1
|
Evans LJ, O'Brien D, Shaw PJ. Current neuroprotective therapies and future prospects for motor neuron disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:327-384. [PMID: 38802178 DOI: 10.1016/bs.irn.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Four medications with neuroprotective disease-modifying effects are now in use for motor neuron disease (MND). With FDA approvals for tofersen, relyvrio and edaravone in just the past year, 2022 ended a quarter of a century when riluzole was the sole such drug to offer to patients. The acceleration of approvals may mean we are witnessing the beginning of a step-change in how MND can be treated. Improvements in understanding underlying disease biology has led to more therapies being developed to target specific and multiple disease mechanisms. Consideration for how the pipeline of new therapeutic agents coming through in clinical and preclinical development can be more effectively evaluated with biomarkers, advances in patient stratification and clinical trial design pave the way for more successful translation for this archetypal complex neurodegenerative disease. While it must be cautioned that only slowed rates of progression have so far been demonstrated, pre-empting rapid neurodegeneration by using neurofilament biomarkers to signal when to treat, as is currently being trialled with tofersen, may be more effective for patients with known genetic predisposition to MND. Early intervention with personalized medicines could mean that for some patients at least, in future we may be able to substantially treat what is considered by many to be one of the most distressing diseases in medicine.
Collapse
Affiliation(s)
- Laura J Evans
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - David O'Brien
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
3
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Gul S, Attaullah S, Alsugoor MH, Bawazeer S, Shah SA, Khan S, Salahuddin HS, Ullah M. Folicitin abrogates scopolamine induced oxidative stress, hyperlipidemia mediated neuronal synapse and memory dysfunction in mice. Heliyon 2023; 9:e16930. [PMID: 37416682 PMCID: PMC10320035 DOI: 10.1016/j.heliyon.2023.e16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
No effective drug treatment is available for Alzheimer disease, thus the need arise to develop efficient drugs for its treatment. Natural products have pronounced capability in treating Alzheimer disease therefore current study aimed to evaluate the neuro-protective capability of folicitin against scopolamine-induced Alzheimer disease neuropathology in mice. Experimental mice were divided into four groups i.e. control (single dose of 250 μL saline), scopolamine-administered group (1 mg/kg administered for three weeks), scopolamine plus folicitin-administered group (scopolamine 1 mg/kg administration for three weeks followed by folicitin administration for last two weeks) and folicitin-administered group (20 mg/kg administered for 5 alternate days). Results of behavioral tests and Western blot indicated that folicitin has the capability of recovering the memory against scopolamine-induced memory impairment by reducing the oxidative stress through up-regulating the endogenous antioxidant system like nuclear factor erythroid 2-related factor and Heme oxygenase-1 while prohibiting phosphorylated c-Jun N-terminal kinase. Similarly, folicitin also improved the synaptic dysfunction by up-regulating SYP and PSD95. Scopolamine-induced hyperglycemia and hyperlipidemia were abolished by folicitin as evidenced through random blood glucose test, glucose tolerance test and lipid profile test. All these results revealed that folicitin being a potent anti-oxidant is capable of improving synaptic dysfunction and reducing oxidative stress through Nrf-2/HO-1 pathway, thus plays a key role in treating Alzheimer disease as well as possess hyperglycemic and hyperlipidemic effect. Furthermore, a detailed study is suggested.
Collapse
Affiliation(s)
- Seema Gul
- Department of Zoology, Islamia College Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Attaullah
- Department of Zoology, Islamia College Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mahdi H. Alsugoor
- Umme Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Sami Bawazeer
- Umme Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Shahid Ali Shah
- Neuro Molecular Medicine Research Centre (NMMRC), Ring Road, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | | | - Mujeeb Ullah
- Department of Zoology, Islamia College Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
5
|
Nóbrega-Pereira S, Santos F, Oliveira Santos M, Serafim TL, Lopes AP, Coutinho D, Carvalho FS, Domingues RM, Domingues P, Bernardes de Jesus B, Morais VA, Dias S. Mitochondrial Metabolism Drives Low-density Lipoprotein-induced Breast Cancer Cell Migration. CANCER RESEARCH COMMUNICATIONS 2023; 3:709-724. [PMID: 37377750 PMCID: PMC10132314 DOI: 10.1158/2767-9764.crc-22-0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 06/29/2023]
Abstract
Most cancer-related deaths are due to metastases. Systemic factors, such as lipid-enriched environments [as low-density lipoprotein (LDL)-cholesterol], favor breast cancer, including triple-negative breast cancer (TNBC) metastasis formation. Mitochondria metabolism impacts TNBC invasive behavior but its involvement in a lipid-enriched setting is undisclosed. Here we show that LDL increases lipid droplets, induces CD36 and augments TNBC cells migration and invasion in vivo and in vitro. LDL induces higher mitochondrial mass and network spread in migrating cells, in an actin remodeling-dependent manner, and transcriptomic and energetic analyses revealed that LDL renders TNBC cells dependent on fatty acids (FA) usage for mitochondrial respiration. Indeed, engagement on FA transport into the mitochondria is required for LDL-induced migration and mitochondrial remodeling. Mechanistically, LDL treatment leads to mitochondrial long-chain fatty acid accumulation and increased reactive oxygen species (ROS) production. Importantly, CD36 or ROS blockade abolished LDL-induced cell migration and mitochondria metabolic adaptations. Our data suggest that LDL induces TNBC cells migration by reprogramming mitochondrial metabolism, revealing a new vulnerability in metastatic breast cancer. Significance LDL induces breast cancer cell migration that relies on CD36 for mitochondrial metabolism and network remodeling, providing an antimetastatic metabolic strategy.
Collapse
Affiliation(s)
- Sandrina Nóbrega-Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Instituto de Biomedicina (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Francisco Santos
- Instituto de Biomedicina (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Miguel Oliveira Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Teresa L. Serafim
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana Patrícia Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Diogo Coutinho
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Filipa S. Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rosário M. Domingues
- Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
- Department of Chemistry and CESAM&ECOMARE, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Bruno Bernardes de Jesus
- Instituto de Biomedicina (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Sérgio Dias
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
6
|
Ahmed RA, Alam MF, Alshahrani S, Jali AM, Qahl AM, Khalid M, Muzafar HMA, Alhamami HN, Anwer T. Capsaicin Ameliorates the Cyclophosphamide-Induced Cardiotoxicity by Inhibiting Free Radicals Generation, Inflammatory Cytokines, and Apoptotic Pathway in Rats. Life (Basel) 2023; 13:life13030786. [PMID: 36983940 PMCID: PMC10056591 DOI: 10.3390/life13030786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Cyclophosphamide is an antineoplastic agent that has a broad range of therapeutic applications; however, it has numerous side effects, including cardiotoxicity. Furthermore, chili peppers contain a substance called capsaicin, having antioxidant and anti-inflammatory effects. Thus, this research paper focuses on the potential mechanism of capsaicin’s cardioprotective activity against cyclophosphamide-induced cardiotoxicity by measuring the expression of oxidative and inflammatory marker such as interleukins and caspases. The following groups of rats were randomly assigned: only vehicle given for 6 days (control group); cyclophosphamide 200 mg/kg intraperitoneal on 4th day only (positive control group); capsaicin 10 mg/kg orally given for 6 days followed by cyclophosphamide 200 mg/kg on 4th day of treatment; capsaicin 20 mg/kg orally for six days followed by cyclophosphamide 200 mg/kg on 4th day of treatment; and maximum amount of capsaicin alone (20 mg/kg) orally for six days. Using ELISA kits, it was found that the cyclophosphamide administration significantly increased the levels of lactate dehydrogenase, troponin-I (cardiac cell damage marker), lipid peroxidation, triglyceride, interleukin-6, tumor necrosis factor-alpha, and caspase 3. However, it markedly reduced the antioxidant enzymes catalase and glutathione levels. Both doses of capsaicin could reverse cardiac cell damage markers, as shown by a significant decline in (lactate dehydrogenase and troponin-I). In addition, capsaicin significantly reduced the cytokine levels (interleukin-6 and tumor necrosis factor-alpha), caspase 3, lipid peroxidation, and triglycerides. However, capsaicin treatment significantly raised the antioxidant content of enzymes such as glutathione and catalase. The capsaicin-treated group restored the oxidative parameter’s imbalance and generated considerable protection against cardiomyocyte harm from cyclophosphamide in male Wistar rats. These protective effects might be beneficial against the negative impacts of cyclophosphamide when used to treat cancer and immune-mediated diseases.
Collapse
Affiliation(s)
- Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (R.A.A.); (M.F.A.)
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (R.A.A.); (M.F.A.)
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah M. Qahl
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | - Hisham M. A. Muzafar
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Mewborn E, Stanfill A. Oxidative Stress Underpins Clinical, Social, and Genetic Risk Factors for Atherosclerotic Cardiovascular Disease. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2023; 17:11795468231170779. [PMID: 37153696 PMCID: PMC10155032 DOI: 10.1177/11795468231170779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
Background Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of death worldwide and is poorly predicted with current risk estimation tools. The biological mechanisms relating ASCVD risk factors to oxidative stress (OS) and how this accumulates ASCVD risk are misunderstood. Purpose To develop a comprehensive conceptual model explaining how expanded clinical, social, and genetic ASCVD risk factors accumulate ASCVD risk through OS. Conclusions OS (primarily from excess reactive oxygen species) and inflammation are present along the entire ASCVD pathophysiologic continuum. An expanded list of clinical and social ASCVD risk factors (including hypertension, obesity, diabetes, kidney disease, inflammatory diseases, substance use, poor nutrition, psychosocial stress, air pollution, race, and genetic ancestry) influence ASCVD largely through increased OS. Many risk factors exert a positive feedback mechanism to increase OS. One genetic risk factor, haptoglobin (Hp) genotype, is associated with higher ASCVD risk in diabetes and hypothesized to do the same in those with insulin resistance due to the Hp 2-2 genotype increasing OS. Implications Understanding the biological mechanisms of OS informs how these ASCVD risk factors relate to each other and compound ASCVD risk. Individualized ASCVD risk estimation should include a comprehensive, holistic perspective of risk factors to better address the clinical, social, and genetic influences of OS. Preventing and reducing OS is key to preventing ASCVD development or progression.
Collapse
Affiliation(s)
- Emily Mewborn
- University of Tennessee Health Science
Center, Memphis, TN, USA
- Emily Mewborn, University of Tennessee
Health Science Center, 874 Union Avenue, Suite G022B, Memphis, TN 38163, USA.
| | - Ansley Stanfill
- University of Tennessee Health Science
Center, Memphis, TN, USA
- Department of Acute and Tertiary Care,
College of Nursing, University of Tennessee Health Science Center, Memphis, TN,
USA
- Department of Genetics, Genomics, and
Informatics, College of Medicine, University of Tennessee Health Science Center,
Memphis, TN, USA
| |
Collapse
|
8
|
An S, Moon S, Park SK. Association of metabolic comorbidity with myocardial infarction in individuals with a family history of cardiovascular disease: a prospective cohort study. BMC Public Health 2022; 22:1992. [PMID: 36316766 PMCID: PMC9624008 DOI: 10.1186/s12889-022-14330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/04/2022] [Indexed: 12/07/2022] Open
Abstract
Background The association between metabolic comorbidity and myocardial infarction (MI) among individuals with a family history of cardiovascular disease (CVD) is yet to be elucidated. We aimed to examine the combined effects of metabolic comorbidities, including diabetes mellitus, hypertension, and dyslipidemia, with a family history of CVD in first-degree on the risk of incident MI. Methods This cohort study consisted of 81,803 participants aged 40–89 years without a previous history of MI at baseline from the Korean Genome and Epidemiology Study. We performed Cox proportional hazard regression analysis to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for MI and early-onset MI risk associated with metabolic comorbidity in individuals with a family history of CVD. Results During a median follow-up of 5 years, 1,075 and 479 cases of total and early-onset MI were reported, respectively. According to the disease score, among individuals who had a positive family history of CVD, the HRs for MI were 1.92 (95% CI: 1.47–2.51) in individuals with one disease, 2.75 (95% CI: 2.09–3.61) in those with two diseases, and 3.74 (95% CI: 2.45–5.71) in those with three diseases at baseline compared to individuals without a family history of CVD and metabolic diseases. Similarly, an increase of the disease score among individuals with a positive family history of CVD was associated with an increase in early-onset MI risk. Conclusion Metabolic comorbidity was significantly associated with an increased risk of MI among individuals with a family history of CVD. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-14330-2.
Collapse
Affiliation(s)
- Seokyung An
- grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea ,grid.31501.360000 0004 0470 5905Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Sungji Moon
- grid.31501.360000 0004 0470 5905Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Sue K. Park
- grid.31501.360000 0004 0470 5905Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, Korea ,grid.31501.360000 0004 0470 5905Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Lei R, Wang Z, Wang X, Tian H, Wang B, Xue B, Xiao Y, Hu J, Zhang K, Bin Luo. Effects of long-term exposure to PM 2.5 and chemical constituents on blood lipids in an essential hypertensive population: A multi-city study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113867. [PMID: 35839530 DOI: 10.1016/j.ecoenv.2022.113867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Previous studies on the effects of fine particulate matter (PM2.5) and chemical constituents on lipid disorder among hypertension populations, particularly in China, are very limited. We aimed to examine the effects of long-term exposure to PM2.5 and chemical constituents on dyslipidemias in China. Finally, we included 34,841 participants with essential hypertension from 19 regions in China during 2010-2011. Data were modeled using the generalized additive mixed model. We found that PM2.5 and chemical constituents exposure were positively associated with the increased risk of dyslipidemias and increased levels of total cholesterol (TC) and triglyceride (TG). The odds ratio for hypercholesterolemia was 1.356 [95% confidence interval (CI): 1.246, 1.477] for PM2.5, and the strongest association with PM2.5 constituents was found for nitrate. Each 10 μg/m3 increase in PM2.5 showed a significant increase of TC by 2.60% (95% CI: 2.03, 3.17) and TG by 2.91% (95% CI: 1.60, 4.24), respectively. Meanwhile, an interquartile range increase in nitrate, ammonium and organic matter had stronger associations with TC and TG parameters than black carbon, sulfate, and mineral dust. Our findings may contribute to a better understanding of the chronic effects of PM2.5 and chemical constituents on lipid disorder in an essential hypertensive population.
Collapse
Affiliation(s)
- Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zengwu Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xin Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya Xiao
- School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jihong Hu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA.
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
10
|
Cardioprotective Effect of Acetylsalicylic Acid in the Myocardial Ischemia-Reperfusion Model on Oxidative Stress Markers Levels in Heart Muscle and Serum. Antioxidants (Basel) 2022; 11:antiox11081432. [PMID: 35892634 PMCID: PMC9332077 DOI: 10.3390/antiox11081432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heart failure occurs in increased oxidative stress conditions, which contribute to the progression of pathological changes. Orally or intravenously administered acetylsalicylic acid (ASA, aspirin) is typically used in human patients with acute myocardial ischemia. The study used an experimental porcine ischemia-reperfusion model to evaluate the potential cardioprotective effect of intracoronary administered ASA on myocardial ischemia-reperfusion injury. The cardioprotective effect of ASA was evaluated by measuring selected oxidative stress markers levels in infarcted and non-infarcted myocardium 14 days after the procedure, and three times in serum, before the procedure, during the reperfusion process, and after 14-day recovery. The results showed that intracoronary administrated ASA reduced the oxidative stress. The level of oxidative stress, measured with the non-enzymatic markers total antioxidant capacity (TAC), total oxidative status (TOS), and malondialdehyde (MDA), and the enzymatic markers glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST), in heart tissue was significantly higher in a control group injected with saline. The level of oxidative stress in serum, measured with TAC, TOS, oxidative stress index (OSI), and lipofuscin (LF), was also higher in the control group than in animals injected with ASA. The confirmed cardioprotective effect of intracoronary administered ASA provides the foundation for further studies on ASA intracoronary application, which may lead to the development of a new therapy for the treatment of ischemia-reperfusion complications in humans.
Collapse
|
11
|
Kong ASY, Lai KS, Hee CW, Loh JY, Lim SHE, Sathiya M. Oxidative Stress Parameters as Biomarkers of Cardiovascular Disease towards the Development and Progression. Antioxidants (Basel) 2022; 11:antiox11061175. [PMID: 35740071 PMCID: PMC9219727 DOI: 10.3390/antiox11061175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death globally, with unhealthy lifestyles today greatly increasing the risk. Over the decades, scientific investigation has been carried out on reactive oxygen species (ROS) and their resultant oxidative stress based on their changes made on biological targets such as lipids, proteins, and DNA. Since the existing clinical studies with antioxidants failed to provide relevant findings on CVD prediction, the focus has shifted towards recognition of oxidised targets as biomarkers to predict prognosis and response to accurate treatment. The identification of redox markers could help clinicians in providing risk stratification for CVD events beyond the traditional prognostic and diagnostic targets. This review will focus on how oxidant-related parameters can be applied as biomarkers for CVD based on recent clinical evidence.
Collapse
Affiliation(s)
- Amanda Shen-Yee Kong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (K.S.L.); (S.H.E.L.)
| | - Cheng-Wan Hee
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia;
| | - Jiun Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Swee Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (K.S.L.); (S.H.E.L.)
| | - Maran Sathiya
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia;
- Correspondence:
| |
Collapse
|
12
|
Vanderick A, Goffin É, Gillion V. [Acute pancreatitis as a complication of massive hemolysis in patients on hemodialysis: About three observations]. Nephrol Ther 2022; 18:207-210. [PMID: 35525785 DOI: 10.1016/j.nephro.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Haemolysis is an uncommon complication of haemodialysis which can be serious. We herein report on three patients with kidney failure who developed acute pancreatitis due to mechanical haemolysis during a haemodialysis session. We also review the current literature and discuss putative etiopathogenic mechanisms.
Collapse
Affiliation(s)
- Ariane Vanderick
- Service de néphrologie, cliniques universitaires Saint-Luc, 10, avenue Hippocrate, 1200 Bruxelles, Belgique
| | - Éric Goffin
- Service de néphrologie, cliniques universitaires Saint-Luc, 10, avenue Hippocrate, 1200 Bruxelles, Belgique; Institut de recherche expérimentale et clinique, université catholique de Louvain, 10, avenue Hippocrate, 1200 Bruxelles, Belgique
| | - Valentine Gillion
- Service de néphrologie, cliniques universitaires Saint-Luc, 10, avenue Hippocrate, 1200 Bruxelles, Belgique; Institut de recherche expérimentale et clinique, université catholique de Louvain, 10, avenue Hippocrate, 1200 Bruxelles, Belgique.
| |
Collapse
|
13
|
Anh NH, Doan MQ, Dinh NX, Huy TQ, Tri DQ, Ngoc Loan LT, Van Hao B, Le AT. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv 2022; 12:10950-10988. [PMID: 35425077 PMCID: PMC8988175 DOI: 10.1039/d1ra08311b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Modern society has been facing serious health-related problems including food safety, diseases and illness. Hence, it is urgent to develop analysis methods for the detection and control of food contaminants, disease biomarkers and pathogens. As the traditional instrumental methods have several disadvantages, including being time consuming, and having high cost and laborious procedures, optical nanosensors have emerged as promising alternative or complementary approaches to those traditional ones. With the advantages of simple preparation, high surface-to-volume ratio, excellent biocompatibility, and especially, unique optical properties, gold nanoparticles (AuNPs) have been demonstrated as excellent transducers for optical sensing systems. Herein, we provide an overview of the synthesis of AuNPs and their excellent optical properties that are ideal for the development of optical nanosensors based on local surface plasmon resonance (LSPR), colorimetry, fluorescence resonance energy transfer (FRET), and surface-enhanced Raman scattering (SERS) phenomena. We also review the sensing strategies and their mechanisms, as well as summarizing the recent advances in the monitoring of food contaminants, disease biomarkers and pathogens using developed AuNP-based optical nanosensors in the past seven years (2015-now). Furthermore, trends and challenges in the application of these nanosensors in the determination of those analytes are discussed to suggest possible directions for future developments.
Collapse
Affiliation(s)
- Nguyen Ha Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Mai Quan Doan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Electric and Electronics, Phenikaa University Hanoi 12116 Vietnam
| | - Doan Quang Tri
- Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
| | - Le Thi Ngoc Loan
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon 55113 Vietnam
| | - Bui Van Hao
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| |
Collapse
|
14
|
Qader AB, Kumar S, Kohli K, Hussein AA. Garlic oil loaded rosuvastatin solid self-nanoemulsifying drug delivery system to improve level of high-density lipoprotein for ameliorating hypertriglyceridemia. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.1929604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Adnan Burhan Qader
- Department of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Kanchan Kohli
- Lloyd Institute of Management and Technology (Pharm.), Greater Noida, India
| | - Ahmed Abbas Hussein
- Department of Pharmaceutics, College of Pharmacy, Baghdad University, Baghdad, Iraq
| |
Collapse
|
15
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1296-1306. [DOI: 10.1093/jpp/rgac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022]
|
16
|
Tetrahydropalmatine Alleviates Hyperlipidemia by Regulating Lipid Peroxidation, Endoplasmic Reticulum Stress, and Inflammasome Activation by Inhibiting the TLR4-NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6614985. [PMID: 34760017 PMCID: PMC8575622 DOI: 10.1155/2021/6614985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/04/2021] [Indexed: 01/11/2023]
Abstract
Hyperlipidemia (HLP) is a lipid metabolism disorder that can induce a series of cardiovascular and cerebrovascular diseases, such as atherosclerosis, myocardial infarction, coronary heart disease, and stroke, which seriously threaten human health. Tetrahydropalmatine (THP) is a component of the plant Rhizoma corydalis and has been shown to exert hepatoprotective and anti-inflammatory effects in HLP. However, whether THP regulates lipid peroxidation in hyperlipidemia, endoplasmic reticulum (ER) stress and inflammasome activation and even the underlying protective mechanism against HLP remain unclear. An animal model of HLP was established by feeding a high-fat diet to golden hamsters. Our results showed that THP reduced the body weight and adipose index; decreased the serum content of ALT, AST, TC, TG, and LDL-C; decreased the free fatty acid hepatic lipid content (liver index, TC, TG, and free fatty acid); inhibited oxidative stress and lipid peroxidation; extenuated hepatic steatosis; and inhibited ER stress and inflammasome activation in high-fat diet-fed golden hamsters. In addition, for the first time, the potential mechanism by which THP protects against HLP through the TLR4-NF-κB signaling pathway was demonstrated. In conclusion, these data indicate that THP attenuates HLP through a variety of effects, including antioxidative stress, anti-ER stress, and anti-inflammatory effects. In addition, THP also inhibited the TLR4-NF-κB signaling pathway in golden hamsters.
Collapse
|
17
|
Blood Plasma's Protective Ability against the Degradation of S-Nitrosoglutathione under the Influence of Air-Pollution-Derived Metal Ions in Patients with Exacerbation of Heart Failure and Coronary Artery Disease. Int J Mol Sci 2021; 22:ijms221910500. [PMID: 34638839 PMCID: PMC8508800 DOI: 10.3390/ijms221910500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/27/2022] Open
Abstract
One of the consequences of long-term exposure to air pollutants is increased mortality and deterioration of life parameters, especially among people diagnosed with cardiovascular diseases (CVD) or impaired respiratory system. Aqueous soluble inorganic components of airborne particulate matter containing redox-active transition metal ions affect the stability of S-nitrosothiols and disrupt the balance in the homeostasis of nitric oxide. Blood plasma’s protective ability against the decomposition of S-nitrosoglutathione (GSNO) under the influence of aqueous PM extract among patients with exacerbation of heart failure and coronary artery disease was studied and compared with a group of healthy volunteers. In the environment of CVD patients’ plasma, NO release from GSNO was facilitated compared to the plasma of healthy controls, and the addition of ascorbic acid boosted this process. Model studies with albumin revealed that the amount of free thiol groups is one of the crucial factors in GSNO decomposition. The correlation between the concentration of NO released and -SH level in blood plasma supports this conclusion. Complementary studies on gamma-glutamyltranspeptidase activity and ICP-MS multielement analysis of CVD patients’ plasma samples in comparison to a healthy control group provide broader insights into the mechanism of cardiovascular risk development induced by air pollution.
Collapse
|
18
|
Liu Q, Zhao J, Liu S, Fan Y, Mei J, Liu X, Wei T. Positive intervention of insoluble dietary fiber from defatted rice bran on hyperlipidemia in high fat diet fed rats. J Food Sci 2021; 86:3964-3974. [PMID: 34251041 DOI: 10.1111/1750-3841.15812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022]
Abstract
Increasing dietary fiber intake is considered to be an effective way to prevent and relieve the diseases associated with high-income lifestyles. Compared with soluble dietary fiber, comprehensive evaluation about the effects of insoluble dietary fiber on hyperlipidemia is rarely studied. In the present study, the insoluble dietary fiber was extracted from defatted rice bran by enzymatic treatments (IDF-dRB), followed by investigation about the adsorption and antioxidant activities in vitro. Moreover, the alleviating effects of IDF-dRB on hyperlipidemia were evaluated and analyzed. As a result, IDF-dRB possessed good adsorption capacities of glucose and cholesterol, and also exhibited excellent properties in scavenging radicals. Furthermore, intervention with IDF-dRB significantly improved lipid and glucose metabolism and alleviated inflammation and oxidative stress in rats fed high-fat diet. It was also observed that IDF-dRB treatment could recover the decline in species of gut microbiota caused by high fat diet, increase the community richness, and modulate the metabolic function of gut microbiota. In conclusion, the results indicated that IDF-dRB could ameliorate hyperlipidemia from many aspects and offered some perspectives about the effects of diet intervention with insoluble dietary fiber. PRACTICAL APPLICATION: Rice bran and defatted rice bran are coproducts in the rice processing industry and potentially valuable for the preparation of insoluble dietary fiber. Here an insoluble dietary fiber IDF-dRB was extracted from defatted rice bran and showed good properties in improving lipid and glucose levels, alleviating inflammation and oxidative stress, and modulating gut microbiota in rats fed high-fat diet, suggesting the potential application in ameliorating hyperlipidemia.
Collapse
Affiliation(s)
- Qian Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China.,College of Biochemical Engineering, Beijing Union University, Beijing, PR China
| | - Jieyu Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Sushi Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Yuchuan Fan
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Jiajia Mei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Xuanjiang Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Tao Wei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China.,College of Biochemical Engineering, Beijing Union University, Beijing, PR China
| |
Collapse
|
19
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
20
|
Biswas S, Gao D, Altemus JB, Rekhi UR, Chang E, Febbraio M, Byzova TV, Podrez EA. Circulating CD36 is increased in hyperlipidemic mice: Cellular sources and triggers of release. Free Radic Biol Med 2021; 168:180-188. [PMID: 33775772 PMCID: PMC8085123 DOI: 10.1016/j.freeradbiomed.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
CD36 is a multifunctional transmembrane glycoprotein abundantly expressed in several cell types. Recent studies have identified CD36 in circulation (cCD36) in several chronic inflammatory diseases, including type 2 diabetes and chronic kidney disease, and proposed cCD36 to be a biomarker of disease activity. Whether cCD36 is present in hyperlipidemia, a condition characterized by oxidative stress and low-grade inflammation, is not known. In addition, the cellular origin of cCD36 and triggers of CD36 release have not been elucidated. We now demonstrate that plasma cCD36 level is increased in hyperlipidemic ApoE-/- and Ldlr-/- mice. Using several cell-specific CD36 knockout mice, we showed that multiple cell types contribute to cCD36 generation in hyperlipidemic conditions, with a particularly strong contribution from endothelial cells. In vitro studies have demonstrated that oxidized phospholipids, ligands for CD36 (oxPCCD36), which are known to accumulate in circulation in hyperlipidemia, induce a robust release of CD36 from several cell types. In vivo studies have demonstrated CD36 release into the circulation of WT mice in response to tail-vein injection of oxPCCD36. These findings document the presence of cCD36 in hyperlipidemia and identify a link between cCD36 and oxidized phospholipids generated under oxidative stress and low-grade inflammation associated with hyperlipidemia.
Collapse
Affiliation(s)
- Sudipta Biswas
- Department of Inflammation and Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Detao Gao
- Department of Inflammation and Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jessica B Altemus
- Department of Inflammation and Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Umar R Rekhi
- Department of Dentistry, University of Alberta, 11361 87 Avenue, Edmonton, AB, T6G 2E1, Canada
| | - Ellen Chang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, 11361 87 Avenue, Edmonton, AB, T6G 2E1, Canada
| | - Tatiana V Byzova
- Department of Neuroscience, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| |
Collapse
|
21
|
Targeting Autophagy to Counteract Obesity-Associated Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10010102. [PMID: 33445755 PMCID: PMC7828170 DOI: 10.3390/antiox10010102] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) operate as key regulators of cellular homeostasis within a physiological range of concentrations, yet they turn into cytotoxic entities when their levels exceed a threshold limit. Accordingly, ROS are an important etiological cue for obesity, which in turn represents a major risk factor for multiple diseases, including diabetes, cardiovascular disorders, non-alcoholic fatty liver disease, and cancer. Therefore, the implementation of novel therapeutic strategies to improve the obese phenotype by targeting oxidative stress is of great interest for the scientific community. To this end, it is of high importance to shed light on the mechanisms through which cells curtail ROS production or limit their toxic effects, in order to harness them in anti-obesity therapy. In this review, we specifically discuss the role of autophagy in redox biology, focusing on its implication in the pathogenesis of obesity. Because autophagy is specifically triggered in response to redox imbalance as a quintessential cytoprotective mechanism, maneuvers based on the activation of autophagy hold promises of efficacy for the prevention and treatment of obesity and obesity-related morbidities.
Collapse
|
22
|
Drotningsvik A, Oterhals Å, Mjøs SA, Vikøren LA, Flesland O, Gudbrandsen OA. Effects of intact and hydrolysed blue whiting proteins on blood pressure and markers of kidney function in obese Zucker fa/fa rats. Eur J Nutr 2020; 60:529-544. [PMID: 32409916 PMCID: PMC7867508 DOI: 10.1007/s00394-020-02262-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate the effects of diets containing intact or hydrolysed proteins from blue whiting (Micromesistius poutassou) on the development of high blood pressure and markers of kidney function in obese Zucker fa/fa rats which are prone to develop hypertension and renal failure. METHODS Male rats were fed isocaloric diets containing either intact blue whiting whole meal (BW-WM), blue whiting protein hydrolysate prepared with Alcalase® (BW-HA) or blue whiting protein hydrolysate prepared with Protamex® (BW-HP) as 1/3 of total protein with the remaining 2/3 as casein, or casein as sole protein source (control group). Blood pressure was measured at Day 0 and Day 32. Rats were housed in metabolic cages for 24 h for collection of urine in week 4. After 5 weeks, rats were euthanized and blood was drawn from the heart. The renin and angiotensin-converting enzyme (ACE) inhibition capacities for casein and blue whiting proteins were measured in vitro. RESULTS The blood pressure increase was lower in rats fed diets containing blue whiting proteins when compared to the control group, whereas markers of kidney function were similar between all groups. The three blue whiting proteins inhibited renin activity in vitro, whereas casein had no effect. The in vitro ACE inhibition was similar for casein, BW-WM and BW-HP proteins, whereas BW-HA protein was less potent. CONCLUSION Blue whiting protein feeding attenuated the blood pressure increase in obese Zucker fa/fa rats, possibly mediated through the renin-angiotensin system and without affecting markers of kidney function.
Collapse
Affiliation(s)
- Aslaug Drotningsvik
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway.,TripleNine Vedde AS, 6030, Langevåg, Norway
| | | | - Svein Are Mjøs
- Department of Chemistry, University of Bergen, 5020, Bergen, Norway
| | - Linn Anja Vikøren
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | | | - Oddrun Anita Gudbrandsen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
23
|
Veber B, Camargo A, Dalmagro AP, Bonde HLP, Magro DDD, Lima DDDE, Zeni ALB. Red cabbage (Brassica oleracea L.) extract reverses lipid oxidative stress in rats. AN ACAD BRAS CIENC 2020; 92:e20180596. [PMID: 32267305 DOI: 10.1590/0001-3765202020180596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Red cabbage (Brassica oleracea L. var. capitata f. rubra DC.) extract has been demonstrated hypolipidemic and antioxidant capacity. Herein, we investigated the effect of red cabbage aqueous extract (RC) or fenofibrate (FF) in oxidative stress induced by Triton WR-1339 in rats. The antioxidant capacity was evaluated through the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities and, thiobarbituric reactive species (TBARS) and protein carbonyl (PC) levels in erythrocytes, liver, kidneys, cerebral cortex and hippocampus of male rats. The alterations promoted by Triton WR-1339 in enzymatic antioxidant defense in the liver, kidneys and hippocampus were reversed by RC or FF treatments. The TBARS and PC levels increased in the liver, cerebral cortex and hippocampus of hyperlipidemic rats were decreased by the treatments with RC or FF. These findings demonstrated that RC is a potential therapy to treat diseases not only involving dyslipidemic condition but also oxidative stress.
Collapse
Affiliation(s)
- Bruno Veber
- Laboratório de Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, Victor Konder, 89030-903 Blumenau, SC, Brazil
| | - Anderson Camargo
- Laboratório de Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, Victor Konder, 89030-903 Blumenau, SC, Brazil
| | - Ana Paula Dalmagro
- Laboratório de Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, Victor Konder, 89030-903 Blumenau, SC, Brazil
| | - Henrique Luis P Bonde
- Laboratório de Biofísica, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, Victor Konder, 89030-903 Blumenau, SC, Brazil
| | - Débora D Dal Magro
- Laboratório de Biofísica, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, Victor Konder, 89030-903 Blumenau, SC, Brazil
| | - Daniela D DE Lima
- Departamento de Medicina, Universidade da Região de Joinville, Rua Paulo Malschitzki, 10, Zona Industrial Norte, 89219-710 Joinville, SC, Brazil
| | - Ana Lúcia B Zeni
- Laboratório de Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, Victor Konder, 89030-903 Blumenau, SC, Brazil
| |
Collapse
|
24
|
Moccetti F, Brown E, Xie A, Packwood W, Qi Y, Ruggeri Z, Shentu W, Chen J, López JA, Lindner JR. Myocardial Infarction Produces Sustained Proinflammatory Endothelial Activation in Remote Arteries. J Am Coll Cardiol 2019; 72:1015-1026. [PMID: 30139430 DOI: 10.1016/j.jacc.2018.06.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND In the months after acute myocardial infarction (MI), risk for acute atherothrombotic events in nonculprit arteries increases several fold. OBJECTIVES This study investigated whether sustained proinflammatory and prothrombotic endothelial alterations occur in remote vessels after MI. METHODS Wild-type mice, atherosclerotic mice with double knockout (DKO) of the low-density lipoprotein receptor and Apobec-1, and DKO mice treated with the Nox-inhibitor apocynin were studied at baseline and at 3 and 21 days after closed-chest MI. Ultrasound molecular imaging of P-selectin, vascular cell adhesion molecule (VCAM)-1, von Willebrand factor (VWF) A1-domain, and platelet GPIbα was performed. Intravital microscopy was used to characterize post-MI leukocyte and platelet recruitment in the remote microcirculation after MI. RESULTS Aortic molecular imaging for P-selectin, VCAM-1, VWF-A1, and platelets was increased several-fold (p < 0.01) 3 days post-MI for both wild-type and DKO mice. At 21 days, these changes resolved in wild-type mice but persisted in DKO mice. Signal for platelet adhesion was abolished 1 h after administration of ADAMTS13, which regulates VWF multimerization. In DKO and wild-type mice, apocynin significantly attenuated the post-MI increase for molecular targets, and platelet depletion significantly reduced P-selectin and VCAM-1 signal. On intravital microscopy, MI resulted in remote vessel leukocyte adhesion and platelet string or net complexes. On histology, high-risk inflammatory features in aortic plaque increased in DKO mice 21 days post-MI, which were completely prevented by apocynin. CONCLUSIONS Acute MI stimulates a spectrum of changes in remote vessels, including up-regulation of endothelial inflammatory adhesion molecules and platelet-endothelial adhesion from endothelial-associated VWF multimers. These remote arterial alterations persist longer in the presence of hyperlipidemia, are associated with accelerated plaque growth and inflammation, and are attenuated by Nox inhibition.
Collapse
Affiliation(s)
- Federico Moccetti
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Eran Brown
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Yue Qi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Zaverio Ruggeri
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California
| | - Weihui Shentu
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | | | | | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
25
|
Ferron AJT, Aldini G, Francisqueti-Ferron FV, Silva CCVDA, Bazan SGZ, Garcia JL, Campos DHSD, Ghiraldeli L, Kitawara KAH, Altomare A, Correa CR, Moreto F, Ferreira ALA. Protective Effect of Tomato-Oleoresin Supplementation on Oxidative Injury Recoveries Cardiac Function by Improving β-Adrenergic Response in a Diet-Obesity Induced Model. Antioxidants (Basel) 2019; 8:antiox8090368. [PMID: 31480719 PMCID: PMC6770924 DOI: 10.3390/antiox8090368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
The system redox imbalance is one of the pathways related to obesity-related cardiac dysfunction. Lycopene is considered one of the best antioxidants. The aim of this study was to test if the tomato-oleoresin would be able to recovery cardiac function by improving β-adrenergic response due its antioxidant effect. A total of 40 animals were randomly divided into two experimental groups to receive either the control diet (Control, n = 20) or a high sugar-fat diet (HSF, n = 20) for 20 weeks. Once cardiac dysfunction was detected by echocardiogram in the HSF group, animals were re- divided to begin the treatment with Tomato-oleoresin or vehicle, performing four groups: Control (n = 6); (Control + Ly, n = 6); HSF (n = 6) and (HSF + Ly, n = 6). Tomato oleoresin (10 mg lycopene/kg body weight (BW) per day) was given orally every morning for a 10-week period. The analysis included nutritional and plasma biochemical parameters, systolic blood pressure, oxidative parameters in plasma, heart, and cardiac analyses in vivo and in vitro. A comparison among the groups was performed by two-way analysis of variance (ANOVA). Results: The HSF diet was able to induce obesity, insulin-resistance, cardiac dysfunction, and oxidative damage. However, the tomato-oleoresin supplementation improved insulin-resistance, cardiac remodeling, and dysfunction by improving the β-adrenergic response. It is possible to conclude that tomato-oleoresin is able to reduce the oxidative damage by improving the system’s β-adrenergic response, thus recovering cardiac function.
Collapse
Affiliation(s)
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | | | | | | | | | | | - Luciana Ghiraldeli
- Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | | | - Alessandra Altomare
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | | | - Fernando Moreto
- Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | | |
Collapse
|
26
|
Urine and plasma concentrations of amino acids and plasma vitamin status differ, and are differently affected by salmon intake, in obese Zucker fa/fa rats with impaired kidney function and in Long-Evans rats with healthy kidneys. Br J Nutr 2019; 122:262-273. [DOI: 10.1017/s0007114519001284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractKidney function affects amino acid metabolism and vitamin status. The aims of the present study were to investigate urine and plasma concentrations of amino acids as well as plasma vitamin status in rats with impaired renal function (Zucker fa/fa rats) and in rats with normal kidney function (Long-Evans rats), and to explore the effects of salmon intake on these parameters and potential biomarkers of salmon intake in both rat strains. Male rats were fed diets with casein as sole protein source (control diet) or 25 % protein from baked salmon and 75 % casein for 4 weeks. Urine concentrations of markers of renal function and most amino acids and plasma concentrations of most vitamins were higher, and plasma concentrations of several amino acids including arginine, total glutathione and most tryptophan metabolites were lower in Zucker fa/fa rats compared with Long-Evans rats fed the control diet. Concentrations of kidney function markers were lower after salmon intake only in Zucker fa/fa rats. A trend towards lower urine concentrations of amino acids was seen in both rat strains fed the salmon diet, but this was more pronounced in Long-Evans rats and did not reflect the dietary amino acid content. Urine 1-methylhistidine, 3-methylhistidine, trimethylamineoxide and creatine concentrations, and plasma 1-methylhistidine and creatine concentrations were higher after salmon intake in both rat strains. To conclude, concentrations of amino acids in urine and plasma as well as vitamin status were different in Zucker fa/fa and Long-Evans rats, and the effects of salmon intake differed by rat strain for some of these parameters.
Collapse
|
27
|
Bonaventura A, Montecucco F. Inflammation and pericarditis: Are neutrophils actors behind the scenes? J Cell Physiol 2019; 234:5390-5398. [PMID: 30417336 DOI: 10.1002/jcp.27436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
The morbidity of acute pericarditis is increasing over time impacting on patient quality of life. Recent clinical trials focused especially on clinical aspects, with a modest interest in pathophysiological mechanisms. This narrative review, based on papers in English language obtained via PubMed up to April 2018, aims at focusing on the role of the innate immunity in pericarditis and discussing future potential therapeutic strategies impacting on disease pathophysiology. In developed countries, most cases of pericarditis are referred to as idiopathic, although etiological causes have been described, with autoreactive/lymphocytic, malignant, and infectious ones as the most frequent causes. Apart the known impairment of the adaptive immunity, recently a large body evidence indicated the central role of the innate immune system in the pathogenesis of recurrent pericarditis, starting from similarities with autoinflammatory diseases. Accordingly, the "inflammasome" has been shown to behave as an important player in pericarditis development. Similarly, the beneficial effect of colchicine in recurrent pericarditis confirms that neutrophils are important effectors as colchicine, which can block neutrophil chemotaxis, interferes with neutrophil adhesion and recruitment to injured tissues and abrogate superoxide production. Anyway, the role of the adaptive immune system in pericarditis cannot be reduced to a black or white issue as mechanisms often overlap. Therefore, we believe that more efficient therapeutic strategies have to be investigated by targeting neutrophil-derived mediators (such as metalloproteinases) and disentangling the strict interplay between neutrophils and platelets. In this view, some progress has been done by using the recombinant human interleukin-1 receptor antagonist anakinra.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
28
|
Wu K, Gong Z, Zou L, Ye H, Wang C, Liu Y, Liang Y, Li Y, Ren J, Cui L, Liu Y. Sargassum integerrimum inhibits oestrogen deficiency and hyperlipidaemia-induced bone loss by upregulating nuclear factor (erythroid-derived 2)-like 2 in female rats. J Orthop Translat 2019; 19:106-117. [PMID: 31844618 PMCID: PMC6896726 DOI: 10.1016/j.jot.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 03/04/2019] [Indexed: 02/03/2023] Open
Abstract
Ethnopharmacological relevance Oestrogen deficiency, high incidences of hyperlipidaemia (HLP) and accelerated bone loss frequently occur in postmenopausal women. There is an urgent need to develop functional foods or specific drugs to protect against bone loss induced by oestrogen deficiency with HLP. Aim of the study In this study, we investigated the potential inhibitory effects of Sargassum integerrimum (SI) on bone loss in an ovariectomized rat model with HLP. Materials and methods The rats were treated for 12 weeks, and then, bone mineral density, bone biomechanical, bone microstructure, bone morphology, biomarkers of HLP oxidative stress and side effects were determined. Immunohistochemical staining and Western blot were performed to evaluate related protein expression. Results The femur bone mineral density increased (P < 0.05), and the microscopic structures (ratio of bone volume to total volume [BV/TV], connectivity density [Conn.D], trabecular number [Tb.N] and trabecular thickness [Tb.Th]) of the bone trabecula and mechanical properties (maximum and breaking load [ML and BL, respectively]) improved after SI treatment (P < 0.05). Furthermore, the levels of HLP biomarkers (total cholesterol, triglyceride and low-density lipoprotein) were significantly decreased (P < 0.05), whereas the levels of antioxidant markers (superoxide dismutase and total antioxidant capacity) were increased (P < 0.05). Similar results were obtained with immunohistochemical staining, whereas the Western blot assay showed that SI stimulated the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in bone. Conclusion Our data indicate that rats exposed to SI treatment for 12 weeks did not exhibit noticeable side effects. In conclusion, SI suppressed bone loss induced by ovariectomized and the associated HLP in rats by activating Nrf2, which could be a promising treatment option for osteoporosis induced by oestrogen deficiency and HLP in postmenopausal women. Translational scope statement Our study verified that SI prevented bone loss in rats with oestrogen deficiency with HLP by upregulating nuclear factor (erythroid-derived 2)-like 2. Furthermore, no side effect was observed after the long-term administration of SI. Those results suggested SI could be developed as a functional food or drug for postmenopausal osteoporosis induced by oestrogen deficiency with HLP.
Collapse
Affiliation(s)
- Kefeng Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Zhongqin Gong
- Shenzhen Ritzcon Biological Technology Co., Ltd., Shenzhen, 518000, China
| | - Liyi Zou
- Department of Pharmacology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Changxiu Wang
- School of Public Health, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Yangchun Liu
- Jiangxi Medical College, Queen Mary College of Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Yan Liang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yanping Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jianwei Ren
- School of Biomedical Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
29
|
Antioxidant Effects of Baoyuan Decoction on Dysfunctional Erythrocytes in High-Fat Diet-Induced Hyperlipidemic ApoE -/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5172480. [PMID: 31089408 PMCID: PMC6476116 DOI: 10.1155/2019/5172480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/10/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022]
Abstract
Baoyuan decoction (BYD), a traditional representative formula, has a long usage history in the treatment of cardiovascular diseases. Since the hyperlipidemia-induced dysfunction of erythrocyte is one of the most important causes of cardiovascular diseases, the improving effects of BYD against high-fat diet (HFD) induced the physiological and physical function of the erythrocytic injury and the potential mechanisms were deeply researched in this study. After 6 weeks of drug treatment, all doses of BYD had significantly decreased the lipid peroxidation in plasma of HFD-induced ApoE−/− mice, even if it had not improved the lipid levels. Then, the erythrocyte-related experimental results showed that BYD had reduced erythrocyte osmotic fragility, stabilized erythrocyte membrane skeleton protein 4.2, and reformed the erythrocyte morphological changes by decreasing erythrocyte membrane lipid peroxidation levels. This study demonstrated that BYD may ameliorate the physiological and physical function of erythrocyte in hyperlipidemic mice through the antioxidant effect on erythrocyte membranes.
Collapse
|
30
|
Biochemical and Physiological Parameters in Rats Fed with High-Fat Diet: The Protective Effect of Chronic Treatment with Purple Grape Juice (Bordo Variety). BEVERAGES 2018. [DOI: 10.3390/beverages4040100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High-fat-diet (HFD) has been related to metabolic and cardiovascular diseases. Consumption of grapes and their byproducts containing phenolic compounds has been reported due to the benefits they produce for human health. The purpose of this study was to investigate the antioxidant and protective effect of chronic intake of purple grape juice on certain biochemical and physiological changes promoted by the consumption of HFD. Forty male rats were randomly divided into four groups to receive standard or HFD diet and/or conventional (CGJ) or organic grape juice (OGJ) for three months. Dietary intake, body weight gain, cardiometabolic parameters, and serum lipoperoxidation were investigated. Results showed that consumption of CGJ and OGJ changed the pattern of food and drink intake of the animals. There was a reduction in the body weight of animals that consumed grape juices and an increase in the weight gain in HFD and OGJ rats. HFD increased abdominal fat and the abdominal fat/weight ratio, and both grape juices prevented these modifications. HFD increased hepatic enzymes levels (aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT)) and reduced urea. Purple grape juices prevented some of these changes. HFD enhanced lipid peroxidation (thiobarbituric acid reactive substances (TBARS)) in serum and CGJ and OGJ prevented this increase. The consumption of purple grape juice has the potential to prevent and ameliorate most of the alterations provoked by HFD, therefore regular intake of grape products could promote beneficial effects.
Collapse
|
31
|
Maas SL, Soehnlein O, Viola JR. Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Front Immunol 2018; 9:2739. [PMID: 30538702 PMCID: PMC6277681 DOI: 10.3389/fimmu.2018.02739] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Immune responses are dependent on the recruitment of leukocytes to the site of inflammation. The classical leukocyte recruitment cascade, consisting of capture, rolling, arrest, adhesion, crawling, and transendothelial migration, is thoroughly studied but mostly in model systems, such as the cremasteric microcirculation. This cascade paradigm, which is widely accepted, might be applicable to many tissues, however recruitment mechanisms might substantially vary in different organs. Over the last decade, several studies shed light on organ-specific mechanisms of leukocyte recruitment. An improved awareness of this matter opens new therapeutic windows and allows targeting inflammation in a tissue-specific manner. The aim of this review is to summarize the current understanding of the leukocyte recruitment in general and how this varies in different organs. In particular we focus on neutrophils, as these are the first circulating leukocytes to reach the site of inflammation. Specifically, the recruitment mechanism in large arteries, as well as vessels in the lungs, liver, and kidney will be addressed.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
32
|
Liao M, Shang H, Li Y, Li T, Wang M, Zheng Y, Hou W, Liu C. An integrated approach to uncover quality marker underlying the effects of Alisma orientale on lipid metabolism, using chemical analysis and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 45:93-104. [PMID: 29705003 DOI: 10.1016/j.phymed.2018.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Quality control of traditional Chinese medicines is currently a great concern, due to the correlation between the quality control indicators and clinic effect is often questionable. According to the "multi-components and multi-targets" property of TCMs, a new special quality and bioactivity evaluation system is urgently needed. PURPOSE Present study adopted an integrated approach to provide new insights relating to uncover quality marker underlying the effects of Alisma orientale (AO) on lipid metabolism. METHODS In this paper, guided by the concept of the quality marker (Q-marker), an integrated strategies "effect-compound-target-fingerprint" was established to discovery and screen the potential quality marker of AO based on network pharmacology and chemical analysis. Firstly, a bioactivity evaluation was performed to screen the main active fractions. Then the chemical compositions were rapidly identified by chemical analysis. Next, networks were constructed to illuminate the interactions between these component and their targets for lipid metabolism, and the potential Q-marker of AO was initially screened. Finally, the activity of the Q-markers was validated in vitro. RESULTS 50% ethanol extract fraction was found to have the strongest lipid-lowering activity. Then, the network pharmacology was used to clarify the unique relationship between the Q-markers and their integral pharmacological action. CONCLUSION Combined with the results obtained, five active ingredients in the 50% ethanol extract fraction were given special considerations to be representative Q-markers: Alisol A, Alisol B, Alisol A 23-acetate, Alisol B 23-acetate and Alisol A 24-acetate, respectively. The chromatographic fingerprints based Q-marker was establishment. The integrated Q-marker screen may offer an alternative quality assessment of herbal medicines.
Collapse
Affiliation(s)
- Maoliang Liao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China; State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Haihua Shang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Yazhuo Li
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Tian Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Miao Wang
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Yanan Zheng
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Wenbin Hou
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
| | - Changxiao Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China; State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China.
| |
Collapse
|
33
|
Rawal T, Mishra N, Jha A, Bhatt A, Tyagi RK, Panchal S, Butani S. Chitosan Nanoparticles of Gamma-Oryzanol: Formulation, Optimization, and In vivo Evaluation of Anti-hyperlipidemic Activity. AAPS PharmSciTech 2018; 19:1894-1907. [PMID: 29663289 DOI: 10.1208/s12249-018-1001-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
The elevated blood levels of cholesterol and low-density lipoproteins result in hyperlipidemia. The available expensive prophylactic treatments are kindred with severe side effects. Therefore, we fabricated the polymeric nanoparticles of gamma-oryzanol to achieving the improved efficacy of drug. The nanoparticles were prepared by ionic gelation method and optimized using 23 full factorial design taking drug/polymer ratio (X1), polymer/cross linking agent ratio (X2), and stirring speed (X3) as independent variables. The average particle size, percentage entrapment efficiency, and in vitro drug release at 2, 12, and 24 h were selected as response parameters. The factorial batches were statistically analyzed and optimized. The optimized nanoparticles were characterized with respect to particle size (141 nm) and zeta potential (+ 6.45 mV). Results obtained with the prepared and characterized formulation showed 83% mucoadhesion towards the intestinal mucosa. The in vitro findings were complemented well by in vivo anti-hyperlipidemic activity of developed formulation carried out in Swiss albino mouse model. The in vivo studies showed improved atherogenic index, malondialdehyde, and superoxide dismutase levels in poloxamer-407-induced hyperlipidemic animals when treated with oryzanol and gamma-oryzanol nanoformulation. Based on our findings, we believe that chitosan-mediated delivery of gamma-oryzanol nanoparticles might prove better in terms of anti-hyperlipidemic therapeutics.
Collapse
Affiliation(s)
- Tejal Rawal
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Neha Mishra
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Abhishek Jha
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Apurva Bhatt
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Rajeev K Tyagi
- Institute of Science, Nirma University, Ahmedabad, Guajrat, 382481, India
- Department of Periodontics, College of Dental Medicine, Georgia Regents University, Augusta, Georgia, 30912, USA
| | - Shital Panchal
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Shital Butani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
34
|
Langseth MS, Opstad TB, Bratseth V, Solheim S, Arnesen H, Pettersen AÅ, Seljeflot I, Helseth R. Markers of neutrophil extracellular traps are associated with adverse clinical outcome in stable coronary artery disease. Eur J Prev Cardiol 2018; 25:762-769. [PMID: 29473463 DOI: 10.1177/2047487318760618] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Neutrophil extracellular traps, comprising chromatin and granule proteins, have been implicated in atherothrombosis. Design and methods We investigated whether the circulating neutrophil extracellular traps markers, double-stranded DNA and myeloperoxidase-DNA were associated with clinical outcome and hypercoagulability in patients with stable coronary artery disease. Patients with angiographically verified stable coronary artery disease ( n = 1001) were included. Follow-up was 2 years, recording 106 clinical endpoints (unstable angina, non-haemorrhagic stroke, myocardial infarction or death). Serum collected at baseline was used to determine double-stranded DNA and myeloperoxidase-DNA levels. Results The neutrophil extracellular traps markers were weakly intercorrelated ( r = 0.103, P = 0.001). Patients with the highest quartile of double-stranded DNA had weakly but significantly elevated hypercoagulability markers (prothrombin fragment 1+2, D-dimer, free and total tissue factor pathway inhibitor ( P < 0.001 for all)). Men, smokers, patients with metabolic syndrome and patients with a previous myocardial infarction had significantly elevated double-stranded DNA levels ( P ≤ 0.002 for all). Significantly higher double-stranded DNA levels were observed in the group experiencing a clinical endpoint compared to the group without ( P = 0.019). When categorising double-stranded DNA into quartiles, a distinct cut-off between the lowest and upper three quartiles was observed. Adjusting for relevant covariates, patients in the upper three quartiles had an odds ratio of 2.01 (95% confidence interval 1.12, 3.58, P = 0.019) for experiencing a clinical endpoint. Myeloperoxidase-DNA was not significantly associated with clinical outcome or hypercoagulability. Conclusions Double-stranded DNA levels were significantly related to adverse clinical outcome after 2 years, but only weakly associated with hypercoagulability. These observations suggest that the detrimental effects of neutrophil extracellular traps in coronary artery disease might extend beyond those related to hypercoagulability.
Collapse
Affiliation(s)
- Miriam Sjåstad Langseth
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| | - Trine Baur Opstad
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| | - Vibeke Bratseth
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| | - Svein Solheim
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,3 Department of Cardiology, Oslo University Hospital Ullevål, Norway
| | - Harald Arnesen
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| | - Alf Åge Pettersen
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,4 Department of Cardiology, Ringerike Hospital, Norway
| | - Ingebjørg Seljeflot
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway.,3 Department of Cardiology, Oslo University Hospital Ullevål, Norway
| | - Ragnhild Helseth
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
35
|
Kwak J, Park HJ, Lee SS. Gold Nanoparticle-based Novel Biosensors for Detecting Glycated Hemoglobin. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jiwon Kwak
- Department of Pharmaceutical Engineering; Soonchunhhyang University; Chungnam 31538 South Korea
| | - Hyeoun Ji Park
- Department of Pharmaceutical Engineering; Soonchunhhyang University; Chungnam 31538 South Korea
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering; Soonchunhhyang University; Chungnam 31538 South Korea
| |
Collapse
|
36
|
Antihyperlipidaemic and hepatoprotective activities of acidic and enzymatic hydrolysis exopolysaccharides from Pleurotus eryngii SI-04. Altern Ther Health Med 2017; 17:403. [PMID: 28806986 PMCID: PMC5557422 DOI: 10.1186/s12906-017-1892-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/26/2017] [Indexed: 12/23/2022]
Abstract
Background Hyperlipidaemia is the major risk factor contributing to the development and progression of atherosclerosis, fatty liver and cerebrovascular disease. Pleurotus eryngii (P. eryngii) is rich in biologically active components, especially polysaccharides that exhibit various biological activities, including reducing blood lipids. In the present study, three novel polysaccharide types, including exopolysaccharides (EPS), enzymatic EPS (EEPS) and acidic EPS (AEPS) were isolated, and the hypolipidaemic and hepatoprotective effects were investigated to better understand possible hypolipidaemic mechanisms and their hepatoprotective effects. Methods The EPS was hydrolysed by snailase (dissolved in 1% acetic acid, pH = 6) and H2SO4 (1 M) to obtain EEPS and AEPS, respectively. The in vitro antioxidant activities were measured by investigating the reducing power and the scavenging effects on radicals of hydroxyl, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion. The hyperlipidaemic mice were induced by perfusing a high-fat emulsion. In addition to the hepatic histopathology, the following biochemical analyses were performed to investigate the antioxidative effects, including the activities of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT). Triacylglycerol (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), malondialdehyde (MDA) and lipid peroxidation (LPO) levels were also measured in serum and liver homogenate. Results Supplementation of EPS, EEPS and AEPS could significantly improve blood lipid levels (TC, TG, HDL-C, and LDL-C), hepatic lipid levels (TC and TG), hepatic enzyme activities (ALP, ALT, and AST) and antioxidant status (GSH-Px, SOD, T-AOC, MDA, and LPO). In addition, histopathological observations indicated that these polysaccharides had potential effects in attenuating hepatocyte damage. Conclusion These results demonstrated that both EPS and its hydrolysates EEPS and AEPS might effectively reduce serum lipid levels and protect against high-fat diet-induced hyperlipidaemia, indicating that they could be used as functional foods and natural hepatoprotectants.
Collapse
|
37
|
Hu H, Zhu Q, Su J, Wu Y, Zhu Y, Wang Y, Fang H, Pang M, Li B, Chen S, Lv G. Effects of an Enriched Extract of Paeoniflorin, a Monoterpene Glycoside used in Chinese Herbal Medicine, on Cholesterol Metabolism in a Hyperlipidemic Rat Model. Med Sci Monit 2017; 23:3412-3427. [PMID: 28706181 PMCID: PMC5524283 DOI: 10.12659/msm.905544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Paeoniflorin is a monoterpene glycoside extracted from the roots of Paeonia lactiflora and is used in Chinese herbal medicine to treat hyperlipidemia. The aim of this study was to evaluate the effects of an enriched extract of paeoniflorin on cholesterol levels, hemodynamics, and oxidative stress in a hyperlipidemic rat model. MATERIAL AND METHODS Male Sprague-Dawley rats were fed high-cholesterol diets and treated with three different doses of paeoniflorin for 12 weeks. The effects of paeoniflorin treatment were assessed on cholesterol levels, cholesterol metabolism, red blood cell vascular flow using hemorheology, antioxidant enzymes, and expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR). Rat liver histology and immunohistochemical analysis were performed to evaluate the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), cytochrome P450 7A1 (CYP7A1), and peroxisome proliferator-activated receptors (PPAR)-α. Protein expression HMG-CoAR, low-density lipoprotein receptor (LDLR), PPAR-α and CYP7A1 was measured by Western blotting. Antioxidant activity in rat liver was determined by measuring superoxide dismutase (SOD) and malondialdehyde (MDA). RESULTS Serum and hepatic cholesterol, hepatic steatosis and the products of cholesterol metabolism were reduced by paeoniflorin treatment, which also reduced the activity of HMG-CoAR and upregulated the expression of LDLR, PPAR-α, and CYP7A1 expression, increased SOD, decreased MDA, and upregulated Nrf2 expression. CONCLUSIONS The findings of this study in a rat model of hyperlipidemia have shown that paeoniflorin regulates hepatic cholesterol synthesis and metabolism and may also protect the liver from oxidative stress.
Collapse
Affiliation(s)
- Huiming Hu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
- Department of Computer Science, Jiangxi University of Traditonal Chinese Medicine, Nanchang, Jiangxi, P.R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Qiaoqiao Zhu
- College of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yajun Wu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yanchen Zhu
- Department of Computer Science, Jiangxi University of Traditonal Chinese Medicine, Nanchang, Jiangxi, P.R. China
| | - Yin Wang
- Department of Pharmacy, The PLA 117 Hospital, Hangzhou, Zhejiang, P.R. China
| | - Hui Fang
- Department of Pharmacy, The PLA 117 Hospital, Hangzhou, Zhejiang, P.R. China
| | - Minxia Pang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Bo Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- College of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
38
|
Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J Cell Biochem 2017; 118:3577-3585. [PMID: 28460155 DOI: 10.1002/jcb.26097] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress has been considered as a major hallmark for the pathogenesis and development of type 2 diabetes mellitus (T2DM), but still it is debatable whether it is a mere aggregation of inflammatory-induced responses or clinical entity that underlies with various pathophysiological factors. In this regard, the latest studies have shown the increasing trends for the involvement of reactive oxygen species (ROS) and oxidative stress in the pathogenesis and development of T2DM. ROS are highly reactive species and almost all cellular components are chemically changed due to the influence of ROS that ultimately results in the production of lipid peroxidation. Lipid peroxidation is a major causative factor for the development of oxidative stress that leads to overt T2DM and its associated micro- and macro-vascular complications. In this article, we have briefly described the role of various causative factors, transcriptional and metabolic pathways which are responsible to increase the production of oxidative stress, a most pivotal factor for the pathogenesis and development of T2DM. Therefore, we conclude that measurement of oxidative stress biomarkers may be one of the optional tool for the diagnosis and prediction of T2DM. Moreover, the key findings described in this article also provides a new conceptual framework for forthcoming investigations on the role of oxidative stress in pathogenesis of T2DM and drug discovery. J. Cell. Biochem. 118: 3577-3585, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
39
|
Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017; 17:248-261. [PMID: 28287106 DOI: 10.1038/nri.2017.10] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, neutrophils have been acknowledged to be the first immune cells that are recruited to an inflamed tissue and have mainly been considered in the context of acute inflammation. By contrast, their importance during chronic inflammation has been studied in less depth. This Review aims to summarize our current understanding of the roles of neutrophils in chronic inflammation, with a focus on how they communicate with other immune and non-immune cells within tissues. We also scrutinize the roles of neutrophils in wound healing and the resolution of inflammation, and finally, we outline emerging therapeutic strategies that target neutrophils.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Department of Physiology and Pharmacology, Karolinksa Institutet, von Eulers Väg 8, 17177 Stockholm, Sweden
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Andrés Hidalgo
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,Fundación Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
40
|
Beg S, Jain S, Kushwah V, Bhatti GK, Sandhu PS, Katare OP, Singh B. Novel surface-engineered solid lipid nanoparticles of rosuvastatin calcium for low-density lipoprotein-receptor targeting: a Quality by Design-driven perspective. Nanomedicine (Lond) 2017; 12:333-356. [PMID: 28093941 DOI: 10.2217/nnm-2016-0336] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The present studies describe Quality by Design-oriented development and characterization of surface-engineered solid lipid nanoparticles (SLNs) of rosuvastatin calcium for low density lipoprotein-receptor targeting. MATERIALS & METHODS SLNs were systematically prepared employing Compritol 888 and Tween-80. Surface modification of SLNs was accomplished with Phospholipon 90G and DSPE-mPEG-2000 as the ligands for specific targeting to the low density lipoprotein-receptors. SLNs were evaluated for size, potential, entrapment, drug release performance and gastric stability. Also, the formulations were evaluated for cellular cytotoxicity, uptake and permeability, pharmacokinetic, pharmacodynamic and biochemical studies. RESULTS & CONCLUSION Overall, the studies ratified enhanced biopharmaceutical performance of the surface-engineered SLNs of rosuvastatin as a novel approach for the management of hyperlipidemia-like conditions.
Collapse
Affiliation(s)
- Sarwar Beg
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160 014, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Mohali 160 062, Punjab, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Mohali 160 062, Punjab, India
| | - Gurjit Kaur Bhatti
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160 014, India
| | - Premjeet Singh Sandhu
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160 014, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160 014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160 014, India.,UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160 014, India
| |
Collapse
|
41
|
Amiya E. Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform. World J Cardiol 2016; 8:689-694. [PMID: 28070236 PMCID: PMC5183968 DOI: 10.4330/wjc.v8.i12.689] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/07/2016] [Accepted: 10/09/2016] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress are closely associated with the development of atherosclerosis, and the most important regulator of ROS production in endothelial cells is NADPH oxidase. Activation of NADPH oxidase requires the assembly of multiple subunits into lipid rafts, which include specific lipid components, including free cholesterol and specific proteins. Disorders of lipid metabolism such as hyperlipidemia affect the cellular lipid components included in rafts, resulting in modification of cellular reactions that produce ROS. In the similar manner, several pathways associating ROS production are affected by the presence of lipid disorder through raft compartments. In this manuscript, we review the pathophysiological implications of hyperlipidemia and lipid rafts in the production of ROS.
Collapse
|
42
|
Gobalakrishnan S, Asirvatham SS, Janarthanam V. Effect of Silybin on Lipid Profile in Hypercholesterolaemic Rats. J Clin Diagn Res 2016; 10:FF01-5. [PMID: 27190826 DOI: 10.7860/jcdr/2016/16393.7566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/05/2016] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Hyperlipidemia is a major cause of atherosclerosis and atherosclerosis associated conditions, such as Coronary Heart Disease (CHD), ischaemic cerebrovascular disease and peripheral vascular disease. Though there are hypolipidemic drugs available, the search for a more efficacious hypo lipidemic agent was always going on. AIM To study the effect of Silybin on lipid profile in Hypercholesterolaemic rats. MATERIALS AND METHODS After grant of permission from animal ethics committee, the animals were divided into four groups of eight each (normal control, Experimental control with High cholesterol diet, High cholesterol diet + Silybin 300mg, High cholesterol diet + Silybin 600mg). At the end of 60 days the animals in all the groups were subjected to overnight fasting followed by plasma and liver biochemical analyses. STATISTICAL ANALYSIS The data were analysed by ANNOVA followed by Duncan's multi range test and the value of p≤0.05 was used as the criterion for statistical significance. RESULTS The rats fed on high cholesterol diet showed significant increase in serum total cholesterol, Triglycerides, LDL-C and VLDL-C. Treatment with Silybin significantly decreased serum total cholesterol (24%), Triglycerides (21%), LDL-C (24%) in a dose dependent manner. Rats treated with Silybin (300 and 600 mg/kg) showed significant increase in hepatic HDL -C and decrease in other lipid profiles. CONCLUSION Treatment with Silybin significantly decreased both serum and hepatic total cholesterol, triglycerides, VLDL-C, LDL-C and increased HDL-C at both doses.
Collapse
Affiliation(s)
- Senthil Gobalakrishnan
- Assistant Professor, Department of Pharmacology, Sri Manakula Vinayagar Medical college , Pondicherry, India
| | | | - Venkatraman Janarthanam
- Assistant Professor, Department of Pathology, Sri Manakula Vinayagar Medical college , Pondicherry, India
| |
Collapse
|
43
|
Beneficial effects of a red wine polyphenol extract on high-fat diet-induced metabolic syndrome in rats. Eur J Nutr 2016; 56:1467-1475. [PMID: 26913853 DOI: 10.1007/s00394-016-1192-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Individuals with metabolic syndrome (MS) show several metabolic abnormalities including insulin resistance, dyslipidaemia, and oxidative stress (OS). Diet is one of the factors influencing the development of MS, and current nutritional advice emphasises the benefits of fruit and vegetable consumption. Here, we assessed the effects of naturally occurring antioxidants, red wine polyphenols (RWPs), on MS and OS. METHODS Wistar rats (n = 20) weighing 200-220 g received a high-fat diet (HFD) for 2 months before they were divided into two groups that received either HFD only or HFD plus 50 mg/kg RWPs in their drinking water for an additional 2 months. A control group (n = 10) received a normal diet (ND) for 4 months. RESULTS Rats receiving HFD increased body weight over 20 % throughout the duration of the study. They also showed increased blood levels of C-peptide, glucose, lipid peroxides, and oxidised proteins. In addition, the HFD increased OS in hepatic, pancreatic, and vascular tissues, as well as induced pancreatic islet cell hyperplasia and hepatic steatosis. Addition of RWPs to the HFD attenuated these effects on plasma and tissue OS and on islet cell hyperplasia. However, RWPs had no effect on blood glucose levels or hepatic steatosis. CONCLUSIONS RWPs showed an antioxidant mechanism of action against MS. This result will inform future animal studies exploring the metabolic effects of RWPs in more detail. In addition, these findings support the use of antioxidants as adjunctive nutritional treatments for patients with diabetes.
Collapse
|
44
|
Beiter T, Fragasso A, Hartl D, Nieß AM. Neutrophil extracellular traps: a walk on the wild side of exercise immunology. Sports Med 2016; 45:625-40. [PMID: 25504501 DOI: 10.1007/s40279-014-0296-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intense exercise evokes a rapid and transient increase in circulating cell-free DNA (cf-DNA), a phenomenon that is commonly observed in a variety of acute and chronic inflammatory conditions. While the potential value of cf-DNA for the prediction of disease outcome and therapeutic response is well documented, the release mechanisms and biological relevance of cf-DNA have long remained enigmatic. The discovery of neutrophil extracellular traps (NETs) provided a novel mechanistic explanation for increased cf-DNA levels. Now there is increasing evidence that NETs may contribute to cf-DNA in diverse infectious, non-infectious and autoinflammatory conditions, as well as in response to acute exercise. NETs have now been firmly established as a fundamental immune mechanism used by neutrophils to respond to infection and tissue injury. On the other side, aberrant formation of NETs appears to be a driving force in the pathogenesis of autoimmunity and cardiovascular disease. Thus, the emergence of NETs in the 'exercising vasculature' raises important questions considering beneficial effects, as well as occasional adverse effects, of exercise on immune homeostasis. This review gives an overview of the current state of research into the mechanisms of how NETs are released, contribute to host defence and participate in inflammatory disorders. We discuss the impact of exercise-induced NETs, considering a potentially beneficial role in the prevention of lifestyle-related diseases, as well as putative detrimental effects that may arise in elite sports. Finally, we propose that exercise-induced cf-DNA responses could be exploited for diagnostic/prognostic purposes to identify individuals who are at increased risk of cardiovascular events or autoimmunity.
Collapse
Affiliation(s)
- Thomas Beiter
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany,
| | | | | | | |
Collapse
|
45
|
Li C, Nie SP, Zhu KX, Ding Q, Li C, Xiong T, Xie MY. Lactobacillus plantarum NCU116 improves liver function, oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease. Food Funct 2015; 5:3216-23. [PMID: 25317840 DOI: 10.1039/c4fo00549j] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of Lactobacillus plantarum NCU116 on liver function, oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease (NAFLD) was studied. The rats were divided into four groups: the normal diet (ND) group; the high fat diet (HFD) group; and HFD plus L. plantarum NCU116 as two doses (NCU116-L, 10(8) CFU mL(-1); NCU116-H, 10(9) CFU mL(-1)) groups. Treatment of L. plantarum NCU116 for 5 weeks was found to restore liver function and oxidative stress in rats with NAFLD, and decrease the levels of fat accumulation in the liver. In addition, the bacterium significantly reduced endotoxin and proinflammatory cytokines, and regulated bacterial flora in the colon and the expression of lipid metabolism in the liver. These results suggest that possible underlying mechanisms for the beneficial effect of L. plantarum NCU116 on NAFLD may include two pathways of downregulating lipogenesis and upregulating lipolysis and fatty acid oxidation related gene expression.
Collapse
Affiliation(s)
- Chuan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front Cardiovasc Med 2015; 2:29. [PMID: 26664900 PMCID: PMC4671344 DOI: 10.3389/fcvm.2015.00029] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a key feature of the atherothrombotic process involved in the etiology of heart attacks, ischemic strokes, and peripheral arterial disease. It stands to reason that antioxidants represent a credible therapeutic option to prevent disease progression and thereby improve outcome, but despite positive findings from in vitro studies, clinical trials have failed to consistently show benefit. The aim of this review is to re-appraise the concept of antioxidants in the prevention and management of cardiovascular disease. In particular, the review will explore the reasons behind failed antioxidant strategies with vitamin supplements and will evaluate how flavonoids might improve cardiovascular function despite bioavailability that is not sufficiently high to directly influence antioxidant capacity. As well as reaching conclusions relating to those antioxidant strategies that might hold merit, the major myths, limitations, and pitfalls associated with this research field are explored.
Collapse
Affiliation(s)
- Katarzyna Goszcz
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; James Hutton Institute , Dundee , UK
| | - Sherine J Deakin
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| | - Garry G Duthie
- Rowett Institute of Health and Nutrition , Aberdeen , UK
| | - Derek Stewart
- James Hutton Institute , Dundee , UK ; School of Life Sciences, Heriot Watt University , Edinburgh , UK
| | - Stephen J Leslie
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; Cardiology Unit, Raigmore Hospital , Inverness , UK
| | - Ian L Megson
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| |
Collapse
|
47
|
Hua W, Huang HZ, Tan LT, Wan JM, Gui HB, Zhao L, Ruan XZ, Chen XM, Du XG. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress. PLoS One 2015; 10:e0127507. [PMID: 26000608 PMCID: PMC4441449 DOI: 10.1371/journal.pone.0127507] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Background Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN), respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated. Methods The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20) by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5) and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software. Results CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO), the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol) inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid. Conclusions CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.
Collapse
Affiliation(s)
- Wei Hua
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Hui-zhe Huang
- Faculty of Basic Medical Sciences, Chongqing Medical University, Medical College Road 1, Chongqing, 400016, China
| | - Lan-ting Tan
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Jiang-min Wan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Hai-bo Gui
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Liang Zhao
- Faculty of Basic Medical Sciences, Chongqing Medical University, Medical College Road 1, Chongqing, 400016, China
| | - Xiong-zhong Ruan
- Centre for Nephrology, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, United Kingdom
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Xue-mei Chen
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
- * E-mail: (XMC); (XGD)
| | - Xiao-gang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
- * E-mail: (XMC); (XGD)
| |
Collapse
|
48
|
Zeb A. Chemistry and liquid chromatography methods for the analyses of primary oxidation products of triacylglycerols. Free Radic Res 2015; 49:549-64. [PMID: 25824968 DOI: 10.3109/10715762.2015.1022540] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Triacylglycerols (TAGs) are one of the major components of the cells in higher biological systems, which can act as an energy reservoir in the living cells. The unsaturated fatty acid moiety is the key site of oxidation and formation of oxidation compounds. The TAG free radical generates several primary oxidation compounds. These include hydroperoxides, hydroxides, epidioxides, hydroperoxy epidioxides, hydroxyl epidioxides, and epoxides. The presence of these oxidized TAGs in the cell increases the chances of several detrimental processes. For this purpose, several liquid chromatography (LC) methods were reported in their analyses. This review is therefore focused on the chemistry, oxidation, extraction, and the LC methods reported in the analyses of oxidized TAGs. The studies on thin-layer chromatography were mostly focused on the total oxidized TAGs separation and employ hexane as major solvent. High-performance LC (HPLC) methods were discussed in details along with their merits and demerits. It was found that most of the HPLC methods employed isocratic elution with methanol and acetonitrile as major solvents with an ultraviolet detector. The coupling of HPLC with mass spectrometry (MS) highly increases the efficiency of analysis as well as enables reliable structural elucidation. The use of MS was found to be helpful in studying the oxidation chemistry of TAGs and needs to be extended to the complex biological systems.
Collapse
Affiliation(s)
- A Zeb
- Department of Biotechnology, University of Malakand , Chakdara , Pakistan
| |
Collapse
|
49
|
Zheng W, Jiang B, Hao Y, Zhao Y, Zhang W, Jiang X. Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip. Biofabrication 2014; 6:045004. [DOI: 10.1088/1758-5082/6/4/045004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Antihyperlipidemic and Antioxidant Potential of Paeonia emodi Royle against High-Fat Diet Induced Oxidative Stress. ISRN PHARMACOLOGY 2014; 2014:182362. [PMID: 24734192 PMCID: PMC3964881 DOI: 10.1155/2014/182362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/26/2014] [Indexed: 12/27/2022]
Abstract
The present study was intended to evaluate the effects of Paeonia emodi rhizome extracts on serum triglycerides (TGs), total cholesterol (TC), low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), atherogenic index (AI), superoxide dismutase (SOD), and glutathione peroxidase (GPx). The plant was extensively examined for its in vitro antioxidant activity, and the preliminary phytochemical screening was carried out using standard protocols. Male Wistar rats were induced with hyperlipidemia using high-fat diet and were treated orally with hydroalcoholic and aqueous extracts at the dose of 200 mg/kg bw for 30 days. TGs, TC, LDL-c, and AI were significantly reduced while HDL-c, SOD, and GPx levels rose to a considerable extent. After subjecting to acute toxicity testing, the extracts were found to be safe. The observations suggest antihyperlipidemic and antioxidant potential of P. emodi in high-fat diet induced hyperlipidemic/oxidative stressed rats.
Collapse
|