1
|
Hagan ML, Tuladhar A, Yu K, Alhamad DW, Bensreti H, Dorn J, Piedra VM, Cantu N, Stokes EG, Blumenthal D, Roberts RL, Balayan V, Bass SM, Dickerson T, Cartelle AL, Montesinos-Cartagena M, Awad ME, Castro AA, Garland T, Cooley MA, Johnson M, Hamrick MW, McNeil PL, McGee-Lawrence ME. Osteocyte Sptbn1 Deficiency Alters Cell Survival and Mechanotransduction Following Formation of Plasma Membrane Disruptions (PMD) from Mechanical Loading. Calcif Tissue Int 2024; 115:725-743. [PMID: 39276238 DOI: 10.1007/s00223-024-01285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
We and others have shown that application of high-level mechanical loading promotes the formation of transient plasma membrane disruptions (PMD) which initiate mechanotransduction. We hypothesized that increasing osteocyte cell membrane fragility, by disrupting the cytoskeleton-associated protein β2-spectrin (Sptbn1), could alter osteocytic responses and bone adaptation to loading in a PMD-related fashion. In MLO-Y4 cells, treatment with the spectrin-disrupting agent diamide or knockdown of Sptbn1 via siRNA increased the number of PMD formed by fluid shear stress. Primary osteocytes from an osteocyte-targeted DMP1-Cre Sptbn1 conditional knockout (CKO) model mimicked trends seen with diamide and siRNA treatment and suggested the creation of larger PMD, which repaired more slowly, for a given level of stimulus. Post-wounding cell survival was impaired in all three models, and calcium signaling responses from the wounded osteocyte were mildly altered in Sptbn1 CKO cultures. Although Sptbn1 CKO mice did not demonstrate an altered skeletal phenotype as compared to WT littermates under baseline conditions, they showed a blunted increase in cortical thickness when subjected to an osteogenic tibial loading protocol as well as evidence of increased osteocyte death (increased lacunar vacancy) in the loaded limb after 2 weeks of loading. The impaired post-wounding cell viability and impaired bone adaptation seen with Sptbn1 disruption support the existence of an important role for Sptbn1, and PMD formation, in osteocyte mechanotransduction and bone adaptation to mechanical loading.
Collapse
Affiliation(s)
- Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Anik Tuladhar
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Dima W Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Husam Bensreti
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Victor M Piedra
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Nicholas Cantu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Eric G Stokes
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Daniel Blumenthal
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Rachel L Roberts
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Vanshika Balayan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Sarah M Bass
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Thomas Dickerson
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Anabel Liyen Cartelle
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Marlian Montesinos-Cartagena
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Mohamed E Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Alberto A Castro
- Evolution Ecology & Organismal Biology Department, University of California Riverside, Riverside, USA
| | - Theodore Garland
- Evolution Ecology & Organismal Biology Department, University of California Riverside, Riverside, USA
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Maribeth Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Paul L McNeil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA.
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
2
|
Slick RA, Sutton J, Haberman M, O'Brien BS, Tinklenberg JA, Mardikar A, Prom MJ, Beatka M, Gartz M, Vanden Avond MA, Siebers E, Mack DL, Gonzalez JP, Ebert AD, Nagaraju K, Lawlor MW. High mobility group box 1 (HMGB1) is a potential disease biomarker in cell and mouse models of Duchenne muscular dystrophy. Biol Open 2024; 13:bio060542. [PMID: 39158383 PMCID: PMC11391821 DOI: 10.1242/bio.060542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder affecting 1:3500 male births and is associated with myofiber degeneration, regeneration, and inflammation. Glucocorticoid treatments have been the standard of care due to immunomodulatory/immunosuppressive properties but novel genetic approaches, including exon skipping and gene replacement therapy, are currently being developed. The identification of additional biomarkers to assess DMD-related inflammatory responses and the potential efficacy of these therapeutic approaches are thus of critical importance. The current study uses RNA sequencing of skeletal muscle from two mdx mouse models to identify high mobility group box 1 (HMGB1) as a candidate biomarker potentially contributing to DMD-related inflammation. HMGB1 protein content was increased in a human iPSC-derived skeletal myocyte model of DMD and microdystrophin treatment decreased HMGB1 back to control levels. In vivo, HMGB1 protein levels were increased in vehicle treated B10-mdx skeletal muscle compared to B10-WT and significantly decreased in B10-mdx animals treated with adeno-associated virus (AAV)-microdystrophin. However, HMGB1 protein levels were not increased in D2-mdx skeletal muscle compared to D2-WT, demonstrating a strain-specific difference in DMD-related immunopathology.
Collapse
Affiliation(s)
- Rebecca A. Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Margaret Haberman
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Benjamin S. O'Brien
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer A. Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aashay Mardikar
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mariah J. Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Margaret Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Melanie Gartz
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark A. Vanden Avond
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Emily Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David L. Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98104, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98104, USA
| | | | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kanneboyina Nagaraju
- AGADA BioSciences Inc., Halifax, Nova Scotia, B3H0A8, Canada
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY 13902, USA
| | - Michael W. Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| |
Collapse
|
3
|
Coles CA, Woodman KG, Gibbs EM, Crosbie RH, White JD, Lamandé SR. Benfotiamine improves dystrophic pathology and exercise capacity in mdx mice by reducing inflammation and fibrosis. Hum Mol Genet 2024; 33:1339-1355. [PMID: 38710523 PMCID: PMC11262745 DOI: 10.1093/hmg/ddae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive and fatal neuromuscular disease. Cycles of myofibre degeneration and regeneration are hallmarks of the disease where immune cells infiltrate to repair damaged skeletal muscle. Benfotiamine is a lipid soluble precursor to thiamine, shown clinically to reduce inflammation in diabetic related complications. We assessed whether benfotiamine administration could reduce inflammation related dystrophic pathology. Benfotiamine (10 mg/kg/day) was fed to male mdx mice (n = 7) for 15 weeks from 4 weeks of age. Treated mice had an increased growth weight (5-7 weeks) and myofibre size at treatment completion. Markers of dystrophic pathology (area of damaged necrotic tissue, central nuclei) were reduced in benfotiamine mdx quadriceps. Grip strength was increased and improved exercise capacity was found in mdx treated with benfotiamine for 12 weeks, before being placed into individual cages and allowed access to an exercise wheel for 3 weeks. Global gene expression profiling (RNAseq) in the gastrocnemius revealed benfotiamine regulated signalling pathways relevant to dystrophic pathology (Inflammatory Response, Myogenesis) and fibrotic gene markers (Col1a1, Col1a2, Col4a5, Col5a2, Col6a2, Col6a2, Col6a3, Lum) towards wildtype levels. In addition, we observed a reduction in gene expression of inflammatory gene markers in the quadriceps (Emr1, Cd163, Cd4, Cd8, Ifng). Overall, these data suggest that benfotiamine reduces dystrophic pathology by acting on inflammatory and fibrotic gene markers and signalling pathways. Given benfotiamine's excellent safety profile and current clinical use, it could be used in combination with glucocorticoids to treat DMD patients.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Inbred mdx
- Fibrosis/drug therapy
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Male
- Thiamine/analogs & derivatives
- Thiamine/pharmacology
- Physical Conditioning, Animal
- Disease Models, Animal
Collapse
Affiliation(s)
- Chantal A Coles
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Keryn G Woodman
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
- Department of Genetics, Yale Medical School, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, 612 Charles E Young Dr S, Los Angeles 90095, California, USA
- Center for Duchenne Muscular Dystrophy, University of California, 615 Charles E Young Dr S, Los Angeles 90095, California, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, 612 Charles E Young Dr S, Los Angeles 90095, California, USA
- Center for Duchenne Muscular Dystrophy, University of California, 615 Charles E Young Dr S, Los Angeles 90095, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California, 610 Charles E Young Dr S, Los Angeles, California 90095, USA
| | - Jason D White
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
- Charles Sturt University, Office of the Deputy Vice Chancellor Research, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Shireen R Lamandé
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
4
|
Hua C, Slick RA, Vavra J, Muretta JM, Ervasti JM, Salapaka MV. Two operational modes of atomic force microscopy reveal similar mechanical properties for homologous regions of dystrophin and utrophin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.593686. [PMID: 38826288 PMCID: PMC11142110 DOI: 10.1101/2024.05.18.593686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by the absence of the protein dystrophin. Dystrophin is hypothesized to work as a molecular shock absorber that limits myofiber membrane damage when undergoing reversible unfolding upon muscle stretching and contraction. Utrophin is a dystrophin homologue that is under investigation as a protein replacement therapy for DMD. However, it remains uncertain whether utrophin can mechanically substitute for dystrophin. Here, we compared the mechanical properties of homologous utrophin and dystrophin fragments encoding the N terminus through spectrin repeat 3 (UtrN-R3, DysN-R3) using two operational modes of atomic force microscopy (AFM), constant speed and constant force. Our comprehensive data, including the statistics of force magnitude at which the folded domains unfold in constant speed mode and the time of unfolding statistics in constant force mode, show consistent results. We recover parameters of the energy landscape of the domains and conducted Monte Carlo simulations which corroborate the conclusions drawn from experimental data. Our results confirm that UtrN-R3 expressed in bacteria exhibits significantly lower mechanical stiffness compared to insect UtrN-R3, while the mechanical stiffness of the homologous region of dystrophin (DysN-R3) is intermediate between bacterial and insect UtrN-R3, showing greater similarity to bacterial UtrN-R3.
Collapse
Affiliation(s)
- Cailong Hua
- Department of Electrical and Computer Engineering, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Rebecca A Slick
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Joseph Vavra
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Murti V Salapaka
- Department of Electrical and Computer Engineering, University of Minnesota - Twin Cities, Minneapolis, MN
| |
Collapse
|
5
|
Boehler JF, Brown KJ, Ricotti V, Morris CA. N-terminal titin fragment: a non-invasive, pharmacodynamic biomarker for microdystrophin efficacy. Skelet Muscle 2024; 14:2. [PMID: 38229112 PMCID: PMC10790446 DOI: 10.1186/s13395-023-00334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Multiple clinical trials to assess the efficacy of AAV-directed gene transfer in participants with Duchenne muscular dystrophy (DMD) are ongoing. The success of these trials currently relies on standard functional outcome measures that may exhibit variability within and between participants, rendering their use as sole measures of drug efficacy challenging. Given this, supportive objective biomarkers may be useful in enhancing observed clinical results. Creatine kinase (CK) is traditionally used as a diagnostic biomarker of DMD, but its potential as a robust pharmacodynamic (PD) biomarker is difficult due to the wide variability seen within the same participant over time. Thus, there is a need for the discovery and validation of novel PD biomarkers to further support and bolster traditional outcome measures of efficacy in DMD. METHOD Potential PD biomarkers in DMD participant urine were examined using a proteomic approach on the Somalogic platform. Findings were confirmed in both mdx mice and Golden Retriever muscular dystrophy (GRMD) dog plasma samples. RESULTS Changes in the N-terminal fragment of titin, a well-known, previously characterized biomarker of DMD, were correlated with the expression of microdystrophin protein in mice, dogs, and humans. Further, titin levels were sensitive to lower levels of expressed microdystrophin when compared to CK. CONCLUSION The measurement of objective PD biomarkers such as titin may provide additional confidence in the assessment of the mechanism of action and efficacy in gene therapy clinical trials of DMD. TRIAL REGISTRATION ClinicalTrials.gov NCT03368742.
Collapse
Affiliation(s)
- Jessica F Boehler
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA, 02129, USA.
| | - Kristy J Brown
- Rejuvenate Bio, 11425 Sorrento Valley Road, San Diego, CA, 92121, USA
| | - Valeria Ricotti
- National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre/University College London Great Ormond Street Institute of Child Health, London, UK
| | - Carl A Morris
- PHDL Consulting LLC, 43 Sylvanus Wood Lane, Woburn, MA, 01801, USA
| |
Collapse
|
6
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
7
|
Gerwin RD. A New Unified Theory of Trigger Point Formation: Failure of Pre- and Post-Synaptic Feedback Control Mechanisms. Int J Mol Sci 2023; 24:ijms24098142. [PMID: 37175845 PMCID: PMC10179372 DOI: 10.3390/ijms24098142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The origin of the myofascial trigger point (TrP), an anomalous locus in muscle, has never been well-described. A new trigger point hypothesis (the new hypothesis) presented here addresses this lack. The new hypothesis is based on the concept that existing myoprotective feedback mechanisms that respond to muscle overactivity, low levels of adenosine triphosphate, (ATP) or a low pH, fail to protect muscle in certain circumstances, such as intense muscle activity, resulting in an abnormal accumulation of intracellular Ca2+, persistent actin-myosin cross bridging, and then activation of the nociceptive system, resulting in the formation of a trigger point. The relevant protective feedback mechanisms include pre- and postsynaptic sympathetic nervous system modulation, modulators of acetylcholine release at the neuromuscular junction, and mutations/variants or post-translational functional alterations in either of two ion channelopathies, the ryanodine receptor and the potassium-ATP ion channel, both of which exist in multiple mutation states that up- or downregulate ion channel function. The concepts that are central to the origin of at least some TrPs are the failure of protective feedback mechanisms and/or of certain ion channelopathies that are new concepts in relation to myofascial trigger points.
Collapse
Affiliation(s)
- Robert D Gerwin
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Pokrovsky MV, Korokin MV, Krayushkina AM, Zhunusov NS, Lapin KN, Soldatova MO, Kuzmin EA, Gudyrev OS, Kochkarova IS, Deikin AV. CONVENTIONAL APPROACHES TO THE THERAPY OF HEREDITARY MYOPATHIES. PHARMACY & PHARMACOLOGY 2022. [DOI: 10.19163/2307-9266-2022-10-5-416-431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the work was to analyze the available therapeutic options for the conventional therapy of hereditary myopathies.Materials and methods. When searching for the material for writing a review article, such abstract databases as PubMed and Google Scholar were used. The search was carried out on the publications during the period from 1980 to September 2022. The following words and their combinations were selected as parameters for the literature selection: “myopathy”, “Duchenne”, “myodystrophy”, “metabolic”, “mitochondrial”, “congenital”, “symptoms”, “replacement”, “recombinant”, “corticosteroids”, “vitamins”, “tirasemtiv”, “therapy”, “treatment”, “evidence”, “clinical trials”, “patients”, “dichloracetate”.Results. Congenital myopathies are a heterogeneous group of pathologies that are caused by atrophy and degeneration of muscle fibers due to mutations in genes. Based on a number of clinical and pathogenetic features, hereditary myopathies are divided into: 1) congenital myopathies; 2) muscular dystrophy; 3) mitochondrial and 4) metabolic myopathies. At the same time, treatment approaches vary significantly depending on the type of myopathy and can be based on 1) substitution of the mutant protein; 2) an increase in its expression; 3) stimulation of the internal compensatory pathways expression; 4) restoration of the compounds balance associated with the mutant protein function (for enzymes); 5) impact on the mitochondrial function (with metabolic and mitochondrial myopathies); 6) reduction of inflammation and fibrosis (with muscular dystrophies); as well as 7) an increase in muscle mass and strength. The current review presents current data on each of the listed approaches, as well as specific pharmacological agents with a description of their action mechanisms.Conclusion. Currently, the following pharmacological groups are used or undergoing clinical trials for the treatment of various myopathies types: inotropic, anti-inflammatory and antifibrotic drugs, antimyostatin therapy and the drugs that promote translation through stop codons (applicable for nonsense mutations). In addition, metabolic drugs, metabolic enzyme cofactors, mitochondrial biogenesis stimulators, and antioxidants can be used to treat myopathies. Finally, the recombinant drugs alglucosidase and avalglucosidase have been clinically approved for the replacement therapy of metabolic myopathies (Pompe’s disease).
Collapse
Affiliation(s)
| | | | | | | | - K. N. Lapin
- V.A. Negovsky Research Institute of General Reanimatology, Federal Scientific and Clinical Center for Resuscitation and Rehabilitology
| | | | - E. A. Kuzmin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
9
|
Kaplan KM, Morgan KG. The importance of dystrophin and the dystrophin associated proteins in vascular smooth muscle. Front Physiol 2022; 13:1059021. [PMID: 36505053 PMCID: PMC9732661 DOI: 10.3389/fphys.2022.1059021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
This review details the role of dystrophin and the dystrophin associated proteins (DAPs) in the vascular smooth muscle. Dystrophin is most comprehensively studied in the skeletal muscle due to serious symptoms found related to the skeletal muscle of patients with muscular dystrophy. Mutations in the dystrophin gene, or DAPs genes, result in a wide range of muscular dystrophies. In skeletal muscle, dystrophin is known to act to as a cytoskeletal stabilization protein and protects cells against contraction-induced damage. In skeletal muscle, dystrophin stabilizes the plasma membrane by transmitting forces generated by sarcomeric contraction to the extracellular matrix (ECM). Dystrophin is a scaffold that binds the dystroglycan complex (DGC) and has many associated proteins (DAPs). These DAPs include sarcoglycans, syntrophins, dystroglycans, dystrobrevin, neuronal nitric oxide synthase, and caveolins. The DAPs provide biomechanical support to the skeletal or cardiac plasma membrane during contraction, and loss of one or several of these DAPs leads to plasma membrane fragility. Dystrophin is expressed near the plasma membrane of all muscles, including cardiac and vascular smooth muscle, and some neurons. Dystrophic mice have noted biomechanical irregularities in the carotid arteries and spontaneous motor activity in portal vein altered when compared to wild type mice. Additionally, some studies suggest the vasculature of patients and animal models with muscular dystrophy is abnormal. Although the function of dystrophin and the DAPs in vascular smooth muscle is not thoroughly established in the field, this review makes the point that these proteins are expressed, and important and further study is warranted.
Collapse
|
10
|
Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-β via Smad3 acetylation. Nat Commun 2022; 13:7108. [PMID: 36402791 PMCID: PMC9675748 DOI: 10.1038/s41467-022-34831-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
The absence of dystrophin in Duchenne muscular dystrophy disrupts the dystrophin-associated glycoprotein complex resulting in skeletal muscle fiber fragility and atrophy, associated with fibrosis as well as microtubule and neuromuscular junction disorganization. The specific, non-conventional cytoplasmic histone deacetylase 6 (HDAC6) was recently shown to regulate acetylcholine receptor distribution and muscle atrophy. Here, we report that administration of the HDAC6 selective inhibitor tubastatin A to the Duchenne muscular dystrophy, mdx mouse model increases muscle strength, improves microtubule, neuromuscular junction, and dystrophin-associated glycoprotein complex organization, and reduces muscle atrophy and fibrosis. Interestingly, we found that the beneficial effects of HDAC6 inhibition involve the downregulation of transforming growth factor beta signaling. By increasing Smad3 acetylation in the cytoplasm, HDAC6 inhibition reduces Smad2/3 phosphorylation, nuclear translocation, and transcriptional activity. These findings provide in vivo evidence that Smad3 is a new target of HDAC6 and implicate HDAC6 as a potential therapeutic target in Duchenne muscular dystrophy.
Collapse
|
11
|
Mamsa H, Stark RL, Shin KM, Beedle AM, Crosbie RH. Sarcospan increases laminin-binding capacity of α-dystroglycan to ameliorate DMD independent of Galgt2. Hum Mol Genet 2022; 31:718-732. [PMID: 34581784 PMCID: PMC8895749 DOI: 10.1093/hmg/ddab276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/14/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), mutations in dystrophin result in a loss of the dystrophin-glycoprotein complex (DGC) at the myofiber membrane, which functions to connect the extracellular matrix with the intracellular actin cytoskeleton. The dystroglycan subcomplex interacts with dystrophin and spans the sarcolemma where its extensive carbohydrates (matriglycan and CT2 glycan) directly interact with the extracellular matrix. In the current manuscript, we show that sarcospan overexpression enhances the laminin-binding capacity of dystroglycan in DMD muscle by increasing matriglycan glycosylation of α-dystroglycan. Furthermore, we find that this modification is not affected by loss of Galgt2, a glycotransferase, which catalyzes the CT2 glycan. Our findings reveal that the matriglycan carbohydrates, and not the CT2 glycan, are necessary for sarcospan-mediated amelioration of DMD. Overexpression of Galgt2 in the DMD mdx murine model prevents muscle pathology by increasing CT2 modified α-dystroglycan. Galgt2 also increases expression of utrophin, which compensates for the loss of dystrophin in DMD muscle. We found that combined loss of Galgt2 and dystrophin reduced utrophin expression; however, it did not interfere with sarcospan rescue of disease. These data reveal a partial dependence of sarcospan on Galgt2 for utrophin upregulation. In addition, sarcospan alters the cross-talk between the adhesion complexes by decreasing the association of integrin β1D with dystroglycan complexes. In conclusion, sarcospan functions to re-wire the cell to matrix connections by strengthening the cellular adhesion and signaling, which, in turn, increases the resilience of the myofiber membrane.
Collapse
Affiliation(s)
- Hafsa Mamsa
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Rachelle L Stark
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Kara M Shin
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, Binghamton University State University of New York, New York 13902, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
- Broad Stem Cell Institute, University of California, Los Angeles 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
- Molecular Biology Institute, University of California, Los Angeles 90095, USA
| |
Collapse
|
12
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Nogami K, Maruyama Y, Sakai-Takemura F, Motohashi N, Elhussieny A, Imamura M, Miyashita S, Ogawa M, Noguchi S, Tamura Y, Kira JI, Aoki Y, Takeda S, Miyagoe-Suzuki Y. Pharmacological activation of SERCA ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. Hum Mol Genet 2021; 30:1006-1019. [PMID: 33822956 PMCID: PMC8170845 DOI: 10.1093/hmg/ddab100] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscular weakness because of the loss of dystrophin. Extracellular Ca2+ flows into the cytoplasm through membrane tears in dystrophin-deficient myofibers, which leads to muscle contracture and necrosis. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) takes up cytosolic Ca2+ into the sarcoplasmic reticulum, but its activity is decreased in dystrophic muscle. Here, we show that an allosteric SERCA activator, CDN1163, ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. The administration of CDN1163 prevented exercise-induced muscular damage and restored mitochondrial function. In addition, treatment with CDN1163 for 7 weeks enhanced muscular strength and reduced muscular degeneration and fibrosis in mdx mice. Our findings provide preclinical proof-of-concept evidence that pharmacological activation of SERCA could be a promising therapeutic strategy for DMD. Moreover, CDN1163 improved muscular strength surprisingly in wild-type mice, which may pave the new way for the treatment of muscular dysfunction.
Collapse
Affiliation(s)
- Ken'ichiro Nogami
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Maruyama
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Fusako Sakai-Takemura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ahmed Elhussieny
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Megumu Ogawa
- Department of Neuromuscular Research, National Institute of Neuroscience, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Clinical Development, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
14
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
15
|
Valera IC, Wacker AL, Hwang HS, Holmes C, Laitano O, Landstrom AP, Parvatiyar MS. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv Med Sci 2021; 66:52-71. [PMID: 33387942 DOI: 10.1016/j.advms.2020.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.
Collapse
Affiliation(s)
- Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Amanda L Wacker
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL, USA
| | - Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
16
|
Gibbs EM, McCourt JL, Shin KM, Hammond KG, Marshall JL, Crosbie RH. Loss of sarcospan exacerbates pathology in mdx mice, but does not affect utrophin amelioration of disease. Hum Mol Genet 2021; 30:149-159. [PMID: 33432327 PMCID: PMC8091037 DOI: 10.1093/hmg/ddaa264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023] Open
Abstract
The dystrophin-glycoprotein complex (DGC) is a membrane adhesion complex that provides structural stability at the sarcolemma by linking the myocyte's internal cytoskeleton and external extracellular matrix. In Duchenne muscular dystrophy (DMD), the absence of dystrophin leads to the loss of the DGC at the sarcolemma, resulting in sarcolemmal instability and progressive muscle damage. Utrophin (UTRN), an autosomal homolog of dystrophin, is upregulated in dystrophic muscle and partially compensates for the loss of dystrophin in muscle from patients with DMD. Here, we examine the interaction between Utr and sarcospan (SSPN), a small transmembrane protein that is a core component of both UTRN-glycoprotein complex (UGC) and DGC. We show that additional loss of SSPN causes an earlier onset of disease in dystrophin-deficient mdx mice by reducing the expression of the UGC at the sarcolemma. In order to further evaluate the role of SSPN in maintaining therapeutic levels of Utr at the sarcolemma, we tested the effect of Utr transgenic overexpression in mdx mice lacking SSPN (mdx:SSPN -/-:Utr-Tg). We found that overexpression of Utr restored SSPN to the sarcolemma in mdx muscle but that the ablation of SSPN in mdx muscle reduced Utr at the membrane. Nevertheless, Utr overexpression reduced central nucleation and improved grip strength in both lines. These findings demonstrate that high levels of Utr transgenic overexpression ameliorate the mdx phenotype independently of SSPN expression but that loss of SSPN may impair Utr-based mechanisms that rely on lower levels of Utr protein.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jackie L McCourt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Kara M Shin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Katherine G Hammond
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Ramani Sattiraju S, Jama A, Alshudukhi AA, Edward Townsend N, Reynold Miranda D, Reese RR, Voss AA, Ren H. Loss of membrane integrity drives myofiber death in lipin1-deficient skeletal muscle. Physiol Rep 2020; 8:e14620. [PMID: 33113595 PMCID: PMC7592881 DOI: 10.14814/phy2.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Mutations in lipin1 are suggested to be a common cause of massive rhabdomyolysis episodes in children; however, the molecular mechanisms involved in the regulation of myofiber death caused by the absence of lipin1 are not fully understood. Loss of membrane integrity is considered as an effective inducer of cell death in muscular dystrophy. In this study, we utilized a mouse line with selective homozygous lipin1 deficiency in the skeletal muscle (Lipin1Myf5cKO ) to determine the role of compromised membrane integrity in the myofiber death in lipin1-deficient muscles. We found that Lipin1Myf5cKO muscles had significantly elevated proapoptotic factors (Bax, Bak, and cleaved caspase-9) and necroptotic proteins such as RIPK1, RIPK3, and MLKL compared with WT mice. Moreover, Lipin1Myf5cKO muscle had significantly higher membrane disruptions, as evidenced by increased IgG staining and elevated uptake of Evans Blue Dye (EBD) and increased serum creatine kinase activity in Lipin1Myf5cKO muscle fibers. EBD-positive fibers were strongly colocalized with apoptotic or necroptotic myofibers, suggesting an association between compromised plasma membrane integrity and cell death pathways. We further show that the absence of lipin1 leads to a significant decrease in the absolute and specific muscle force (normalized to muscle mass). Our work indicates that apoptosis and necroptosis are associated with a loss of membrane integrity in Lipin1Myf5cKO muscle and that myofiber death and dysfunction may cause a decrease in contractile force.
Collapse
Affiliation(s)
| | - Abdulrahman Jama
- Department of Biochemistry and Molecular BiologyWright State UniversityDaytonOHUSA
| | | | | | | | - Rebecca R Reese
- Department of Biochemistry and Molecular BiologyWright State UniversityDaytonOHUSA
| | - Andrew A. Voss
- Department of Biological SciencesWright State UniversityDaytonOHUSA
| | - Hongmei Ren
- Department of Biochemistry and Molecular BiologyWright State UniversityDaytonOHUSA
| |
Collapse
|
18
|
Garbincius JF, Merz LE, Cuttitta AJ, Bayne KV, Schrade S, Armstead EA, Converso-Baran KL, Whitesall SE, D'Alecy LG, Michele DE. Enhanced dimethylarginine degradation improves coronary flow reserve and exercise tolerance in Duchenne muscular dystrophy carrier mice. Am J Physiol Heart Circ Physiol 2020; 319:H582-H603. [PMID: 32762558 DOI: 10.1152/ajpheart.00333.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by null mutations in dystrophin and characterized by muscle degeneration. Cardiomyopathy is common and often prevalent at similar frequency in female DMD carriers irrespective of whether they manifest skeletal muscle disease. Impaired muscle nitric oxide (NO) production in DMD disrupts muscle blood flow regulation and exaggerates postexercise fatigue. We show that circulating levels of endogenous methylated arginines including asymmetric dimethylarginine (ADMA), which act as NO synthase inhibitors, are elevated by acute necrotic muscle damage and in chronically necrotic dystrophin-deficient mice. We therefore hypothesized that excessive ADMA impairs muscle NO production and diminishes exercise tolerance in DMD. We used transgenic expression of dimethylarginine dimethylaminohydrolase 1 (DDAH), which degrades methylated arginines, to investigate their contribution to exercise-induced fatigue in DMD. Although infusion of exogenous ADMA was sufficient to impair exercise performance in wild-type mice, transgenic DDAH expression did not rescue exercise-induced fatigue in dystrophin-deficient male mdx mice. Surprisingly, DDAH transgene expression did attenuate exercise-induced fatigue in dystrophin-heterozygous female mdx carrier mice. Improved exercise tolerance was associated with reduced heart weight and improved cardiac β-adrenergic responsiveness in DDAH-transgenic mdx carriers. We conclude that DDAH overexpression increases exercise tolerance in female DMD carriers, possibly by limiting cardiac pathology and preserving the heart's responses to changes in physiological demand. Methylated arginine metabolism may be a new target to improve exercise tolerance and cardiac function in DMD carriers or act as an adjuvant to promote NO signaling alongside therapies that partially restore dystrophin expression in patients with DMD.NEW & NOTEWORTHY Duchenne muscular dystrophy (DMD) carriers are at risk for cardiomyopathy. The nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) is released from damaged muscle in DMD and impairs exercise performance. Transgenic expression of dimethylarginine dimethylaminohydrolase to degrade ADMA prevents cardiac hypertrophy, improves cardiac function, and improves exercise tolerance in DMD carrier mice. These findings highlight the relevance of ADMA to muscular dystrophy and have important implications for therapies targeting nitric oxide in patients with DMD and DMD carriers.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lauren E Merz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ashley J Cuttitta
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kaitlynn V Bayne
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Sara Schrade
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Emily A Armstead
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | | | - Steven E Whitesall
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Physiology Phenotyping Core, University of Michigan, Ann Arbor, Michigan
| | - Louis G D'Alecy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Physiology Phenotyping Core, University of Michigan, Ann Arbor, Michigan
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Physiology Phenotyping Core, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
Muscular Dystrophy and Rehabilitation Interventions with Regenerative Treatment. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-019-00255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Mia MM, Singh MK. The Hippo Signaling Pathway in Cardiac Development and Diseases. Front Cell Dev Biol 2019; 7:211. [PMID: 31632964 PMCID: PMC6779857 DOI: 10.3389/fcell.2019.00211] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023] Open
Abstract
Heart disease continues to be the leading cause of morbidity and mortality worldwide. Cardiac malformation during development could lead to embryonic or postnatal death. However, matured heart tissue has a very limited regenerative capacity. Thus, loss of cardiomyocytes from injury or diseases in adults could lead to heart failure. The Hippo signaling pathway is a newly identified signaling cascade that modulates regenerative response by regulating cardiomyocyte proliferation in the embryonic heart, as well as in postnatal hearts after injury. In this review, we summarize recent findings highlighting the function and regulation of the Hippo signaling pathway in cardiac development and diseases.
Collapse
Affiliation(s)
- Masum M Mia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore
| |
Collapse
|
21
|
Houston MT, Gutierrez JB. The FRiND Model: A Mathematical Model for Representing Macrophage Plasticity in Muscular Dystrophy Pathogenesis. Bull Math Biol 2019; 81:3976-3997. [PMID: 31302876 PMCID: PMC6764940 DOI: 10.1007/s11538-019-00635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/19/2019] [Indexed: 12/04/2022]
Abstract
Muscular dystrophy describes generalized progressive muscular weakness due to the wasting of muscle fibers. The progression of the disease is affected by known immunological and mechanical factors, and possibly other unknown mechanisms. This article introduces a new mathematical model, the FRiND model, to further elucidate these known immunological actions. We will perform stability and sensitivity analyses on this model. The models time course results will be verified by biological studies in the literature. This model could be the foundation for further understanding of immunological muscle repair.
Collapse
Affiliation(s)
- Matthew T Houston
- Department of Mathematics, Middle Georgia State University, Macon, GA, 31206, USA. .,University of Georgia, Athens, GA, 30602, USA.
| | | |
Collapse
|
22
|
Bhat SS, Ali R, Khanday FA. Syntrophins entangled in cytoskeletal meshwork: Helping to hold it all together. Cell Prolif 2019; 52:e12562. [PMID: 30515904 PMCID: PMC6496184 DOI: 10.1111/cpr.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023] Open
Abstract
Syntrophins are a family of 59 kDa peripheral membrane-associated adapter proteins, containing multiple protein-protein and protein-lipid interaction domains. The syntrophin family consists of five isoforms that exhibit specific tissue distribution, distinct sub-cellular localization and unique expression patterns implying their diverse functional roles. These syntrophin isoforms form multiple functional protein complexes and ensure proper localization of signalling proteins and their binding partners to specific membrane domains and provide appropriate spatiotemporal regulation of signalling pathways. Syntrophins consist of two PH domains, a PDZ domain and a conserved SU domain. The PH1 domain is split by the PDZ domain. The PH2 and the SU domain are involved in the interaction between syntrophin and the dystrophin-glycoprotein complex (DGC). Syntrophins recruit various signalling proteins to DGC and link extracellular matrix to internal signalling apparatus via DGC. The different domains of the syntrophin isoforms are responsible for modulation of cytoskeleton. Syntrophins associate with cytoskeletal proteins and lead to various cellular responses by modulating the cytoskeleton. Syntrophins are involved in many physiological processes which involve cytoskeletal reorganization like insulin secretion, blood pressure regulation, myogenesis, cell migration, formation and retraction of focal adhesions. Syntrophins have been implicated in various pathologies like Alzheimer's disease, muscular dystrophy, cancer. Their role in cytoskeletal organization and modulation makes them perfect candidates for further studies in various cancers and other ailments that involve cytoskeletal modulation. The role of syntrophins in cytoskeletal organization and modulation has not yet been comprehensively reviewed till now. This review focuses on syntrophins and highlights their role in cytoskeletal organization, modulation and dynamics via its involvement in different cell signalling networks.
Collapse
Affiliation(s)
- Sahar S. Bhat
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Roshia Ali
- Department of BiotechnologyUniversity of KashmirSrinagarIndia
- Department of BiochemistryUniversity of KashmirSrinagarIndia
| | | |
Collapse
|
23
|
Abstract
Dystrophin is the largest protein isoform (427 kDa) expressed from the gene defective in Duchenne muscular dystrophy, a lethal muscle-wasting and genetically inherited disease. Dystrophin, localized within a cytoplasmic lattice termed costameres, connects the intracellular cytoskeleton of a myofiber through the cell membrane (sarcolemma) to the surrounding extracellular matrix. In spite of its mechanical regulation roles in stabilizing the sarcolemma during muscle contraction, the underlying molecular mechanism is still elusive. Here, we systematically investigated the mechanical stability and kinetics of the force-bearing central domain of human dystrophin that contains 24 spectrin repeats using magnetic tweezers. We show that the stochastic unfolding and refolding of central domain of dystrophin is able to keep the forces below 25 pN over a significant length change up to ∼800 nm in physiological level of pulling speeds. These results suggest that dystrophin may serve as a molecular shock absorber that defines the physiological level of force in the dystrophin-mediated force-transmission pathway during muscle contraction/stretch, thereby stabilizing the sarcolemma.
Collapse
Affiliation(s)
- Shimin Le
- Department of Physics, National University of Singapore, Singapore, 117551
| | - Miao Yu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
| | - Ladislav Hovan
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
| | - Zhihai Zhao
- Department of Physics, National University of Singapore, Singapore, 117551
| | - James Ervasti
- College of Biological Sciences, University of Minnesota, MN, USA, 55455
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
- Centre for BioImaging Sciences, National University of Singapore, Singapore, 117546
| |
Collapse
|
24
|
Lau YS, Xu L, Gao Y, Han R. Automated muscle histopathology analysis using CellProfiler. Skelet Muscle 2018; 8:32. [PMID: 30336774 PMCID: PMC6193305 DOI: 10.1186/s13395-018-0178-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Histological assessment of skeletal muscle sections is important for the research of muscle physiology and diseases. Quantifiable measures of skeletal muscle often include mean fiber diameter, fiber size distribution, and centrally nucleated muscle fibers. These parameters offer insights into the dynamic adaptation of skeletal muscle cells during repeated cycles of degeneration and regeneration associated with many muscle diseases and injuries. Computational programs designed to obtain these parameters would greatly facilitate such efforts and offer significant advantage over manual image analysis, which is very labor-intensive and often subjective. Here, we describe a customized pipeline termed MuscleAnalyzer for muscle histology analysis based upon CellProfiler, a free, open-source software for measuring and analyzing cell images. RESULTS The MuscleAnalyzer pipeline consists of loading, adjusting, and running a series of image-processing modules provided by CellProfiler. This pipeline was evaluated using wild-type and mdx muscle sections co-stained with laminin (to demarcate the muscle fiber boundaries) and 4',6-diamidino-2-phenylindole (DAPI, to label the nuclei). The immunofluorescence images analyzed using the MuscleAnalyzer pipeline or manually yielded similar results in the number of muscle fibers per image (p = 0.42) and central nucleated fiber (CNF) percentage (p = 0.29) in mdx mice. However, for a total of 67 images, CellProfiler completed the analysis in ~ 10 min on a regular PC while it took an investigator ~ 3 h using the manual approach in order to quantify the number of muscle fibers and CNF. Moreover, the MuscleAnalyzer pipeline also provided the measurement of the cross-sectional area (CSA) and minimal Feret's diameter (MFD) of muscle fibers, and thus fiber size distribution can be plotted. CONCLUSIONS Our data indicate that the MuscleAnalyzer pipeline can efficiently and accurately analyze laminin and DAPI co-stained muscle images in a batch format and provide quantitative measurements for muscle histological properties such as muscle fiber diameters, fiber size distribution, and CNF percentage.
Collapse
Affiliation(s)
- Yeh Siang Lau
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. Compr Physiol 2017; 7:1519-1536. [PMID: 28915335 DOI: 10.1002/cphy.c150033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Apurva Sarathy
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.,Departamento de Biologia Animal, Centro de Ecologia, Evolucao e Alteracoes Ambientais, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
26
|
Schill KE, Altenberger AR, Lowe J, Periasamy M, Villamena FA, Rafael-Fortney JIA, Devor ST. Muscle damage, metabolism, and oxidative stress in mdx mice: Impact of aerobic running. Muscle Nerve 2017; 54:110-7. [PMID: 26659868 DOI: 10.1002/mus.25015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 01/10/2023]
Abstract
INTRODUCTION We tested how a treadmill exercise program influences oxygen consumption, oxidative stress, and exercise capacity in the mdx mouse, a model of Duchenne muscular dystrophy. METHODS At age 4 weeks mdx mice were subjected to 4 weeks of twice-weekly treadmill exercise. Sedentary mdx and wild-type mice served as controls. Oxygen consumption, time to exhaustion, oxidative stress, and myofiber damage were assessed. RESULTS At age 4 weeks, there was a significant difference in exercise capacity between mdx and wild-type mice. After exercise, mdx mice had lower basal oxygen consumption and exercise capacity, but similar maximal oxygen consumption. Skeletal muscle from these mice displayed increased oxidative stress. Collagen deposition was higher in exercised versus sedentary mice. CONCLUSIONS Exercised mdx mice exhibit increased oxidative stress, as well as deficits in exercise capacity, baseline oxygen consumption, and increased myofiber fibrosis. Muscle Nerve 54: 110-117, 2016.
Collapse
Affiliation(s)
- Kevin E Schill
- Department of Human Sciences, Kinesiology Program, The Ohio State University, Columbus, Ohio, USA
| | - Alex R Altenberger
- Department of Human Sciences, Kinesiology Program, The Ohio State University, Columbus, Ohio, USA
| | - Jeovanna Lowe
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Muthu Periasamy
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Frederick A Villamena
- Deparment of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - JIll A Rafael-Fortney
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Steven T Devor
- Department of Human Sciences, Kinesiology Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
27
|
Gibbs EM, Marshall JL, Ma E, Nguyen TM, Hong G, Lam JS, Spencer MJ, Crosbie-Watson RH. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD. Hum Mol Genet 2017; 25:5395-5406. [PMID: 27798107 PMCID: PMC5418831 DOI: 10.1093/hmg/ddw356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder that causes progressive muscle weakness, ultimately leading to early mortality in affected teenagers and young adults. Previous work from our lab has shown that a small transmembrane protein called sarcospan (SSPN) can enhance the recruitment of adhesion complex proteins to the cell surface. When human SSPN is expressed at three-fold levels in mdx mice, this increase in adhesion complex abundance improves muscle membrane stability, preventing many of the histopathological changes associated with DMD. However, expressing higher levels of human SSPN (ten-fold transgenic expression) causes a severe degenerative muscle phenotype in wild-type mice. Since SSPN-mediated stabilization of the sarcolemma represents a promising therapeutic strategy in DMD, it is important to determine whether SSPN can be introduced at high levels without toxicity. Here, we show that mouse SSPN (mSSPN) can be overexpressed at 30-fold levels in wild-type mice with no deleterious effects. In mdx mice, mSSPN overexpression improves dystrophic pathology and sarcolemmal stability. We show that these mice exhibit increased resistance to eccentric contraction-induced damage and reduced fatigue following exercise. mSSPN overexpression improved pulmonary function and reduced dystrophic histopathology in the diaphragm. Together, these results demonstrate that SSPN overexpression is well tolerated in mdx mice and improves sarcolemma defects that underlie skeletal muscle and pulmonary dysfunction in DMD.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Eva Ma
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Thien M Nguyen
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Grace Hong
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Jessica S Lam
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Melissa J Spencer
- Center for Duchenne Muscular Dystrophy.,Molecular Biology Institute, University of California Los Angeles CA 90095, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy.,Department of Neurology David Geffen School of Medicine.,Molecular Biology Institute, University of California Los Angeles CA 90095, USA
| |
Collapse
|
28
|
Brun BN, Mockler SRH, Laubscher KM, Stephan CM, Collison JA, Zimmerman MB, Mathews KD. Childhood Activity on Progression in Limb Girdle Muscular Dystrophy 2I. J Child Neurol 2017; 32:204-209. [PMID: 27872178 PMCID: PMC5464953 DOI: 10.1177/0883073816677680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Limb girdle muscular dystrophy 2I is a slowly progressive muscular dystrophy due to mutations in the Fukutin-related protein ( FKRP) gene. Clinicians are frequently asked if physical activity is harmful for pediatric patients with limb girdle muscular dystrophy 2I. The primary objective of this study was to determine if there is a relationship between self-reported childhood activity level and motor function and respiratory function in older children and adults with limb girdle muscular dystrophy 2I. We compared retrospective self-reported middle school activity level and sport participation with age at onset of weakness, 10-meter walk test, and forced vital capacity later in life in 41 participants with FKRP mutations. We found no relationship between activity level in childhood and disease course later in life, suggesting that self-directed physical activity in children with limb girdle muscular dystrophy 2I does not negatively affect disease progression and outcome.
Collapse
Affiliation(s)
- Brianna N Brun
- 1 Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Shelley R H Mockler
- 2 Center for Disabilities and Development, University of Iowa Children's Hospital, Iowa City, IA, USA
| | - Katie M Laubscher
- 2 Center for Disabilities and Development, University of Iowa Children's Hospital, Iowa City, IA, USA
| | - Carrie M Stephan
- 1 Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Julia A Collison
- 1 Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - M Bridget Zimmerman
- 3 Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Katherine D Mathews
- 1 Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,4 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
29
|
Role of dystroglycan in limiting contraction-induced injury to the sarcomeric cytoskeleton of mature skeletal muscle. Proc Natl Acad Sci U S A 2016; 113:10992-7. [PMID: 27625424 DOI: 10.1073/pnas.1605265113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dystroglycan (DG) is a highly expressed extracellular matrix receptor that is linked to the cytoskeleton in skeletal muscle. DG is critical for the function of skeletal muscle, and muscle with primary defects in the expression and/or function of DG throughout development has many pathological features and a severe muscular dystrophy phenotype. In addition, reduction in DG at the sarcolemma is a common feature in muscle biopsies from patients with various types of muscular dystrophy. However, the consequence of disrupting DG in mature muscle is not known. Here, we investigated muscles of transgenic mice several months after genetic knockdown of DG at maturity. In our study, an increase in susceptibility to contraction-induced injury was the first pathological feature observed after the levels of DG at the sarcolemma were reduced. The contraction-induced injury was not accompanied by increased necrosis, excitation-contraction uncoupling, or fragility of the sarcolemma. Rather, disruption of the sarcomeric cytoskeleton was evident as reduced passive tension and decreased titin immunostaining. These results reveal a role for DG in maintaining the stability of the sarcomeric cytoskeleton during contraction and provide mechanistic insight into the cause of the reduction in strength that occurs in muscular dystrophy after lengthening contractions.
Collapse
|
30
|
Rubi L, Koenig X, Kubista H, Todt H, Hilber K. Decreased inward rectifier potassium current I K1 in dystrophin-deficient ventricular cardiomyocytes. Channels (Austin) 2016; 11:101-108. [PMID: 27560040 PMCID: PMC5398571 DOI: 10.1080/19336950.2016.1228498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current IK1, which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential IK1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that IK1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.
Collapse
Affiliation(s)
- Lena Rubi
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| | - Xaver Koenig
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| | - Helmut Kubista
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| | - Hannes Todt
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| | - Karlheinz Hilber
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
31
|
Ikeda T, Ichii O, Otsuka-Kanazawa S, Nakamura T, Elewa YHA, Kon Y. Degenerative and regenerative features of myofibers differ among skeletal muscles in a murine model of muscular dystrophy. J Muscle Res Cell Motil 2016; 37:153-164. [DOI: 10.1007/s10974-016-9452-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
|
32
|
Parvatiyar MS, Marshall JL, Nguyen RT, Jordan MC, Richardson VA, Roos KP, Crosbie-Watson RH. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.115.002481. [PMID: 26702077 PMCID: PMC4845268 DOI: 10.1161/jaha.115.002481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin‐associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin‐binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. Methods and Results SSPN‐null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β‐adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN‐null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α‐, δ‐, and γ‐subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdxTG) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. Conclusions SSPN regulates sarcolemmal expression of laminin‐binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Reginald T Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.)
| | - Maria C Jordan
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Vanitra A Richardson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Kenneth P Roos
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA (R.H.C.W.)
| |
Collapse
|
33
|
Garbincius JF, Michele DE. Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling. Proc Natl Acad Sci U S A 2015. [PMID: 26483453 DOI: 10.1073./pnas.1512991112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Patients deficient in dystrophin, a protein that links the cytoskeleton to the extracellular matrix via the dystrophin-glycoprotein complex (DGC), exhibit muscular dystrophy, cardiomyopathy, and impaired muscle nitric oxide (NO) production. We used live-cell NO imaging and in vitro cyclic stretch of isolated adult mouse cardiomyocytes as a model system to investigate if and how the DGC directly regulates the mechanical activation of muscle NO signaling. Acute activation of NO synthesis by mechanical stretch was impaired in dystrophin-deficient mdx cardiomyocytes, accompanied by loss of stretch-induced neuronal NO synthase (nNOS) S1412 phosphorylation. Intriguingly, stretch induced the acute activation of AMP-activated protein kinase (AMPK) in normal cardiomyocytes but not in mdx cardiomyocytes, and specific inhibition of AMPK was sufficient to attenuate mechanoactivation of NO production. Therefore, we tested whether direct pharmacologic activation of AMPK could bypass defective mechanical signaling to restore nNOS activity in dystrophin-deficient cardiomyocytes. Indeed, activation of AMPK with 5-aminoimidazole-4-carboxamide riboside or salicylate increased nNOS S1412 phosphorylation and was sufficient to enhance NO production in mdx cardiomyocytes. We conclude that the DGC promotes the mechanical activation of cardiac nNOS by acting as a mechanosensor to regulate AMPK activity, and that pharmacologic AMPK activation may be a suitable therapeutic strategy for restoring nNOS activity in dystrophin-deficient hearts and muscle.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
34
|
Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling. Proc Natl Acad Sci U S A 2015; 112:13663-8. [PMID: 26483453 DOI: 10.1073/pnas.1512991112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients deficient in dystrophin, a protein that links the cytoskeleton to the extracellular matrix via the dystrophin-glycoprotein complex (DGC), exhibit muscular dystrophy, cardiomyopathy, and impaired muscle nitric oxide (NO) production. We used live-cell NO imaging and in vitro cyclic stretch of isolated adult mouse cardiomyocytes as a model system to investigate if and how the DGC directly regulates the mechanical activation of muscle NO signaling. Acute activation of NO synthesis by mechanical stretch was impaired in dystrophin-deficient mdx cardiomyocytes, accompanied by loss of stretch-induced neuronal NO synthase (nNOS) S1412 phosphorylation. Intriguingly, stretch induced the acute activation of AMP-activated protein kinase (AMPK) in normal cardiomyocytes but not in mdx cardiomyocytes, and specific inhibition of AMPK was sufficient to attenuate mechanoactivation of NO production. Therefore, we tested whether direct pharmacologic activation of AMPK could bypass defective mechanical signaling to restore nNOS activity in dystrophin-deficient cardiomyocytes. Indeed, activation of AMPK with 5-aminoimidazole-4-carboxamide riboside or salicylate increased nNOS S1412 phosphorylation and was sufficient to enhance NO production in mdx cardiomyocytes. We conclude that the DGC promotes the mechanical activation of cardiac nNOS by acting as a mechanosensor to regulate AMPK activity, and that pharmacologic AMPK activation may be a suitable therapeutic strategy for restoring nNOS activity in dystrophin-deficient hearts and muscle.
Collapse
|
35
|
Mojumdar K, Liang F, Giordano C, Lemaire C, Danialou G, Okazaki T, Bourdon J, Rafei M, Galipeau J, Divangahi M, Petrof BJ. Inflammatory monocytes promote progression of Duchenne muscular dystrophy and can be therapeutically targeted via CCR2. EMBO Mol Med 2015; 6:1476-92. [PMID: 25312642 PMCID: PMC4237472 DOI: 10.15252/emmm.201403967] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myofiber necrosis and fibrosis are hallmarks of Duchenne muscular dystrophy (DMD), leading to lethal weakness of the diaphragm. Macrophages (MPs) are required for successful muscle regeneration, but the role of inflammatory monocyte (MO)-derived MPs in either promoting or mitigating DMD is unclear. We show that DMD (mdx) mouse diaphragms exhibit greatly increased expression of CCR2 and its chemokine ligands, along with inflammatory (Ly6C(high)) MO recruitment and accumulation of CD11b(high) MO-derived MPs. Loss-of-function of CCR2 preferentially reduced this CD11b(high) MP population by impeding the release of Ly6C(high) MOs from the bone marrow but not the splenic reservoir. CCR2 deficiency also helped restore the MP polarization balance by preventing excessive skewing of MPs toward a proinflammatory phenotype. These effects were linked to amelioration of histopathological features and increased muscle strength in the diaphragm. Chronic inhibition of CCR2 signaling by mutated CCL2 secreted from implanted mesenchymal stem cells resulted in similar improvements. These data uncover a previously unrecognized role of inflammatory MOs in DMD pathogenesis and indicate that CCR2 inhibition could offer a novel strategy for DMD management.
Collapse
Affiliation(s)
- Kamalika Mojumdar
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Feng Liang
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Christian Giordano
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Christian Lemaire
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Gawiyou Danialou
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Tatsuma Okazaki
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Johanne Bourdon
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Jacques Galipeau
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Maziar Divangahi
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| |
Collapse
|
36
|
Hu X, Blemker SS. Musculoskeletal simulation can help explain selective muscle degeneration in Duchenne muscular dystrophy. Muscle Nerve 2015; 52:174-82. [DOI: 10.1002/mus.24607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering; University of Virginia; 415 Lane Road Charlottesville Virginia USA 22908
| | - Silvia S. Blemker
- Department of Biomedical Engineering; University of Virginia; 415 Lane Road Charlottesville Virginia USA 22908
- Department of Mechanical and Aerospace Engineering; University of Virginia; Charlottesville Virginia USA
| |
Collapse
|
37
|
Hausburg MA, Doles JD, Clement SL, Cadwallader AB, Hall MN, Blackshear PJ, Lykke-Andersen J, Olwin BB. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay. eLife 2015; 4:e03390. [PMID: 25815583 PMCID: PMC4415119 DOI: 10.7554/elife.03390] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle satellite cells in their niche are quiescent and upon muscle injury, exit quiescence, proliferate to repair muscle tissue, and self-renew to replenish the satellite cell population. To understand the mechanisms involved in maintaining satellite cell quiescence, we identified gene transcripts that were differentially expressed during satellite cell activation following muscle injury. Transcripts encoding RNA binding proteins were among the most significantly changed and included the mRNA decay factor Tristetraprolin. Tristetraprolin promotes the decay of MyoD mRNA, which encodes a transcriptional regulator of myogenic commitment, via binding to the MyoD mRNA 3′ untranslated region. Upon satellite cell activation, p38α/β MAPK phosphorylates MAPKAP2 and inactivates Tristetraprolin, stabilizing MyoD mRNA. Satellite cell specific knockdown of Tristetraprolin precociously activates satellite cells in vivo, enabling MyoD accumulation, differentiation and cell fusion into myofibers. Regulation of mRNAs by Tristetraprolin appears to function as one of several critical post-transcriptional regulatory mechanisms controlling satellite cell homeostasis. DOI:http://dx.doi.org/10.7554/eLife.03390.001 When muscles are damaged, they can repair themselves to some extent by making new muscle cells. These develop from groups of cells called satellite cells, which are found near the surface of muscle fibers. Once the muscle is injured, the satellite cells are activated and can divide to form two cells with different properties. One remains a satellite cell, while the other forms a ‘myoblast’ that eventually fuses into a mature muscle fiber. Under normal conditions the satellite cells remain in a dormant state and do not divide, but it is not clear how they maintain this dormant state. To create a protein, the gene that encodes it is first ‘transcribed’ to produce a molecule called mRNA, which is then used as a template to build the protein. A protein called Tristetraprolin (TTP) can bind to mRNA molecules and cause them to break down or decay, and so TTP can prevent the mRNA from being used to make a protein. Hausburg, Doles et al. analyzed satellite cells from uninjured muscle and compared them with those from injured tissue. This revealed that when injured, the satellite cells reduced the abundance of several mRNAs, including TTP. Further investigation found that in satellite cells from uninjured tissue, TTP causes the decay of mRNA molecules that are used to produce a protein called MyoD. As MyoD helps the satellite cells to specialize, this decay therefore prevents the formation of myoblasts and keeps the satellite cells in a dormant state. In contrast, damage to the muscle tissue activates a signaling pathway that ultimately inactivates TTP. This enables more of the MyoD protein to be made and the myoblast population to expand. When Hausburg, Doles et al. experimentally reduced the levels of TTP inside satellite cells, the cells developed into myoblasts even when the tissue was uninjured. Thus, TTP is an important regulator that allows satellite cells to remain in a dormant state. In dormant adult stem cells, regulation of protein availability by RNA binding proteins, such as TTP, may co-ordinate rapid changes in metabolic state to promptly repair injured tissue. A major challenge will be to identify the group of proteins involved and determine the precise mechanisms involved in regulating their availability. DOI:http://dx.doi.org/10.7554/eLife.03390.002
Collapse
Affiliation(s)
- Melissa A Hausburg
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jason D Doles
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Sandra L Clement
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Adam B Cadwallader
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Monica N Hall
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Perry J Blackshear
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jens Lykke-Andersen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Bradley B Olwin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
38
|
Marshall JL, Oh J, Chou E, Lee JA, Holmberg J, Burkin DJ, Crosbie-Watson RH. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet 2014; 24:2011-22. [PMID: 25504048 DOI: 10.1093/hmg/ddu615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin-glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan 'rescue' of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Jennifer Oh
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Eric Chou
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Joy A Lee
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Johan Holmberg
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Dean J Burkin
- Department of Pharmacology, Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy, Molecular Biology Institute, Department of Neurology, University of California, Los Angeles, CA 90095, USA and
| |
Collapse
|
39
|
Sharma P, Basu S, Mitchell RW, Stelmack GL, Anderson JE, Halayko AJ. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function. PLoS One 2014; 9:e102737. [PMID: 25054970 PMCID: PMC4108318 DOI: 10.1371/journal.pone.0102737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD) and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC) and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh) when compared to genetic control BL10ScSnJ mice (wild-type). In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Dogs
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/physiology
- Immunohistochemistry
- Lung/metabolism
- Lung/physiology
- Methacholine Chloride/pharmacology
- Mice, Inbred mdx
- Mice, Knockout
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Muscle Contraction/genetics
- Muscle Contraction/physiology
- Muscle, Smooth/cytology
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Myosin Heavy Chains/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Respiratory System/cytology
- Respiratory System/metabolism
- Respiratory System/ultrastructure
- Signal Transduction/genetics
- Signal Transduction/physiology
- Trachea/drug effects
- Trachea/metabolism
- Trachea/physiology
Collapse
Affiliation(s)
- Pawan Sharma
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- CIHR National Training Program in Allergy and Asthma, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Richard W. Mitchell
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Gerald L. Stelmack
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Judy E. Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Respiratory Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- CIHR National Training Program in Allergy and Asthma, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
40
|
Lu A, Poddar M, Tang Y, Proto JD, Sohn J, Mu X, Oyster N, Wang B, Huard J. Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin-/- mice. Hum Mol Genet 2014; 23:4786-800. [PMID: 24781208 DOI: 10.1093/hmg/ddu194] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) patients lack dystrophin from birth; however, muscle weakness becomes apparent only at 3-5 years of age, which happens to coincide with the depletion of the muscle progenitor cell (MPC) pools. Indeed, MPCs isolated from older DMD patients demonstrate impairments in myogenic potential. To determine whether the progression of muscular dystrophy is a consequence of the decline in functional MPCs, we investigated two animal models of DMD: (i) dystrophin-deficient mdx mice, the most commonly utilized model of DMD, which has a relatively mild dystrophic phenotype and (ii) dystrophin/utrophin double knock-out (dKO) mice, which display a similar histopathologic phenotype to DMD patients. In contrast to age-matched mdx mice, we observed that both the number and regeneration potential of dKO MPCs rapidly declines during disease progression. This occurred in MPCs at both early and late stages of myogenic commitment. In fact, early MPCs isolated from 6-week-old dKO mice have reductions in proliferation, resistance to oxidative stress and multilineage differentiation capacities compared with age-matched mdx MPCs. This effect may potentially be mediated by fibroblast growth factor overexpression and/or a reduction in telomerase activity. Our results demonstrate that the rapid disease progression in the dKO model is associated, at least in part, with MPC depletion. Therefore, alleviating MPC depletion could represent an approach to delay the onset of the histopathologies associated with DMD patients.
Collapse
Affiliation(s)
- Aiping Lu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Minakshi Poddar
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jonathan D Proto
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jihee Sohn
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Xiaodong Mu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Nicholas Oyster
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
41
|
Macrophage plasticity in skeletal muscle repair. BIOMED RESEARCH INTERNATIONAL 2014; 2014:560629. [PMID: 24860823 PMCID: PMC4016840 DOI: 10.1155/2014/560629] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/13/2014] [Accepted: 03/31/2014] [Indexed: 01/07/2023]
Abstract
Macrophages are one of the first barriers of host defence against pathogens. Beyond their role in innate immunity, macrophages play increasingly defined roles in orchestrating the healing of various injured tissues. Perturbations of macrophage function and/or activation may result in impaired regeneration and fibrosis deposition as described in several chronic pathological diseases. Heterogeneity and plasticity have been demonstrated to be hallmarks of macrophages. In response to environmental cues they display a proinflammatory (M1) or an alternative anti-inflammatory (M2) phenotype. A lot of evidence demonstrated that after acute injury M1 macrophages infiltrate early to promote the clearance of necrotic debris, whereas M2 macrophages appear later to sustain tissue healing. Whether the sequential presence of two different macrophage populations results from a dynamic shift in macrophage polarization or from the recruitment of new circulating monocytes is a subject of ongoing debate. In this paper, we discuss the current available information about the role that different phenotypes of macrophages plays after injury and during the remodelling phase in different tissue types, with particular attention to the skeletal muscle.
Collapse
|
42
|
Morales MG, Cabrera D, Céspedes C, Vio CP, Vazquez Y, Brandan E, Cabello-Verrugio C. Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2). Cell Tissue Res 2013; 353:173-87. [DOI: 10.1007/s00441-013-1642-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/17/2013] [Indexed: 01/23/2023]
|
43
|
Marshall JL, Kwok Y, McMorran BJ, Baum LG, Crosbie-Watson RH. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J 2013; 280:4210-29. [PMID: 23601082 DOI: 10.1111/febs.12295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
44
|
Zanola A, Rossi S, Faggi F, Monti E, Fanzani A. Rhabdomyosarcomas: an overview on the experimental animal models. J Cell Mol Med 2012; 16:1377-91. [PMID: 22225829 PMCID: PMC3823208 DOI: 10.1111/j.1582-4934.2011.01518.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radiations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models to point out the molecular determinants cooperating with RMS development and progression.
Collapse
Affiliation(s)
- Alessandra Zanola
- Department of Biomedical Sciences and Biotechnologies, Interuniversity Institute of Myology (IIM), University of Brescia, Brescia, Italy
| | | | | | | | | |
Collapse
|
45
|
Priester C, Braude JP, Morton LC, Kinsey ST, Watanabe WO, Dillaman RM. Ring bands in fish skeletal muscle: reorienting the myofibrils and microtubule cytoskeleton within a single cell. J Morphol 2012; 273:1246-56. [PMID: 22806937 DOI: 10.1002/jmor.20055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 01/04/2023]
Abstract
Skeletal muscle cells (fibers) contract by shortening their parallel subunits, the myofibrils. Here we show a novel pattern of myofibril orientation in white muscle fibers of large black sea bass, Centropristis striata. Up to 48% of the white fibers in fish >1168 g had peripheral myofibrils undergoing an ∼90(o) shift in orientation. The resultant ring band wrapped the middle of the muscle fibers and was easily detected with polarized light microscopy. Transmission electron microscopy showed that the reoriented myofibrils shared the cytoplasm with the central longitudinal myofibrils. A microtubule network seen throughout the fibers surrounded nuclei but was mostly parallel to the long-axis of the myofibrils. In the ring band portion of the fibers the microtubule cytoskeleton also shifted orientation. Sarcolemmal staining with anti-synapsin was the same in fibers with or without ring bands, suggesting that fibers with ring bands have normal innervation and contractile function. The ring bands appear to be related to body-mass or age, not fiber size, and also vary along the body, being more frequent at the midpoint of the anteroposterior axis. Similar structures have been reported in different taxa and appear to be associated with hypercontraction of fibers not attached to a rigid structure (bone) or with fibers with unusually weak links between the sarcolemma and cytoskeleton, as in muscular dystrophy. Fish muscle fibers are attached to myosepta, which are flexible and may allow for fibers to hypercontract and thus form ring bands. The consequences of such a ring band pattern might be to restrict the further expansion of the sarcolemma and protect it from further mechanical stress.
Collapse
Affiliation(s)
- Carolina Priester
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Barnabei MS, Metzger JM. Ex vivo stretch reveals altered mechanical properties of isolated dystrophin-deficient hearts. PLoS One 2012; 7:e32880. [PMID: 22427904 PMCID: PMC3298453 DOI: 10.1371/journal.pone.0032880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/06/2012] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV) compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α2 mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD.
Collapse
Affiliation(s)
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
47
|
Distinct effects of contraction-induced injury in vivo on four different murine models of dysferlinopathy. J Biomed Biotechnol 2012; 2012:134031. [PMID: 22431915 PMCID: PMC3303924 DOI: 10.1155/2012/134031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/27/2011] [Indexed: 11/17/2022] Open
Abstract
Mutations in the DYSF gene, encoding dysferlin, cause muscular dystrophies in man. We compared 4 dysferlinopathic mouse strains: SJL/J and B10.SJL-Dysfim/AwaJ (B10.SJL), and A/J and B6.A-Dysfprmd/GeneJ (B6.A/J). The former but not the latter two are overtly myopathic and weaker at 3 months of age. Following repetitive large-strain injury (LSI) caused by lengthening contractions, all except B6.A/J showed ~40% loss in contractile torque. Three days later, torque in SJL/J, B10.SJL and controls, but not A/J, recovered nearly completely. B6.A/J showed ~30% torque loss post-LSI and more variable recovery. Pre-injury, all dysferlinopathic strains had more centrally nucleated fibers (CNFs) and all but A/J showed more inflammation than controls. At D3, all dysferlinopathic strains showed increased necrosis and inflammation, but not more CNFs; controls were unchanged. Dystrophin-null DMDmdx mice showed more necrosis and inflammation than all dysferlin-nulls. Torque loss and inflammation on D3 across all strains were linearly related to necrosis. Our results suggest that (1) dysferlin is not required for functional recovery 3 days after LSI; (2) B6.A/J mice recover from LSI erratically; (3) SJL/J and B10.SJL muscles recover rapidly, perhaps due to ongoing myopathy; (4) although they recover function to different levels, all 4 dysferlinopathic strains show increased inflammation and necrosis 3 days after LSI.
Collapse
|
48
|
Han R, Rader EP, Levy JR, Bansal D, Campbell KP. Dystrophin deficiency exacerbates skeletal muscle pathology in dysferlin-null mice. Skelet Muscle 2011; 1:35. [PMID: 22132688 PMCID: PMC3287108 DOI: 10.1186/2044-5040-1-35] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/01/2011] [Indexed: 12/02/2022] Open
Abstract
Background Mutations in the genes coding for either dystrophin or dysferlin cause distinct forms of muscular dystrophy. Dystrophin links the cytoskeleton to the sarcolemma through direct interaction with β-dystroglycan. This link extends to the extracellular matrix by β-dystroglycan's interaction with α-dystroglycan, which binds extracellular matrix proteins, including laminin α2, agrin and perlecan, that possess laminin globular domains. The absence of dystrophin disrupts this link, leading to compromised muscle sarcolemmal integrity. Dysferlin, on the other hand, plays an important role in the Ca2+-dependent membrane repair of damaged sarcolemma in skeletal muscle. Because dysferlin and dystrophin play different roles in maintaining muscle cell integrity, we hypothesized that disrupting sarcolemmal integrity with dystrophin deficiency would exacerbate the pathology in dysferlin-null mice and allow further characterization of the role of dysferlin in skeletal muscle. Methods To test our hypothesis, we generated dystrophin/dysferlin double-knockout (DKO) mice by breeding mdx mice with dysferlin-null mice and analyzed the effects of a combined deficiency of dysferlin and dystrophin on muscle pathology and sarcolemmal integrity. Results The DKO mice exhibited more severe muscle pathology than either mdx mice or dysferlin-null mice, and, importantly, the onset of the muscle pathology occurred much earlier than it did in dysferlin-deficient mice. The DKO mice showed muscle pathology of various skeletal muscles, including the mandible muscles, as well as a greater number of regenerating muscle fibers, higher serum creatine kinase levels and elevated Evans blue dye uptake into skeletal muscles. Lengthening contractions caused similar force deficits, regardless of dysferlin expression. However, the rate of force recovery within 45 minutes following lengthening contractions was hampered in DKO muscles compared to mdx muscles or dysferlin-null muscles, suggesting that dysferlin is required for the initial recovery from lengthening contraction-induced muscle injury of the dystrophin-glycoprotein complex-compromised muscles. Conclusions The results of our study suggest that dysferlin-mediated membrane repair helps to limit the dystrophic changes in dystrophin-deficient skeletal muscle. Dystrophin deficiency unmasks the function of dysferlin in membrane repair during lengthening contractions. Dystrophin/dysferlin-deficient mice provide a very useful model with which to evaluate the effectiveness of therapies designed to treat dysferlin deficiency.
Collapse
Affiliation(s)
- Renzhi Han
- Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, Roy J and Lucille A Carver College of Medicine, The University of Iowa, 285 Newton Road, 4283 CBRB, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
49
|
Markert CD, Ambrosio F, Call JA, Grange RW. Exercise and Duchenne muscular dystrophy: toward evidence-based exercise prescription. Muscle Nerve 2011; 43:464-78. [PMID: 21404285 DOI: 10.1002/mus.21987] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To develop a rational framework for answering questions about the role of exercise in Duchenne muscular dystrophy (DMD), we focused on five pathophysiological mechanisms and offer brief hypotheses regarding how exercise may beneficially modulate pertinent cellular and molecular pathways. We aimed to provide an integrative overview of mechanisms of DMD pathology that may improve or worsen as a result of exercise. We also sought to stimulate discussion of what outcomes/dependent variables most appropriately measure these mechanisms, with the purpose of defining criteria for well-designed, controlled studies of exercise in DMD. The five mechanisms include pathways that are both intrinsic and extrinsic to the diseased muscle cells.
Collapse
Affiliation(s)
- Chad D Markert
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
50
|
Henderson DM, Belanto JJ, Li B, Heun-Johnson H, Ervasti JM. Internal deletion compromises the stability of dystrophin. Hum Mol Genet 2011; 20:2955-63. [PMID: 21558423 DOI: 10.1093/hmg/ddr199] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a deadly and common childhood disease caused by mutations that disrupt dystrophin protein expression. Several miniaturized dystrophin/utrophin constructs are utilized for gene therapy, and while these constructs have shown promise in mouse models, the functional integrity of these proteins is not well described. Here, we compare the biophysical properties of full-length dystrophin and utrophin with therapeutically relevant miniaturized constructs using an insect cell expression system. Full-length utrophin, like dystrophin, displayed a highly cooperative melting transition well above 37°C. Utrophin constructs involving N-terminal, C-terminal or internal deletions were remarkably stable, showing cooperative melting transitions identical to full-length utrophin. In contrast, large dystrophin deletions from either the N- or C-terminus exhibited variable stability, as evidenced by melting transitions that differed by 20°C. Most importantly, deletions in the large central rod domain of dystrophin resulted in a loss of cooperative unfolding with increased propensity for aggregation. Our results suggest that the functionality of dystrophin therapeutics based on mini- or micro-constructs may be compromised by the presence of non-native protein junctions that result in protein misfolding, instability and aggregation.
Collapse
Affiliation(s)
- Davin M Henderson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|