1
|
Rasmi Y, Jalali L, Khalid S, Shokati A, Tyagi P, Ozturk A, Nasimfar A. The effects of prolactin on the immune system, its relationship with the severity of COVID-19, and its potential immunomodulatory therapeutic effect. Cytokine 2023; 169:156253. [PMID: 37320963 PMCID: PMC10247151 DOI: 10.1016/j.cyto.2023.156253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Prolactin (PRL) is an endocrine hormone secreted by the anterior pituitary gland that has a variety of physiological effects, including milk production, immune system regulation, and anti-inflammatory effects. Elevated levels of PRL have been found in several viral infections, including 2019 coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), a viral pathogen that has recently spread worldwide. PRL production is increased in SARS-CoV2 infection. While PRL can trigger the production of proinflammatory cytokines, it also has several anti-inflammatory effects that can reduce hyperinflammation. The exact mechanism of PRL's contribution to the severity of COVID-19 is unknown. The purpose of this review is to discuss the interaction between PRL and SARS-CoV2 infection and its possible association with the severity of COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ladan Jalali
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saliha Khalid
- Department of Bioinformatics and Genetics, School of Engineering and Natural Sciences, Kadir Has University 34083, Cibali Campus Fatih, Istanbul, Turkey
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Poonam Tyagi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Riyadh, Saudi Arabia
| | - Alpaslan Ozturk
- Department of Medical Biochemistry, Health Sciences University, Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey.
| | - Amir Nasimfar
- Department of Pediatric, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Seale AP, Malintha GHT, Celino-Brady FT, Head T, Belcaid M, Yamaguchi Y, Lerner DT, Baltzegar DA, Borski RJ, Stoytcheva ZR, Breves JP. Transcriptional regulation of prolactin in a euryhaline teleost: Characterisation of gene promoters through in silico and transcriptome analyses. J Neuroendocrinol 2020; 32:e12905. [PMID: 32996203 PMCID: PMC8612711 DOI: 10.1111/jne.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
The sensitivity of prolactin (Prl) cells of the Mozambique tilapia (Oreochromis mossambicus) pituitary to variations in extracellular osmolality enables investigations into how osmoreception underlies patterns of hormone secretion. Through the actions of their main secretory products, Prl cells play a key role in supporting hydromineral balance of fishes by controlling the major osmoregulatory organs (ie, gill, intestine and kidney). The release of Prl from isolated cells of the rostral pars distalis (RPD) occurs in direct response to physiologically relevant reductions in extracellular osmolality. Although the particular signal transduction pathways that link osmotic conditions to Prl secretion have been identified, the processes that underlie hyposmotic induction of prl gene expression remain unknown. In this short review, we describe two distinct tilapia gene loci that encode Prl177 and Prl188 . From our in silico analyses of prl177 and prl188 promoter regions (approximately 1000 bp) and a transcriptome analysis of RPDs from fresh water (FW)- and seawater (SW)-acclimated tilapia, we propose a working model for how multiple transcription factors link osmoreceptive processes with adaptive patterns of prl177 and prl188 gene expression. We confirmed via RNA-sequencing and a quantitative polymerase chain reaction that multiple transcription factors emerging as predicted regulators of prl gene expression are expressed in the RPD of tilapia. In particular, gene transcripts encoding pou1f1, stat3, creb3l1, pbxip1a and stat1a were highly expressed; creb3l1, pbxip1a and stat1a were elevated in fish acclimated to SW vs FW. Combined, our in silico and transcriptome analyses set a path for resolving how adaptive patterns of Prl secretion are achieved via the integration of osmoreceptive processes with the control of prl gene transcription.
Collapse
Affiliation(s)
- Andre P. Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | | | - Fritzie T. Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Tony Head
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Mahdi Belcaid
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kaneohe, HI, USA
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - David A. Baltzegar
- Genomic Sciences Laboratory, Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zoia R. Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Jason P. Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
3
|
Singh O, Pradhan DR, Nagalakashmi B, Kumar S, Mitra S, Sagarkar S, Sakharkar AJ, Lechan RM, Singru PS. Thyrotropin-releasing hormone (TRH) in the brain and pituitary of the teleost, Clarias batrachus and its role in regulation of hypophysiotropic dopamine neurons. J Comp Neurol 2018; 527:1070-1101. [PMID: 30370602 DOI: 10.1002/cne.24570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 11/11/2022]
Abstract
Thyrotropin-releasing hormone (TRH) regulates the hypothalamic-pituitary-thyroid axis in mammals and also regulates prolactin secretion, directly or indirectly via tuberoinfundibular dopamine neurons. Although TRH is abundantly expressed in teleost brain and believed to mediate neuronal communication, empirical evidence is lacking. We analyzed pro-TRH-mRNA expression, mapped TRH-immunoreactive elements in the brain and pituitary, and explored its role in regulation of hypophysiotropic dopamine (DA) neurons in the catfish, Clarias batrachus. Partial pro-TRH transcript from C. batrachus transcriptome showed six TRH progenitors repeats. Quantitative real-time polymerase chain reaction (qRT-PCR) identified pro-TRH transcript in a number of different brain regions and immunofluorescence showed TRH-immunoreactive cells/fibers in the olfactory bulb, telencephalon, preoptic area (POA), hypothalamus, midbrain, hindbrain, and spinal cord. In the pituitary, TRH-immunoreactive fibers were seen in the neurohypophysis, proximal pars distalis, and pars intermedia but not rostral pars distalis. In POA, distinct TRH-immunoreactive cells/fibers were seen in nucleus preopticus periventricularis anterior (NPPa) that demonstrated a significant increase in TRH-immunoreactivity when collected during preparatory and prespawning phases, reaching a peak in the spawning phase. Although tyrosine hydroxylase (TH)-immunoreactive neurons in NPPa are hypophysiotropic, none of the TRH-immunoreactive neurons in NPPa accumulated neuronal tracer DiI following implants into the pituitary. However, 87 ± 1.6% NPPa TH-immunoreactive neurons were surrounded by TRH-immunoreactive axons that were seen in close proximity to the somata. Superfused POA slices treated with TRH (0.5-2 μM) significantly reduced TH concentration in tissue homogenates and the percent TH-immunoreactive area in the NPPa. We suggest that TRH in the brain of C. batrachus regulates a range of physiological functions but in particular, serves as a potential regulator of hypophysiotropic DA neurons and reproduction.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| | - Dipti R Pradhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| | - B Nagalakashmi
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts.,Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| |
Collapse
|
4
|
Ruiz-Jarabo I, Martos-Sitcha JA, Barragán-Méndez C, Martínez-Rodríguez G, Mancera JM, Arjona FJ. Gene expression of thyrotropin- and corticotrophin-releasing hormones is regulated by environmental salinity in the euryhaline teleost Sparus aurata. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:615-628. [PMID: 29275437 DOI: 10.1007/s10695-017-0457-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
In euryhaline teleosts, the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-interrenal axes (HPT and HPI, respectively) are regulated in response to environmental stimuli such as salinity changes. However, the molecular players participating in this physiological process in the gilthead seabream (Sparus aurata), a species of high value for aquaculture, are still not identified and/or fully characterized in terms of gene expression regulation. In this sense, this study identifies and isolates the thyrotropin-releasing hormone (trh) mRNA sequence from S. aurata, encoding prepro-Trh, the putative factor initiating the HPT cascade. In addition, the regulation of trh expression and of key brain genes in the HPI axis, i.e., corticotrophin-releasing hormone (crh) and corticotrophin-releasing hormone-binding protein (crhbp), was studied when the osmoregulatory status of S. aurata was challenged by exposure to different salinities. The deduced amino acid structure of trh showed 65-81% identity with its teleostean orthologs. Analysis of the tissue distribution of gene expression showed that trh mRNA is, though ubiquitously expressed, mainly found in brain. Subsequently, regulation of gene expression of trh, crh, and crhbp was characterized in fish acclimated to 5-, 15-, 40-, and 55-ppt salinities. In this regard, the brain gene expression pattern of trh mRNA was similar to that found for the crh gene, showing an upregulation of gene expression in seabream acclimated to the highest salinity tested. Conversely, crhbp did not change in any of the groups tested. Our results suggest that Trh and Crh play an important role in the acclimation of S. aurata to hypersaline environments.
Collapse
Affiliation(s)
- Ignacio Ruiz-Jarabo
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Av. República Saharaui s/n, 11519, Puerto Real, Cádiz, Spain.
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| | - J A Martos-Sitcha
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Av. República Saharaui s/n, 11519, Puerto Real, Cádiz, Spain
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council, Av. República Saharaui, 2, 11519, Puerto Real, Cádiz, Spain
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - C Barragán-Méndez
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council, Av. República Saharaui, 2, 11519, Puerto Real, Cádiz, Spain
| | - G Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council, Av. República Saharaui, 2, 11519, Puerto Real, Cádiz, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Av. República Saharaui s/n, 11519, Puerto Real, Cádiz, Spain
| | - F J Arjona
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Av. República Saharaui s/n, 11519, Puerto Real, Cádiz, Spain
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Yamaguchi Y, Moriyama S, Lerner DT, Grau EG, Seale AP. Autocrine Positive Feedback Regulation of Prolactin Release From Tilapia Prolactin Cells and Its Modulation by Extracellular Osmolality. Endocrinology 2016; 157:3505-16. [PMID: 27379370 PMCID: PMC6285229 DOI: 10.1210/en.2015-1969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/27/2016] [Indexed: 12/24/2022]
Abstract
Prolactin (PRL) is a vertebrate hormone with diverse actions in osmoregulation, metabolism, reproduction, and in growth and development. Osmoregulation is fundamental to maintaining the functional structure of the macromolecules that conduct the business of life. In teleost fish, PRL plays a critical role in osmoregulation in fresh water. Appropriately, PRL cells of the tilapia are directly osmosensitive, with PRL secretion increasing as extracellular osmolality falls. Using a model system that employs dispersed PRL cells from the euryhaline teleost fish, Oreochromis mossambicus, we investigated the autocrine regulation of PRL cell function. Unknown was whether these PRL cells might also be sensitive to autocrine feedback and whether possible autocrine regulation might interact with the well-established regulation by physiologically relevant changes in extracellular osmolality. In the cell-perfusion system, ovine PRL and two isoforms of tilapia PRL (tPRL), tPRL177 and tPRL188, stimulated the release of tPRLs from the dispersed PRL cells. These effects were significant within 5-10 minutes and lasted the entire course of exposure, ceasing within 5-10 minutes of removal of tested PRLs from the perifusion medium. The magnitude of response varied between tPRL177 and tPRL188 and was modulated by extracellular osmolality. On the other hand, the gene expression of tPRLs was mainly unchanged or suppressed by static incubations of PRL cells with added PRLs. By demonstrating the regulatory complexity driven by positive autocrine feedback and its interaction with osmotic stimuli, these findings expand upon the knowledge that pituitary PRL cells are regulated complexly through multiple factors and interactions.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Shunsuke Moriyama
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Andre P Seale
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| |
Collapse
|
6
|
Seale AP, Yamaguchi Y, Johnstone WM, Borski RJ, Lerner DT, Grau EG. Endocrine regulation of prolactin cell function and modulation of osmoreception in the Mozambique tilapia. Gen Comp Endocrinol 2013; 192:191-203. [PMID: 23722201 DOI: 10.1016/j.ygcen.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 01/06/2023]
Abstract
Prolactin (PRL) cells of the Mozambique tilapia, Oreochromis mossambicus, are osmoreceptors by virtue of their intrinsic osmosensitivity coupled with their ability to directly regulate hydromineral homeostasis through the actions of PRL. Layered upon this fundamental osmotic reflex is an array of endocrine control of PRL synthesis and secretion. Consistent with its role in fresh water (FW) osmoregulation, PRL release in tilapia increases as extracellular osmolality decreases. The hyposmotically-induced release of PRL can be enhanced or attenuated by a variety of hormones. Prolactin release has been shown to be stimulated by gonadotropin-releasing hormone (GnRH), 17-β-estradiol (E2), testosterone (T), thyrotropin-releasing hormone (TRH), atrial natriuretic peptide (ANP), brain-natriuretic peptide (BNP), C-type natriuretic peptide (CNP), ventricular natriuretic peptide (VNP), PRL-releasing peptide (PrRP), angiotensin II (ANG II), leptin, insulin-like growth factors (IGFs), ghrelin, and inhibited by somatostatin (SS), urotensin-II (U-II), dopamine, cortisol, ouabain and vasoactive intestinal peptide (VIP). This review is aimed at providing an overview of the hypothalamic and extra-hypothalamic hormones that regulate PRL release in euryhaline Mozambique tilapia, particularly in the context on how they may modulate osmoreception, and mediate the multifunctional actions of PRL. Also considered are the signal transduction pathways through which these secretagogues regulate PRL cell function.
Collapse
Affiliation(s)
- A P Seale
- Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Seale AP, Watanabe S, Grau EG. Osmoreception: perspectives on signal transduction and environmental modulation. Gen Comp Endocrinol 2012; 176:354-60. [PMID: 22036842 DOI: 10.1016/j.ygcen.2011.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/05/2011] [Accepted: 10/12/2011] [Indexed: 01/16/2023]
Abstract
Osmoregulation is essential to life in vertebrates and osmoreception is a fundamental element in osmoregulation. Progress in characterizing the mechanisms that mediate osmoreception has been made possible by using a uniquely accessible cell model, the prolactin (PRL) cell of the euryhaline tilapia, Oreochromis mossambicus. In addition to a brief historical overview, we offer a summary of our recent progress on signal transduction and osmosensitivity in the tilapia PRL cell model. Prolactin is a central regulator of hydromineral balance in teleosts in freshwater (FW). Consistent with its essential role in FW osmoregulation, PRL release in tilapia is inversely related to extracellular osmolality, both in vivo and in vitro. Osmotically-driven changes in PRL cell volume control PRL release. A decrease in extracellular osmolality increases cell volume, leading to a rapid influx of Ca(2+) through stretch-activated channels followed by a sharp rise in PRL release. Our recent studies also suggest that cAMP is involved in the osmotic signal transduction, and that acclimation salinity can modulate PRL cell osmosensitivity. Prolactin cells from FW tilapia show a larger rise in PRL release after a reduction in medium osmolality than those from SW fish. Paradoxically, hyposmotically-induced increase in PRL mRNA was observed only in cells from SW fish. Our studies have revealed differences in the abundance of the water channel, aquaporin 3 (AQP3), and the stretch activated Ca(2+) channel, transient receptor potential vanilloid 4 (TRPV4) in PRL cells of FW and SW fish that may explain their differing osmosensitivity and osmoreceptive output in differing acclimation salinities.
Collapse
Affiliation(s)
- A P Seale
- Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | | | | |
Collapse
|
8
|
Huang Q, Huang HQ. Alterations of protein profile in zebrafish liver cells exposed to methyl parathion: a membrane proteomics approach. CHEMOSPHERE 2012; 87:68-76. [PMID: 22182705 DOI: 10.1016/j.chemosphere.2011.11.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/13/2011] [Accepted: 11/19/2011] [Indexed: 05/31/2023]
Abstract
Methyl parathion (MP) is an extensively used organophosphorus pesticide, which has been associated with a wide spectrum of toxic effects on environmental organisms. The aim of this study is to investigate the alterations of membrane protein profiles in zebrafish liver (ZFL) cell line exposed to MP for 24 h using proteomic approaches. Two-dimensional gel electrophoresis revealed a total of 13 protein spots, whose expression levels were significantly altered by MP. These differential proteins were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, and nine proteins were identified to be membrane proteins, among which seven were up-regulated, while two were down-regulated. In addition, the mRNA levels corresponding to these differential membrane proteins were further analyzed by quantitative real-time PCR. And the differential expression of arginase-2 was specially validated via Western blotting. Regarding the physiological functions, these proteins are involved in molecular chaperon, cytoskeleton system, cell metabolism, signal transduction, transport and hormone receptor respectively, suggesting the complexity of MP-mediated toxicity to ZFL cell. These data could provide useful insights for better understanding the hepatotoxic mechanisms of MP and develop novel protein biomarkers for effectively monitoring MP contamination level in aquatic environment.
Collapse
Affiliation(s)
- Qingyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | |
Collapse
|
9
|
Saito Y, Mekuchi M, Kobayashi N, Kimura M, Aoki Y, Masuda T, Azuma T, Fukami M, Iigo M, Yanagisawa T. Molecular cloning, molecular evolution and gene expression of cDNAs encoding thyrotropin-releasing hormone receptor subtypes in a teleost, the sockeye salmon (Oncorhynchus nerka). Gen Comp Endocrinol 2011; 174:80-8. [PMID: 21827760 DOI: 10.1016/j.ygcen.2011.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 06/22/2011] [Accepted: 07/25/2011] [Indexed: 12/21/2022]
Abstract
Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a teleost, the sockeye salmon (Oncorhynchus nerka). Four different TRHR cDNAs were cloned and named TRHR1, TRHR2a, TRHR2b and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. Important residues for TRH binding were conserved in deduced amino acid sequences of the three TRHR subtypes except for the TRHR2b. Seven transmembrane domains were predicted for TRHR1, TRHR2a and TRHR3 proteins but only five for TRHR2b which appears to be truncated. In silico database analysis identified putative TRHR sequences including invertebrate TRHR and reptilian, avian and mammalian TRHR3. Phylogenetic analyses predicted the molecular evolution of TRHR in vertebrates: from the common ancestral TRHR (i.e. invertebrate TRHR), the TRHR2 subtype diverged first and then TRHR1 and TRHR3 diverged. Reverse transcription-polymerase chain reaction analyses revealed TRHR1 transcripts in the brain (hypothalamus), retina, pituitary gland and large intestine; TRHR2a in the brain (telencephalon and hypothalamus); and TRHR3 in the brain (olfactory bulbs) and retina.
Collapse
Affiliation(s)
- Yuichi Saito
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Levy G, David D, Degani G. Effect of environmental temperature on growth- and reproduction-related hormones gene expression in the female blue gourami (Trichogaster trichopterus). Comp Biochem Physiol A Mol Integr Physiol 2011; 160:381-9. [DOI: 10.1016/j.cbpa.2011.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 11/25/2022]
|
11
|
Mekuchi M, Saito Y, Aoki Y, Masuda T, Iigo M, Yanagisawa T. Molecular cloning, gene structure, molecular evolution and expression analyses of thyrotropin-releasing hormone receptors from medaka (Oryzias latipes). Gen Comp Endocrinol 2011; 170:374-80. [PMID: 20977909 DOI: 10.1016/j.ygcen.2010.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/31/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a model teleost fish, medaka (Oryzias latipes). Four subtypes of TRHR were cloned and named them as TRHR1a, TRHR1b, TRHR2 and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. TRHR1a, TRHR1b, TRHR2, and TRHR3 of medaka encode 416, 398, 451, and 386 amino acid residues, respectively. Comparison of cDNA sequences of medaka TRHR subtypes with respective genomic DNA sequences revealed gene structures: TRHR1a, TRHR1b and TRHR3genes consist of two exons while the TRH2 gene consists of five exons. Molecular phylogenetic analyses depicted the molecular evolution of TRHR in vertebrates: From the ancestral molecule, TRHR2 diverged first and then TRHR1 and TRHR3. Reverse transcription-polymerase chain reaction analyses revealed the sites of TRHR expression: Expression of TRHR1, TRHR1b and TRHR2 subtypes has been confirmed in the brain, pineal organ, retina and pituitary gland. In addition, TRHR1b is expressed in spleen, digestive tract and skin, and TRHR2 in testis, ovary and gill. TRHR3 is widely expressed in various tissues. These results indicate that in medaka, TRH might exert multiple functions mediated by different TRHR subtypes expressed in each tissue.
Collapse
Affiliation(s)
- Miyuki Mekuchi
- Department of Applied Biochemistry, Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Seale AP, Mita M, Hirano T, Gordon Grau E. Involvement of the cAMP messenger system and extracellular Ca(2+) during hyposmotically-induced prolactin release in the Mozambique tilapia. Gen Comp Endocrinol 2011; 170:401-7. [PMID: 21050855 DOI: 10.1016/j.ygcen.2010.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 09/15/2010] [Accepted: 10/23/2010] [Indexed: 11/21/2022]
Abstract
In accord with its role in freshwater osmoregulation, prolactin (PRL) release from the tilapia pituitary is stimulated by small, physiologically relevant reductions in plasma osmolality, a response that is mediated by an acute influx of intracellular Ca(2+) through stretch-activated Ca(2+)channels. In the present study, the role of the calcium and cyclic AMP (cAMP) messenger system in the transduction of a response to a hyposmotic stimulus was examined using dispersed PRL cells and PRL cell membrane preparations from freshwater-acclimated tilapia. When PRL cells were treated with the phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX) (100μM), significant increases in cAMP levels and PRL release were observed at 1h. Exposure to reduced medium osmolality (300 mOsmolal) in the presence of IBMX further augmented PRL release. Depletion of Ca(2+) from the incubation medium blocked PRL release even in the presence of IBMX. By contrast, exposure of PRL cells to cholera toxin (CTX), an activator of adenylyl cyclase (AC), stimulated PRL release and cAMP accumulation in both the presence and absence of extracellular Ca(2+). On the other hand, treatment with the Ca(2+) ionophore A23187, which elicits a large rise in intracellular free Ca(2+), reduced cAMP accumulation. Likewise, the AC activity of a PRL cell membrane preparation was reduced as extracellular Ca(2+) concentration increased from 0.1 to 1 μM. These results indicate that: (1) the stimulation of PRL release and cAMP formation by a fall in extracellular osmolality are Ca(2+)-dependent; (2) large increases in intracellular Ca(2+) attenuate cAMP formation; (3) direct agonists of cAMP messenger system, such as cholera toxin, however, stimulate PRL release independently of the extracellular Ca(2+). These findings add to the evidence that the osmosensitive response of the tilapia PRL cell is mediated through a Ca(2+)-dependent mechanism. Nevertheless, the present findings also suggest that tilapia PRL cells have the ability to rapidly augment release PRL both via a Ca(2+)-dependent manner and via a cAMP-dependent pathway in the absence of extracellular Ca(2+).
Collapse
Affiliation(s)
- Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | |
Collapse
|
13
|
Temperature affects brain and pituitary gene expression related to reproduction and growth in the male blue gouramis, Trichogaster trichopterus. ACTA ACUST UNITED AC 2010; 315:203-14. [DOI: 10.1002/jez.663] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/17/2010] [Accepted: 11/20/2010] [Indexed: 11/07/2022]
|
14
|
Iziga R, Ponce M, Infante C, Rebordinos L, Cañavate JP, Manchado M. Molecular characterization and gene expression of thyrotropin-releasing hormone in Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2010; 157:167-74. [DOI: 10.1016/j.cbpb.2010.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/31/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
|
15
|
Degani G, Yom-Din S, Goldberg D, Jackson K. cDNA cloning of blue gourami (Trichogaster trichopterus) prolactin and its expression during the gonadal cycles of males and females. J Endocrinol Invest 2010; 33:7-12. [PMID: 20203536 DOI: 10.1007/bf03346543] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The blue gourami fish (Trichogaster trichopterus) provides a unique model for the study of reproduction endocrinology in teleost fish. Its oocyte development may be controlled easily, and the vitellogenic and final maturation phases may be separated artificially in the laboratory. Moreover, this gourami exhibits exclusive parental behavior. AIM The aim of the present study was to clone and sequence the blue gourami PRL (bgPRL) cDNA in order to enable the determination of its mRNA levels in the male and female blue gourami during the gonadal cycles. MATERIALS AND METHODS bgPRL was cloned by extracting total RNA from freshly excised pituitaries of gourami fish, followed by cDNA synthesis, rapid amplification of cDNA ends (RACE)-PCR and finally, sequencing. bgPRL mRNA expression was determined by realtime PCR, and results were normalized with 18S RNA. RESULTS When bgPRL was compared to PRLs of other fish, it had the most homology with PRL of Perciformes and the least with those of Anguilliformes. bgPRL was expressed during the entire gonadal cycle in males and females. The average levels of PRL mRNA in juvenile and low vitellogenetic females were lower than in mature females (at high vitellogenesis and maturation), but the differences were not significant. On the other hand, the PRL mRNA levels in mature reproductive males (nestbuilders) and non-reproductive (non-nest-builders) were significantly higher in comparison to young males. CONCLUSIONS The results of this study imply that PRL has a possible role in the endocrine control of gonadal development in fish, in addition to its role in reproductive behavior.
Collapse
Affiliation(s)
- G Degani
- MIGAL-Galilee Technology Center, Kiryat Shmona, Israel.
| | | | | | | |
Collapse
|
16
|
Davis LK, Fox BK, Lim C, Hiramatsu N, Sullivan CV, Hirano T, Grau EG. Induction of vitellogenin production in male tilapia (Oreochromis mossambicus) by commercial fish diets. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:249-54. [PMID: 19559096 DOI: 10.1016/j.cbpa.2009.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
Abstract
Mozambique tilapia, (Oreochromis mossambicus), are a euryhaline teleost and an important biological model species. Captive male tilapia frequently have high levels of the estrogen-induced yolk precursor protein vitellogenin (Vg), a common indicator of exposure to estrogenic compounds. Sex steroids are found in commercial fish diets, but relatively few studies have examined the relationship between commercial diets and Vg production. In a fasting experiment to ascertain a dietary role in male Vg production, plasma Vg was reduced to negligible levels after 2 weeks of fasting, while no change in estrogen receptor (ER) expression was seen. When male tilapia were fed a squid-based diet that replaced the commercial trout diet, plasma Vg was reduced to undetectable levels over 40 days, concomitant with significant reductions in hepatic expression of Vgs A, B, and C, and ERbeta, compared with control fish fed commercial trout diet. Female tilapia fed the squid-based for 20 days had no change in these parameters. When male tilapia were fed a defined, soy-based diet, plasma Vg reduced to 20% of levels in fish given either commercial trout diet or a defined, fishmeal-based diet. Overall, results from these studies suggest that estrogens in a commercial trout diet induce vitellogenin production by increasing expression of Vg, but not ER genes in male tilapia.
Collapse
Affiliation(s)
- Lori K Davis
- Department of Zoology, Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Kawauchi H, Sower SA, Moriyama S. Chapter 5 The Neuroendocrine Regulation of Prolactin and Somatolactin Secretion in Fish. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28005-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Kwong AKY, Ng AHY, Leung LY, Man AKY, Woo NYS. Effect of extracellular osmolality and ionic levels on pituitary prolactin release in euryhaline silver sea bream (Sparus sarba). Gen Comp Endocrinol 2009; 160:67-75. [PMID: 19027016 DOI: 10.1016/j.ygcen.2008.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 09/01/2008] [Accepted: 10/22/2008] [Indexed: 11/25/2022]
Abstract
In many euryhaline fish, prolactin (PRL) plays a key role in freshwater adaptation. Consistent with this function, the present study showed a remarkable reduction in pituitary PRL content of silver sea bream abruptly transferred to low salinity (6ppt). This reduction in pituitary PRL content followed closely the temporal changes in serum osmolality and ion levels. Serum osmolality, Na(+) and Cl(-) levels of silver sea bream abruptly transferred to hyposmotic salinity (6ppt) were markedly reduced 2h after the transfer. The decline in pituitary PRL content lagged behind the serum changes implying that reduction in pituitary PRL content is a response to the drop in serum ion levels and osmotic pressure. Silver sea bream pituitary cells were dispersed and exposed to a medium with reduced ion levels and osmolality in vitro, and PRL released from pituitary cells was significantly elevated. In hyposmotic exposed anterior pituitary cells, cell volume exhibited a 20% increase when exposed to a medium with a 20% decrease in osmolality. The enlarged pituitary cells did not shrink until the surrounding hyposmotic medium was replaced, a phenomenon suggesting an osmosensing ability of silver sea bream PRL cells for PRL secretion in response to a change in extracellular osmotic pressure. The decrease in pituitary PRL content in vivo and stimulated pituitary PRL release in vitro under reduced osmolality together suggest hyposmotic exposure triggers PRL release from the pituitary.
Collapse
Affiliation(s)
- Anna K Y Kwong
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
20
|
López JM, Domínguez L, González A. Immunohistochemical localization of thyrotropin-releasing hormone in the brain of reptiles. J Chem Neuroanat 2008; 36:251-63. [DOI: 10.1016/j.jchemneu.2008.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 01/31/2023]
|
21
|
Tse MCL, Wong GKP, Xiao P, Cheng CHK, Chan KM. Down-regulation of goldfish (Carassius auratus) prolactin gene expression by dopamine and thyrotropin releasing hormone. Gen Comp Endocrinol 2008; 155:729-41. [PMID: 17904137 DOI: 10.1016/j.ygcen.2007.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
Prolactin (PRL) is the most versatile hormone identified with multiple functions from osmoregulation in euryhaline fish to lactation in mammals. However, little is known about the basic physiological control of PRL in stenohaline freshwater fish. In this study, goldfish is used as a model for the study of PRL gene expression in stenohaline fish. We report herein the identification of the goldfish PRL (gfPRL) genomic sequence which possesses five exons with its 5'-flanking gene promoter region characterized in vitro using GH3 and GH4 cell-lines. Dopamine and thyrotropin releasing hormone were found to down-regulate the transcription of this gfPRL gene promoter in vitro. This was further confirmed by the decrease of PRL mRNA levels in vitro (in goldfish pituitary primary cells) and in vivo (intra-peritoneal injection) following the administrations of dopamine and thyrotropin releasing hormone. The Pit-1 binding sites of gfPRL are highly conserved with a consensus DNA sequence of 5'TATNCAT-3', as confirmed with the electrophoretic mobility shift assay using nuclear extract from the GH3 cell-line, may be responsible for the control of gfPRL gene promoter.
Collapse
Affiliation(s)
- Margaret C L Tse
- Department of Biochemistry, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
22
|
Kitahashi T, Ogawa S, Soga T, Sakuma Y, Parhar I. Sexual maturation modulates expression of nuclear receptor types in laser-captured single cells of the cichlid (Oreochromis niloticus) pituitary. Endocrinology 2007; 148:5822-30. [PMID: 17823257 DOI: 10.1210/en.2007-0311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of steroid/thyroid hormones in the regulation of endocrine cells at the level of the pituitary has remained unclear. Therefore, using single-cell quantitative real-time PCR, we examined absolute amounts of transcripts for nuclear receptors [estrogen receptors (ERs) alpha, beta, and gamma; androgen receptors (ARs) a and b; glucocorticoid receptors (GRs) 1, 2a, and 2b; and thyroid hormone receptors (TRs) alpha1, alpha2, and beta] in pituitary cells of immature (IM) and mature (M) male tilapia, Oreochromis niloticus. In the two reproductive stages, ACTH cells expressed only ERbeta, whereas all other pituitary cell types expressed ERalpha + beta, and a subpopulation coexpressed ARa, ARb, GR1, GR2b, and TRbeta but lacked ERgamma, GR2a, TRalpha1, and TRalpha2. IM males had high percentages of LH cells (IM 46.0% vs. M 10.0%), GH cells (IM 23.3% vs. M 7.9%), and prolactin cells (IM 68.8% vs. M 6.0%) with ERbeta, and TSH cells (IM 19.2% vs. M 0.0%) and MSH cells (IM 25.6% vs. M 0.0%) with ERalpha + TRbeta. A high percentage of FSH cells in IM males expressed ERbeta (IM 46.9% vs. M 18.8%), and FSH cells in M males showed significantly high GR1 transcripts (IM 76.0 +/- 5.0 vs. M 195.0 +/- 10.7 copies per cell; P < 0.05), suggesting that FSH cells are regulated differently in the two reproductive stages. Coexpression of ERalpha + beta in high percentages of cells of the GH family (GH, IM 43.8% vs. M 14.3%; prolactin, IM 8.3% vs. M 59.7%; somatolactin, IM 22.2% vs. M 42.2%) suggests that the expression of both ERs is important for functionality. Thus, differential coexpression of genes for nuclear receptors in subpopulations of pituitary cell types suggests multiple steroid/thyroid hormone regulatory pathways at the level of the pituitary during the two reproductive stages.
Collapse
Affiliation(s)
- Takashi Kitahashi
- School of Medicine and Health Sciences, Monash University, 46150 Bandar Sunway, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
23
|
Aoki Y, Masuda T, Iigo M, Yanagisawa T. Molecular cloning of prepro-thyrotropin-releasing hormone cDNA from medaka (Oryzias latipes). Gen Comp Endocrinol 2007; 150:364-70. [PMID: 17098236 DOI: 10.1016/j.ygcen.2006.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 11/18/2022]
Abstract
The cDNA encoding prepro-thyrotropin-releasing hormone (ppTRH) in a teleost, medaka (Oryzias latipes) was isolated and characterized. The medaka ppTRH cDNA codes for 270 amino acid residues including eight TRH progenitor sequences (-Lys/Arg-Arg-Gln-His-Pro-Gly-Lys/Arg-Arg-). In silico analyses of the medaka genome database predicted that the structure of the medaka ppTRH gene is similar to the ppTRH genes of the other vertebrate species studied to date; consisting of three exons and two introns. Identity of the medaka ppTRH with the other vertebrates is rather low except the sockeye salmon. A molecular phylogenic tree showed that the ppTRH sequences reflected the predicted pattern of species classification. RT-PCR analysis demonstrated ppTRH gene expression in the brain and retina. These results gave some insight into the molecular evolution of ppTRH and physiological functions of TRH in vertebrates.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
24
|
Bellinger FP, Fox BK, Chan WY, Davis LK, Andres MA, Hirano T, Grau EG, Cooke IM. Ionotropic glutamate receptor activation increases intracellular calcium in prolactin-releasing cells of the adenohypophysis. Am J Physiol Endocrinol Metab 2006; 291:E1188-96. [PMID: 16822959 DOI: 10.1152/ajpendo.00207.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocrine cells of the anterior pituitary are controlled by the central nervous system through hormonal interactions and are not believed to receive direct synaptic connections from the brain. Studies suggest that some pituitary cells may be modulated by the neurotransmitter glutamate. We investigated prolactin (PRL)-releasing cells of the anterior pituitary of a euryhaline fish, the tilapia (Oreochromis mossambicus), for the presence of possible glutamate receptors (GluRs). Fura-2 imaging addressed the ability of glutamate to increase intracellular calcium. We observed a dose-dependent increase in intracellular calcium with transient perfusion (1-2 min) of glutamate (10 nM to 1 mM) in two-thirds of imaged cells. This increase was attenuated by the ionotropic GluR antagonist kynurenic acid (0.5-1.0 mM). The increase was also blocked or attenuated by antagonists of L-type voltage-gated calcium channels. The GluR agonist alpha-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA; 100 microM) produced intracellular calcium increases that were reversibly blocked by the selective AMPA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In contrast, the selective agonist N-methyl-D-aspartate (NMDA; 100 microM to 1 mM in magnesium-free solution with 10 microM glycine) had no effect on intracellular calcium. Radioimmunoassays demonstrated that glutamate stimulated PRL release. CNQX but not the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid blocked this release. Antibodies for mammalian AMPA- and NMDA-type GluR produced a similar punctate immunoreactivity in the periphery of PRL cells. However, the NMDA antibody recognized a protein of a different molecular mass in PRL cells compared with brain cells. These results clearly indicate the presence of GluRs on tilapia PRL cells that can stimulate PRL release.
Collapse
Affiliation(s)
- Frederick P Bellinger
- John A. Burns School of Medicine, The University of Hawaii, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Montefusco-Siegmund RA, Romero A, Kausel G, Muller M, Fujimoto M, Figueroa J. Cloning of the prepro C-RFa gene and brain localization of the active peptide in Salmo salar. Cell Tissue Res 2006; 325:277-85. [PMID: 16557384 DOI: 10.1007/s00441-006-0168-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
In all vertebrates, the synthesis and release of prolactin (Prl) from pituitary lactotroph cells is tightly controlled by hypothalamic factors. We have cloned and characterized a hypothalamic cDNA from Atlantic salmon (Salmo salar) encoding C-RFa, a peptide structurally related to mammalian Prl-releasing peptide (PrRP). The deduced preprohormone precursor is composed of 155 amino acid residues presenting a 87.1% similarity to chum salmon C-RFa and a 100% similarity to all fish C-RFa in the bioactive precursor motifs. C-RFa-immunoreactive perikarya and fibres were located in the brain of S. salar, especially in the hypothalamus, olfactory tract, optic tectum and cerebellum. In contrast, immunolabelled fibres were not observed in the pituitary stalk or in the hypophysis. However, interestingly, we detected immunolabelled cells in the rostral pars distalis of the pituitary in the basolateral region in which Prl is synthesized. These results were confirmed by obtaining a strong signal by using reverse transcription/polymerase chain reaction (RT-PCR) on mRNA from both hypothalamus and pituitary. These data show, for the first time, by immunohistochemistry and RT-PCR, that C-RFa is produced in pituitary cells. Finally, based on these results, a possible function for C-RFa as a locally produced PrRP in this teleost is discussed.
Collapse
Affiliation(s)
- R A Montefusco-Siegmund
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | | | | | | | | | | |
Collapse
|
26
|
Aoki Y, Takahashi M, Masuda T, Tsukamoto T, Iigo M, Yanagisawa T. Molecular cloning of prepro-thyrotropin-releasing hormone cDNAs from the common carp Cyprinus carpio and goldfish Carassius auratus. Gen Comp Endocrinol 2005; 141:84-92. [PMID: 15707606 DOI: 10.1016/j.ygcen.2004.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/09/2004] [Accepted: 11/29/2004] [Indexed: 11/26/2022]
Abstract
To expand our knowledge on the evolution of prepro-thyrotropin-releasing hormone (ppTRH) from fish to tetrapods, sequences of ppTRH cDNAs from two cyprinid teleosts, the common carp Cyprinus carpio and goldfish Carassius auratus, were determined. Degenerate primers were designed based on the conserved regions between the zebrafish ppTRH sequence identified from the zebrafish EST database and the sockeye salmon ppTRH sequence, and PCR amplification was performed. Full-length ppTRHs were confirmed from ppTRH cDNAs obtained by 5'- and 3'-rapid amplification of cDNA ends. The common carp ppTRH cDNA encodes 187 amino acids including 6 copies of the TRH progenitor sequence (Lys/Arg-Arg-Gln-His-Pro-Gly-Lys/Arg-Arg), whereas the goldfish ppTRH cDNA encodes 231 amino acids including 8 copies of the TRH progenitor sequence. The molecular phylogenetic analysis of the ppTRH sequences reflected the predicted pattern of species classification. The common carp, goldfish, and zebrafish ppTRHs have some unique characteristics. The common carp and zebrafish ppTRHs are smaller than that of the goldfish mainly due to the absence of 29 and 17 consecutive amino acids, respectively. The deleted region includes one or two TRH progenitor sequences flanked by some glutamate residues, similar to the glutamate-rich regions of human ppTRH. Hydropathy profiles showed that the presence of a TRH progenitor sequence in the C-terminal hydrophilic region is a characteristic of teleosts and human ppTRHs. These observations may provide clues to a better understanding of the molecular evolution of ppTRH.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Department of Applied Biochemistry, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Mancera JM, Smolenaars M, Laiz-Carrión R, Martín del Río MDP, Bonga SEW, Flik G. 17β-Estradiol affects osmoregulation in Fundulus heteroclitus. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:183-91. [PMID: 15465664 DOI: 10.1016/j.cbpc.2004.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 06/29/2004] [Accepted: 06/30/2004] [Indexed: 11/19/2022]
Abstract
The effect of 17beta-estradiol (E(2)) on osmoregulatory performance was examined in the euryhaline killifish, Fundulus heteroclitus. Fish were injected once with 1, 2 and 5 microg g(-1) E(2) and, 6 h after injection, transferred from 1 ppt seawater (SW) to full strength SW (40 ppt) or from SW to 1 ppt SW. In another set of experiments, fish were injected four times on alternate days with 2 microg g(-1) E(2) and then, 6 h after the last injection, transferred from 1 ppt SW to SW or from SW to 1 ppt SW. Fish were sampled 18 h after transfer (i.e., 24 h post-injection), and plasma osmolality, Na(+) and Cl(-) concentration and gill K(+)-pNPPase activity (a reflection of the sodium pump) were examined. Transfer from 1 ppt SW to SW resulted in significantly increased plasma osmolality, but did not affect gill K(+)-pNPPase activity. A single dose of E(2) (1, 2 and 5 microg g(-1)) prior to transfer from 1 ppt SW to SW increased plasma osmolality and decreased gill K(+)-pNPPase activity in a dose-dependent manner. Prolonged treatment with E(2) increased plasma osmolality and decreased gill K(+)-pNPPase activity in 1 ppt SW-adapted fish. Transfer of fish thus treated from 1 ppt SW to SW increased plasma osmolality and did not alter gill K(+)-pNPPase activity. Transfer from SW to 1 ppt SW had no significant effect on plasma osmolality or gill K(+)-pNPPase activity. Only the highest single dose of E(2) (5 microg g(-1)) prior to transfer from SW to 1 ppt SW decreased gill K(+)-pNPPase activity. Prolonged treatment with 2 microg g(-1) E(2) decreased gill K(+)-pNPPase activity only following transfer from SW to 1 ppt SW. The results substantiate an inhibitory action of E(2) on hypoosmoregulatory capacity in this euryhaline teleost.
Collapse
Affiliation(s)
- Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz 11510, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Guzmán JM, Sangiao-Alvarellos S, Laiz-Carrión R, Míguez JM, Martín del Río MDP, Soengas JL, Mancera JM. Osmoregulatory action of 17β-estradiol in the gilthead sea breamSparus auratus. ACTA ACUST UNITED AC 2004; 301:828-36. [PMID: 15449347 DOI: 10.1002/jez.a.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The osmoregulatory action of 17beta-estradiol (E2) was examined in the euryhaline teleost Sparus auratas. In a first set of experiments, fish were injected once with vegetable oil containing E2 (1, 2 and 5 microg/g body weight), transferred 12h after injection from sea water (SW, 38 ppt salinity) to hypersaline water (HSW, 55 ppt) or to brackish water (BW, 5 ppt salinity) and sampled 12h later (i.e. 24 h post-injection). In a second experiment, fish were injected intraperitoneally with coconut oil alone or containing E2 (10 microg/g body weight) and sampled after 5 days. In the same experiment, after 5 days of treatment, fish of each group were transferred to HSW, BW and SW and sampled 4 days later (9 days post-implant). Gill Na+,K+ -ATPase activity, plasma E2 levels, plasma osmolality, and plasma levels of ions (sodium and calcium), glucose, lactate, protein, triglyceride, and hepatosomatic index were examined. Transfer from SW to HSW produced no significant effects on any parameters assessed. E2 treatment did not affect any parameter. Transfer from SW to BW resulted in a significant decrease in plasma osmolality and plasma sodium but did not affect gill Na+,K+ -ATPase activity. A single dose of E2 attenuated the decrease in these parameters after transfer from SW to BW, but was without effect on gill Na+,K+ -ATPase activity. An implant of E2 (10 microg/g body weight) for 5 days significantly increased plasma calcium, hepatosomatic index, plasma metabolic parameters, and gill Na+,K+ -ATPase activity. In coconut oil-implanted (sham) fish, transfer from SW to HSW or BW during 4 days significantly elevated gill Na+,K+ -ATPase. Gill Na+,K+ -ATPase activity remained unaltered after transfer of E2-treated fish to HSW or BW. However, in E2-treated fish transferred from SW to SW (9 days in SW after E2-implant), gill Na+,K+ -ATPase activity decreased with respect to HSW- or BW-transferred fish. Shams transferred to HSW showed increased levels of lactate, protein, and trygliceride in plasma, while those transferred to BW only displayed increased trygliceride levels. E2-treated fish transferred to HSW showed higher protein levels without any change in other plasmatic parameters, while those transferred to BW displayed elevated plasma glucose levels but decreased osmolality and protein levels. These results substantiate a chronic stimulatory action of E2 on gill Na+,K+ -ATPase activity in the euryhaline teleost Sparus auratas.
Collapse
Affiliation(s)
- José María Guzmán
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Sakamoto T, Fujimoto M, Andot M. Fishy tales of prolactin-releasing peptide. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:91-130. [PMID: 12696591 DOI: 10.1016/s0074-7696(05)25003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prolactin (PRL) is an important regulator of multiple biological functions, but a specific PRL-releasing factor, PRL-releasing peptide (PrRP), was isolated only recently from mammals and teleosts. Although this peptide seems to be a strong candidate for being a physiologically relevant stimulator of PRL expression and secretion in teleost pituitary and peripheral organs, it may not be a typical or classic hypothalamic releasing factor in rats. We now know that its biological actions are not limited solely to PRL stimulation, because it is also a neuromodulator of several hypothalamus-pituitary axes and is involved in some brain circuits with the regulation of food intake and cardiovascular functions. Moreover, it plays a direct role in hypertension and retinal information processing. It is the purpose of this review to provide a comprehensive survey of our current knowledge of PrRP and to provide a comparative point of view.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Okayama University, Okayama 701-4303, Japan
| | | | | |
Collapse
|
30
|
Leedom TA, Hirano T, Grau EG. Effect of blood withdrawal and angiotensin II on prolactin release in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol A Mol Integr Physiol 2003; 135:155-63. [PMID: 12727552 DOI: 10.1016/s1095-6433(03)00046-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Repeated blood withdrawal (5% of estimated blood volume at 0, 1, 4, 8, 24, 48 and 76 h) from tilapia acclimated to fresh water (FW) resulted in a marked increase in plasma levels of prolactin (PRL) during the first 8 h, reaching a peak above 300 ng/ml after 4 h. The increase in plasma PRL levels was significant except for the level after 72 h. A slight but significant decrease in plasma osmolality was observed at all time points after the blood withdrawal. Repeated blood withdrawal from fish acclimated to seawater (SW) resulted in a marked increase in plasma osmolality after 4 and 8 h. A significant increase was observed in plasma growth hormone (GH) in the fish in SW until the end of the experiment, but there was no change in plasma PRL. Plasma levels of cortisol were significantly higher in the fish in SW than in those in FW during the first 24 h. Blood withdrawal resulted in a significant reduction in hematocrit values in both FW- and SW-adapted fish, suggesting hemodilution. In a separate experiment, a single blood withdrawal (20% of total blood) stimulated drinking after 5 h, regardless of whether the fish were held in FW or SW. Plasma PRL level was also elevated following a single blood withdrawal in the fish acclimated to FW, but not in the fish in SW. Intraperitoneal injection of ANG II (1.0 microg/g) into the fish in FW significantly increased plasma PRL levels after 1 h. Activation of the renin-angiotensin system after blood withdrawal and the dipsogenic action of angiotensin II (ANG II) are well established in fish. The reduction in plasma osmolality after repeated blood withdrawal in FW and the increased osmolality in SW suggest that blood volume is restored, at least in part, by drinking environmental water. These results suggest that the marked increase in PRL concentration after blood withdrawal from the fish in FW is due, at least in part, to a facilitative effect between ANG II and reduced plasma osmolality.
Collapse
Affiliation(s)
- Thomas A Leedom
- Department of Animal Science and Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Coconut Island, Kaneohe, HI 96744, USA
| | | | | |
Collapse
|
31
|
Brinca L, Fuentes J, Power DM. The regulatory action of estrogen and vasoactive intestinal peptide on prolactin secretion in sea bream (Sparus aurata, L.). Gen Comp Endocrinol 2003; 131:117-25. [PMID: 12679088 DOI: 10.1016/s0016-6480(02)00628-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of estradiol-17beta (E(2)) implants on the in vitro secretion of prolactin (PRL) and its modulation by vasoactive intestinal peptide (VIP) in a marine teleost, sea bream (Sparus aurata L.), was determined. Experiments were conducted during winter and spring. During winter, fish (n=130, body weight 50-70 g) were randomly divided into 2 groups; control and E(2) treated (10 mg/kg, wet weight). Fish were sacrificed after 7 days treatment and in vitro pituitary cultures in Ringer bicarbonate supplemented with increasing doses (0-200 nM) of VIP were carried out for 18 h. Culture medium was analysed by PAGE and secreted PRL quantified by densitometry. Fish treated with E(2) secreted significantly more PRL (P<0.05) in vitro than control fish. In E(2) primed fish VIP caused a dose-dependent inhibition of PRL secretion in vitro. VIP had no detectable effect on the secretion of PRL from control pituitaries. Treatment with E(2) had a different effect during spring; PRL secretion was significantly decreased (P<0.01) compared with the control fish. Anatomical evidence of abundant VIP immunoreactive nerve fibres in neurohypophysial (NH) tissue penetrating the rostral pars distalis provide further evidence supporting an action for VIP in the regulation of PRL cells. In conclusion, the responsiveness of PRL in the pituitary gland varied with season. Moreover, in the sea bream VIP appears to modulate PRL secretion from E(2) primed pituitary glands.
Collapse
Affiliation(s)
- Lilia Brinca
- Centro de Ciências de MAR, Universidade do Algarve, Campus de Gambelas, Faro 8000-810, Portugal
| | | | | |
Collapse
|
32
|
Eckert SM, Hirano T, Leedom TA, Takei Y, Gordon Grau E. Effects of angiotensin II and natriuretic peptides of the eel on prolactin and growth hormone release in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 2003; 130:333-9. [PMID: 12606276 DOI: 10.1016/s0016-6480(02)00630-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of angiotensin II (ANG II) and natriuretic peptides (NPs) of the eel (ANP, atrial natriuretic peptide; CNP, C-type natriuretic peptide; and VNP, ventricular natriuretic peptide) on prolactin (PRL(188) and PRL(177)) and growth hormone (GH) release from the organ-cultured tilapia pituitary were examined. Eel ANG II at concentrations greater than 1 nM stimulated the release of PRL(188) and PRL(177) in a dose-related manner during the first hour of incubation. Significant stimulation by 100 nM ANG II on PRL(177) release was observed until 4h of incubation, and on PRL(188) release until 12 h. No effect of ANG II was seen on GH release. None of the NPs altered the release of PRLs at any time point. On the other hand, eel VNP at concentrations greater than 1 nM stimulated GH release in a dose-related manner after 4 h, and significant stimulation was observed until 48 h. Eel CNP was less effective than eel VNP; significant stimulation of GH release was observed at 1 and 10 nM during 24-48 h of incubation. No significant effect of eel ANP on GH release was seen at any concentration. ANG II had no effect on GH release at any time point. There was no change in mRNA levels of PRLs or GH in the pituitaries incubated with ANG II for 8 h or those incubated with the NPs for 48 h. These results indicate rapid and short-lasting stimulation by ANG II on PRL release and slow and long-lasting stimulation by VNP and CNP on GH release from the tilapia pituitary.
Collapse
Affiliation(s)
- Steve M Eckert
- Department of Zoology and Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1346, Coconut Island, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
33
|
Teijido O, Manso MJ, Anadón R. Distribution of thyrotropin-releasing hormone immunoreactivity in the brain of the dogfish Scyliorhinus canicula. J Comp Neurol 2002; 454:65-81. [PMID: 12410619 DOI: 10.1002/cne.10431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To improve knowledge of the peptidergic systems of elasmobranch brains, the distribution of thyrotropin-releasing hormone-immunoreactive (TRHir) neurons and fibers was studied in the brain of the small-spotted dogfish (Scyliorhinus canicula L.). In the olfactory bulbs, small granule neurons richly innervated the olfactory glomeruli. In the telencephalic hemispheres, small TRHir neurons were observed in the superficial dorsal pallium, whereas TRHir fibers were widely distributed in pallial and subpallial regions. In the preoptic region, TRHir neurons formed a caudal ventrolateral group in the preoptic nucleus. In the hypothalamus, the most conspicuous TRHir populations were associated with the lateral hypothalamic recess, but small TRHir populations were found in the posterior tubercle and ventral wall of the posterior recess. The preoptic region and hypothalamus exhibited rich innervation by TRHir fibers. TRHir fibers were observed coursing to the neurohypophysis and the neuroepithelium of the saccus vasculosus, but not to the neurohemal region of the median eminence. Some stellate-like TRHir cells were observed in a few cell cords of the neurointermediate lobe of the hypophysis. The thalamus, pretectum, and midbrain lacked TRHir neurons. Further TRHir neuronal populations were observed in the central gray and superior raphe nucleus of the isthmus, and a few TRHir cells were located in the nucleus of the trigeminal descending tract at the level of the rostral spinal cord. In the brainstem, the central gray, interpeduncular nucleus, secondary visceral region of the isthmus, rhombencephalic raphe, inferior olive, vagal lobe, and Cajal's commissural nucleus were all richly TRHir-innervated. Comparison of the distribution of TRHir neurons observed in the dogfish brain with that observed in teleosts and tetrapods reveals strong resemblance but also interesting differences, indicating the presence of both a conserved basic vertebrate pattern and a number of derived characters.
Collapse
Affiliation(s)
- Oscar Teijido
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | |
Collapse
|
34
|
Del Carmen De Andrés M, Anadón R, Manso MJ, González MJ. Distribution of thyrotropin-releasing hormone immunoreactivity in the brain of larval and adult sea lampreys, Petromyzon marinus L. J Comp Neurol 2002; 453:323-35. [PMID: 12389205 DOI: 10.1002/cne.10385] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study investigated the distribution of thyrotropin-releasing hormone-immunoreactive (TRHir) neurons and fibers in the brain and retina of lampreys. Our results in the brains of large larvae and upstream-migrating adults of the sea lamprey showed the presence of TRHir neurons mainly in the preoptic region and the hypothalamus. A few TRHir neurons were also found in the striatum. The number and staining intensity of TRHir neurons increased from larval stages to adulthood, and the distribution of TRHir populations was wider in adults. The TRHir fibers were more easily traced in adults. Some TRHir fibers entered the neurohypophysis, although most fibers coursed in the different regions of the brain, mostly in the basal region, from the forebrain to the hindbrain. The presence of TRHir stellate cells was observed in the adenohypophysis. In the retina of adult lampreys, but not in that of larvae, TRHir amacrine cells are present.
Collapse
Affiliation(s)
- María Del Carmen De Andrés
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | |
Collapse
|
35
|
Díaz ML, Becerra M, Manso MJ, Anadón R. Distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of the zebrafish (Danio rerio). J Comp Neurol 2002; 450:45-60. [PMID: 12124766 DOI: 10.1002/cne.10300] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The distribution of thyrotropin-releasing hormone (TRH) in the brain of the adult zebrafish was studied with immunohistochemical techniques. In the telencephalon, abundant TRH-immunoreactive (TRHir) neurons were observed in the central, ventral, and supra- and postcommissural regions of the ventral telencephalic area. In the diencephalon, TRHir neurons were observed in the anterior parvocellular preoptic nucleus, the suprachiasmatic nucleus, the lateral hypothalamic nucleus, the rostral parts of the anterior tuberal nucleus and torus lateralis, and the posterior tuberal nucleus. Some TRHir neurons were also observed in the central posterior thalamic nucleus and in the habenula. The mesencephalon contained TRHir cells in the rostrodorsal tegmentum, the Edinger-Westphal nucleus, the torus semicircularis, and the nucleus of the lateral lemniscus. Further TRHir neurons were observed in the interpeduncular nucleus. In the rhombencephalon, TRHir cells were observed in the nucleus isthmi and the locus coeruleus, rostrally, and in the vagal lobe and vagal motor nucleus, caudally. In the forebrain, TRHir fibers were abundant in several regions, including the medial and caudodorsal parts of the dorsal telencephalic area, the ventral and commissural parts of the ventral telencephalic area, the preoptic area, the posterior tubercle, the anterior tuberal nucleus, and the posterior hypothalamic lobe. The dorsal thalamus exhibited moderate TRHir innervation. In the mesencephalon, the optic tectum received a rich TRHir innervation between the periventricular gray zone and the stratum griseum centrale. A conspicuous TRHir longitudinal tract traversed the tegmentum and extended to the rhombencephalon. The medial and lateral mesencephalic reticular areas and the interpeduncular nucleus were richly innervated by TRHir fibers. In the rhombencephalon, the secondary gustatory nucleus received abundant TRHir fibers. TRHir fibers moderately innervated the ventrolateral and ventromedial reticular area and richly innervated the vagal lobe and Cajal's commissural nucleus. Some TRHir fibers coursed in the lateral funiculus of the spinal cord. Some TRHir amacrine cells were observed in the retina. The wide distribution of TRHir neurons and fibers observed in the zebrafish brain suggests that TRH plays different roles. These results in the adult zebrafish reveal a number of differences with respect to the TRHir systems reported in other adult teleosts but were similar to those found during late developmental stages of trout (Díaz et al., 2001).
Collapse
Affiliation(s)
- María Luz Díaz
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071 A Coruña, Spain
| | | | | | | |
Collapse
|
36
|
Seale AP, Itoh T, Moriyama S, Takahashi A, Kawauchi H, Sakamoto T, Fujimoto M, Riley LG, Hirano T, Grau EG. Isolation and characterization of a homologue of mammalian prolactin-releasing peptide from the tilapia brain and its effect on prolactin release from the tilapia pituitary. Gen Comp Endocrinol 2002; 125:328-39. [PMID: 11884078 DOI: 10.1006/gcen.2001.7727] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the tilapia (Oreochromis mossambicus), as in many teleosts, prolactin (PRL) plays a major role in osmoregulation in freshwater. Recently, PRL-releasing peptides (PrRPs) have been characterized in mammals. Independently, a novel C-terminal RF (arginine-phenylalanine) amide peptide (Carrasius RF amide; C-RFa), which is structurally related to mammalian PrRPs, has been isolated from the brain of the Japanese crucian carp. The putative PrRP was purified from an acid extract of tilapia brain by affinity chromatography with antibody against synthetic C-RFa and HPLC on a reverse-phase ODS-120 column. The tilapia PrRP cDNA was subsequently cloned by polymerase chain reaction. The cDNA consists of 619 bp encoding a preprohormone of 117 amino acids. Sequence comparison of the isolated peptide and the preprohormone revealed that tilapia PrRP contains 20 amino acids and is identical to C-RFa. Incubation of the tilapia pituitary with synthetic C-RFa (100 nM) significantly stimulated the release of two forms of tilapia PRL (PRL188 and PRL177). However, the effect of C-RFa was less pronounced than the marked increase in PRL release in response to hyposmotic medium. The ability of C-RFa to stimulate PRL release appears to be specific, since C-RFa failed to stimulate growth hormone release from the pituitary in organ culture. In contrast, rat and human PrRPs had no effect on PRL release. C-RFa was equipotent with chicken GnRH in stimulating PRL release in the pituitary preincubated with estradiol 17beta. Circulating levels of PRL were significantly increased 1 h after intraperitoneal injection of 0.1 microg/g of C-RFa in female tilapia in freshwater but not in males. These results suggest that C-RFa is physiologically involved in the control of PRL secretion in tilapia.
Collapse
Affiliation(s)
- A P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii 96744, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Borski RJ, Hyde GN, Fruchtman S, Tsai WS. Cortisol suppresses prolactin release through a non-genomic mechanism involving interactions with the plasma membrane. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:533-41. [PMID: 11399489 DOI: 10.1016/s1096-4959(01)00358-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the classical theory of steroid hormone action, steroids diffuse through the membrane and alter transcription of specific genes resulting in synthesis of proteins important for modulating cell function. Most often, steroids work solely through the genome to exert their physiological actions in a process that normally takes hours or days to occur. In tilapia (Oreochromis mossambicus), cortisol inhibits prolactin (PRL) release within 10-20 min in vitro. This action is accompanied by similarly rapid reductions in cellular Ca(2+) and cAMP levels, second messengers known to transduce the membrane effects of peptide hormones. We further examined whether cortisol might inhibit PRL release through a non-genomic, membrane-associated mechanism using the protein synthesis inhibitor, cycloheximide, and a membrane impermeant form of cortisol, cortisol-21 hemisuccinate BSA (HEF/BSA). Cycloheximide (2 and 10 microg/ml) was ineffective in overcoming PRL release induced by hyposmotic medium or that inhibited by cortisol over 4 h static incubations. These dosages reduced protein synthesis as measured by amino acid incorporation in pituitaries by 75 and 99%, respectively. During 4-h incubation, HEF/BSA and HEF significantly reduced PRL release in a dose-dependent fashion. These studies suggest that cortisol inhibits PRL release through a plasma membrane-associated, protein-synthesis independent (non-genomic) pathway.
Collapse
Affiliation(s)
- R J Borski
- Department of Zoology, North Carolina State University, Box 7617, 27695-7617, Raleigh, NC, USA.
| | | | | | | |
Collapse
|
38
|
Tacon P, Baroiller JF, Le Bail PY, Prunet P, Jalabert B. Effect of egg deprivation on sex steroids, gonadotropin, prolactin, and growth hormone profiles during the reproductive cycle of the mouthbrooding cichlid fish Oreochromis niloticus. Gen Comp Endocrinol 2000; 117:54-65. [PMID: 10620423 DOI: 10.1006/gcen.1999.7388] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various hormones were analyzed during the course of a reproductive cycle in the cichlid fish Oreochromis niloticus: plasma levels of the gonadal steroids 17beta-estradiol (E2), testosterone (T), 17, 20beta-OH progesterone (17,20beta-P), gonadotropin (taGtH), and plasma and pituitary concentrations of prolactin (tiPRL(I) and tiPRL(II)) and growth hormone (tiGH). Two categories of fish were sampled and sacrificed on days 1 and 3 postspawning and at 3-day intervals thereafter: typical incubating females (INC), and nonincubating females (NI), deprived of their eggs just after spawning. Such deprivation is known to suppress maternal behavior and to accelerate ovarian development and especially vitellogenesis, thus shortening the mean interspawning interval. In both groups, variations of the plasma concentrations of E2 and T appeared to depend on ovarian stages, and differences between groups appeared to reflect underlying differences in the kinetics of ovarian development. The observation of noticeable levels of 17,20beta-P in plasma before spawning, when high values of taGtH could also be detected in NI females, suggests the implication of this progestin in the control of final maturation events, as in some other teleosts. Moreover, 17,20beta-P, which was still detected a few days after spawning, but at low concentrations and only in the plasma of INC females, might play a role at the beginning of the reproductive cycle in incubating females (maternal behavior and/or slowing down of ovarian growth). The pituitary and plasma profiles of both tiPRLs isoforms appeared to depend mainly on the kinetics of ovarian development in each group of fish, suggesting a role during the beginning of vitellogenesis. However, the variance of plasma tiPRL(II), which was significantly enhanced during maternal behavior in INC females, also suggests an implication of this hormone in the control of that behavior. Concerning tiGH, comparison of the plasma profiles in INC and NI fish also suggest an influence on the control of maternal behavior, but a main effect of starvation of INC during mouthbrooding cannot be excluded.
Collapse
Affiliation(s)
- P Tacon
- INRA, Station Commune de Recherches en Ichtyophysiologie, Campus de Beaulieu, Rennes Cedex, 35042, France
| | | | | | | | | |
Collapse
|
39
|
D�az ML, Becerra M, Manso MJ, Anad�n R. Development of thyrotropin-releasing hormone immunoreactivity in the brain of the brown troutSalmo trutta fario. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000108)429:2<299::aid-cne10>3.0.co;2-m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Weber GM, Grau EG. Changes in serum concentrations and pituitary content of the two prolactins and growth hormone during the reproductive cycle in female tilapia, Oreochromis mossambicus, compared with changes during fasting. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1999; 124:323-35. [PMID: 10661726 DOI: 10.1016/s0742-8413(99)00081-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patterns of change in serum concentrations and pituitary content of GH and two tilapia prolactins (PRL177 and PRL188) were examined during the reproductive cycle of female tilapia, Oreochromis mossambicus, adapted to fresh water and to seawater. Changes in these hormones during fasting were examined to elucidate whether changes observed during brooding could be attributed to a reduction in feeding during brooding. Serum concentrations of GH increased prior to pituitary content during the brooding phase of the reproductive cycle. In contrast, pituitary content of GH increased prior to serum concentrations during fasting. There was no consistent pattern of change in serum or pituitary PRL levels during the reproductive cycle, among experiments. Serum concentrations of PRL177 were elevated in all fasted fish, whereas PRL188 was elevated during fasting in males but not females. The increases in the serum concentration of PRLs and GH, and in the pituitary content of GH in response to fasting support the notion that these hormones are involved in the regulation of the use of metabolic substrates in tilapia. We conclude that reduced food intake during brooding may contribute to changes in serum and pituitary levels of the PRLs and GH observed during the reproductive cycle. Nevertheless, differences between changes in serum and pituitary GH during brooding and fasting suggest GH has actions in reproduction, and changes in GH during brooding are not only in response to fasting.
Collapse
Affiliation(s)
- G M Weber
- Department of Zoology, North Carolina State University, Raleigh 27695-7617, USA.
| | | |
Collapse
|
41
|
Ando H, Ando J, Urano A. Localization of mRNA Encoding Thyrotropin-Releasing Hormone Precursor in the Brain of Sockeye Salmon. Zoolog Sci 1998. [DOI: 10.2108/zsj.15.945] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Kagabu Y, Mishiba T, Okino T, Yanagisawa T. Effects of thyrotropin-releasing hormone and its metabolites, Cyclo(His-Pro) and TRH-OH, on growth hormone and prolactin synthesis in primary cultured pituitary cells of the common carp, Cyprinus carpio. Gen Comp Endocrinol 1998; 111:395-403. [PMID: 9707485 DOI: 10.1006/gcen.1998.7124] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of thyrotropin-releasing hormone (TRH) and its metabolites, cyclo(His-Pro) and TRH-OH, on growth hormone (GH) and prolactin (PRL) synthesis were investigated using primary cultured pituitary cells of the common carp, Cyprinus carpio. The effects of these pep tides on GH and PRL were compared to those of human GH-releasing hormone (hGHRH) and somatostatin (somatotropin-releasing inhibiting factor; SRIF). GH and PRL synthesis were determined by measuring the incorporation of [3H]leucine into GH and PRL. TRH stimulated the release of newly synthesized GH and PRL, but not thyroid-stimulating hormone. In addition, TRH stimulated a dose-related increase in the release of newly synthesized GH and PRL at 10(-9) to 10(-7) M. Cyclo(His-Pro) stimulated the release of newly synthesized GH dose- dependently. TRH, cyclo(His-Pro), and hGHRH stimulated GH synthesis, while SRIF inhibited this at 10(-7) M. The release of newly synthesized PRL into culture medium was also stimulated by TRH and hGHRH, but inhibited by SRIF. PRL synthesis was not affected by TRH-OH and cyclo(His-Pro). Intracellular contents of GH and PRL in the pituitary did not change significantly. The present study demonstrates that TRH plays an important role in both GH and PRL synthesis and release. This is the first report in which the effects of cyclo(His-Pro) on GH synthesis in teleosts are demonstrated.
Collapse
Affiliation(s)
- Y Kagabu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan
| | | | | | | |
Collapse
|
43
|
Poh LH, Munro AD, Tan CH. The Effects of Oestradiol on the Prolactin and Growth Hormone Content of the Pituitary of the Tilapia, Oreochromis mossambicus, with Observations on the Incidence of Black Males. Zoolog Sci 1997. [DOI: 10.2108/zsj.14.979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Sukumar P, Munro AD, Mok EY, Subburaju S, Lam TJ. Hypothalamic regulation of the pituitary-thyroid axis in the tilapia Oreochromis mossambicus. Gen Comp Endocrinol 1997; 106:73-84. [PMID: 9126467 DOI: 10.1006/gcen.1996.6852] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrolytic lesioning of the preoptic area resulted in an increase in plasma thyroxine (T4) and reverse triiodothyronine (rT3) 10 days later; plasma triiodothyronine (T3) levels were not affected, so that there was also a significant decrease in the T3:T4, but not rT3:T4, ratios. No significant changes in T4, T3, or rT3 levels were observed in fish with lesions in either the anterior or posterior portions of the lateral tuberal nucleus. The pituitary contents of growth hormone and the two prolactins were not affected by any lesion. This indicates that the preoptic area may play a role in the inhibitory regulation of the pituitary-thyroid axis in Oreochromis mossambicus, presumably by way of effects on thyrotropin secretion.
Collapse
Affiliation(s)
- P Sukumar
- Fish Neurobiology Laboratory, School of Biological Sciences, National University, Singapore
| | | | | | | | | |
Collapse
|
45
|
Ogasawara T, Sakamoto T, Hirano T. Prolactin Kinetics during Freshwater Adaptation of Mature Chum Salmon, Oncorhynchus keta. Zoolog Sci 1996. [DOI: 10.2108/zsj.13.443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Matz SP, Takahashi TT. Immunohistochemical localization of thyrotropin-releasing hormone in the brain of chinook salmon (Oncorhynchus tshawytscha). J Comp Neurol 1994; 345:214-23. [PMID: 7929899 DOI: 10.1002/cne.903450205] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This report describes the distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of juvenile chinook salmon. TRH-positive cell bodies are observed in the preoptic region of the diencephalon, in the supracommissural nucleus of the ventral telencephalon, and in the internal cellular layer of the olfactory bulb. Immunoreactive fibers occur in the olfactory bulb, the dorsal and ventral telencephalon and were particularly extensive in hypothalamic regions. TRH-positive fibers also are observed in the optic tectum, posterior pituitary and the brainstem. The cell bodies in the preoptic area reside in the magnocellular preoptic nucleus. The position of these cell bodies along with the location of fibers in the hypothalamus and pituitary is consistent with the role of TRH as a hypothalamic releasing hormone. TRH-positive cell bodies also occur in the supracommissural nucleus of the ventral telencephalon and in the internal cellular layer of the olfactory bulb. The cell bodies in the olfactory bulb may account for some of the fibers in the telencephalon, as there are TRH fibers in the olfactory tracts. The presence of TRH-positive fibers with bouton-like swellings raise the possibility that the TRH peptide may act as a central neurotransmitter of neuromodulator. The results of this study suggest that TRH functions as a modulator of the pituitary activity in salmonids and that TRH is used as a transmitter or modulator in the olfactory system. The presence of TRH-positive somata in the olfactory bulb and ventral telencephalon provides new insights into the comparative anatomy of the salmon telencephalon.
Collapse
Affiliation(s)
- S P Matz
- Institute of Neuroscience, Eugene, Oregon 97403
| | | |
Collapse
|
47
|
Quérat B, Cardinaud B, Hardy A, Vidal B, D'Angelo G. Sequence and regulation of European eel prolactin mRNA. Mol Cell Endocrinol 1994; 102:151-60. [PMID: 7926267 DOI: 10.1016/0303-7207(94)90108-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
cDNA clones encoding the European eel (Anguilla anguilla L.) prolactin were isolated from a pituitary cDNA library constructed in gamma gt10, using a rainbow trout Prl cDNA fragment as a probe. Four different inserts were subcloned into the pGEM 3Z plasmid after PCR amplification. The 1082 bp-long nucleotide sequence revealed an open reading frame of 627 bp encoding a 24 amino acid-long signal peptide followed by a 185 amino acid-long mature protein. Comparison studies showed 60-70% homology with other known teleost fish prolactins and 30-45% with non-teleost fish, amphibian, reptilian, avian and mammalian prolactins. In situ hybridization studies using labelled prolactin RNA probe showed a strong signal in the rostral pars distalis of the pituitary gland. We next examined the physiological regulation of this prolactin synthesis in vivo using Northern blot analysis and prolactin cDNA probe labelled by random priming. The pituitary prolactin mRNA level was markedly decreased 3 weeks after transfer of eels from freshwater to sea water. Implants of thyroid hormones left for up to three weeks were ineffective on prolactin mRNA. Estradiol administered as implant, alone or in combination with 500 micrograms testosterone, was also unable to significantly alter the pituitary mRNA level for prolactin in the freshwater silver eels whatever the dose used (20-500 micrograms) and whatever the duration of treatment (from 4 days to 10 weeks).
Collapse
Affiliation(s)
- B Quérat
- Laboratoire de Physiologie Générale et Comparée, MNHN, Unité Evolution des Régulations Endocriniennes, CNRS, Paris, France
| | | | | | | | | |
Collapse
|
48
|
12 Prolact in Receptors. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s1546-5098(08)60073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Yamada H, Ohta H, Yamauchi K. Serum thyroxine, estradiol-17β, and testosterone profiles during the parr-smolt transformation of masu salmon, Oncorhynchus masou. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 12:1-9. [PMID: 24202620 DOI: 10.1007/bf00004317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/1993] [Indexed: 06/02/2023]
Abstract
Changes in serum thyroxine (T4), estradiol-17β (E2) and testosterone (T) levels during the parr-smolt transformation (smoltification) were investigated in the masu salmon (Oncorhynchus masou) in 1985 and 1987. T4 showed a peak in levels at the early stage of smoltification and E2 and T levels peaked almost at the same time. There were no significant differences between the concentrations of serum hormones in female and males. During smoltification, germ cells in the peri-nucleolus and spermatogonia stage were present in the ovary and testis, respectively. These results suggest that E2 and T may be involved in smoltification in the masu salmon.
Collapse
Affiliation(s)
- H Yamada
- Department of Biology, Faculty of Fisheries, Hokkaido University, Hakodate, Hokkaido, 041, Japan
| | | | | |
Collapse
|
50
|
Le Goff P, Salbert G, Prunet P, Saligaut C, Bjornsson BT, Haux C, Valotaire Y. Absence of direct regulation of prolactin cells by estradiol-17 beta in rainbow trout (Oncorhynchus mykiss). Mol Cell Endocrinol 1992; 90:133-9. [PMID: 1301394 DOI: 10.1016/0303-7207(92)90111-i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of estradiol-17 beta (E2) implants on plasma prolactin (PRL) concentrations, pituitary PRL content and pituitary PRL mRNA levels were examined in rainbow trout (Oncorhynchus mykiss). Intact immature fish treated with 1 mg estradiol-17 beta did not show significant changes in both PRL mRNA levels and pituitary PRL content after 3 days of treatment. In a similar experiment, no changes were observed in plasma PRL levels followed during 7 days. Similarly, lack of estradiol-17 beta effect on plasma PRL levels and on final PRL pituitary content was observed in ovariectomized female rainbow trout treated during 48 days with 25 mg estradiol-17 beta and in mature male fish over a 3-week treatment period. Localization of estradiol receptor (ER) mRNAs in the pituitary was carried out by Northern blot analysis using a full-length rainbow trout estrogen receptor (rtER) cDNA as a probe. The rostral pars distalis of the pituitary which contained mostly PRL cells showed the lower amount of rtER mRNA when compared to other parts of the pituitary. Moreover, two mRNAs of different size (3.5 and 1.4 kb) were detected in different parts of the pituitary. Further hybridization experiments using probes containing part of the rtER cDNA (E domain or C and D domains) indicated that the small-sized mRNA (1.4 kb) probably encodes a truncated ER protein lacking hormone binding domain or an ER-related protein. Thus, only the 3.56 kb mRNA appeared to be involved in the regulation of pituitary function by estradiol. In situ hybridization analysis allowed a more precise localization of this rtER mRNA in the pituitary.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Le Goff
- Laboratoire de Biologie Moléculaire, U.R.A. 256 C.N.R.S., Université de Rennes I, France
| | | | | | | | | | | | | |
Collapse
|