1
|
Abstract
Cholera disease is caused by Vibrio cholerae infecting the lining of the small intestine and results in severe diarrhea. V. cholerae’s swimming motility is known to play a crucial role in pathogenicity and may aid the bacteria in crossing the intestinal mucus barrier to reach sites of infection, but the exact mechanisms are unknown. The cell can be either pushed or pulled by its single polar flagellum, but there is no consensus on the resulting repertoire of motility behaviors. We use high-throughput three-dimensional (3D) bacterial tracking to observe V. cholerae swimming in buffer, in viscous solutions of the synthetic polymer PVP, and in mucin solutions that may mimic the host environment. We perform a statistical characterization of its motility behavior on the basis of large 3D trajectory data sets. We find that V. cholerae performs asymmetric run-reverse-flick motility, consisting of a sequence of a forward run, reversal, and a shorter backward run, followed by a turn by approximately 90°, called a flick, preceding the next forward run. Unlike many run-reverse-flick swimmers, V. cholerae’s backward runs are much shorter than its forward runs, resulting in an increased effective diffusivity. We also find that the swimming speed is not constant but subject to frequent decreases. The turning frequency in mucin matches that observed in buffer. Run-reverse-flick motility and speed fluctuations are present in all environments studied, suggesting that these behaviors also occur in natural aquatic habitats as well as the host environment. IMPORTANCE Cholera disease produces vomiting and severe diarrhea and causes approximately 100,000 deaths per year worldwide. The disease is caused by the bacterium Vibrio cholerae colonizing the lining of the small intestine. V. cholerae’s ability to swim is known to increase its infectivity, but the underlying mechanisms are not known. One possibility is that swimming aids in crossing the protective mucus barrier that covers the lining of the small intestine. Our work characterizing how V. cholerae swims in environments that mimic properties of the host environment may advance the understanding of how motility contributes to infection.
Collapse
|
2
|
Naaz F, Agrawal M, Chakraborty S, Tirumkudulu MS, Venkatesh KV. Ligand sensing enhances bacterial flagellar motor output via stator recruitment. eLife 2021; 10:62848. [PMID: 33821791 PMCID: PMC8062133 DOI: 10.7554/elife.62848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/03/2021] [Indexed: 11/13/2022] Open
Abstract
It is well known that flagellated bacteria, such as Escherichia coli, sense chemicals in their environment by a chemoreceptor and relay the signals via a well-characterized signaling pathway to the flagellar motor. It is widely accepted that the signals change the rotation bias of the motor without influencing the motor speed. Here, we present results to the contrary and show that the bacteria is also capable of modulating motor speed on merely sensing a ligand. Step changes in concentration of non-metabolizable ligand cause temporary recruitment of stator units leading to a momentary increase in motor speeds. For metabolizable ligand, the combined effect of sensing and metabolism leads to higher motor speeds for longer durations. Experiments performed with mutant strains delineate the role of metabolism and sensing in the modulation of motor speed and show how speed changes along with changes in bias can significantly enhance response to changes in its environment.
Collapse
Affiliation(s)
- Farha Naaz
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Megha Agrawal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Soumyadeep Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mahesh S Tirumkudulu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
3
|
Otte S, Ipiña EP, Pontier-Bres R, Czerucka D, Peruani F. Statistics of pathogenic bacteria in the search of host cells. Nat Commun 2021; 12:1990. [PMID: 33790272 PMCID: PMC8012381 DOI: 10.1038/s41467-021-22156-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/25/2021] [Indexed: 11/24/2022] Open
Abstract
A crucial phase in the infection process, which remains poorly understood, is the localization of suitable host cells by bacteria. It is often assumed that chemotaxis plays a key role during this phase. Here, we report a quantitative study on how Salmonella Typhimurium search for T84 human colonic epithelial cells. Combining time-lapse microscopy and mathematical modeling, we show that bacteria can be described as chiral active particles with strong active speed fluctuations, which are of biological, as opposed to thermal, origin. We observe that there exists a giant range of inter-individual variability of the bacterial exploring capacity. Furthermore, we find Salmonella Typhimurium does not exhibit biased motion towards the cells and show that the search time statistics is consistent with a random search strategy. Our results indicate that in vitro localization of host cells, and also cell infection, are random processes, not involving chemotaxis, that strongly depend on bacterial motility parameters.
Collapse
Affiliation(s)
- Stefan Otte
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco
| | - Emiliano Perez Ipiña
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Rodolphe Pontier-Bres
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco
- Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Dorota Czerucka
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco.
- Centre Scientifique de Monaco (CSM), Monaco, Monaco.
| | - Fernando Peruani
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Nice, France.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco.
- Laboratoire de Pysique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, Cergy-Pontoise, France.
| |
Collapse
|
4
|
Wang C, Lunelli M, Zschieschang E, Bosse JB, Thuenauer R, Kolbe M. Role of flagellar hydrogen bonding in
Salmonella
motility and flagellar polymorphic transition. Mol Microbiol 2019; 112:1519-1530. [DOI: 10.1111/mmi.14377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Chu Wang
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB)Helmholtz‐Center for Infection Research (HZI) Notkestrasse 85 Hamburg 22607 Germany
- Structural Systems Biology Group Max Planck Institute for Infection Biology Berlin Germany
| | - Michele Lunelli
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB)Helmholtz‐Center for Infection Research (HZI) Notkestrasse 85 Hamburg 22607 Germany
- Structural Systems Biology Group Max Planck Institute for Infection Biology Berlin Germany
| | - Erik Zschieschang
- Structural Systems Biology Group Max Planck Institute for Infection Biology Berlin Germany
| | - Jens Bernhard Bosse
- Department of Structural Cell Biology of Viruses, Subunit Quantitative VirologyHeinrich Pette InstituteLeibniz Institute for Experimental Virology Hamburg
| | - Roland Thuenauer
- Advanced Light and Fluorescence Microscopy (ALFM) Facility, Centre for Structural Systems Biology (CSSB)University of Hamburg Notkestrasse 85 Hamburg 22607 Germany
| | - Michael Kolbe
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB)Helmholtz‐Center for Infection Research (HZI) Notkestrasse 85 Hamburg 22607 Germany
- Structural Systems Biology Group Max Planck Institute for Infection Biology Berlin Germany
- MIN‐Faculty University Hamburg Hamburg Germany
| |
Collapse
|
5
|
Mukherjee T, Elmas M, Vo L, Alexiades V, Hong T, Alexandre G. Multiple CheY Homologs Control Swimming Reversals and Transient Pauses in Azospirillum brasilense. Biophys J 2019; 116:1527-1537. [PMID: 30975454 DOI: 10.1016/j.bpj.2019.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Chemotaxis, together with motility, helps bacteria foraging in their habitat. Motile bacteria exhibit a variety of motility patterns, often controlled by chemotaxis, to promote dispersal. Motility in many bacteria is powered by a bidirectional flagellar motor. The flagellar motor has been known to briefly pause during rotation because of incomplete reversals or stator detachment. Transient pauses were previously observed in bacterial strains lacking CheY, and these events could not be explained by incomplete motor reversals or stator detachment. Here, we systematically analyzed swimming trajectories of various chemotaxis mutants of the monotrichous soil bacterium, Azospirillum brasilense. Like other polar flagellated bacterium, the main swimming pattern in A. brasilense is run and reverse. A. brasilense also uses run-pauses and putative run-reverse-flick-like swimming patterns, although these are rare events. A. brasilense mutant derivatives lacking the chemotaxis master histidine kinase, CheA4, or the central response regulator, CheY7, also showed transient pauses. Strikingly, the frequency of transient pauses increased dramatically in the absence of CheY4. Our findings collectively suggest that reversals and pauses are controlled through signaling by distinct CheY homologs, and thus are likely to be functionally important in the lifestyle of this soil organism.
Collapse
Affiliation(s)
- Tanmoy Mukherjee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Mustafa Elmas
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee
| | - Lam Vo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Vasilios Alexiades
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee
| | - Tian Hong
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee; National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee
| | - Gladys Alexandre
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
6
|
Baron S, Afanzar O, Eisenbach M. Methylation-independent adaptation in chemotaxis ofEscherichia coliinvolves acetylation-dependent speed adaptation. FEBS Lett 2017; 591:331-337. [DOI: 10.1002/1873-3468.12537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Szilvia Baron
- Department of Biomolecular Sciences; The Weizmann Institute of Science; Rehovot Israel
| | - Oshri Afanzar
- Department of Biomolecular Sciences; The Weizmann Institute of Science; Rehovot Israel
| | - Michael Eisenbach
- Department of Biomolecular Sciences; The Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
7
|
Karmakar R, Naaz F, Tirumkudulu MS, Venkatesh KV. Escherichia coli modulates its motor speed on sensing an attractant. Arch Microbiol 2016; 198:827-33. [PMID: 27318664 DOI: 10.1007/s00203-016-1255-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022]
Abstract
It is well known that Escherichia coli achieves chemotaxis by modulating the bias of the flagellar motor. Recent experiments have shown that the bacteria vary their swimming speeds as well in presence of attractants. However, this increase in the swimming speed in response to the attractants has not been correlated with the increase in the flagellar motor speed. Using flickering dark-field microscopy, we measure the head-rotation speed of a large population of cells to correlate it with the flagellar motor speed. Experiments performed with wild-type and trg-deletion mutant strains suggest that the cells are capable of modulating the flagellar motor speed via mere sensing of a ligand. The motor speed can be further correlated with the swimming speed of the cells and was found to be linear. These results suggest the existence of a hitherto unknown intra-cellular pathway that modulates the flagellar motor speed in response to sensing of chemicals, thereby making chemotaxis more efficient than previously known.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Chemical Engineering, IIT Bombay, Mumbai, 400076, India
| | - Farha Naaz
- Department of Chemical Engineering, IIT Bombay, Mumbai, 400076, India
| | | | - K V Venkatesh
- Department of Chemical Engineering, IIT Bombay, Mumbai, 400076, India.
| |
Collapse
|
8
|
Uday Bhaskar RVS, Karmakar R, Deepika D, Tirumkudulu MS, Venkatesh KV. Variation of swimming speed enhances the chemotactic migration of Escherichia coli. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:85-95. [PMID: 26279703 PMCID: PMC4531881 DOI: 10.1007/s11693-015-9174-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/22/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023]
Abstract
Studies on chemotaxis of Escherichia coli have shown that modulation of tumble frequency causes a net drift up the gradient of attractants. Recently, it has been demonstrated that the bacteria is also capable of varying its runs speed in uniform concentration of attractant. In this study, we investigate the role of swimming speed on the chemotactic migration of bacteria. To this end, cells are exposed to gradients of a non-metabolizable analogue of glucose which are sensed via the Trg sensor. When exposed to a gradient, the cells modulate their tumble duration, which is accompanied with variation in swimming speed leading to drift velocities that are much higher than those achieved through the modulation of the tumble duration alone. We use an existing intra-cellular model developed for the Tar receptor and incorporate the variation of the swimming speed along with modulation of tumble frequency to predict drift velocities close to the measured values. The main implication of our study is that E. coli not only modulates the tumble frequency, but may also vary the swimming speed to affect chemotaxis and thereby efficiently sample its nutritionally rich environment.
Collapse
Affiliation(s)
| | - Richa Karmakar
- Department of Chemical Engineering, IIT Bombay, Mumbai, 400076 India
| | - Deepti Deepika
- Department of Chemical Engineering, IIT Bombay, Mumbai, 400076 India
| | | | - K. V. Venkatesh
- Department of Chemical Engineering, IIT Bombay, Mumbai, 400076 India
| |
Collapse
|
9
|
Deepika D, Karmakar R, Tirumkudulu MS, Venkatesh KV. Variation in swimming speed of Escherichia coli in response to attractant. Arch Microbiol 2014; 197:211-22. [PMID: 25308216 DOI: 10.1007/s00203-014-1044-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/04/2014] [Accepted: 09/19/2014] [Indexed: 01/06/2023]
Abstract
It is well known that Escherichia coli executes chemotactic motion in response to chemical cues by modulating the flagellar motor bias alone. However, previous studies have reported the possibility of variation in run speed in the presence of attractants although it is unclear whether bacteria can deliberately modulate their swimming speeds in response to environmental cues or if the motor speeds are hardwired. By studying the detailed motion of cells in a uniform concentration of glucose and its non-metabolizable analogue, we show that changing concentrations may be accompanied by variation in the swimming speed. For a fixed run duration, cells exposed to the attractants achieved a higher peak-swimming speed after a tumble compared with that in plain motility buffer. Our experiments using the mutant strain lacking the Trg sensor show no change in swimming speed with varying concentrations of the non-metabolizable analogue, suggesting that sensing may play a role in the observed variation of swimming speed.
Collapse
Affiliation(s)
- Deepti Deepika
- Department of Chemical Engineering, IIT Bombay, Mumbai, 400076, India
| | | | | | | |
Collapse
|
10
|
Nakamura S, Minamino T, Kami-Ike N, Kudo S, Namba K. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor. Biophysics (Nagoya-shi) 2014; 10:35-41. [PMID: 27493496 PMCID: PMC4629662 DOI: 10.2142/biophysics.10.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/28/2014] [Indexed: 01/21/2023] Open
Abstract
The bacterial flagellar motor generates torque by converting the energy of proton translocation through the transmembrane proton channel of the stator complex formed by MotA and MotB. The MotA/B complex is thought to be anchored to the peptidoglycan (PG) layer through the PG-binding domain of MotB to act as the stator. The stator units dynamically associate with and dissociate from the motor during flagellar motor rotation, and an electrostatic interaction between MotA and a rotor protein FliG is required for efficient stator assembly. However, the association and dissociation mechanism of the stator units still remains unclear. In this study, we analyzed the speed fluctuation of the flagellar motor of Salmonella enterica wild-type cells carrying a plasmid encoding a nonfunctional stator complex, MotA/B(D33N), which lost the proton conductivity. The wild-type motor rotated stably but the motor speed fluctuated considerably when the expression level of MotA/B(D33N) was relatively high compared to MotA/B. Rapid accelerations and decelerations were frequently observed. A quantitative analysis of the speed fluctuation and a model simulation suggested that the MotA/B(D33N) stator retains the ability to associate with the motor at a low affinity but dissociates more rapidly than the MotA/B stator. We propose that the stator dissociation process depends on proton translocation through the proton channel.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tohru Minamino
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobunori Kami-Ike
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seishi Kudo
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Keiichi Namba
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Che YS, Nakamura S, Morimoto YV, Kami-Ike N, Namba K, Minamino T. Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor. Mol Microbiol 2013; 91:175-84. [PMID: 24255940 DOI: 10.1111/mmi.12453] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 01/02/2023]
Abstract
The Salmonella flagellar motor consists of a rotor and about a dozen stator elements. Each stator element, consisting of MotA and MotB, acts as a proton channel to couple proton flow with torque generation. A highly conserved Asp33 residue of MotB is directly involved in the energy coupling mechanism, but it remains unknown how it carries out this function. Here, we show that the MotB(D33E) mutation dramatically alters motor performance in response to changes in external load. Rotation speeds of the MotA/B(D33E) and MotA(V35F)/B(D33E) motors were markedly slower than the wild-type motor and fluctuated considerably at low load but not at high load, whereas the rotation rate of the wild-type motor was stable at any load. At low load, pausing events were frequently observed in both mutant motors. The proton conductivities of these mutant stator channels in their 'unplugged' forms were only half of the conductivity of the wild-type channel. These results suggest that the D33E mutation induces a load-dependent inactivation of the MotA/B complex. We propose that the stator element is a load-sensitive proton channel that efficiently couples proton translocation with torque generation and that Asp33 of MotB is critical for this co-ordinated proton translocation.
Collapse
Affiliation(s)
- Yong-Suk Che
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Bacterial tethering analysis reveals a "run-reverse-turn" mechanism for Pseudomonas species motility. Appl Environ Microbiol 2013; 79:4734-43. [PMID: 23728820 DOI: 10.1128/aem.01027-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call "pause." In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new "run-reverse-turn" paradigm for polar-flagellated Pseudomonas motility that is different from the "run-and-tumble" paradigm established for peritrichous Escherichia coli.
Collapse
|
13
|
A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:17171-6. [PMID: 21969567 DOI: 10.1073/pnas.1110111108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The direction of flagellar rotation is regulated by a rotor-mounted protein assembly, termed the "switch complex," formed from multiple copies of the proteins FliG, FliM, and FliN. The structures of major parts of these proteins are known, and the overall organization of proteins in the complex has been elucidated previously using a combination of protein-binding, mutational, and cross-linking approaches. In Escherichia coli, the switch from counterclockwise to clockwise rotation is triggered by the signaling protein phospho-CheY, which binds to the lower part of the switch complex and induces small movements of FliM and FliN subunits relative to each other. Direction switching also must produce movements in the upper part of the complex, particularly in the C-terminal domain of FliG (FliG(C)), which interacts with the stator to generate the torque for flagellar rotation. In the present study, protein movements in the middle and upper parts of the switch complex have been probed by means of targeted cross-linking and mutational analysis. Switching induces a tilting movement of the FliM domains that form the middle part of the switch and a consequent rotation of the affixed FliG(C) domains that reorients the stator interaction sites by about 90°. In a recently proposed hypothesis for the motor mechanism, such a reorientation of FliG(C) would reverse the direction of motor rotation.
Collapse
|
14
|
Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan P. Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc Natl Acad Sci U S A 2011; 108:16235-40. [PMID: 21918111 PMCID: PMC3182703 DOI: 10.1073/pnas.1101996108] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemotactic bacteria are known to collectively migrate towards sources of attractants. In confined convectionless geometries, concentration "waves" of swimming Escherichia coli can form and propagate through a self-organized process involving hundreds of thousands of these microorganisms. These waves are observed in particular in microcapillaries or microchannels; they result from the interaction between individual chemotactic bacteria and the macroscopic chemical gradients dynamically generated by the migrating population. By studying individual trajectories within the propagating wave, we show that, not only the mean run length is longer in the direction of propagation, but also that the directional persistence is larger compared to the opposite direction. This modulation of the reorientations significantly improves the efficiency of the collective migration. Moreover, these two quantities are spatially modulated along the concentration profile. We recover quantitatively these microscopic and macroscopic observations with a dedicated kinetic model.
Collapse
Affiliation(s)
- J. Saragosti
- Laboratoire Physico-chimie Curie—Unité Mixte de Recherche (UMR) 168; Institut Curie, Centre de Recherche; Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie (UPMC); F-75248 Paris, France
| | - V. Calvez
- Unité de Mathématiques pures et appliquées—Unité Mixte de Recherche (UMR) 5669; Ecole Normale Supérieure de Lyon; Centre National de la Recherche Scientifique (CNRS); F-69364 Lyon, France
| | - N. Bournaveas
- School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom; and
| | - B. Perthame
- Laboratoire Jacques-Louis Lions—BC187; Centre National de la Recherche Scientifique (CNRS); UPMC; Institut Universitaire de France (IUF); F-75252 Paris, France
| | - A. Buguin
- Laboratoire Physico-chimie Curie—Unité Mixte de Recherche (UMR) 168; Institut Curie, Centre de Recherche; Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie (UPMC); F-75248 Paris, France
| | - P. Silberzan
- Laboratoire Physico-chimie Curie—Unité Mixte de Recherche (UMR) 168; Institut Curie, Centre de Recherche; Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie (UPMC); F-75248 Paris, France
| |
Collapse
|
15
|
Mitchell JG, Pearson L, Dillon S. Clustering of marine bacteria in seawater enrichments. Appl Environ Microbiol 2010; 62:3716-21. [PMID: 16535420 PMCID: PMC1388958 DOI: 10.1128/aem.62.10.3716-3721.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seawater enrichments of marine bacteria clustered in 20- to 50-(mu)m-wide bands near air-water interfaces. The cells within the band travelled at up to 212 (mu)m s(sup-1) and at an average speed of 163 (mu)m s(sup-1). Mean cell speeds peaked mid-run at 187 (mu)m s(sup-1). At the end of the run, bacteria reversed direction rather than randomly reorienting. The duration of the stops during reversal was estimated at 18 ms, six to seven times shorter than that found in enteric bacteria. Cells hundreds of micrometers from the band travelled at half the speed of the bacteria in the band. The fastest isolate from the seawater enrichment was identified as Shewanella putrefaciens and had an average speed of 100 (mu)m s(sup-1) in culture. Air-water interfaces produced no clustering or speed changes in isolates derived from enrichments. Salinity and pH, however, both influenced speed. The speed and reversal times of the seawater enrichments indicate that the bacteria in them are better adapted for clustering around small point sources of nutrients than are either enteric or cultured marine bacteria.
Collapse
|
16
|
Kumar MS, Philominathan P. The physics of flagellar motion of E. coli during chemotaxis. Biophys Rev 2010; 2:13-20. [PMID: 28509944 DOI: 10.1007/s12551-009-0024-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 11/04/2009] [Indexed: 01/08/2023] Open
Abstract
Flagellar motion has been an active area of study right from the discovery of bacterial chemotaxis in 1882. During chemotaxis, E. coli moves with the help of helical flagella in an aquatic environment. Helical flagella are rotated in clockwise or counterclockwise direction using reversible flagellar motors situated at the base of each flagellum. The swimming of E. coli is characterized by a low Reynolds number that is unique and time reversible. The random motion of E. coli is influenced by the viscosity of the fluid and the Brownian motion of molecules of fluid, chemoattractants, and chemorepellants. This paper reviews the literature about the physics involved in the propulsion mechanism of E. coli. Starting from the resistive-force theory, various theories on flagellar hydrodynamics are critically reviewed. Expressions for drag force, elastic force and velocity of flagellar elements are derived. By taking the elastic nature of flagella into account, linear and nonlinear equations of motions are derived and their solutions are presented.
Collapse
|
17
|
Englert DL, Jayaraman A, Manson MD. Microfluidic techniques for the analysis of bacterial chemotaxis. Methods Mol Biol 2009; 571:1-23. [PMID: 19763956 DOI: 10.1007/978-1-60761-198-1_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Anton van Leeuwenhoek first observed bacterial motility in the seventeenth century, and Wilhelm Pfeffer described bacterial chemotaxis in the late nineteenth century. A number of methods, briefly summarized here, have been developed over the years to quantify the motility and chemotaxis of bacteria, but none of them is totally satisfactory. In this chapter, we describe two new assays for chemotaxis that are based on microfabrication and microfluidic techniques. With easily culturable and manipulated bacteria like Escherichia coli, fluorescent labeling of the cells with green fluorescent protein (GFP) or red fluorescent protein (RFP) provides a convenient method for visualizing cells and differentiating two strains in the same experiment. The methods can be extended to environmental samples and mixed bacterial populations with suitable modifications of the optical recording system. The methods are equally useful for studying random motility, attractant chemotaxis, or repellent chemotaxis. The microfluidic system also provides a straightforward way to enrich for mutants that lose or gain responses to individual chemicals. The same approaches can presumably be used to isolate bacteria from environmental samples that respond, or do not respond, to particular chemicals or mixtures of chemicals.
Collapse
Affiliation(s)
- Derek L Englert
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
18
|
Toutain CM, Caizza NC, Zegans ME, O'Toole GA. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res Microbiol 2007; 158:471-7. [PMID: 17533122 DOI: 10.1016/j.resmic.2007.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
While Pseudomonas aeruginosa has only a single flagellum, its genome encodes two flagellar stators, called MotAB and MotCD. Here we report that despite no apparent alterations in swimming motility, mutations in either the MotAB or the MotCD stator render the strains defective for biofilm formation in both static and flow cell systems. Our data suggest distinct roles for the stators in early biofilm formation, with both the MotAB and MotCD stators playing a role in initial polar attachment of the bacterial cell to the surface (reversible attachment) and the MotAB stator also participating in the downstream adherence event of irreversible attachment. We also show that the initial polar attachment of P. aeruginosa to two different abiotic surfaces occurs largely at the flagellated end of the cell, a finding that should help develop models for early attachment events. Interestingly, in flowing conditions, a mutation in either stator alone revealed a more severe biofilm defect than mutating both stators or mutating the flagellum. Our data suggest that defects in biofilm formation observed for the stator mutants may be in part due to impacting flagellar reversal rates.
Collapse
Affiliation(s)
- Christine M Toutain
- Department of Microbiology and Immunology, Rm 505 Vail Building, N. College St., Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
19
|
Rozhok S, Fan Z, Nyamjav D, Liu C, Mirkin CA, Holz RC. Attachment of motile bacterial cells to prealigned holed microarrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:11251-4. [PMID: 17154612 DOI: 10.1021/la0609726] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Construction of biomotors is an exciting area of scientific research that holds great promise for the development of new technologies with broad potential applications in areas such as the energy industry and medicine. Herein, we demonstrate the fabrication of prealigned microarrays of motile Escherichia coli bacterial cells on SiOx substrates. To prepare these arrays, holed surfaces with a gold layer on the bottom of the holes were utilized. The attachment of bacteria to the holes was achieved via nonspecific interactions using poly-l-lysine hydrobromide (PLL). Our data suggest that a single motile bacterial cell can be selectively attached to an individual hole on a surface and bacterial cell binding can be controlled by altering the pH, with the greatest occupancy occurring at pH 7.8. Cells attached to hole arrays remained motile for at least 4 h. These data indicate that holed surface structures provide a promising footprint for the attachment of motile bacterial cells to form high-density site-specific functional bacterial microarrays.
Collapse
Affiliation(s)
- Sergey Rozhok
- The Department of Chemistry, Loyola University-Chicago, 1068 N. Sheridan Road, Chicago, IL 60626, USA
| | | | | | | | | | | |
Collapse
|
20
|
Moorthy S, Watnick PI. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol 2005; 57:1623-35. [PMID: 16135229 PMCID: PMC2600799 DOI: 10.1111/j.1365-2958.2005.04797.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial biofilm formation has been described as a developmental process. This process may be divided into three stages: the planktonic stage, the monolayer stage and the biofilm stage. Bacteria in the planktonic stage are not attached to each other or to a surface; bacteria in the monolayer stage are attached to surfaces as single cells; and bacteria in the biofilm stage are attached to surfaces as cellular aggregates. In a study limited to the Vibrio cholerae flaA, mshA and vps genes, we previously demonstrated that transcription in monolayer cells is distinct from that in biofilm cells and that the genetic requirements of monolayer formation are distinct from those of biofilm formation. In this work, we sought to identify additional stage-specific genetic requirements through microarray analysis of the V. cholerae transcriptome during biofilm development. These studies demonstrated unique patterns of transcription in the planktonic, monolayer and biofilm stages of biofilm development. Based on our microarray results, we selected cheY-3 as well as two previously uncharacterized genes, bap1 and leuO, for targeted mutation. The DeltacheY-3 mutant displayed a defect in monolayer but not biofilm formation, suggesting that chemotaxis plays a stage-specific role in formation of the V. cholerae monolayer. Mutants carrying deletions in bap1 and leuO formed monolayers that were indistinguishable from those formed by wild-type V. cholerae. In contrast, these mutants displayed greatly decreased biofilm accumulation. Our microarray analyses document modulation of the transcriptome of V. cholerae as it progresses through the stages in biofilm development. These studies demonstrate that microarray analysis of the transcriptome of biofilm development may greatly accelerate the discovery of novel targets for stage-specific inhibition of biofilm development.
Collapse
Affiliation(s)
- Sudha Moorthy
- Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
21
|
Rozhok S, Shen CKF, Littler PLH, Fan Z, Liu C, Mirkin CA, Holz RC. Methods for fabricating microarrays of motile bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2005; 1:445-51. [PMID: 17193470 DOI: 10.1002/smll.200400072] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Motile bacterial cell microarrays were fabricated by attaching Escherichia coli K-12 cells onto predesigned 16-mercaptohexadecanoic acid patterned microarrays, which were covalently functionalized with E. coli antibodies or poly-L-lysine. By utilizing 11-mercaptoundecyl-penta(ethylene glycol) or 11-mercapto-1-undecanol as passivating molecules, nonspecific binding of E. coli was significantly reduced. Microcontact printing and dip-pen nanolithography were used to prepare microarrays for bacterial adhesion, which was studied by optical fluorescence and atomic force microscopy. These data indicate that single motile E. coli can be attached to predesigned line or dot features and binding can occur via the cell body or the flagella of bacteria. Adherent bacteria are viable (remain alive and motile after adhesion to patterned surface features) for more than four hours. Individual motile bacterial cells can be placed onto predesigned surface features that are at least 1.3 microm in diameter or larger. The importance of controlling the adhesion of single bacterial cell to a surface is discussed with regard to biomotor design.
Collapse
Affiliation(s)
- Sergey Rozhok
- Department of Chemistry and Institute for Nanotechnology, Northwestern University, 2145 Sheridan, Rd. Evanston, IL 60208, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Van Way SM, Millas SG, Lee AH, Manson MD. Rusty, jammed, and well-oiled hinges: Mutations affecting the interdomain region of FliG, a rotor element of the Escherichia coli flagellar motor. J Bacteriol 2004; 186:3173-81. [PMID: 15126479 PMCID: PMC400624 DOI: 10.1128/jb.186.10.3173-3181.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The FliG protein is a central component of the bacterial flagellar motor. It is one of the first proteins added during assembly of the flagellar basal body, and there are 26 copies per motor. FliG interacts directly with the Mot protein complex of the stator to generate torque, and it is a crucial player in switching the direction of flagellar rotation from clockwise (CW) to counterclockwise and vice versa. A primarily helical linker joins the N-terminal assembly domain of FliG, which is firmly attached to the FliF protein of the MS ring of the basal body, to the motility domain that interacts with MotA/MotB. We report here the results of a mutagenic analysis focused on what has been called the hinge region of the linker. Residue substitutions in this region generate a diversity of phenotypes, including motors that are strongly CW biased, infrequent switchers, rapid switchers, and transiently or permanently paused. Isolation of these mutants was facilitated by a "sensitizing" mutation (E232G) outside of the hinge region that was accidentally introduced during cloning of the chromosomal fliG gene into our vector plasmid. This mutation partially interferes with flagellar assembly and accentuates the defects associated with mutations that by themselves have little phenotypic consequence. The effects of these mutations are analyzed in the context of a conformational-coupling model for motor switching and with respect to the structure of the C-terminal 70% of FliG from Thermotoga maritima.
Collapse
Affiliation(s)
- Susan M Van Way
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Flagellated bacteria, such as Escherichia coli, swim by rotating thin helical filaments, each driven at its base by a reversible rotary motor, powered by an ion flux. A motor is about 45 nm in diameter and is assembled from about 20 different kinds of parts. It develops maximum torque at stall but can spin several hundred Hz. Its direction of rotation is controlled by a sensory system that enables cells to accumulate in regions deemed more favorable. We know a great deal about motor structure, genetics, assembly, and function, but we do not really understand how it works. We need more crystal structures. All of this is reviewed, but the emphasis is on function.
Collapse
Affiliation(s)
- Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
24
|
Bren A, Eisenbach M. Changing the direction of flagellar rotation in bacteria by modulating the ratio between the rotational states of the switch protein FliM. J Mol Biol 2001; 312:699-709. [PMID: 11575925 DOI: 10.1006/jmbi.2001.4992] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One of the major questions in bacterial chemotaxis is how the switch, which controls the direction of flagellar rotation, functions. It is well established that binding of the signaling molecule CheY to the switch protein FliM shifts the rotation from the default direction, counterclockwise, to clockwise. How this shift is done is still a mystery. Our aim in this study was to determine the correlation between the fraction of FliM molecules in the clockwise state (i.e. occupied by CheY) and the probability of clockwise rotation. For this purpose we gradually expressed, from a plasmid, a clockwise FliM mutant protein in cells that express, from the chromosome, wild-type FliM but no chemotaxis proteins. We verified that plasmid-borne FliM exchanges chromosomal FliM in the switch. Surprisingly, a substantial clockwise probability was not obtained before the large majority of the FliM molecules in the switch were clockwise molecules. Thereafter, the rise in clockwise probability was very steep. These results suggest that an increase in the clockwise probability requires a high level of FliM occupancy by CheY approximately P. They further suggest that the steep increase in clockwise rotation upon increasing CheY levels, reported in several studies, is due, at least in part, to cooperativity of post-binding interactions within the switch. We also carried out the inverse experiment, in which wild-type FliM was gradually expressed in a background of a clockwise fliM mutant. In this case, the level of the clockwise mutant protein, required for establishing a certain clockwise probability, was lower than in the original experiment. If our system (in which the ratio between the rotational states of FliM in the switch is established by slow exchange) and the native system (in which the ratio is established by fast changes in FliM occupancy) are comparable, the results suggest that hysteresis is involved in the switch function. Such a situation might reflect a damping mechanism, which prevents a situation in which fluctuations in the phosphorylation level of CheY throw the switch from one direction of rotation to the other.
Collapse
Affiliation(s)
- A Bren
- Department of Biological Chemistry, The Weizmann Institute of Science,76100 Rehovot, Israel
| | | |
Collapse
|
25
|
Duke TA, Le Novère N, Bray D. Conformational spread in a ring of proteins: a stochastic approach to allostery. J Mol Biol 2001; 308:541-53. [PMID: 11327786 DOI: 10.1006/jmbi.2001.4610] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently suggested that the sensitivity and range of a cluster of membrane receptors in bacteria would be enhanced by cooperative interactions between neighbouring proteins. Here, we examine the consequences of this "conformational spread" mechanism for an idealised one-dimensional system comprising a closed ring of identical allosteric protomers (protein molecules, or a group of protein domains operating as a unit). We show analytically and by means of Monte Carlo simulations that a ring of allosteric protomers can exhibit a switch-like response to changes in ligand concentration. We derive expressions for the sensitivity and cooperativity of switching and show that the maximum sensitivity is proportional to the number of protomers in the ring. A ring of this kind can reproduce the sensitivity and kinetics of the switch complex of a bacterial flagellar motor, for example, which is based on a ring of 34 FliM proteins. We also compare smaller rings of conformationally coupled protomers to classical allosteric proteins such as haemoglobin and show that the canonical MWC and KNF models arise naturally as limiting cases. Conformational spread appears to be a natural extension of the familiar mechanism of allostery: a physically realistic mechanism that should apply widely to many structures built from protein molecules.
Collapse
Affiliation(s)
- T A Duke
- Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, UK
| | | | | |
Collapse
|
26
|
Yamaguchi T, Yamamoto Y, Liu H. Computational mechanical model studies on the spontaneous emergent morphogenesis of the cultured endothelial cells. J Biomech 2000; 33:115-26. [PMID: 10609524 DOI: 10.1016/s0021-9290(99)00159-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To address questions concerning why and how the morphology of endothelial cells (ECs) forms under shear stress loading, a computational fluid dynamics (CFD) three-dimensional (3D) model of ECs simulating cell shape was designed. A full 3D non-linear CFD simulation was conducted to estimate the wall shear stress (WSS) distribution. The model cell was capable of random rotation, deformation, migration, and proliferation. Flow was computed after each update of the cell shape with infinitesimal configuration changes. After a finite interval of the flow computation, only the infinitesimal configuration changes that reduced the WSS were allowed to accumulate. As a result of the very long free-run computation experiment, starting with a sub-confluent pattern of cells, the model cells became confluent and were elongated and aligned, with a shape index (SI) very close to that reported for cells in vivo. The average WSS converged to the lowest value at the same time.
Collapse
Affiliation(s)
- T Yamaguchi
- Department of Mechanical and Systems Engineering, Nagoya Institute of Technology, Japan.
| | | | | |
Collapse
|
27
|
Abstract
The bacterial flagellum is probably the most complex organelle found in bacteria. Although the ribosome may be made of slightly more subunits, the bacterial flagellum is a more organized and complex structure. The limited number of flagella must be targeted to the correct place on the cell membrane and a structure with cytoplasmic, cytoplasmic membrane, outer membrane and extracellular components must be assembled. The process of controlled transcription and assembly is still not fully understood. Once assembled, the motor complex in the cytoplasmic membrane rotates, driven by the transmembrane ion gradient, at speeds that can reach many 100 Hz, driving the bacterial cell at several body lengths a second. This coupling of an electrochemical gradient to mechanical rotational work is another fascinating feature of the bacterial motor. A significant percentage of a bacterium's energy may be used in synthesizing the complex structure of the flagellum and driving its rotation. Although patterns of swimming may be random in uniform environments, in the natural environment, where cells are confronted with gradients of metabolites and toxins, motility is used to move bacteria towards their optimum environment for growth and survival. A sensory system therefore controls the switching frequency of the rotating flagellum. This review deals primarily with the structure and operation of the bacterial flagellum. There has been a great deal of research in this area over the past 20 years and only some of this has been included. We apologize in advance if certain areas are covered rather thinly, but hope that interested readers will look at the excellent detailed reviews on those areas cited at those points.
Collapse
Affiliation(s)
- R M Berry
- Randall Institute, King's College London, UK
| | | |
Collapse
|
28
|
Cohen-Krausz S, Trachtenberg S. Helical perturbations of the flagellar filament: rhizobium lupini H13-3 at 13 A resolution. J Struct Biol 1998; 122:267-82. [PMID: 9774531 DOI: 10.1006/jsbi.1998.4001] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Flagellar filaments are highly conserved structures in terms of the underlying symmetry of the polymer, subunit domain organization of the flagellin monomer, amino acid composition and primary sequence at the N and C termini. Traditionally, filaments are classified as "plain" or "complex." In complex filaments, the helical lattice is perturbed in a pairwise manner such that the symmetry is reduced along the 6-start helical lines. Both plain (unperturbed) and complex (helically perturbed) components are helically symmetric and share a common lattice. The perturbation in Rhizobium lupini H13-3 results in a subunit composed of a dimer of flagellin. We have generated a approximately 13 A resolution three-dimensional density map of the complex filament of R. lupini H13-3 from low-dose images of negatively stained filaments. Compared to a previous map, which extended to only approximately 25 A resolution and which was generated from only five filaments containing six layer-lines each, the current map is a product of merging 139 data sets containing 66 layer-lines each. The higher resolution and improved signal-to-noise yield a detailed and interpretable density map. The density map is divided into four concentric rings. These amount to two dense cylinders interconnected by low density radial spokes and wrapped by a three-start external winding. The unperturbed component of the map is strikingly similar to the known plain filament maps and, in particular, to that of Caulobacter crescentus. The helically perturbed component contributes mainly to the filaments's exterior (domain D3) where it comprises the tips of the outer domains interconnecting, pairwise, along the 11-start protofilaments and, again, laterally along the 6-start lines forming vertical and horizontal loops. Strong intersubunit connectivity occurs in the D2 shell and in the inner shell which is dominated by 3-start densities. The contribution of the complex component to the radial spokes seems negligible. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- S Cohen-Krausz
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | | |
Collapse
|
29
|
Alon U, Camarena L, Surette MG, Aguera y Arcas B, Liu Y, Leibler S, Stock JB. Response regulator output in bacterial chemotaxis. EMBO J 1998; 17:4238-48. [PMID: 9687492 PMCID: PMC1170757 DOI: 10.1093/emboj/17.15.4238] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemotaxis responses in Escherichia coli are mediated by the phosphorylated response-regulator protein P-CheY. Biochemical and genetic studies have established the mechanisms by which the various components of the chemotaxis system, the membrane receptors and Che proteins function to modulate levels of CheY phosphorylation. Detailed models have been formulated to explain chemotaxis sensing in quantitative terms; however, the models cannot be adequately tested without knowledge of the quantitative relationship between P-CheY and bacterial swimming behavior. A computerized image analysis system was developed to collect extensive statistics on freeswimming and individual tethered cells. P-CheY levels were systematically varied by controlled expression of CheY in an E.coli strain lacking the CheY phosphatase, CheZ, and the receptor demethylating enzyme CheB. Tumbling frequency was found to vary with P-CheY concentration in a weakly sigmoidal fashion (apparent Hill coefficient approximately 2.5). This indicates that the high sensitivity of the chemotaxis system is not derived from highly cooperative interactions between P-CheY and the flagellar motor, but rather depends on nonlinear effects within the chemotaxis signal transduction network. The complex relationship between single flagella rotation and free-swimming behavior was examined; our results indicate that there is an additional level of information processing associated with interactions between the individual flagella. An allosteric model of the motor switching process is proposed which gives a good fit to the observed switching induced by P-CheY. Thus the level of intracellular P-CheY can be estimated from behavior determinations: approximately 30% of the intracellular pool of CheY appears to be phosphorylated in fully adapted wild-type cells.
Collapse
Affiliation(s)
- U Alon
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The rotation rate of the unidirectional stop/start motor of Rhodobacter sphaeroides was investigated using computerised motion analysis of tethered cells. The R. sphaeroides motor was found to have a variable rotation rate compared to the virtually constant-speed motor of wild-type and CheR mutant (smooth swimming) Escherichia coli. In addition, the dynamics of the R. sphaeroides motor during stopping was analysed with no consistent correlation behaviour. The motor could go from full rotation to stop, or stop to full rotation within one video frame, i.e. 0.02 s, but it could also slow down into a stop or restart slowly, taking up to 0.25 s. The R. sphaeroides motor under chemokinetic stimulation was also analysed and was found to show increased torque generation and reduced variation in rotation rate.
Collapse
Affiliation(s)
- H L Packer
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
31
|
Blat Y, Eisenbach M. Oligomerization of the phosphatase CheZ upon interaction with the phosphorylated form of CheY. The signal protein of bacterial chemotaxis. J Biol Chem 1996; 271:1226-31. [PMID: 8557654 DOI: 10.1074/jbc.271.2.1226] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Earlier studies have suggested that CheZ, the phosphatase of the signaling protein CheY in bacterial chemotaxis, may be in an oligomeric state both when bound to phosphorylated CheY (CheY approximately P) (Blat, Y., and Eisenbach, M. (1994) Biochemistry 33, 902-906) or free (Stock, A., and Stock, J. B. (1987) J. Bacteriol. 169, 3301-3311). The purpose of the current study was to determine the oligomeric state of free CheZ and to investigate whether it changes upon binding to CheY approximately P. By using either one of two different sets of cross-linking agents, free CheZ was found to be a dimer. The formation of the dimer was specific, as it was prevented by SDS which does not interfere with cross-linking mediated by random collisions. The dimeric form of CheZ was confirmed by sedimentation analysis, a cross-linking-free technique. In the presence of CheY approximately P (but not in the presence of non-phosphorylated CheY), a high molecular size cross-linked complex (90-200 kDa) was formed, in which the CheZ:CheY ratio was 2:1. The size of the oligomeric complex was estimated by fluorescence depolarization to be 4-5-fold larger than the dimer, suggesting that its size is in the order of 200 kDa. These results indicate that CheZ oligomerizes upon interaction with CheY approximately P. This phosphorylation-dependent oligomerization may be a mechanism for regulating CheZ activity.
Collapse
Affiliation(s)
- Y Blat
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
32
|
Barak R, Eisenbach M. Regulation of interaction between signaling protein CheY and flagellar motor during bacterial chemotaxis. CURRENT TOPICS IN CELLULAR REGULATION 1996; 34:137-58. [PMID: 8646846 DOI: 10.1016/s0070-2137(96)80005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R Barak
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
33
|
Mitchell JG, Pearson L, Dillon S, Kantalis K. Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations. Appl Environ Microbiol 1995; 61:4436-40. [PMID: 8534107 PMCID: PMC167751 DOI: 10.1128/aem.61.12.4436-4440.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Natural communities of marine bacteria, an isolate (FMB-Bf3) from one marine community, and Escherichia coli were examined by video microscopy for the magnitude and uniformity of their speed. Natural communities formed tight microswarms that showed higher speeds (mean = 230 microns s-1) than did E. coli (15 microns s-1) or FMB-Bf3 (mean = 62 microns s-1). Outside the microswarms, the marine bacteria slowed to 45 microns s-1. Between turns, in mid run, and while travelling in straight lines, the natural-community bacteria accelerated up to 1,450 microns s-2 while the cultured bacteria showed maximum accelerations of 70 and 166 microns s-2. The frequency distribution of speed change for the marine bacteria was skewed towards a few large negative accelerations and a range of positive accelerations. The general pattern was one of relatively slow increases in speed followed by abrupt declines. The results indicate that the mechanical generation and energetic maintenance, as well as the environmental function, of bacterial motility need reappraisal. We conclude that the standard bacterial motility parameters of low and uniform speed, derived from culture-based studies, are not necessarily applicable to marine bacterial communities.
Collapse
|
34
|
Welch M, Margolin Y, Caplan SR, Eisenbach M. Rotational asymmetry of Escherichia coli flagellar motor in the presence of arsenate. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:81-7. [PMID: 7626666 DOI: 10.1016/0167-4889(95)00054-v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The flagellar motor of Escherichia coli (E. coli) is driven by a proton-motive force (PMF), hence it was of interest to determine whether the motor is symmetrical in the sense that it can be rotated by any polarity of PMF. For this purpose the cells had to be deenergized first. Conventional deenergization procedures caused irreversible loss of motility, presumably due to ATP-dependent degradative processes. However, E. coli cells deenergized by incubation with arsenate manifested a slow, reversible depletion of PMF. In this procedure there was a sufficiently long time window, during which a considerable proportion of the cells lost their motility and could be made to rotate again by an artificially-imposed PMF. The motors of these cells rotated in response to any PMF polarity, but positive and negative polarities rotated different sub-populations of cells and the direction was almost exclusively counterclockwise. The reason for the unidirectionality of the rotation was not the intervention of the chemotaxis system. A number of potential reasons are suggested. One is the arsenate effect on the motor function found previously [Margolin, Y., Barak, R. and Eisenbach, M. (1994) J. Bacteriol. 176, 5547-5549]. A possible interaction between arsenate and the motor is discussed.
Collapse
Affiliation(s)
- M Welch
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
35
|
Kara-Ivanov M, Eisenbach M, Caplan SR. Fluctuations in rotation rate of the flagellar motor of Escherichia coli. Biophys J 1995; 69:250-63. [PMID: 7669902 PMCID: PMC1236242 DOI: 10.1016/s0006-3495(95)79896-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The purpose of this work was to study the changes in rotation rate of the bacterial motor and to try to discriminate between various sources of these changes with the aim of understanding the mechanism of force generation better. To this end Escherichia coli cells were tethered and videotaped with brief stroboscopic light flashes. The records were scanned by means of a computerized motion analysis system, yielding cell size, radius of rotation, and accumulated angle of rotation as functions of time for each cell selected. In conformity with previous studies, fluctuations in the rotation rate of the flagellar motor were invariably found. Employing an exclusively counterclockwise rotating mutant ("gutted" RP1091 strain) and using power spectral density, autocorrelation and residual mean square angle analysis, we found that a simple superposition of rotational diffusion on a steady rotary motion is insufficient to describe the observed rotation. We observed two additional rotational components, one fluctuating (0.04-0.6 s) and one oscillating (0.8-7 s). However, the effective rotational diffusion coefficient obtained after taking these two components into account generally exceeded that calculated from external friction by two orders of magnitude. This is consistent with a model incorporating association and dissociation of force-generating units.
Collapse
Affiliation(s)
- M Kara-Ivanov
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
36
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
37
|
Tang H, Blair DF. Regulated underexpression of the FliM protein of Escherichia coli and evidence for a location in the flagellar motor distinct from the MotA/MotB torque generators. J Bacteriol 1995; 177:3485-95. [PMID: 7768858 PMCID: PMC177053 DOI: 10.1128/jb.177.12.3485-3495.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The FliM protein of Escherichia coli is essential for the assembly and function of flagella. Here, we report the effects of controlled low-level expression of FliM in a fliM null strain. Disruption of the fliM gene abolishes flagellation. Underexpression of FliM causes cells to produce comparatively few flagella, and most flagella built are defective, producing subnormal average torque and fluctuating rapidly in speed. The results imply that in a normal flagellar motor, multiple molecules of FliM are present and can function independently to some degree. The speed fluctuations indicate that stable operation requires most, possibly all, of the normal complement of FliM. Thus, the FliM subunits are not as fully independent as the motility proteins MotA and MotB characterized in earlier work, suggesting that FliM occupies a location in the motor distinct from the MotA/MotB torque generators. Several mutations in fliM previously reported to cause flagellar paralysis in Salmonella typhimurium (H. Sockett, S. Yamaguchi, M. Kihara, V.M. Irikura, and R. M. Macnab, J. Bacteriol. 174:793-806, 1992) were made and characterized in E. coli. These mutations did not cause flagellar paralysis in E. coli; their phenotypes were more complex and suggest that FliM is not directly involved in torque generation.
Collapse
Affiliation(s)
- H Tang
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
38
|
Welch M, Oosawa K, Aizawa SI, Eisenbach M. Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM. Biochemistry 1994; 33:10470-6. [PMID: 8068685 DOI: 10.1021/bi00200a031] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CheY is the response regulator of bacterial chemotaxis. Previously, we showed that CheY binds to the flagellar switch protein FliM and that this binding is increased upon phosphorylation of CheY [Welch, M., Oosawa, K., Aizawa, S.-I., & Eisenbach, M. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 8787-8791]. Here, we demonstrate that it is the phosphorylated conformation of CheY, rather than the phosphate group itself, that is recognized and bound by FliM. We found that subsequent to the phosphorylation of CheY, Mg2+ was not required for the binding of CheY to FliM. However, phosphorylation of CheY did cause a change in the coordination properties of Mg2+ in the acid pocket of the protein. This change in the coordination of Mg2+ required the presence of the absolutely conserved residue Lys109. When Lys109 was substituted by arginine, the resulting CheY protein was unable to adopt an active conformation upon phosphorylation, and the protein was not bound by FliM. Surprisingly, the CheY13DK mutant protein, which is active in vivo but cannot be phosphorylated in vitro, exhibited only a low level of FliM binding activity, suggesting that its ability to cause clockwise rotation in the cell is not due to a constitutively high level of FliM binding. On the basis of these findings, we propose a mechanism for CheY activation by phosphorylation.
Collapse
Affiliation(s)
- M Welch
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
39
|
Packer HL, Armitage JP. The chemokinetic and chemotactic behavior of Rhodobacter sphaeroides: two independent responses. J Bacteriol 1994; 176:206-12. [PMID: 8282697 PMCID: PMC205032 DOI: 10.1128/jb.176.1.206-212.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhodobacter sphaeroides exhibits two behavioral responses when exposed to some compounds: (i) a chemotactic response that results in accumulation and (ii) a sustained increase in swimming speed. This latter chemokinetic response occurs without any apparent long-term change in the size of the electrochemical proton gradient. The results presented here show that the chemokinetic response is separate from the chemotactic response, although some compounds can induce both responses. Compounds that caused only chemokinesis induced a sustained increase in the rate of flagellar rotation, but chemoeffectors which were also chemotactic caused an additional short-term change in both the stopping frequency and the duration of stops and runs. The response to a change in chemoattractant concentration was a transient increase in the stopping frequency when the concentration was reduced, with adaptation taking between 10 and 60 s. There was also a decrease in the stopping frequency when the concentration was increased, but adaptation took up to 60 min. The nature and duration of both the chemotactic and chemokinetic responses were concentration dependent. Weak organic acids elicited the strongest chemokinetic responses, and although many also caused chemotaxis, there were conditions under which chemokinesis occurred in the absence of chemotaxis. The transportable succinate analog malonate caused chemokinesis but not chemotaxis, as did acetate when added to a mutant able to transport but not grow on acetate. Chemokinesis also occurred after incubation with arsenate, conditions under which chemotaxis was lost, indicating that phosphorylation at some level may have a role in chemotaxis. Aspartate was the only chemoattractant amino acid to cause chemokinesis. Glutamate caused chemotaxis but not chemokinesis. These data suggest that (i) chemotaxis and chemokinesis are separate responses, (ii) metabolism is required for chemotaxis but not chemokinesis, (iii) a reduction in chemoattractant concentration may cause the major chemotactic signal, and (iv) a specific transport pathway(s) may be involved in chemokinetic signalling in R. sphaeroides.
Collapse
Affiliation(s)
- H L Packer
- Department of Biochemistry, University of Oxford, England
| | | |
Collapse
|
40
|
Khan S, Castellano F, Spudich JL, McCray JA, Goody RS, Reid GP, Trentham DR. Excitatory signaling in bacterial probed by caged chemoeffectors. Biophys J 1993; 65:2368-82. [PMID: 8312476 PMCID: PMC1225978 DOI: 10.1016/s0006-3495(93)81317-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chemotactic excitation responses to caged ligand photorelease of rapidly swimming bacteria that reverse (Vibrio alginolyticus) or tumble (Escherichia coli and Salmonella typhimurium) have been measured by computer. Mutants were used to assess the effects of abnormal motility behavior upon signal processing times and test feasibility of kinetic analyses of the signaling pathway in intact bacteria. N-1-(2-Nitrophenyl)ethoxycarbonyl-L-serine and 2-hydroxyphenyl 1-(2-nitrophenyl) ethyl phosphate were synthesized. These compounds are a 'caged' serine and a 'caged' proton and on flash photolysis release serine and protons and attractant and repellent ligands, respectively, for Tsr, the serine receptor. The product quantum yield for serine was 0.65 (+/- 0.05) and the rate of serine release was proportional to [H+] near-neutrality with a rate constant of 17 s-1 at pH 7.0 and 21 degrees C. The product quantum yield for protons was calculated to be 0.095 on 308-nm irradiation but 0.29 (+/- 0.02) on 300-350-nm irradiation, with proton release occurring at > 10(5) s-1. The pH jumps produced were estimated using pH indicators, the pH-dependent decay of the chromophoric aci-nitro intermediate and bioassays. Receptor deletion mutants did not respond to photorelease of the caged ligands. Population responses occurred without measurable latency. Response times increased with decreased stimulus strength. Physiological or genetic perturbation of motor rotation bias leading to increased tumbling reduced response sensitivity but did not affect response times. Exceptions were found. A CheR-CheB mutant strain had normal motility, but reduced response. A CheZ mutant had tumbly motility, reduced sensitivity, and increased response time to attractant, but a normal repellent response. These observations are consistent with current ideas that motor interactions with a single parameter, namely phosphorylated CheY protein, dictate motor response to both attractant and repellent stimuli. Inverse motility motor mutants with extreme rotation bias exhibited the greatest reduction in response sensitivity but, nevertheless, had normal attractant response times. This implies that control of CheY phosphate concentration rather than motor reactions limits responses to attractants.
Collapse
Affiliation(s)
- S Khan
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cells of the bacterium Escherichia coli were tethered and spun in a high-frequency rotating electric field at a series of discrete field strengths. This was done first at low field strengths, then at field strengths generating speeds high enough to disrupt motor function, and finally at low field strengths. Comparison of the initial and final speed versus applied-torque plots yielded relative motor torque. For backward rotation, motor torque rose steeply at speeds close to zero, peaking, on average, at about 2.2 times the stall torque. For forward rotation, motor torque remained approximately constant up to speeds of about 60% of the zero-torque speed. Then the torque dropped linearly with speed, crossed zero, and reached a minimum, on average, at about -1.7 times the stall torque. The zero-torque speed increased with temperature (about 90 Hz at 11 degrees C, 140 Hz at 16 degrees C, and 290 Hz at 23 degrees C), while other parameters remained approximately constant. Sometimes the motor slipped at either extreme (delivered constant torque over a range of speeds), but eventually it broke. Similar results were obtained whether motors broke catastrophically (suddenly and completely) or progressively or were de-energized by brief treatment with an uncoupler. These results are consistent with a tightly coupled ratchet mechanism, provided that elastic deformation of force-generating elements is limited by a stop and that mechanical components yield at high applied torques.
Collapse
Affiliation(s)
- H C Berg
- Rowland Institute for Science, Harvard University, Cambridge, Massachusetts 02138-2020
| | | |
Collapse
|
42
|
Bray D, Bourret RB, Simon MI. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol Biol Cell 1993; 4:469-82. [PMID: 8334303 PMCID: PMC300951 DOI: 10.1091/mbc.4.5.469] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have developed a computer program that simulates the intracellular reactions mediating the rapid (nonadaptive) chemotactic response of Escherichia coli bacteria to the attractant aspartate and the repellent Ni2+ ions. The model is built from modular units representing the molecular components involved, which are each assigned a known value of intracellular concentration and enzymatic rate constant wherever possible. The components are linked into a network of coupled biochemical reactions based on a compilation of widely accepted mechanisms but incorporating several novel features. The computer motor shows the same pattern of runs, tumbles and pauses seen in actual bacteria and responds in the same way as living bacteria to sudden changes in concentration of aspartate or Ni2+. The simulated network accurately reproduces the phenotype of more than 30 mutants in which components of the chemotactic pathway are deleted and/or expressed in excess amounts and shows a rapidity of response to a step change in aspartate concentration similar to living bacteria. Discrepancies between the simulation and real bacteria in the phenotype of certain mutants and in the gain of the chemotactic response to aspartate suggest the existence of additional as yet unidentified interactions in the in vivo signal processing pathway.
Collapse
Affiliation(s)
- D Bray
- Department of Zoology, University of Cambridge, United Kingdom
| | | | | |
Collapse
|
43
|
Abstract
A model is presented for the rotary motor that drives bacterial flagella, using the electrochemical gradient of protons across the cytoplasmic membrane. The model unifies several concepts present in previous models. Torque is generated by proton-conducting particles around the perimeter of the rotor at the base of the flagellum. Protons in channels formed by these particles interact electrostatically with tilted lines of charges on the rotor, providing "loose coupling" between proton flux and rotation of the flagellum. Computer simulations of the model correctly predict the experimentally observed dynamic properties of the motor. Unlike previous models, the motor presented here may rotate either way for a given direction of the protonmotive force. The direction of rotation only depends on the level of occupancy of the proton channels. This suggests a novel and simple mechanism for the switching between clockwise and counterclockwise rotation that is the basis of bacterial chemotaxis.
Collapse
Affiliation(s)
- R M Berry
- Clarendon Laboratory, Oxford, United Kingdom
| |
Collapse
|
44
|
Brown S, Poole PS, Jeziorska W, Armitage JP. Chemokinesis in Rhodobacter sphaeroides is the result of a long term increase in the rate of flagellar rotation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90058-n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Affiliation(s)
- S R Caplan
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
46
|
Barak R, Eisenbach M. Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. Biochemistry 1992; 31:1821-6. [PMID: 1737035 DOI: 10.1021/bi00121a034] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylation of the chemotaxis protein CheY by its kinase CheA appears to play a central role in the process of signal transduction in bacterial chemotaxis. It is presumed that the role is activation of CheY which results in clockwise (CW) flagellar rotation. The aim of this study was to determine whether this activity of CheY indeed depends on the protein being phosphorylated. Since the phosphorylation of CheY can be detected only in vitro, we studied the ability of CheY to cause CW rotation in an in vitro system, consisting of cytoplasm-free envelopes of Salmonella typhimurium or Escherichia coli having functional flagella. Envelopes containing just buffer rotated only counterclockwise. Inclusion of CheY caused 14% of the rotating envelopes to go CW. This fraction of CW-rotating envelopes was not altered when the phosphate potential in the envelopes was lowered by inclusion of ADP together with CheY in them, indicating that CheY has a certain degree of activity even without being phosphorylated. Attempts to increase the activity of CheY in the envelopes by phosphorylation were not successful. However, when CheY was inserted into partially-lysed cells (semienvelopes) under phosphorylating conditions, the number of CW-rotating cells increased 3-fold. This corresponds to more than a 100-fold increase in the activity of a single CheY molecule upon phosphorylation. It is concluded that nonphosphorylated CheY can interact with the flagellar switch and cause CW rotation, but that this activity is increased by at least 2 orders of magnitude by phosphorylation. This increase in activity requires additional cytoplasmic constituents, the identity of which is not yet known.
Collapse
Affiliation(s)
- R Barak
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
47
|
Barak R, Eisenbach M. Fumarate or a fumarate metabolite restores switching ability to rotating flagella of bacterial envelopes. J Bacteriol 1992; 174:643-5. [PMID: 1729255 PMCID: PMC205763 DOI: 10.1128/jb.174.2.643-645.1992] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Flagella of cytoplasm-free envelopes of Escherichia coli or Salmonella typhimurium can rotate in either the counterclockwise or clockwise direction, but they never switch from one direction of rotation to another. Exogenous fumarate, in the intracellular presence of the chemotaxis protein CheY, restored switching ability to envelopes, with a concomitant increase in clockwise rotation. An increase in clockwise rotation was also observed after fumarate was added to partially lysed cells of E. coli, but the proportion of switching cells remained unchanged.
Collapse
Affiliation(s)
- R Barak
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
48
|
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station 77843-3258
| |
Collapse
|
49
|
Abstract
Halobacterium halobium swims with a polarly inserted motor-driven flagellar bundle. The swimming direction of the cell can be reserved by switching the rotational sense of the bundle. The switch is under the control of photoreceptor and chemoreceptor proteins that act through a branched signal chain. The swimming behavior of the cells and the switching process of the flagellar bundle were investigated with a computer-assisted motion analysis system. The cells were shown to swim faster by clockwise than by counterclockwise rotation of the flagellar bundle. From the small magnitude of speed fluctuations, it is concluded that the majority, if not all, of the individual flagellar motors of a cell rotate in the same direction at any given time. After stimulation with light (blue light pulse or orange light step-down), the cells continued swimming with almost constant speed but then slowed before they reversed direction. The cells passed through a pausing state during the change of the rotational sense of the flagellar bundle and then exhibited a transient acceleration. Both the average length of the pausing period and the transient acceleration were independent of the stimulus size and thus represent intrinsic properties of the flagellar motor assembly. The average length of the pausing period of individual cells, however, was not constant. The time course of the probability for spontaneous motor switching was calculated from frequency distribution and shown to be independent of the rotational sense. The time course further characterizes spontaneous switching as a stochastic rather than an oscillator-triggered event.
Collapse
|
50
|
Jones CJ, Aizawa S. The bacterial flagellum and flagellar motor: structure, assembly and function. Adv Microb Physiol 1991; 32:109-72. [PMID: 1882727 DOI: 10.1016/s0065-2911(08)60007-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The bacterial flagellum is a complex multicomponent structure which serves as the propulsive organelle for many species of bacteria. Rotation of the helical flagellar filament, driven by a proton-powered motor embedded in the cell wall, enables the flagellum to function as a screw propeller. It seems likely that almost all of the genes required for flagellar formation and function have been identified. Continuing analysis of the portions of the genome containing these genes may reveal the existence of a few more. Transcription of the flagellar genes is under the control of the products of a single operon, and so these genes constitute a regulon. Other controls, both transcriptional and post-transcriptional, have been identified. Many of these genes have been sequenced, and the information obtained will aid in the design of experiments to clarify the various regulatory mechanisms of the flagellar regulon. The flagellum is composed of several substructures. The long helical filament is connected via the flexible hook to the complex basal body which is located in the cell wall. The filament is composed of many copies of a single protein, and can adopt a number of distinct helical forms. Structural analyses of the filament are adding to our understanding of this dynamic polymer. The component proteins of the hook and filament have all been identified. Continuing studies on the structure of the basal body have revealed the presence of several hitherto unknown basal-body proteins, whose identities and functions have yet to be elucidated. The proteins essential for energizing the motor, the Mot and switch proteins, are thought to exist as multisubunit complexes peripheral to the basal body. These complexes have yet to be identified biochemically or morphologically. Not surprisingly, flagellar assembly is a complex process, occurring in several stages. Assembly occurs in a proximal-to-distal fashion; the basal body is assembled before the hook, and the hook before the filament. This pattern is also maintained within the filament, with monomers added at the distal end of the polymer; the same is presumably true of the other axial components. An exception to this general pattern is assembly of the Mot proteins into the motor, which appears to be possible at any time during flagellar assembly. With the identification of the genes encoding many of the flagellar proteins, the roles of these proteins in assembly is understood, but the function of a number of gene products in flagellar formation remains unknown.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C J Jones
- ERATO, Research Development Corporation of Japan, Ibaraki
| | | |
Collapse
|