1
|
Bai Y, Huang L, Fan Y, Li Y. Marrow mesenchymal stem cell mediates diabetic nephropathy progression via modulation of Smad2/3/WTAP/m6A/ENO1 axis. FASEB J 2024; 38:e23729. [PMID: 38847786 DOI: 10.1096/fj.202301773r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 11/01/2024]
Abstract
Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-β1 (TGF-β1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.
Collapse
Affiliation(s)
- Yihua Bai
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lilan Huang
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Fan
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaling Li
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Lin C, Zeng M, Song J, Li H, Feng Z, Li K, Pei Y. PRRSV alters m 6A methylation and alternative splicing to regulate immune, extracellular matrix-associated function. Int J Biol Macromol 2023; 253:126741. [PMID: 37696370 DOI: 10.1016/j.ijbiomac.2023.126741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
The alternative splicing and N6-methyladenosine (m6A) modifications occurring during porcine reproductive and respiratory syndrome virus (PRRSV) infections remain poorly understood. Transcriptome and MeRIP-seq analyses were performed to identify the gene expression changes, splicing and m6A modifications in the lungs of PRRSV-infected pigs. In total, 1624 differentially expressed genes (DEGs) were observed between PRRSV-infected and uninfected pigs. We observed significant alterations in alternative splicing (54,367 events) and m6A modifications (2265 DASEs) in numerous genes, including LMO7, SLC25A27, ZNF185, and ECM1, during PRRSV infection. LMO7 and ZNF185 exhibited alternative splicing variants and reduced mRNA expression levels following PRRSV infection. Notably, LMO7 inhibited c-JUN, SMAD3, and FAK expression, whereas ZNF185 affected the expression of FAK, CDH1, and GSK3β downstream. Additionally, ECM1 influenced FAK expression by targeting ITGB3 and AKT2, suggesting its involvement in extracellular matrix accumulation through the ITGB3-AKT2/FAK pathway. These changes may facilitate viral invasion and replication by modulating the expression of genes and proteins participating in crucial cellular processes associated with immunity and the extracellular matrix. We highlight the importance of these genes and their associated pathways in PRRSV infections and suggest that targeting these may be a promising therapeutic approach for treating viral infections.
Collapse
Affiliation(s)
- Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Mu Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jia Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
3
|
Xiong Q, Zhang Y. Small RNA modifications: regulatory molecules and potential applications. J Hematol Oncol 2023; 16:64. [PMID: 37349851 PMCID: PMC10286502 DOI: 10.1186/s13045-023-01466-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Small RNAs (also referred to as small noncoding RNAs, sncRNA) are defined as polymeric ribonucleic acid molecules that are less than 200 nucleotides in length and serve a variety of essential functions within cells. Small RNA species include microRNA (miRNA), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), tRNA-derived small RNA (tsRNA), etc. Current evidence suggest that small RNAs can also have diverse modifications to their nucleotide composition that affect their stability as well as their capacity for nuclear export, and these modifications are relevant to their capacity to drive molecular signaling processes relevant to biogenesis, cell proliferation and differentiation. In this review, we highlight the molecular characteristics and cellular functions of small RNA and their modifications, as well as current techniques for their reliable detection. We also discuss how small RNA modifications may be relevant to the clinical applications for the diagnosis and treatment of human health conditions such as cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Abdominal Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
4
|
Yang D, Zhao G, Zhang HM. m 6A reader proteins: the executive factors in modulating viral replication and host immune response. Front Cell Infect Microbiol 2023; 13:1151069. [PMID: 37325513 PMCID: PMC10266107 DOI: 10.3389/fcimb.2023.1151069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is the most abundant covalent modification of RNA. It is a reversible and dynamic process induced by various cellular stresses including viral infection. Many m6A methylations have been discovered, including on the genome of RNA viruses and on RNA transcripts of DNA viruses, and these methylations play a positive or negative role on the viral life cycle depending on the viral species. The m6A machinery, including the writer, eraser, and reader proteins, achieves its gene regulatory role by functioning in an orchestrated manner. Notably, data suggest that the biological effects of m6A on target mRNAs predominantly depend on the recognition and binding of different m6A readers. These readers include, but are not limited to, the YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs), and many others discovered recently. Indeed, m6A readers have been recognized not only as regulators of RNA metabolism but also as participants in a variety of biological processes, although some of these reported roles are still controversial. Here, we will summarize the recent advances in the discovery, classification, and functional characterization of m6A reader proteins, particularly focusing on their roles and mechanisms of action in RNA metabolism, gene expression, and viral replication. In addition, we also briefly discuss the m6A-associated host immune responses in viral infection.
Collapse
Affiliation(s)
- Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Huifang Mary Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| |
Collapse
|
5
|
Ji X, Lv C, Huang J, Dong W, Sun W, Zhang H. ALKBH5-induced circular RNA NRIP1 promotes glycolysis in thyroid cancer cells by targeting PKM2. Cancer Sci 2023. [PMID: 36851875 DOI: 10.1111/cas.15772] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Although circular RNAs (circRNAs) are involved in cell proliferation, differentiation, apoptosis, and invasion, the underlying regulatory mechanisms of circRNAs in thyroid cancer have not been fully elucidated. This article aimed to study the role of circRNA regulated by N6-methyladenosine modification in papillary thyroid cancer (PTC). Quantitative real-time PCR, western blotting, and immunohistochemistry were used to investigate the expressions of circRNA nuclear receptor-interacting protein 1 (circNRIP1) in PTC tissues and adjacent noncancerous thyroid tissues. In vitro and in vivo assays were carried out to assess the effects of circNRIP1 on PTC glycolysis and growth. The N6-methyladenosine mechanisms of circNRIP1 were evaluated by methylated RNA immunoprecipitation sequencing, luciferase reporter gene, and RNA stability assays. Results showed that circNRIP1 levels were significantly upregulated in PTC tissues. Furthermore, elevated circNRIP1 levels in PTC patients were correlated with high tumor lymph node metastasis stage and larger tumor sizes. Functionally, circNRIP1 significantly promoted glycolysis, PTC cell proliferation in vitro, and tumorigenesis in vivo. Mechanistically, circNRIP1 acted as a sponge for microRNA (miR)-541-5p and miR-3064-5p and jointly upregulated pyruvate kinase M2 (PKM2) expression. Knockdown of m6 A demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) significantly enhanced circNRIP1 m6 A modification and upregulated its expression. These results show that ALKBH5 knockdown upregulates circNRIP1, thus promoting glycolysis in PTC cells. Therefore, circNRIP1 can be a prognostic biomarker and therapeutic target for PTC by acting as a sponge for oncogenic miR-541-5p and miR-3064-5p to upregulate PKM2 expression.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Uzonyi A, Dierks D, Nir R, Kwon OS, Toth U, Barbosa I, Burel C, Brandis A, Rossmanith W, Le Hir H, Slobodin B, Schwartz S. Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol Cell 2023; 83:237-251.e7. [PMID: 36599352 DOI: 10.1016/j.molcel.2022.12.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
N6-methyladenosine (m6A), a widespread destabilizing mark on mRNA, is non-uniformly distributed across the transcriptome, yet the basis for its selective deposition is unknown. Here, we propose that m6A deposition is not selective. Instead, it is exclusion based: m6A consensus motifs are methylated by default, unless they are within a window of ∼100 nt from a splice junction. A simple model which we extensively validate, relying exclusively on presence of m6A motifs and exon-intron architecture, allows in silico recapitulation of experimentally measured m6A profiles. We provide evidence that exclusion from splice junctions is mediated by the exon junction complex (EJC), potentially via physical occlusion, and that previously observed associations between exon-intron architecture and mRNA decay are mechanistically mediated via m6A. Our findings establish a mechanism coupling nuclear mRNA splicing and packaging with the covalent installation of m6A, in turn controlling cytoplasmic decay.
Collapse
Affiliation(s)
- Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel
| | - David Dierks
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel
| | - Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Cindy Burel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7630031, Israel
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Boris Slobodin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel; Department of Biochemistry, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| |
Collapse
|
7
|
Qi Z, Li J, Li M, Du X, Zhang L, Wang S, Xu B, Liu W, Xu Z, Deng Y. The Essential Role of Epigenetic Modifications in Neurodegenerative Diseases with Dyskinesia. Cell Mol Neurobiol 2022; 42:2459-2472. [PMID: 34383231 PMCID: PMC11421617 DOI: 10.1007/s10571-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022]
Abstract
Epigenetics play an essential role in the occurrence and improvement of many diseases. Evidence shows that epigenetic modifications are crucial to the regulation of gene expression. DNA methylation is closely linked to embryonic development in mammalian. In recent years, epigenetic drugs have shown unexpected therapeutic effects on neurological diseases, leading to the study of the epigenetic mechanism in neurodegenerative diseases. Unlike genetics, epigenetics modify the genome without changing the DNA sequence. Research shows that epigenetics is involved in all aspects of neurodegenerative diseases. The study of epigenetic will provide valuable insights into the molecular mechanism of neurodegenerative diseases, which may lead to new treatments and diagnoses. This article reviews the role of epigenetic modifications neurodegenerative diseases with dyskinesia, and discusses the therapeutic potential of epigenetic drugs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
8
|
Yue J, Wei Y, Zhao M. The Reversible Methylation of m6A Is Involved in Plant Virus Infection. BIOLOGY 2022; 11:biology11020271. [PMID: 35205137 PMCID: PMC8869485 DOI: 10.3390/biology11020271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary N6-methyladenosine (m6A) is the most prevalent modification in the mRNAs of many eukaryotic species. The abundance and effects of m6A are determined by dynamic interactions between its methyltransferases (“writers”), demethylases (“erasers”), and binding proteins (“readers”). It has been indicated that there is a strong correlation between m6A and virus infection in mammals. In the case of plant virus infection, it appears that m6A plays a dual role. On the one hand, m6A acts as a plant immune response induced by virus infection, inhibiting viral replication or translation through methylation of viral genome RNAs. On the other hand, m6A acts as part of an infection strategy employed by plant viruses to overcome the host immune system by interacting with m6A-related proteins. We proposed that antagonists of m6A-related proteins might be used to design new strategies for plant virus control in the future. Abstract In recent years, m6A RNA methylation has attracted broad interest and is becoming a hot research topic. It has been demonstrated that there is a strong association between m6A and viral infection in the human system. The life cycles of plant RNA viruses are often coordinated with the mechanisms of their RNA modification. Here, we reviewed recent advances in m6A methylation in plant viruses. It appears that m6A methylation plays a dual role during viral infection in plants. On the one hand, m6A methylation acts as an antiviral immune response induced by virus infection, which inhibits viral replication or translation through the methylation of viral genome RNAs. On the other hand, plant viruses could disrupt the m6A methylation through interacting with the key proteins of the m6A pathway to avoid modification. Those plant viruses containing ALKB domain are discussed as well. Based on this mechanism, we propose that new strategies for plant virus control could be designed with competitive antagonists of m6A-associated proteins.
Collapse
|
9
|
Cai T, Atteh LL, Zhang X, Huang C, Bai M, Ma H, Zhang C, Fu W, Gao L, Lin Y, Meng W. The N6-Methyladenosine Modification and Its Role in mRNA Metabolism and Gastrointestinal Tract Disease. Front Surg 2022; 9:819335. [PMID: 35155557 PMCID: PMC8831730 DOI: 10.3389/fsurg.2022.819335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The N6-methyladenosine (m6A) modification is the most abundant internal modification of messenger RNA (mRNA) in higher eukaryotes. Under the actions of methyltransferase, demethylase and methyl-binding protein, m6A resulting from RNA methylation becomes dynamic and reversible, similar to that from DNA methylation, and this effect allows the generated mRNA to participate in metabolism processes, such as splicing, transport, translation, and degradation. The most common tumors are those found in the gastrointestinal tract, and research on these tumors has flourished since the discovery of m6A. Overall, further analysis of the mechanism of m6A and its role in tumors may contribute to new ideas for the treatment of tumors. m6A also plays an important role in non-tumor diseases of the gastrointestinal tract. This manuscript reviews the current knowledge of m6A-related proteins, mRNA metabolism and their application in gastrointestinal tract disease.
Collapse
Affiliation(s)
- Teng Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | | | - Xianzhuo Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chongfei Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Mingzhen Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haidong Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenkang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yanyan Lin
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Institute of Hepatopancreatobiliary Surgery, Lanzhou, China
- Yanyan Lin
| | - Wenbo Meng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Institute of Hepatopancreatobiliary Surgery, Lanzhou, China
- *Correspondence: Wenbo Meng
| |
Collapse
|
10
|
Gameiro PA, Encheva V, Dos Santos MS, MacRae JI, Ule J. Metabolic turnover and dynamics of modified ribonucleosides by 13C labeling. J Biol Chem 2021; 297:101294. [PMID: 34634303 PMCID: PMC8567201 DOI: 10.1016/j.jbc.2021.101294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/27/2023] Open
Abstract
Tandem mass spectrometry (MS/MS) is an accurate tool to assess modified ribonucleosides and their dynamics in mammalian cells. However, MS/MS quantification of lowly abundant modifications in non-ribosomal RNAs is unreliable, and the dynamic features of various modifications are poorly understood. Here, we developed a 13C labeling approach, called 13C-dynamods, to quantify the turnover of base modifications in newly transcribed RNA. This turnover-based approach helped to resolve mRNA from ncRNA modifications in purified RNA or free ribonucleoside samples and showed the distinct kinetics of the N6-methyladenosine (m6A) versus 7-methylguanosine (m7G) modification in polyA+-purified RNA. We uncovered that N6,N6-dimethyladenosine (m62A) exhibits distinct turnover in small RNAs and free ribonucleosides when compared to known m62A-modified large rRNAs. Finally, combined measurements of turnover and abundance of these modifications informed on the transcriptional versus posttranscriptional sensitivity of modified ncRNAs and mRNAs, respectively, to stress conditions. Thus, 13C-dynamods enables studies of the origin of modified RNAs at steady-state and subsequent dynamics under nonstationary conditions. These results open new directions to probe the presence and biological regulation of modifications in particular RNAs.
Collapse
Affiliation(s)
- Paulo A Gameiro
- RNA Networks Laboratory, Francis Crick Institute, London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
| | - Vesela Encheva
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, UK
| | | | - James I MacRae
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, UK
| | - Jernej Ule
- RNA Networks Laboratory, Francis Crick Institute, London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
11
|
Zhou W, Li Z, Zhang J, Mou B, Zhou W. The OsIME4 gene identified as a key to meiosis initiation by RNA in situ hybridization. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:861-873. [PMID: 33884735 DOI: 10.1111/plb.13274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The formation of asexual seeds in plants holds great promise as a breeding system for one-line hybrid rice. Entry into meiosis is a key developmental decision in gametogenesis, especially in formation of asexual seeds in plants. Apomeiosis in MeMCs can be achieved by identifying and manipulating meiosis-specific genes. Using methods based on in situ hybridization and expression analysis, we identified OsIME4 (inducer of meiosis 4) sense and antisense transcripts involved in rice meiosis initiation, similar to initiation of meiosis in budding yeast. Our data suggest that the OsIME4 sense transcript, which encodes a putative mRNA N6-adenosine methyltransferase, keeps rice cells at mitosis stage through some form of epigenesis (DNA/RNA methylation), and the non-coding antisense transcript of OsIME4 converts the cell status from mitosis to meiosis by inhibiting expression (transcription and translation) of the sense transcript. We identified that the non-coding antisense transcript of OsIME4 converts archesporial cell status from mitosis to meiosis by inhibiting expression of the OsIME4 sense transcript in rice. Our results provide novel insights into meiosis initiation in rice and for engineering of apomixis in sexual crops by manipulating the OsIME4 sense and antisense transcripts, which has great promise for producing apomictic rice in the future.
Collapse
Affiliation(s)
- W Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, PR China
| | - Z Li
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100094, PR China
| | - J Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, PR China
| | - B Mou
- US Department of Agriculture, Agricultural Research Service, USDA-ARS), 1636 E. Alisal Street, Salinas, CA, 93905, USA
| | - W Zhou
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100094, PR China
- US Department of Agriculture, Agricultural Research Service, USDA-ARS), 1636 E. Alisal Street, Salinas, CA, 93905, USA
| |
Collapse
|
12
|
Yu PL, Cao SJ, Wu R, Zhao Q, Yan QG. Regulatory effect of m 6 A modification on different viruses. J Med Virol 2021; 93:6100-6115. [PMID: 34329499 DOI: 10.1002/jmv.27246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
N6 -methyladenosine (m6 A) modification is the most common and reversible posttranscriptional modification of RNA in eukaryotes, which is mainly regulated by methyltransferase, demethylase, and specific binding protein. The replication of the virus and host immune response to the virus are affected by m6 A modification. In different kinds of viruses, m6 A modification has two completely opposite regulatory functions. This paper reviews the regulatory effects of m6 A modification on different viruses and provides a reference for studying the regulatory effects of RNA epitranscriptomic modification.
Collapse
Affiliation(s)
- Pei-Lun Yu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - San-Jie Cao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Rui Wu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qi-Gui Yan
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
13
|
Xia TL, Li X, Wang X, Zhu YJ, Zhang H, Cheng W, Chen ML, Ye Y, Li Y, Zhang A, Dai DL, Zhu QY, Yuan L, Zheng J, Huang H, Chen SQ, Xiao ZW, Wang HB, Roy G, Zhong Q, Lin D, Zeng YX, Wang J, Zhao B, Gewurz BE, Chen J, Zuo Z, Zeng MS. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep 2021; 22:e50128. [PMID: 33605073 PMCID: PMC8025027 DOI: 10.15252/embr.202050128] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
N6‐methyladenosine (m6A) modification of mRNA mediates diverse cellular and viral functions. Infection with Epstein–Barr virus (EBV) is causally associated with nasopharyngeal carcinoma (NPC), 10% of gastric carcinoma, and various B‐cell lymphomas, in which the viral latent and lytic phases both play vital roles. Here, we show that EBV transcripts exhibit differential m6A modification in human NPC biopsies, patient‐derived xenograft tissues, and cells at different EBV infection stages. m6A‐modified EBV transcripts are recognized and destabilized by the YTHDF1 protein, which leads to the m6A‐dependent suppression of EBV infection and replication. Mechanistically, YTHDF1 hastens viral RNA decapping and mediates RNA decay by recruiting RNA degradation complexes, including ZAP, DDX17, and DCP2, thereby post‐transcriptionally downregulating the expression of EBV genes. Taken together, our results reveal the critical roles of m6A modifications and their reader YTHDF1 in EBV replication. These findings contribute novel targets for the treatment of EBV‐associated cancers.
Collapse
Affiliation(s)
- Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xingyang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueping Wang
- Department of Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun-Jia Zhu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weisheng Cheng
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Department of Medical Bioinformatics, Zhongshan School of Medicine, Ministry of Education, Guangzhou, China
| | - Mei-Ling Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Ling Dai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Qi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Wen Xiao
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Bo Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gaurab Roy
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinkai Wang
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Department of Medical Bioinformatics, Zhongshan School of Medicine, Ministry of Education, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin E Gewurz
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, CA, USA
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
14
|
Liu XM, Zhou J. Multifaceted regulation of translation by the epitranscriptomic modification N 6-methyladenosine. Crit Rev Biochem Mol Biol 2021; 56:137-148. [PMID: 33412937 DOI: 10.1080/10409238.2020.1869174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Translation occurring on cytoplasmic mRNA is precisely governed at three consecutive stages, including initiation, elongation and termination. A growing body of evidence has revealed that an emerging epitranscriptomic code N6-methyladenosine (m6A), asymmetrically present in a large subset of coding and non-coding transcripts, is crucially required for mediating the translatomic stability. Through recruiting translation machinery proteins, serving as a physical barrier, or directing RNA structural rearrangement and mRNA looping formation, m6A has been decoded to modulate translational dynamics through potentially influencing the progress of different stages, thereby forming an additional layer of complexity to the regulation of translation. In this review, we summarize the current understanding of how m6A guides mRNA translation under normal and stress conditions, highlighting the divergent molecular mechanisms of multifarious regulation of m6A-mediated translation.
Collapse
Affiliation(s)
- Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Price AM, Hayer KE, McIntyre ABR, Gokhale NS, Abebe JS, Della Fera AN, Mason CE, Horner SM, Wilson AC, Depledge DP, Weitzman MD. Direct RNA sequencing reveals m 6A modifications on adenovirus RNA are necessary for efficient splicing. Nat Commun 2020; 11:6016. [PMID: 33243990 PMCID: PMC7691994 DOI: 10.1038/s41467-020-19787-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Adenovirus is a nuclear replicating DNA virus reliant on host RNA processing machinery. Processing and metabolism of cellular RNAs can be regulated by METTL3, which catalyzes the addition of N6-methyladenosine (m6A) to mRNAs. While m6A-modified adenoviral RNAs have been previously detected, the location and function of this mark within the infectious cycle is unknown. Since the complex adenovirus transcriptome includes overlapping spliced units that would impede accurate m6A mapping using short-read sequencing, here we profile m6A within the adenovirus transcriptome using a combination of meRIP-seq and direct RNA long-read sequencing to yield both nucleotide and transcript-resolved m6A detection. Although both early and late viral transcripts contain m6A, depletion of m6A writer METTL3 specifically impacts viral late transcripts by reducing their splicing efficiency. These data showcase a new technique for m6A discovery within individual transcripts at nucleotide resolution, and highlight the role of m6A in regulating splicing of a viral pathogen.
Collapse
Affiliation(s)
- Alexander M Price
- Division of Protective Immunity and Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alexa B R McIntyre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, 10065, USA
- Department of Molecular Life Sciences, University of Zurich, 8006, Zurich, Switzerland
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Immunology, University of Washington, Seattle, WA, 98115, USA
| | - Jonathan S Abebe
- Department of Medicine, New York University School of Medicine, New York, NY, 10017, USA
| | - Ashley N Della Fera
- Division of Protective Immunity and Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Biological Sciences Graduate Group, University of Maryland, College Park, MD, 20742, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, 10017, USA
| | - Daniel P Depledge
- Department of Medicine, New York University School of Medicine, New York, NY, 10017, USA.
| | - Matthew D Weitzman
- Division of Protective Immunity and Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q, Wan R. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer 2020; 19:91. [PMID: 32429928 PMCID: PMC7236181 DOI: 10.1186/s12943-020-01158-w] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most abundant reversible methylation modification of eukaryotic mRNA, and it plays vital roles in tumourigenesis. This study aimed to explore the role of the m6A demethylase ALKBH5 in pancreatic cancer (PC). Methods The expression of ALKBH5 and its clinicopathological impact were evaluated in PC cohorts. The effects of ALKBH5 on the biological characteristics of PC cells were investigated on the basis of gain-of-function and loss-of-function analyses. Subcutaneous and orthotopic models further uncovered the role of ALKBH5 in tumour growth. mRNA and m6A sequencing and assays of m6A methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) were performed to identify the targeted effect of ALKBH5 on PER1. P53-binding sites in the ALKBH5 promoter were investigated by ChIP and luciferase assays to reveal the interplay between ALKBH5 and PER1-activated ATM-CHK2-P53/CDC25C signalling. Results ALKBH5 loss characterized the occurrence and poor clinicopathological manifestations in patients with PC. Overexpression of ALKBH5 reduced tumoural proliferative, migrative, invasive activities in vitro and ameliorated tumour growth in vivo, whereas ALKBH5 knockdown facilitated PC progression. Mechanistically, ALKBH5 posttranscriptionally activated PER1 by m6A demethylation in an m6A-YTHDF2-dependent manner. PER1 upregulation led to the reactivation of ATM-CHK2-P53/CDC25C signalling, which inhibited cell growth. P53-induced activation of ALKBH5 transcription acted as a feedback loop regulating the m6A modifications in PC. Conclusion ALKBH5 serves as a PC suppressor by regulating the posttranscriptional activation of PER1 through m6A abolishment, which may highlight a demethylation-based approach for PC diagnosis and therapy.
Collapse
Affiliation(s)
- Xingya Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Yangyang Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Wenqin Xiao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Yinshi Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Yun Feng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China.
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
17
|
Jiang Y, Wan Y, Gong M, Zhou S, Qiu J, Cheng W. RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway. J Cell Mol Med 2020; 24:6137-6148. [PMID: 32329191 PMCID: PMC7294121 DOI: 10.1111/jcmm.15228] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 12/23/2019] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
Methylation is the main form of RNA modification. N6‐methyladenine (m6A) regulates the splicing and translation of mRNA. Alk B homologue 5 (ALKBH5) participates in the biological regulation of various cancers. However, its role in ovarian carcinogenesis has not been unveiled. In the present study, ALKBH5 showed higher expression in ovarian cancer tissue than in normal ovarian tissue, but lower expression in ovarian cancer cell lines than in normal ovarian cell lines. Interestingly, Toll‐like receptor (TLR4), a molecular functioning in tumour microenvironment (TME), demonstrated the same expression trend. To investigate the effect of abnormal TME on ovarian carcinogenesis, we established an in vitro model in which macrophages and ovarian cancer cells were co‐cultured. In the ovarian cancer cells co‐cultured with M2 macrophages, the expression of ALKBH5 and TLR4 increased. We also verified that TLR4 up‐regulated ALKBH5 expression via activating NF‐κB pathway. Depending on transcriptome sequencing, m6A‐Seq and m6A MeRIP, we found that NANOG served as a target in ALKBH5‐mediated m6A modification. NANOG expression increased after mRNA demethylation, consequently enhancing the aggressiveness of ovarian cancer cells. In conclusion, highly expressed TLR4 activated NF‐κB pathway, up‐regulated ALKBH5 expression and increased m6A level and NANOG expression, all contributing to ovarian carcinogenesis. Our study revealed the role of m6A in ovarian carcinogenesis, providing a clue for inventing new target therapy.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mi Gong
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiangnan Qiu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, Winkler R, Nir R, Lasman L, Brandis A, Hanna JH, Rossmanith W, Schwartz S. Deciphering the “m6A Code” via Antibody-Independent Quantitative Profiling. Cell 2019; 178:731-747.e16. [DOI: 10.1016/j.cell.2019.06.013] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/03/2019] [Accepted: 06/06/2019] [Indexed: 01/28/2023]
|
19
|
Leddin EM, Cisneros GA. Comparison of DNA and RNA substrate effects on TET2 structure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:91-112. [PMID: 31564308 DOI: 10.1016/bs.apcsb.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ten-eleven translocation (TET) enzymes can perform the stepwise oxidation of 5-methylcytosine (5mC) to 5-carboxylcytosine on both single-stranded (ss) and double-stranded (ds) DNA and RNA. It has been established that TET2 has a preference for ds DNA substrates, but it can catalyze the oxidation reaction on both ssDNA and RNA. The reasons for this substrate preference have been investigated for only a substrate 5mC ribonucleotide in a DNA strand, but not other nucleic acid configurations (Biochemistry58 (2019) 411). We performed molecular dynamics simulations on TET2 with various ss and ds substrates in order to better understand the structural and dynamical reasons for TET2's preference to act on ds DNA. Our simulations show that substrates that have a ribonucleotide experience several disruptions in their overall backbone shape, hydrogen bonding character, and non-bonded interactions. These differences appear to lead to the instability of ribonucleotide in the active site, and provide further rational for TET2's experimental behavior.
Collapse
Affiliation(s)
- Emmett M Leddin
- Department of Chemistry, University of North Texas, Denton, TX, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX, United States
| |
Collapse
|
20
|
m6A RNA Methylation Controls Neural Development and Is Involved in Human Diseases. Mol Neurobiol 2018; 56:1596-1606. [DOI: 10.1007/s12035-018-1138-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 12/31/2022]
|
21
|
Knuckles P, Bühler M. Adenosine methylation as a molecular imprint defining the fate of RNA. FEBS Lett 2018; 592:2845-2859. [PMID: 29782652 PMCID: PMC6175371 DOI: 10.1002/1873-3468.13107] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
Multiple lines of evidence suggest the RNA modification N6‐methyladonsine (m6A), which is installed in the nucleus cotranscriptionally and, thereafter, serves as a reversible chemical imprint that influences several steps of mRNA metabolism. This includes but is not limited to RNA folding, splicing, stability, transport and translation. In this Review we focus on the current view of the nuclear installation of m6A as well as the molecular players involved, the so called m6A writers. We also explore the effector proteins, or m6A readers, that decode the imprint in different cellular contexts and compartments, and ultimately, the way the modification influences the lifecycle of an RNA molecule. The wide evolutionary conservation of m6A and its critical role in physiology and disease warrants further studies into this burgeoning and exciting field.
Collapse
Affiliation(s)
- Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
22
|
Abstract
N6-methyladenosine (m6A), the most prevalent internal methylation in messenger RNA (mRNA) that is deposited by m6A methyltransferases, removed by m6A demethylases and recognized by different RNA-binding proteins, distinguishes the transcripts through multilayer interactions with mRNA processing, export, degradation and translation machineries. m6A plays an important role in regulation of gene expression for fundamental cellular processes and diverse physiological functions. Aberrant m6A decorations lead to cancer but also have the potential to yield new therapies. This review outlines the evolution of the m6A field, formation of key concepts, important open questions and also discusses the molecular basis of mRNA m6A modification and its effect in cancer, highlighting the potential of demethylase as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Sicong Zhang
- The Rockefeller University, Laboratory of Biochemistry and Molecular Biology, 1230 York Avenue, Box 166, New York, NY 10065, United States.
| |
Collapse
|
23
|
Darnell RB, Ke S, Darnell JE. Pre-mRNA processing includes N6 methylation of adenosine residues that are retained in mRNA exons and the fallacy of "RNA epigenetics". RNA (NEW YORK, N.Y.) 2018; 24:262-267. [PMID: 29222117 PMCID: PMC5824346 DOI: 10.1261/rna.065219.117] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
By using a cell fraction technique that separates chromatin-associated nascent RNA, newly completed nucleoplasmic mRNA and cytoplasmic mRNA, we have shown in a previous study that residues in exons are methylated (m6A) in nascent pre-mRNA and remain methylated in the same exonic residues in nucleoplasmic and cytoplasmic mRNA. Thus, there is no evidence of a substantial degree of demethylation in mRNA exons that would correspond to so-called "epigenetic" demethylation. The turnover rate of mRNA molecules is faster, depending on m6A content in HeLa cell mRNA, suggesting that specification of mRNA stability may be the major role of m6A exon modification. In mouse embryonic stem cells (mESCs) lacking Mettl3, the major mRNA methylase, the cells continue to grow, making the same mRNAs with unchanged splicing profiles in the absence (>90%) of m6A in mRNA, suggesting no common obligatory role of m6A in splicing. All these data argue strongly against a commonly used "reversible dynamic methylation/demethylation" of mRNA, calling into question the concept of "RNA epigenetics" that parallels the well-established role of dynamic DNA epigenetics.
Collapse
Affiliation(s)
- Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA
| | - Shengdong Ke
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA
| | - James E Darnell
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
24
|
Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vågbø CB, Geula S, Hanna JH, Black DL, Darnell JE, Darnell RB. m 6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 2017. [PMID: 28637692 PMCID: PMC5495127 DOI: 10.1101/gad.301036.117] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding the biologic role of N6-methyladenosine (m6A) RNA modifications in mRNA requires an understanding of when and where in the life of a pre-mRNA transcript the modifications are made. We found that HeLa cell chromatin-associated nascent pre-mRNA (CA-RNA) contains many unspliced introns and m6A in exons but very rarely in introns. The m6A methylation is essentially completed upon the release of mRNA into the nucleoplasm. Furthermore, the content and location of each m6A modification in steady-state cytoplasmic mRNA are largely indistinguishable from those in the newly synthesized CA-RNA or nucleoplasmic mRNA. This result suggests that quantitatively little methylation or demethylation occurs in cytoplasmic mRNA. In addition, only ∼10% of m6As in CA-RNA are within 50 nucleotides of 5' or 3' splice sites, and the vast majority of exons harboring m6A in wild-type mouse stem cells is spliced the same in cells lacking the major m6A methyltransferase Mettl3. Both HeLa and mouse embryonic stem cell mRNAs harboring m6As have shorter half-lives, and thousands of these mRNAs have increased half-lives (twofold or more) in Mettl3 knockout cells compared with wild type. In summary, m6A is added to exons before or soon after exon definition in nascent pre-mRNA, and while m6A is not required for most splicing, its addition in the nascent transcript is a determinant of cytoplasmic mRNA stability.
Collapse
Affiliation(s)
- Shengdong Ke
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Amy Pandya-Jones
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Cathrine Broberg Vågbø
- Proteomics and Metabolomics Core Facility, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Shay Geula
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - James E Darnell
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
25
|
Affiliation(s)
- Nandan S. Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Stacy M. Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
26
|
Chandola U, Das R, Panda B. Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief Funct Genomics 2014; 14:169-79. [PMID: 25305461 DOI: 10.1093/bfgp/elu039] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epigenetics is a field that encompasses chemical modifications of DNA and histone proteins, both of which alter gene expression without changing the underlying nucleotide sequence. DNA methylation and modifications of histone tails have been studied in detail and are now known to be global gene regulatory mechanisms. An analogous post-transcriptional modification is chemical modification of specific nucleotides in RNA. Study of RNA modifications is a nascent field as yet, and the significance of these marks in controlling cell growth and differentiation is just beginning to be appreciated. The addition of a methyl group to adenosine (N-methyl-6-adenosine) or m6A is the most abundant modification in mammalian mRNAs. Though identified four decades ago, interest in this particular modification was set off by the discovery that the obesity gene FTO was an RNA demethylase. Since then, many studies have investigated m6A modification in different species. In this review, we summarize the current literature and hypotheses about the presence and function of this ubiquitous RNA modification in mammals, viruses, yeast and plants in terms of the consensus sequence and the methyltransferase/demethylation machinery identified thus far. We discuss its potential role in regulating molecular and physiological processes in each of these organisms, especially its role in RNA splicing, RNA degradation and development. We also enlist the methodologies developed so far, both locus-specific and transcriptome-wide, to study this modification. Lastly, we discuss whether m6A alterations have consequences on modulating disease aetiology, and speculate about its potential role in cancer.
Collapse
|
27
|
Merkestein M, McTaggart JS, Lee S, Kramer HB, McMurray F, Lafond M, Boutens L, Cox R, Ashcroft FM. Changes in gene expression associated with FTO overexpression in mice. PLoS One 2014; 9:e97162. [PMID: 24842286 PMCID: PMC4026227 DOI: 10.1371/journal.pone.0097162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/14/2014] [Indexed: 01/24/2023] Open
Abstract
Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected.
Collapse
Affiliation(s)
- Myrte Merkestein
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - James S. McTaggart
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Sheena Lee
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Holger B. Kramer
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Fiona McMurray
- Medical Research Council Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, Oxford, United Kingdom
| | - Mathilde Lafond
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Lily Boutens
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Roger Cox
- Medical Research Council Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, Oxford, United Kingdom
| | - Frances M. Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Danielsen JMR, Liu F, Yang YG. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24:177-89. [PMID: 24407421 PMCID: PMC3915904 DOI: 10.1038/cr.2014.3] [Citation(s) in RCA: 1745] [Impact Index Per Article: 158.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022] Open
Abstract
The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism.
Collapse
Affiliation(s)
- Xiao-Li Ping
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bao-Fa Sun
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Xiao
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin Yang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Jia Wang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Samir Adhikari
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Shi
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Lv
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Sheng Chen
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Zhao
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ang Li
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ujwal Dahal
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Min Lou
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Liu
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Zhejiang 310058, China
| | - Wei-Ping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Tianjin 300041, China
| | - Xiao-Fan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Tianjin 300041, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Tianjin 300041, China
| | - Yong-Liang Zhao
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinquan Wang
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jannie M Rendtlew Danielsen
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Copenhagen, Denmark
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
29
|
Saletore Y, Chen-Kiang S, Mason CE. Novel RNA regulatory mechanisms revealed in the epitranscriptome. RNA Biol 2013; 10:342-6. [PMID: 23434792 PMCID: PMC3672275 DOI: 10.4161/rna.23812] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Methyl-6-adenosine (m (6)A) has been hypothesized to exist since the 1970s, (1) but little has been known about the specific RNAs, or sites within them, that are affected by this RNA modification. Here, we report that recent work has shown RNA modifications like m (6)A, collectively called the "epitranscriptome," are a pervasive feature of mammalian cells and likely play a role in development and disease. An enrichment of m (6)A near the last CDS of thousands of genes has implicated m (6)A in transcript processing, translational regulation and potentially a mechanism for regulating miRNA maturation. Also, because the sites of m (6)A show strong evolutionary conservation and have been replicated in nearly identical sites between mouse and human, strong evolutionary pressures are likely being maintained for this mark. (2)(,) (3) Finally, we note that m (6)A is one of over 100 modifications of RNA that have been reported, (4) and with the combination of high-throughput, next-generation sequencing (NGS) techniques, immunoprecipitation with appropriate antibodies and splicing-aware peak-finding, the dynamics of the epitranscriptome can now be mapped and characterized to discern their specific cellular roles.
Collapse
Affiliation(s)
- Yogesh Saletore
- Department of Physiology and Biophysics; Weill Cornell Medical College; New York, NY USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine; Weill Cornell Medical College; New York, NY USA; Tri-Institutional Training Program in Computational Biology and Medicine; New York, NY USA
| | | | | |
Collapse
|
30
|
Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 11:8-17. [PMID: 23453015 PMCID: PMC4357660 DOI: 10.1016/j.gpb.2012.12.002] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 12/02/2022]
Abstract
N6-methyl-adenosine (m6A) is one of the most common and abundant modifications on RNA molecules present in eukaryotes. However, the biological significance of m6A methylation remains largely unknown. Several independent lines of evidence suggest that the dynamic regulation of m6A may have a profound impact on gene expression regulation. The m6A modification is catalyzed by an unidentified methyltransferase complex containing at least one subunit methyltransferase like 3 (METTL3). m6A modification on messenger RNAs (mRNAs) mainly occurs in the exonic regions and 3′-untranslated region (3′-UTR) as revealed by high-throughput m6A-seq. One significant advance in m6A research is the recent discovery of the first two m6A RNA demethylases fat mass and obesity-associated (FTO) gene and ALKBH5, which catalyze m6A demethylation in an α-ketoglutarate (α-KG)- and Fe2+-dependent manner. Recent studies in model organisms demonstrate that METTL3, FTO and ALKBH5 play important roles in many biological processes, ranging from development and metabolism to fertility. Moreover, perturbation of activities of these enzymes leads to the disturbed expression of thousands of genes at the cellular level, implicating a regulatory role of m6A in RNA metabolism. Given the vital roles of DNA and histone methylations in epigenetic regulation of basic life processes in mammals, the dynamic and reversible chemical m6A modification on RNA may also serve as a novel epigenetic marker of profound biological significances.
Collapse
Affiliation(s)
- Yamei Niu
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
31
|
Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol 2012; 13:175. [PMID: 23113984 PMCID: PMC3491402 DOI: 10.1186/gb-2012-13-10-175] [Citation(s) in RCA: 348] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 01/28/2023] Open
Abstract
Recent studies have found methyl-6-adenosine in thousands of mammalian genes, and this modification is most pronounced near the beginning of the 3' UTR. We present a perspective on current work and new single-molecule sequencing methods for detecting RNA base modifications.
Collapse
Affiliation(s)
- Yogesh Saletore
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY10065, USA
| | - Kate Meyer
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jonas Korlach
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, CA 94025, USA
| | - Igor D Vilfan
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, CA 94025, USA
| | - Samie Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
32
|
Dong H, Chang DC, Hua MHC, Lim SP, Chionh YH, Hia F, Lee YH, Kukkaro P, Lok SM, Dedon PC, Shi PY. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase. PLoS Pathog 2012; 8:e1002642. [PMID: 22496660 PMCID: PMC3320599 DOI: 10.1371/journal.ppat.1002642] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 02/27/2012] [Indexed: 01/20/2023] Open
Abstract
RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro. We report that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant proteins of NS5 and its N-terminal methyltransferase domain of West Nile virus and Dengue virus (DENV) specifically methylates polyA, but not polyG, polyC, or polyU. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis confirmed that the internal methylation product is 2′-O-methyladenosine. Furthermore, the 2′-O-methyladenosine could also be detected in DENV genomic RNA. The 2′-O methylation of internal adenosine does not require specific RNA sequence context because the DENV methyltransferase can methylate RNAs spanning different regions of viral genome and host ribosomal RNAs at equal efficiencies. Mutagenesis analysis showed that K61-D146-K181-E217 motif of the DENV methyltransferase forms the active site of internal methylation activity; in addition, distinct residues on the surface of the enzyme are critical for the internal methylation activity. Functional analysis showed that internal methylation attenuated viral RNA translation and replication. Overall, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNA in vitro. Such 2′-O-methyladenosine modification may modulate virus-host interaction.
Collapse
Affiliation(s)
- Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | | | - Maggie Ho Chia Hua
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | | | - Yok Hian Chionh
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | - Fabian Hia
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | - Yie Hou Lee
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | | | | | - Peter C. Dedon
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Narayan P, Rottman FM. Methylation of mRNA. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:255-85. [PMID: 1315118 DOI: 10.1002/9780470123119.ch7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- P Narayan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | | |
Collapse
|
34
|
Leach RA, Tuck MT. Methionine depletion induces transcription of the mRNA (N6-adenosine)methyltransferase. Int J Biochem Cell Biol 2001; 33:1116-28. [PMID: 11551827 DOI: 10.1016/s1357-2725(01)00072-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study examines the genetic expression of the S-adenosyl-L-methionine binding subunit of the mRNA (N6-adenosine)methyltransferase (MT-A70) in cultured cells under conditions known to affect transmethylation reactions. Methionine dependence, disrupted methionine metabolism, and increased transmethylation reactions are all phenotypes characteristic of cancer cells. The results show that both methionine depletion and inhibition of S-adenosyl-L-methionine formation can induce up to a four-fold increase in transcription of this S-adenosyl-L-methionine binding subunit. The two splice-variant mRNAs produced from the MT-A70 gene are transcribed at different rates depending on the level of S-adenosyl-L-methionine inhibition. This result may reflect differing Km values toward the substrate for the different enzyme isoforms. 3-Deazaadenosine, an inhibitor known to block certain mRNA transmethylations, was shown to have no effect on MT-A70 gene expression. This result indicates that the control of MT-A70 gene expression is directly related to methionine availability and the subsequent synthesis of S-adenosyl-L-methionine.
Collapse
Affiliation(s)
- R A Leach
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
35
|
Tuck MT, Wiehl PE, Pan T. Inhibition of 6-methyladenine formation decreases the translation efficiency of dihydrofolate reductase transcripts. Int J Biochem Cell Biol 1999; 31:837-51. [PMID: 10481270 DOI: 10.1016/s1357-2725(99)00041-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cycloleucine was used to inhibit the formation of internal N6-methyladenosine residues in the messenger ribonucleic acid transcripts from cultured methotrexate resistant mouse sarcoma cells. Cells cultured in cycloleucine produced transcripts deficient in N6-methyladenosine residues and the 2'-O-methylated nucleosides of the cap structure; however, the formation of the 7-methylguanine nucleoside of the cap was not effected. Cytoplasmic polyadenylated transcripts were isolated from cells which had been pretreated with media containing cycloleucine and translated in an in vitro translation assay. The levels of translated dihydrofolate reductase were then analyzed by polyacrylamide gel electrophoresis. The amount of dihydrofolate reductase protein produced from the transcripts of the cycloleucine treated cells was 20% less than untreated transcripts. Ribonuclease protection assays demonstrated little difference in the cytoplasmic levels of dihydrofolate reductase transcripts between treated and untreated cells suggesting that the decrease in translation efficiency was not caused solely by an alteration in the processing or cytoplasmic transport of the transcripts. Translation of in vitro transcribed transcripts showed the presence of 2'-O-methylated nucleosides in the cap structure had a negative effect on translation efficiency, demonstrating that the results observed from cycloleucine treatment could not be due to the inhibition of 2'-O-methylation in the cap. These experiments therefore suggest that an inhibition of N6-methyladenosine residues in dihydrofolate reductase transcripts significantly alters their rate of translation.
Collapse
Affiliation(s)
- M T Tuck
- Department of Chemistry and Biochemistry, Ohio University, Athens 45701, USA.
| | | | | |
Collapse
|
36
|
Abstract
Although our knowledge of HIV-1 growth, from a molecular mechanistic perspective, has rapidly increased, we do not yet know how the overall growth rate of HIV-1 depends on its constituent biochemical reactions. Such an understanding would be of fundamental importance and potentially useful for designing and evaluating anti-HIV strategies. As a first step toward addressing this need we formulate and implement here a global computer simulation for the intracellular growth of HIV-1 on a CD4+ T lymphocyte. Our simulation accounts for the kinetics of reverse transcription, integration of proviral DNA into the host genome, transcription, mRNA splicing and transport from the nucleus, translation, feedback of regulatory proteins to the nucleus, transport of viral proteins to the cell membrane, particle assembly, budding, and maturation. The simulation quantitatively captures the experimentally observed intracellular dynamics of viral DNA, mRNA, and proteins while employing no "fudge factors." Moreover, it provides an estimate of the intracellular growth rate of HIV-1 and enables evaluation of mono- and combined anti-HIV strategies.
Collapse
Affiliation(s)
- B Reddy
- Department of Chemical Engineering, University of Wisconsin-Madison, 53706-1691, USA
| | | |
Collapse
|
37
|
Schlesinger RW, Husak PJ, Bradshaw GL, Panayotov PP. Mechanisms involved in natural and experimental neuropathogenicity of influenza viruses: evidence and speculation. Adv Virus Res 1998; 50:289-379. [PMID: 9521002 DOI: 10.1016/s0065-3527(08)60811-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- R W Schlesinger
- Department of Molecular Genetics and Microbiology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854-5635, USA
| | | | | | | |
Collapse
|
38
|
Heilman KL, Leach RA, Tuck MT. Internal 6-methyladenine residues increase the in vitro translation efficiency of dihydrofolate reductase messenger RNA. Int J Biochem Cell Biol 1996; 28:823-9. [PMID: 8925412 DOI: 10.1016/1357-2725(96)00014-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N6-Methyladenosine (m6A) is found internally in a number of mRNA molecules from higher eucaryotic cells. In these investigations, it was found that the presence of m6A residues increase the in vitro translation efficiency of capped T7 transcripts of mouse dihydrofolate reductase (DHFR) mRNA. Using an in vitro rabbit reticulocyte translation system, the formation of internal m6A residues in the DHFR transcripts resulted in a 1.5-fold increase in translated DHFR compared to transcripts void of internal m6A residues. Translation in a wheat germ system, however, resulted in no increase in translation efficiency upon m6A formation, suggesting that the mechanism may be species-specific.
Collapse
Affiliation(s)
- K L Heilman
- Department of Chemistry, Ohio University, Athens 45701, USA
| | | | | |
Collapse
|
39
|
Tuck MT, James CB, Kelder B, Kopchick JJ. Elevation of internal 6-methyladenine mRNA methyltransferase activity after cellular transformation. Cancer Lett 1996; 103:107-13. [PMID: 8616802 DOI: 10.1016/0304-3835(96)04203-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A comparison of internal 6-methyladenine mRNA methyltransferase activity in a variety of cell types demonstrated an 8-15-fold increase as a result of cellular transformation. Utilizing adenovirus transformed rat embryo cells, it was found that the increase in methyltransferase activity was concomitant with or occurred rapidly after transformation. An 80-fold increase in activity was observed in the cells isolated from the transformed foci and remained elevated through subsequent passages. The relationship between methyltransferase activity and tumor formation was also investigated. High level expression of the avian ski oncogene in mouse L cells causes a reversion of the transformed phenotype to a non-transformed state, and resulted in a 47% reduction in the specific activity of the methyltransferase as compared with mock transfected cells.
Collapse
Affiliation(s)
- M T Tuck
- Department of Chemistry, Clippinger Laboratories, Ohio University, Athens 45701, USA
| | | | | | | |
Collapse
|
40
|
Wolffe AP, Meric F. Coupling transcription to translation: a novel site for the regulation of eukaryotic gene expression. Int J Biochem Cell Biol 1996; 28:247-57. [PMID: 8920634 DOI: 10.1016/1357-2725(95)00141-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent experiments using Xenopus oocytes demonstrate that the history of a particular mRNA in the nucleus can influence the efficiency with which that mRNA will be utilized by the translational machinery. Individual promoter elements, specific protein-RNA interactions and the splicing process within the nucleus can all influence translational fate within the cytoplasm. Central to the regulatory mechanisms influencing the translation process is the packaging of mRNA by a highly conserved family of Y-box proteins. These Y-box proteins are found in cytoplasmic messenger ribonucleoprotein particles where they have a causal role in restricting the recruitment of mRNA to the translational machinery. Nuclear processes influence the packaging of mRNA by the Y-box proteins in the cytoplasm and in consequence mRNA translation. This functional coupling provides a novel site for the regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-2710, USA
| | | |
Collapse
|
41
|
Shimba S, Bokar JA, Rottman F, Reddy R. Accurate and efficient N-6-adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro. Nucleic Acids Res 1995; 23:2421-6. [PMID: 7630720 PMCID: PMC307046 DOI: 10.1093/nar/23.13.2421] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human U6 small nuclear RNA (U6 snRNA), an abundant snRNA required for splicing of pre-mRNAs, contains several post-transcriptional modifications including a single m6A (N-6-methyladenosine) at position 43. This A-43 residue is critical for the function of U6 snRNA in splicing of pre-mRNAs. Yeast and plant U6 snRNAs also contain m6A in the corresponding position showing that this modification is evolutionarily conserved. In this study, we show that upon incubation of an unmodified U6 RNA with HeLa cell extract, A-43 residue in human U6 snRNA was rapidly converted to m6A-43. This conversion was detectable as early as 3 min after incubation and was nearly complete in 60 min; no other A residue in U6 snRNA was converted to m6A. Deletion studies showed that the stem-loop structure near the 5' end of U6 snRNA is dispensable for m6A formation; however, the integrity of the 3' stem-loop was necessary for efficient m6A formation. These data show that a short stretch of primary sequence flanking the methylation site is not sufficient for U6 m6A methyltransferase recognition and the enzyme probably recognizes secondary and/or tertiary structural features in U6 snRNA. The enzyme that catalyzes m6A formation in U6 snRNA appears to be distinct from the prolactin mRNA methyltransferase which is also present in HeLa nuclear extracts.
Collapse
Affiliation(s)
- S Shimba
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Cong HN, Bertaux O, Valencia R, Becue T, Fournier T, Biou D, Porquet D. Separation and characterization of the main methylated nucleobases from nuclear, cytoplasmic and poly (A)+ RNA by high-performance liquid chromatography and mass spectrometry. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1994; 661:193-204. [PMID: 7894658 DOI: 10.1016/0378-4347(94)00358-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We were able to detect nine methylated nucleobases (3-methyluracil, 1-, 2-, 3- and 7-methylguanine, 1-, 2-, 3- and 6-methyladenine) in RNA from rat and calf liver, baker's yeast, Torula and Euglena cells by using reversed-phase high-performance liquid chromatography and thermospray mass spectrometry. Total cellular, nuclear, cytoplasmic and poly (A)+ RNA from rat liver showed marked methylation, mainly of 1- and 3- methylguanine, and 3- and 2-methyladenine. These bases were especially abundant in nuclear RNA and, to a lesser extent, in poly (A)+ RNA. In contrast, 7-methylguanine and 6-methyladenine were poorly represented in poly (A)+ RNA.
Collapse
Affiliation(s)
- H N Cong
- Laboratoire de Biochimie de la Différenciation, Institut Jacques Monod, CNRS-Université Paris VII, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol Cell Biol 1994. [PMID: 8065363 DOI: 10.1128/mcb.14.9.6317] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The translation of human triosephosphate isomerase (TPI) mRNA normally terminates at codon 249 within exon 7, the final exon. Frameshift and nonsense mutations of the type that cause translation to terminate prematurely at or upstream of codon 189 within exon 6 reduce the level of nuclear TPI mRNA to 20 to 30% of normal by a mechanism that is not a function of the distance of the nonsense codon from either the translation initiation or termination codon. In contrast, frameshift and nonsense mutations of another type that cause translation to terminate prematurely at or downstream of codon 208, also within exon 6, have no effect on the level of nuclear TPI mRNA. In this work, quantitations of RNA that derived from TPI alleles in which nonsense codons had been generated between codons 189 and 208 revealed that the boundary between the two types of nonsense codons resides between codons 192 and 195. The analysis of TPI gene insertions and deletions indicated that the positional feature differentiating the two types of nonsense codons is the distance of the nonsense codon upstream of intron 6. For example, the movement of intron 6 to a position downstream of its normal location resulted in a concomitant downstream movement of the boundary between the two types of nonsense codons. The analysis of intron 6 mutations indicated that the intron 6 effect is stipulated by the 88 nucleotides residing between the 5' and 3' splice sites. Since the deletion of intron 6 resulted in only partial abrogation of the nonsense codon-mediated reduction in the level of TPI mRNA, other sequences within TPI pre-mRNA must function in the effect. One of these sequences may be intron 2, since the deletion of intron 2 also resulted in partial abrogation of the effect. In experiments that switched introns 2 and 6, the replacement of intron 6 with intron 2 was of no consequence to the effect of a nonsense codon within either exon 1 or exon 6. In contrast, the replacement of intron 2 with intron 6 was inconsequential to the effect of a nonsense codon in exon 6 but resulted in partial abrogation of a nonsense codon in exon 1.
Collapse
|
44
|
Cheng J, Belgrader P, Zhou X, Maquat LE. Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol Cell Biol 1994; 14:6317-25. [PMID: 8065363 PMCID: PMC359158 DOI: 10.1128/mcb.14.9.6317-6325.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The translation of human triosephosphate isomerase (TPI) mRNA normally terminates at codon 249 within exon 7, the final exon. Frameshift and nonsense mutations of the type that cause translation to terminate prematurely at or upstream of codon 189 within exon 6 reduce the level of nuclear TPI mRNA to 20 to 30% of normal by a mechanism that is not a function of the distance of the nonsense codon from either the translation initiation or termination codon. In contrast, frameshift and nonsense mutations of another type that cause translation to terminate prematurely at or downstream of codon 208, also within exon 6, have no effect on the level of nuclear TPI mRNA. In this work, quantitations of RNA that derived from TPI alleles in which nonsense codons had been generated between codons 189 and 208 revealed that the boundary between the two types of nonsense codons resides between codons 192 and 195. The analysis of TPI gene insertions and deletions indicated that the positional feature differentiating the two types of nonsense codons is the distance of the nonsense codon upstream of intron 6. For example, the movement of intron 6 to a position downstream of its normal location resulted in a concomitant downstream movement of the boundary between the two types of nonsense codons. The analysis of intron 6 mutations indicated that the intron 6 effect is stipulated by the 88 nucleotides residing between the 5' and 3' splice sites. Since the deletion of intron 6 resulted in only partial abrogation of the nonsense codon-mediated reduction in the level of TPI mRNA, other sequences within TPI pre-mRNA must function in the effect. One of these sequences may be intron 2, since the deletion of intron 2 also resulted in partial abrogation of the effect. In experiments that switched introns 2 and 6, the replacement of intron 6 with intron 2 was of no consequence to the effect of a nonsense codon within either exon 1 or exon 6. In contrast, the replacement of intron 2 with intron 6 was inconsequential to the effect of a nonsense codon in exon 6 but resulted in partial abrogation of a nonsense codon in exon 1.
Collapse
Affiliation(s)
- J Cheng
- Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | | |
Collapse
|
45
|
Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32497-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Wansink DG, van Driel R, de Jong L. Organization of (pre-)mRNA metabolism in the cell nucleus. Mol Biol Rep 1994; 20:45-55. [PMID: 7715609 DOI: 10.1007/bf00996353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D G Wansink
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
47
|
Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Mol Cell Biol 1993. [PMID: 8413221 DOI: 10.1128/mcb.13.10.6211] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a strategy based on reverse transcription and the polymerase chain reaction, we have determined the order of splicing of the four introns of the endogenous adenine phosphoribosyltransferase (aprt) gene in Chinese hamster ovary cells. The method involves a pairwise comparison of molecules that retain one intron and have either retained or spliced another intron(s). A highly preferred order of removal was found: intron 3 > 2 > 4 = 1. This order did not represent a linear progression from one end of the transcript to the other, nor did it correlate with the conformity of the splice site sequences to the consensus sequences or to the calculated energy of duplex formation with U1 small nuclear RNA. By using actinomycin D to inhibit RNA synthesis, the in vivo rate of the first step in splicing was estimated for all four introns; a half-life of 6 min was found for introns 2, 3, and 4. Intron 1 was spliced more slowly, with a 12-min half-life. A substantial amount of RNA that retained intron 1 as the sole intron was exported to the cytoplasm. In the course of these experiments, we also determined that intron 3, but not intron 4, is spliced before 3'-end formation is complete, probably on nascent transcripts. This result is consistent with the idea that polyadenylation is required for splicing of the 3'-most intron. We applied a similar strategy to determine the last intron to be spliced in a very large transcript, that of the endogenous dihydrofolate reductase (dhfr) gene in Chinese hamster ovary cells (25 kb). Here again, intron 1 was the last intron to be spliced.
Collapse
|
48
|
Kessler O, Jiang Y, Chasin LA. Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Mol Cell Biol 1993; 13:6211-22. [PMID: 8413221 PMCID: PMC364680 DOI: 10.1128/mcb.13.10.6211-6222.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Using a strategy based on reverse transcription and the polymerase chain reaction, we have determined the order of splicing of the four introns of the endogenous adenine phosphoribosyltransferase (aprt) gene in Chinese hamster ovary cells. The method involves a pairwise comparison of molecules that retain one intron and have either retained or spliced another intron(s). A highly preferred order of removal was found: intron 3 > 2 > 4 = 1. This order did not represent a linear progression from one end of the transcript to the other, nor did it correlate with the conformity of the splice site sequences to the consensus sequences or to the calculated energy of duplex formation with U1 small nuclear RNA. By using actinomycin D to inhibit RNA synthesis, the in vivo rate of the first step in splicing was estimated for all four introns; a half-life of 6 min was found for introns 2, 3, and 4. Intron 1 was spliced more slowly, with a 12-min half-life. A substantial amount of RNA that retained intron 1 as the sole intron was exported to the cytoplasm. In the course of these experiments, we also determined that intron 3, but not intron 4, is spliced before 3'-end formation is complete, probably on nascent transcripts. This result is consistent with the idea that polyadenylation is required for splicing of the 3'-most intron. We applied a similar strategy to determine the last intron to be spliced in a very large transcript, that of the endogenous dihydrofolate reductase (dhfr) gene in Chinese hamster ovary cells (25 kb). Here again, intron 1 was the last intron to be spliced.
Collapse
Affiliation(s)
- O Kessler
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
49
|
Tuck MT. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues. Biochem J 1992; 288 ( Pt 1):233-40. [PMID: 1445268 PMCID: PMC1132103 DOI: 10.1042/bj2880233] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two forms of a 6-methyladenine mRNA methyltransferase have been partially purified using a T7 transcript coding for mouse dihydrofolate reductase as an RNA substrate. Both enzyme forms modify internal adenine residues within the RNA substrate. The enzymes were purified 357- and 37-fold respectively from nuclear salt extracts prepared from HeLa cells using DEAE-cellulose and phosphocellulose chromatography. The activity of the first form of the enzyme eluted from DEAE-cellulose (major form) was at least 3-fold greater than that of the second (minor form). H.p.l.c. analysis of the hydrolysed, methylated mRNA substrates demonstrated that both forms of the enzyme produced only 6-methyladenine. The two forms of the enzyme differed in their RNA substrate specificity as well as in the dependence for a 5' cap structure. The 6-methyladenine mRNA methyltransferase activity was found to be elevated in HeLa nuclei as compared with nuclear extracts from rat kidney and brain. Enzymic activity could not be detected in nuclei from either normal rat liver or regenerating rat liver. In the case of the HeLa cell, activity could only be detected in nuclear extracts, with a small amount in the ribosomal fraction. Other HeLa subcellular fractions were void of activity.
Collapse
Affiliation(s)
- M T Tuck
- Department of Chemistry, Ohio University, Athens 45701
| |
Collapse
|
50
|
Huai L, Chiocca SM, Gilbreth MA, Ainsworth JR, Bishop LA, Murphy EC. Moloney murine sarcoma virus MuSVts110 DNA: cloning, nucleotide sequence, and gene expression. J Virol 1992; 66:5329-37. [PMID: 1501276 PMCID: PMC289088 DOI: 10.1128/jvi.66.9.5329-5337.1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have cloned Moloney murine sarcoma virus (MuSV) MuSVts110 DNA by assembly of polymerase chain reaction (PCR)-amplified segments of integrated viral DNA from infected NRK cells (6m2 cells) and determined its complete sequence. Previously, by direct sequencing of MuSVts110 RNA transcribed in 6m2 cells, we established that the thermosensitive RNA splicing phenotype uniquely characteristic of MuSVts110 results from a deletion of 1,487 nucleotides of progenitor MuSV-124 sequences. As anticipated, the sequence obtained in this study contained precisely this same deletion. In addition, several other unexpected sequence differences were found between MuSVts110 and MuSV-124. For example, in the noncoding region upstream of the gag gene, MuSVts110 DNA contained a 52-nucleotide tract typical of murine leukemia virus rather than MuSV-124, suggesting that MuSVts110 originated as a MuSV-helper murine leukemia virus recombinant during reverse transcription rather than from a straightforward deletion within MuSV-124. In addition, both MuSVts110 long terminal repeats contained head-to-tail duplications of eight nucleotides in the U3 region. Finally, seven single-nucleotide substitutions were found scattered throughout MuSVts110 DNA. Three of the nucleotide substitutions were in the gag gene, resulting in one coding change in p15 and one in p30. All of the remaining nucleotide changes were found in the noncoding region between the 5' long terminal repeat and the gag gene. In NIH 3T3 cells transfected with the cloned MuSVts110 DNA, the pattern of viral RNA expression conformed with that observed in cells infected with authentic MuSVts110 virus in that viral RNA splicing was 30 to 40% efficient at growth temperatures between 28 and 33 degrees C but reduced to trace levels above 37 degrees C.
Collapse
Affiliation(s)
- L Huai
- Department of Tumor Biology, University of Texas, M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | |
Collapse
|