationic peptides, substance P was least effective. The acidic CgA peptide (WE-14, bovine CgA (324-337)) neither stimulated nor modulated histamine release by the cationic peptides. The catestatin and neurotensin evoked histamine release were suppressed by pertussis toxin (PTX), suggesting involvement of a G(i) subunit. Electron micrographs of rat pleural mast cells responding to catestatin revealed a concentration-dependent discharge of granular material. We propose that catestatin activates histamine release from rat mast cells by a mechanism analogous to that already established for mastoparan and other amphiphilic cationic neuropeptides (the peptidergic pathway) and distinct from the mechanism of inhibition of catecholamine release from chromaffin cells.
Collapse
|
39
|
Feldman SA, Eiden LE. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 2003; 14:3-23. [PMID: 12746559 DOI: 10.1385/ep:14:1:3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromogranins are the major components of the secretory granules of most neuroendocrine cells. Within the secretory pathway, chromogranins are involved in granulogenesis, and in sorting and processing of secretory protein cargo prior to secretion. Once secreted, they have hormonal, autocrine, and paracrine activities. The chromogranin family includes chromogranins A (CgA) and B (CgB) and secretogranin II (SgII, once called chromogranin C). The related "granins" NESP55, 7B2, secretogranin III/1B 1075 (SgIII), and secretogranin IV/HISL-19 antigen (SgIV), are also sometimes included when considering the chromogranins. While it is useful to consider the granin proteins as a family with many common features, it is also necessary to examine the distinct features and properties of individual members of the granin family to understand fully their functions, employ them efficiently as tissue, serum, and urinary markers for neuroendocrine neoplasia, and develop an evolutionary-biologic perspective on their contribution to mammalian physiology. Recent advances in chromogranin research include establishing the role of CgA in granulogenesis and the role of CgB in nuclear transcription; new biologic activities for CgA-, CgB-, and SgII-derived peptides; and new marker functions for granins and their proteolytically processed products in endocrine neoplasias.
Collapse
Affiliation(s)
- Steven A Feldman
- Section on Molecular Virology, Laboratory of Cellular and Molecular Regulation, National Institutes of Health, Bethesda MD 20892-4090, USA
| | | |
Collapse
|
40
|
Björkqvist M, Dornonville de la Cour C, Zhao CM, Gagnemo-Persson R, Håkanson R, Norlén P. Role of gastrin in the development of gastric mucosa, ECL cells and A-like cells in newborn and young rats. REGULATORY PEPTIDES 2002; 108:73-82. [PMID: 12220729 DOI: 10.1016/s0167-0115(02)00111-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Histamine-producing ECL cells and ghrelin-producing A-like cells are endocrine/paracrine cell populations in the acid-producing part of the rat stomach. While the A-like cells operate independently of gastrin, the ECL cells respond to gastrin with mobilization of histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. Gastrin is often assumed to be the driving force behind the postnatal development of the gastric mucosa in general and the ECL cells in particular. We tested this assumption by examining the oxyntic mucosa (with ECL cells and A-like cells) in developing rats under the influence of YF476, a cholecystokinin-2 (CCK(2)) receptor antagonist. The drug was administered by weekly subcutaneous injections starting at birth. The body weight gain was not affected. Weaning occurred at days 15-22 in both YF476-treated and age-matched control rats. Circulating gastrin was low at birth and reached adult levels 2 weeks after birth. During and after weaning (but not before), YF476 greatly raised the serum gastrin concentration (because of abolished acid feedback inhibition of gastrin release). The weight of the stomach was unaffected by YF476 during the first 2-3 weeks after birth. From 4 to 5 weeks of age, the weight and thickness of the gastric mucosa were lower in YF476-treated rats than in controls. Pancreastatin-immunoreactive cells (i.e. all endocrine cells in the stomach) and ghrelin-immunoreactive cells (A-like cells) were few at birth and increased gradually in number until 6-8 weeks of age (control rats). At first, YF476 did not affect the development of the pancreastatin-immunoreactive cells, but a few weeks after weaning, the cells were fewer in the YF476 rats. The ECL-cell parameters (oxyntic mucosal histamine and pancreastatin concentrations, the histidine decarboxylase (HDC) activity, the HDC mRNA levels and serum pancreastatin concentration) increased slowly until weaning in both YF476-treated and control rats. From then on, there was a further increase in the ECL-cell parameters in control rats but not in YF476 rats. The postnatal development of the ghrelin cells (i.e. the A-like cells) and of the A-like cell parameters (the oxyntic mucosal ghrelin concentration and the serum ghrelin concentrations) was not affected by YF476 at any point. We conclude that gastrin affects neither the oxyntic mucosa nor the endocrine cells before weaning. After weaning, CCK(2) receptor blockade is associated with a somewhat impaired development of the oxyntic mucosa and the ECL cells. While gastrin stimulation is of crucial importance for the onset of acid secretion during weaning and for the activation of ECL-cell histamine formation and secretion, the mucosal and ECL-cell growth at this stage is only partly gastrin-dependent. In contrast, the development of the A-like cells is independent of gastrin at all stages.
Collapse
Affiliation(s)
- Maria Björkqvist
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund, Sölvegatan 19, BMC F13, S-227 34, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Rydning A, Lyng O, Falkmer S, Grønbech JE. Histamine is involved in gastric vasodilation during acid back diffusion via activation of sensory neurons. Am J Physiol Gastrointest Liver Physiol 2002; 283:G603-11. [PMID: 12181173 DOI: 10.1152/ajpgi.00527.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protective vasodilation during acid back diffusion into the rat gastric mucosa depends on activation of sensory neurons and mast cell degranulation with histamine release. We hypothesized that these two mediator systems interact and that histamine partly exerts its effect via sensory nerves. Gastric blood flow (GBF) and luminal histamine were measured in chambered stomachs, and mast cell numbers were assessed by morphometry. Ablation of sensory neurons and depletion of mast cells were produced by pretreatment with capsaicin or dexamethasone, respectively. Mucosal exposure to 1.5 M NaCl and then to pH 1.0 saline in ablated and control rats caused increased luminal histamine and reduced numbers of mast cells. Enterochromaffin-like cell marker pancreastatin remained unchanged. Only control rats responded with an increase in GBF. Capsaicin stimulation (640 microM) of the undamaged mucosa induced identical increase in GBF and unchanged mast cell mass in normal and dexamethasone-treated rats. Increase in GBF after topical exposure to histamine (30 mM) in rats pretreated with capsaicin or a calcitonin gene-related peptide (CGRP)(1) antagonist human CGRP(8-37) or exposed to the calcium pore blocker ruthenium red was less than one-half of that in control rats. These data suggest that mast cell-derived histamine is involved in gastric vasodilatation during acid back diffusion partly via sensory neurons.
Collapse
Affiliation(s)
- Astrid Rydning
- Departments of Surgery, Norwegian University of Science and Technology, N-7006 Trondheim, Norway.
| | | | | | | |
Collapse
|
42
|
Chen D, Zhao CM, Al-Haider W, Håkanson R, Rehfeld JF, Kopin AS. Differentiation of gastric ECL cells is altered in CCK(2) receptor-deficient mice. Gastroenterology 2002; 123:577-85. [PMID: 12145810 DOI: 10.1053/gast.2002.34746] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Gastrin stimulation of the type 2 cholecystokinin (CCK(2)) receptor results in ECL cell proliferation and histamine secretion. This report describes the effects of targeted disruption of the CCK(2) receptor gene on ECL cell morphology and function. METHODS The ECL cells in the oxyntic mucosa of CCK(2) receptor-deficient (knockout [KO]) vs. wild-type (WT) mice were investigated by immunocytochemical and biochemical approaches, as well as by electron microscopy. RESULTS Immunocytochemistry demonstrates similar numbers (cells per millimeter of horizontal length of mucosa) of pancreastatin- or vesicle monoamine transporter-2 (VMAT-2)-immunoreactive cells in WT mice and KO mice. However, only WT mice harbor histamine-immunoreactive ECL cells. The mucosal histamine content in KO mice (likely originating from mast cells) is only a minute fraction of that present in WT animals. The activity of the histamine forming enzyme, histidine decarboxylase (a marker of ECL cells), was undetectable in the oxyntic mucosa of KO mice yet was readily apparent in the mucosa from WT animals. Electron microscopy revealed numerous ECL cells in WT mice. In KO animals, these cells were replaced by an "ECL-like" cell type, characterized by a lack of secretory vesicles (a hallmark feature of normal ECL cells) and the presence of dense-core granules and microvesicles in numbers comparable to those found in WT ECL cells. Based on ultrastructural features, the ECL-like cells in KO mice can be readily distinguished from other gastric endocrine cells, including A-like cells and D cells. CONCLUSIONS Absence of a single gene product, the CCK(2) receptor, alters the differentiation and function of gastric ECL cells.
Collapse
Affiliation(s)
- Duan Chen
- Department of Intra-abdominal Diseases and Laboratory Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
43
|
Larsson B, Norlén P, Lindström E, Zhao D, Håkanson R, Linde A. Effects of ECL cell extracts and granule/vesicle-enriched fractions from rat oxyntic mucosa on cAMP and IP(3) in rat osteoblast-like cells. REGULATORY PEPTIDES 2002; 106:13-8. [PMID: 12047905 DOI: 10.1016/s0167-0115(02)00024-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The existence of an osteotropic hormone (referred to as gastrocalcin) in the ECL cells of the gastric mucosa has been suggested. Both gastrin and an extract of the oxyntic mucosa lower blood Ca(2+) and stimulate Ca(2+) uptake into bone. The ECL cells are known to operate under gastrin control and, conceivably, gastrin lowers blood Ca(2+) indirectly by releasing the hypothetical ECL cell hormone. We have shown earlier that extracts of isolated ECL cells or of the granule/vesicle fraction of the oxyntic mucosa evoke a typical Ca(2+)-mediated second messenger response in osteoblastic cells. In the present study, we characterize this response further. An increase in intracellular inositol 1,4,5-trisphosphate (IP(3)) concentration was observed after treatment of UMR-106.01 osteoblast-like cells with extracts of ECL cells or granule/vesicle-enriched fractions from oxyntic mucosa. Intracellular cyclic adenosine monophosphate (cAMP) concentrations were not affected. Inhibition of phospholipase C (PLC) by U-73122 abolished the increase in [Ca(2+)](i). Preincubation of UMR-106.01 cells with pertussis toxin, which blocks many G-proteins, did not prevent the increases in IP(3) and [Ca(2+)](i). It was also found that the novel peptide hormone ghrelin, produced in the A-like cells of the oxyntic mucosa, did not evoke any Ca(2+) signal in osteoblastic cells. The results indicate that the extracts mediate their effects through a pertussis toxin-insensitive mechanism, and that binding to a receptor leads to activation of PLC and production of IP(3) resulting in increased [Ca(2+)](i). The putative osteotropic hormone is distinct from ghrelin.
Collapse
Affiliation(s)
- Birgitta Larsson
- Department of Oral Biochemistry, Göteborg University, Box 450, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
Lindström E, Eliasson L, Björkqvist M, Håkanson R. Gastrin and the neuropeptide PACAP evoke secretion from rat stomach histamine-containing (ECL) cells by stimulating influx of Ca2+ through different Ca2+ channels. J Physiol 2001; 535:663-77. [PMID: 11559765 PMCID: PMC2278808 DOI: 10.1111/j.1469-7793.2001.00663.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Gastrin and PACAP stimulate secretion of histamine and pancreastatin from isolated rat stomach ECL cells. We have examined whether or not secretion depends on the free cytosolic Ca2+ concentration ([Ca2+]i) and the pathways by which gastrin and PACAP elevate [Ca2+]i. Secretion was monitored by radioimmunoassay of pancreastatin and changes in [Ca2+]i by video imaging. The patch clamp technique was used to record whole-cell currents and membrane capacitance (reflecting exocytosis). 2. In the presence of 2 mM extracellular Ca2+, gastrin and PACAP induced secretion and raised [Ca2+]i. Without extracellular Ca2+ (or in the presence of La3+) no secretion occurred. The extracellular Ca2+ concentration required to stimulate secretion was 10 times higher for gastrin than for PACAP. Depletion of intracellular Ca2+ pools by thapsigargin had no effect on the capacity of gastrin and PACAP to stimulate secretion. 3. Gastrin-evoked secretion was inhibited 60-80 % by L-type channel blockers and 40 % by the N-type channel blocker omega-conotoxin GVIA. Combining L-type and N-type channel blockers did not result in greater inhibition than L-type channel blockers alone. Whole-cell patch clamp measurements confirmed that the ECL cells are equipped with voltage-dependent inward Ca2+ currents. A 500 ms depolarising pulse from -60 mV to +10 mV which maximally opened these channels resulted in an increase in membrane capacitance of 100 fF reflecting exocytosis of secretory vesicles. 4. PACAP-evoked secretion was reduced 40 % by L-type channel blockers but was not influenced by inhibition of N-type channels. SKF 96365, a blocker of both L-type and receptor-operated Ca2+ channels, inhibited PACAP-evoked secretion by 85 %. Combining L-type channel blockade with SKF 96365 abolished PACAP-evoked secretion. 5. The results indicate that gastrin- and PACAP-evoked secretion depends on Ca2+ entry and not on mobilisation of intracellular Ca2+. While gastrin stimulates secretion via voltage-dependent L-type and N-type Ca2+ channels, PACAP acts via L-type and receptor-operated Ca2+ channels.
Collapse
Affiliation(s)
- E Lindström
- Institute of Physiological Sciences, Department of Pharmacology, University of Lund, Lund, Sweden.
| | | | | | | |
Collapse
|
45
|
Sanduleanu S, De Bruïne A, Stridsberg M, Jonkers D, Biemond I, Hameeteman W, Lundqvist G, Stockbrügger RW. Serum chromogranin A as a screening test for gastric enterochromaffin-like cell hyperplasia during acid-suppressive therapy. Eur J Clin Invest 2001; 31:802-11. [PMID: 11589723 DOI: 10.1046/j.1365-2362.2001.00890.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Serum chromogranin A (CgA), a marker of neuroendocrine neoplasia, increases during profound gastric acid inhibition, possibly reflecting the trophic effect of gastrin on the enterochromaffin-like (ECL) cells. AIMS This study investigated the clinical value of serum CgA as a screening test for gastric fundic enterochromaffin-like (ECL) cell hyperplasia during acid-suppressive therapy. METHOD A consecutive series of 230 dyspeptic patients referred for upper gastrointestinal endoscopy was investigated in a cross-sectional design. They were 154 patients on continuous medium-term (6 weeks to one year) or long-term (longer than one year) acid inhibition with either proton pump inhibitors (PPIs, n = 117) or histamine2-receptor antagonists (H2RAs, n = 37) for gastro-oesophageal reflux disease, and 76 nontreated subjects, with normal endoscopic findings (control group). Fasting blood samples were analysed for gastrin and CgA. Gastric biopsy specimens (oxyntic mucosa) were examined for histological evaluation of gastritis (Sydney classification) and of ECL cell hyperplasia (Solcia classification). RESULTS Serum CgA levels correlated positively with serum gastrin, following a quadratic function (r = 0.78, P < 0.0001). Elevated serum CgA values during long-term acid inhibition correlated with the presence and severity of fundic ECL cell hyperplasia. Multivariate analysis identified hypergastrinaemia (P < 0.0001), duration of acid inhibition (P < 0.0001), H. pylori infection (P = 0.008), ECL cell hyperplasia (P = 0.012), and body gland atrophy (P = 0.043) as independent predictors of elevated serum CgA. In subjects on long-term acid inhibition (n = 123), serum CgA was equally sensitive but more specific than serum gastrin for the detection of ECL cell hyperplasia (sensitivity, 91.3% for both; specificity, 73% vs. 43%, P < 0.0001). CONCLUSIONS During long-term gastric acid inhibition, serum CgA levels reflect the presence and severity of fundic ECL cell hyperplasia. Serum CgA is therefore a useful screening test for gastric ECL cell proliferative changes within this context.
Collapse
Affiliation(s)
- S Sanduleanu
- Department of Gastroenterology/Hepatology, University Hospital Maastricht, Maastricht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dornonville de la Cour C, Björkqvist M, Sandvik AK, Bakke I, Zhao CM, Chen D, Håkanson R. A-like cells in the rat stomach contain ghrelin and do not operate under gastrin control. REGULATORY PEPTIDES 2001; 99:141-50. [PMID: 11384775 DOI: 10.1016/s0167-0115(01)00243-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ghrelin is a 28 a.a. gastric peptide, recently identified as a natural ligand of the growth hormone secretagogue receptor (orphan receptor distinct from the receptor for growth hormone releasing hormone). In the present study, radioimmunoassay demonstrated ghrelin-like material in the rat oxyntic mucosa with moderate amounts also in antrum and duodenum. Small amounts were found in the distal intestines and pancreas. Northern blot analysis revealed abundant ghrelin mRNA in the oxyntic mucosa. Immunocytochemistry demonstrated ghrelin-immunoreactivity in endocrine-like cells in the oxyntic mucosa. Such cells occurred in low numbers also in the antrum and duodenum. The rat oxyntic mucosa is rich in endocrine (chromogranin A/pancreastatin-immunoreactive) cells, such as the histamine-rich ECL cells (65-75% of the endocrine cells), the A-like cells (20-25%) and the D cells (somatostatin cells) (10%). The ghrelin-immunoreactive (IR) cells contained pancreastatin but differed from ECL cells and D cells by being devoid of histamine-forming enzyme (ECL cell constituent) and somatostatin (D cell constituent). Hence, ghrelin seems to occur in the A-like cells. The ghrelin-IR cells in the antrum were distinct from the gastrin cells, the serotonin-containing enterochromaffin cells and the D cells. Conceivably, ghrelin cells in the antrum and distally in the intestines also belong to the A-like cell population. The concentration of ghrelin in the circulation was lowered by about 80% following the surgical removal of the acid-producing part of the stomach in line with the view that the oxyntic mucosa is the major source of ghrelin. The serum ghrelin concentration was higher in fasted rats than in fed rats; it was reduced upon re-feeding and seemed unaffected by 1-week treatment with the proton pump inhibitor omeprazole, resulting in elevated serum gastrin concentration. Infusion of gastrin-17 for 2 days failed to raise the serum ghrelin concentration. Omeprazole treatment for 10 weeks raised the level of HDC mRNA but not that of ghrelin mRNA or somatostatin mRNA in the oxyntic mucosa. Hence, unlike the ECL cells, ghrelin-containing A-like cells do not seem to operate under gastrin control.
Collapse
Affiliation(s)
- C Dornonville de la Cour
- Department of Pharmacology, Institute of Physiological Sciences, Lund University, Solvegatan 10, S-223 62, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Helle KB. The chromogranins. Historical perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:3-20. [PMID: 11192591 DOI: 10.1007/0-306-46837-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K B Helle
- Department of Physiology, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
48
|
Waldum HL, Syversen U. Chromogranin A (CGA) and the enterochromaffin-like (ECL) cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:361-7. [PMID: 11192596 DOI: 10.1007/0-306-46837-9_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- H L Waldum
- Norwegian University of Science and Technology, Faculty of Medicine, Department of Intra-abdominal Diseases, Trondheim University Hospital, N-7006 Trondheim, Norway
| | | |
Collapse
|
49
|
Sánchez-Margalet V, González-Yanes C, Santos-Alvarez J, Najib S. Pancreastatin. Biological effects and mechanisms of action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:247-62. [PMID: 11192586 DOI: 10.1007/0-306-46837-9_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, and Investigation Unit, University Hospital Virgen Macarena, Seville, Spain
| | | | | | | |
Collapse
|
50
|
Watson F, Kiernan RS, Deavall DG, Varro A, Dimaline R. Transcriptional activation of the rat vesicular monoamine transporter 2 promoter in gastric epithelial cells: regulation by gastrin. J Biol Chem 2001; 276:7661-71. [PMID: 11113118 DOI: 10.1074/jbc.m006697200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vesicular monoamine transporter 2 is important for the accumulation of monoamine neurotransmitters into synaptic vesicles and histamine transport into secretory vesicles of the enterochromaffin-like cell of the gastric corpus. In this study we have investigated the mechanisms regulating the transcriptional activation of the rat vesicular monoamine transporter 2 (VMAT2) promoter in gastric epithelial cells. Maintenance of basal levels of transcription was dependent on the presence of SP1, cAMP-response element (CRE), and overlapping AP2/SP1 consensus sequences within the region of promoter from -86 to +1 base pairs (bp). Gastrin stimulation increased transcriptional activity, and responsiveness was shown to be dependent on the CRE (-33 to -26 bp) and AP2/SP1 (-61 to -48 bp) consensus sites but independent of the SP1 site at -86 to -81 bp. Gastrin-induced transcription was dependent on the cooperative interaction of an uncharacterized nuclear factor of approximately 23.3 kDa that bound to the putative AP2/SP1 site, CRE-binding protein (CREB), and CREB-binding protein/p300. Gastrin stimulation resulted in the increased binding of phosphorylated CREB to the promoter, but it did not result in the increased binding of the AP2/SP1-binding protein. The gastrin responsiveness of the promoter was shown to be dependent on both the protein kinase C and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-signaling pathways, which may converge on the AP2/SP1-binding protein.
Collapse
Affiliation(s)
- F Watson
- Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| | | | | | | | | |
Collapse
|