1
|
Ye J, Duan C, Han J, Chen J, Sun N, Li Y, Yuan T, Peng D. Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. Neural Regen Res 2025; 20:1541-1554. [PMID: 38934398 PMCID: PMC11688552 DOI: 10.4103/nrr.nrr-d-23-01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
Collapse
Affiliation(s)
- Jinmei Ye
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Duan
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Han
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinrong Chen
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Daihui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Giorgi F, Tedeschi R. Breathe better, live better: the science of slow breathing and heart rate variability. Acta Neurol Belg 2025:10.1007/s13760-025-02789-w. [PMID: 40252198 DOI: 10.1007/s13760-025-02789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Slow breathing and heart rate variability (HRV) biofeedback have gained attention as non-invasive methods for enhancing autonomic regulation and promoting vagal tone. These techniques are associated with improvements in cardiovascular, respiratory, and neural outcomes, offering potential therapeutic applications for stress-related and chronic conditions. METHODS A scoping review was conducted by analyzing six studies focusing on slow breathing and HRV biofeedback. The included studies involved healthy adults aged between 18 and 60 years, free from major cardiovascular, respiratory, or neurological disorders. Studies were identified through systematic searches in MEDLINE (PubMed), Scopus, Web of Science, and other databases. Population characteristics, intervention protocols, and outcomes related to HRV, respiratory sinus arrhythmia (RSA), baroreflex sensitivity, and neural synchronization were extracted and synthesized. Interventions were applied both acutely (single or short-term sessions) and chronically (ranging from daily sessions over 4-8 weeks). RESULTS All six studies demonstrated significant improvements in HRV parameters, particularly the high-frequency (HF) band, reflecting enhanced parasympathetic activity. RSA increased significantly in studies utilizing tailored breathing patterns, especially those emphasizing longer exhalations. Baroreflex sensitivity improved in interventions combining HRV biofeedback and slow breathing, indicating better cardiovascular adaptability. One study reported neural synchronization between HRV and cortical potentials with decelerated breathing. Across studies, these interventions promoted relaxation, enhanced autonomic flexibility, and stabilized cardiovascular function. Autonomic flexibility refers to the dynamic ability of the autonomic nervous system to adapt to internal and external stressors by shifting between sympathetic and parasympathetic dominance. CONCLUSIONS Slow breathing and HRV biofeedback are effective, non-invasive interventions for improving autonomic regulation, vagal tone, and stress resilience. These techniques hold promise for managing chronic conditions and enhancing cardiovascular and mental health. Standardization of protocols and long-term evaluations are needed to optimize clinical implementation.
Collapse
Affiliation(s)
- Federica Giorgi
- Pediatric Physical Medicine and Rehabilitation Unit, IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | |
Collapse
|
3
|
Guo X, Kong L, Wen Y, Chen L, Hu S. Impact of second-generation antipsychotics monotherapy or combined therapy in cytokine, lymphocyte subtype, and thyroid antibodies for schizophrenia: a retrospective study. BMC Psychiatry 2024; 24:695. [PMID: 39415112 PMCID: PMC11481721 DOI: 10.1186/s12888-024-06141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) shares high clinical relevance with the immune system, and the potential interactions of psychopharmacological drugs with the immune system are still an overlooked area. Here, we aimed to identify whether the second-generation antipsychotics (SGA) monotherapy or combined therapy of SGA with other psychiatric medications influence the routine blood immunity biomarkers of patients with SCZ. METHODS Medical records of inpatients with SCZ from January 2019 to June 2023 were retrospectively screened from June 2023 to August 2023. The demographic data and peripheral levels of cytokines (IL-2, IL-4, IL-6, TNF-α, INF-γ, and IL-17 A), lymphocyte subtype proportions (CD3+, CD4+, CD8 + T-cell, and natural killer (NK) cells), and thyroid autoimmune antibodies (thyroid peroxidase antibody (TPOAb), and antithyroglobulin antibody (TGAb)) were collected and analyzed. RESULTS 30 drug-naïve patients, 64 SGA monotherapy (20 for first-episode SCZ, 44 for recurrent SCZ) for at least one week, 39 combined therapies for recurrent SCZ (18 with antidepressant, 10 with benzodiazepine, and 11 with mood stabilizer) for at least two weeks, and 23 used to receive SGA monotherapy (had withdrawn for at least two weeks) were included despite specific medication. No difference in cytokines was found between the SGA monotherapy sub-groups (p > 0.05). Of note, SGA monotherapy appeared to induce a down-regulation of IFN-γ in both first (mean [95% confidence interval]: 1.08 [0.14-2.01] vs. 4.60 [2.11-7.08], p = 0.020) and recurrent (1.88 [0.71-3.05] vs. 4.60 [2.11-7.08], p = 0.027) episodes compared to drug-naïve patients. However, the lymphocyte proportions and thyroid autoimmune antibodies remained unchanged after at least two weeks of SGA monotherapy (p > 0.05). In combined therapy groups, results mainly resembled the SGA monotherapy for recurrent SCZ (p > 0.05). CONCLUSION The study demonstrated that SGA monotherapy possibly achieved its comfort role via modulating IFN-γ, and SGA combined therapy showed an overall resemblance to monotherapy.
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yalan Wen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lizichen Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310058, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Ben-Azu B, Adebesin A, Moke GE, Ojiokor VO, Olusegun A, Jarikre TA, Akinluyi ET, Olukemi OA, Omeiza NA, Nkenchor P, Niemogha AR, Ewere ED, Igwoku C, Omamogho F. Alcohol exacerbates psychosocial stress-induced neuropsychiatric symptoms: Attenuation by geraniol. Neurochem Int 2024; 177:105748. [PMID: 38703789 DOI: 10.1016/j.neuint.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Adaptation to psychosocial stress is psychologically distressing, initiating/promoting comorbidity with alcohol use disorders. Emerging evidence moreover showed that ethanol (EtOH) exacerbates social-defeat stress (SDS)-induced behavioral impairments, neurobiological sequelae, and poor therapeutic outcomes. Hence, this study investigated the effects of geraniol, an isoprenoid monoterpenoid alcohol with neuroprotective functions on EtOH escalated SDS-induced behavioral impairments, and neurobiological sequelae in mice. Male mice chronically exposed to SDS for 14 days were repeatedly fed with EtOH (2 g/kg, p. o.) from days 8-14. From days 1-14, SDS-EtOH co-exposed mice were concurrently treated with geraniol (25 and 50 mg/kg) or fluoxetine (10 mg/kg) orally. After SDS-EtOH translational interactions, arrays of behavioral tasks were examined, followed by investigations of oxido-inflammatory, neurochemicals levels, monoamine oxidase-B and acetylcholinesterase activities in the striatum, prefrontal-cortex, and hippocampus. The glial fibrillary acid protein (GFAP) expression was also quantified in the prefrontal-cortex immunohistochemically. Adrenal weights, serum glucose and corticosterone concentrations were measured. EtOH exacerbated SDS-induced low-stress resilience, social impairment characterized by anxiety, depression, and memory deficits were attenuated by geraniol (50 and 100 mg/kg) and fluoxetine. In line with this, geraniol increased the levels of dopamine, serotonin, and glutamic-acid decarboxylase enzyme, accompanied by reduced monoamine oxidase-B and acetylcholinesterase activities in the prefrontal-cortex, hippocampus, and striatum. Geraniol inhibited SDS-EtOH-induced adrenal hypertrophy, corticosterone, TNF-α, IL-6 release, malondialdehyde and nitrite levels, with increased antioxidant activities. Immunohistochemical analyses revealed that geraniol enhanced GFAP immunoreactivity in the prefrontal-cortex relative to SDS-EtOH group. We concluded that geraniol ameliorates SDS-EtOH interaction-induced behavioral changes via normalization of neuroimmune-endocrine and neurochemical dysregulations in mice brains.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Adaeze Adebesin
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Abafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Segamu Campus, Ogun State, Nigeria
| | - Goodes E Moke
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Vivian O Ojiokor
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUT), Enugu, Enugu State, Nigeria
| | - Adebayo Olusegun
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Thiophilus A Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth T Akinluyi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Opajobi A Olukemi
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Noah A Omeiza
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria; Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Paul Nkenchor
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Avwenayeri R Niemogha
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Ejaita D Ewere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Chioma Igwoku
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Favour Omamogho
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
5
|
Jin H, Li M, Jeong E, Castro-Martinez F, Zuker CS. A body-brain circuit that regulates body inflammatory responses. Nature 2024; 630:695-703. [PMID: 38692285 PMCID: PMC11186780 DOI: 10.1038/s41586-024-07469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The body-brain axis is emerging as a principal conductor of organismal physiology. It senses and controls organ function1,2, metabolism3 and nutritional state4-6. Here we show that a peripheral immune insult strongly activates the body-brain axis to regulate immune responses. We demonstrate that pro-inflammatory and anti-inflammatory cytokines communicate with distinct populations of vagal neurons to inform the brain of an emerging inflammatory response. In turn, the brain tightly modulates the course of the peripheral immune response. Genetic silencing of this body-brain circuit produced unregulated and out-of-control inflammatory responses. By contrast, activating, rather than silencing, this circuit affords neural control of immune responses. We used single-cell RNA sequencing, combined with functional imaging, to identify the circuit components of this neuroimmune axis, and showed that its selective manipulation can effectively suppress the pro-inflammatory response while enhancing an anti-inflammatory state. The brain-evoked transformation of the course of an immune response offers new possibilities in the modulation of a wide range of immune disorders, from autoimmune diseases to cytokine storm and shock.
Collapse
Affiliation(s)
- Hao Jin
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - Mengtong Li
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Eric Jeong
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Charles S Zuker
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Bernier V, Debarge MH, Hein M, Ammendola S, Mungo A, Loas G. Major Depressive Disorder, Inflammation, and Nutrition: A Tricky Pattern? Nutrients 2023; 15:3438. [PMID: 37571376 PMCID: PMC10420964 DOI: 10.3390/nu15153438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disease associated with inflammation. The Western diet (WD) is a high-fat, high-sugar diet also associated with inflammation. We aimed to show whether the diet of MDD patients was a WD and could act as a risk factor in this context. We conducted a transversal study of MDD patients and controls (CTRLs) without comorbidities. We performed blood analyses including C-reactive protein (CRP), a diet anamnesis, and an advanced glycation end-product assessment. We found that 34.37% of MDD patients had a CRP level above 3 to 10 mg/L, which remained higher than CTRLs after adjustments (sex, BMI, age, smoking status). The MDD patients had an excess of sugar and saturated and trans fatty acids; a deficiency in n-3 polyunsaturated fatty acid, monounsaturated acid, dietary fibers, and antioxidants; a high glycemic load; and aggravating nutritional factors when compared to the CTRLs. We found correlations between nutritional factors and CRP in univariate/multivariate analysis models. Thus, MDD patients showed an elevated CRP level and a WD pattern that could contribute to sustaining an inflammatory state. Further studies are required to confirm this, but the results highlighted the importance of nutrition in the context of MDD.
Collapse
Affiliation(s)
- Veronique Bernier
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| | - Marie-Hélène Debarge
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| | - Matthieu Hein
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| | - Sarah Ammendola
- Department of Psychiatry, Brugmann University Hospital, Université Libre de Bruxelles—ULB, 1020 Brussels, Belgium
| | - Anais Mungo
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| | - Gwenole Loas
- Department of Psychiatry and Sleep Laboratory, Erasme Hospital, Université Libre de Bruxelles—ULB, 1070 Brussels, Belgium (M.H.); (G.L.)
| |
Collapse
|
7
|
Halstead S, Siskind D, Amft M, Wagner E, Yakimov V, Shih-Jung Liu Z, Walder K, Warren N. Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: a systematic review and network meta-analysis. Lancet Psychiatry 2023; 10:260-271. [PMID: 36863384 DOI: 10.1016/s2215-0366(23)00025-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/11/2022] [Accepted: 01/06/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Immune system dysfunction is considered to play an aetiological role in schizophrenia spectrum disorders, with substantial alterations in the concentrations of specific peripheral inflammatory proteins, such as cytokines. However, there are inconsistencies in the literature over which inflammatory proteins are altered throughout the course of illness. Through conducting a systematic review and network meta-analysis, this study aimed to investigate the patterns of alteration that peripheral inflammatory proteins undergo in both acute and chronic stages of schizophrenia spectrum disorders, relative to a healthy control population. METHODS In this systematic review and meta-analysis, we searched PubMed, PsycINFO, EMBASE, CINAHL, and the Cochrane Central Register of Controlled Trials from inception to March 31, 2022, for published studies reporting peripheral inflammatory protein concentrations in cases of people with schizophrenia-spectrum disorders and healthy controls. Inclusion criteria were: (1) observational or experimental design; (2) a population consisting of adults diagnosed with schizophrenia-spectrum disorders with a specified indicator of acute or chronic stage of illness; (3) a comparable healthy control population without mental illness; (4) a study outcome measuring the peripheral protein concentration of a cytokine, associated inflammatory marker, or C-reactive protein. We excluded studies that did not measure cytokine proteins or associated biomarkers in blood. Mean and SDs of inflammatory marker concentrations were extracted directly from full-text publshed articles; articles that did not report data as results or supplementary results were excluded (ie, authors were not contacted) and grey literature and unpublished studies were not sought. Pairwise and network meta-analyses were done to measure the standardised mean difference in peripheral protein concentrations between three groups: individuals with acute schizophrenia-spectrum disorder, individuals with chronic schizophrenia-spectrum disorder, and healthy controls. This protocol was registered on PROSPERO, CRD42022320305. FINDINGS Of 13 617 records identified in the database searches, 4492 duplicates were removed, 9125 were screened for eligibility, 8560 were excluded after title and abstract screening, and three were excluded due to limited access to the full-text article. 324 full-text articles were then excluded due to inappropriate outcomes, mixed or undefined schizophrenia cohorts, or duplicate study populations, five were removed due to concerns over data integrity, and 215 studies were included in the meta-analysis. 24 921 participants were included, with 13 952 adult cases of schizophrenia-spectrum disorder and 10 969 adult healthy controls (descriptive data for the entire cohort were not available for age, numbers of males and females, and ethnicity). Concentration of interleukin (IL)-1β, IL-1 receptor antagonist (IL-1RA), soluble interleukin-2 receptor (sIL-2R), IL-6, IL-8, IL-10, tumour necrosis factor (TNF)-α, and C-reactive protein were consistently elevated in both individuals with acute schizophrenia-spectrum disorder and chronic schizophrenia-spectrum disorder, relative to healthy controls. IL-2 and interferon (IFN)-γ were significantly elevated in acute schizophrenia-spectrum disorder, while IL-4, IL-12, and IFN-γ were significantly decreased in chronic schizophrenia-spectrum disorder. Sensitivity and meta-regression analyses revealed that study quality and a majority of the evaluated methodological, demographic, and diagnostic factors had no significant impact on the observed results for most of the inflammatory markers. Specific exceptions to this included: methodological factors of assay source (for IL-2 and IL-8), assay validity (for IL-1β), and study quality (for transforming growth factor-β1); demographic factors of age (for IFN-γ, IL-4, and IL-12), sex (for IFN-γ and IL-12), smoking (for IL-4), and BMI (for IL-4); and diagnostic factors including diagnostic composition of schizophrenia-spectrum cohort (for IL-1β IL-2, IL-6, and TNF-α), antipsychotic-free cases (for IL-4 and IL-1RA), illness duration (for IL-4), symptom severity (for IL-4), and subgroup composition (for IL-4). INTERPRETATION Results suggest that people with schizophrenia-spectrum disorders have a baseline level of inflammatory protein alteration throughout the illness, as reflected by consistently elevated pro-inflammatory proteins, hypothesised here as trait markers (eg, IL-6), while those with acute psychotic illness might have superimposed immune activity with increased concentrations of hypothesised state markers (eg, IFN-γ). Further research is required to determine whether these peripheral alterations are reflected within the central nervous system. This research facilitates an entry point in understanding how clinically relevant inflammatory biomarkers might one day be useful to the diagnosis and prognostication of schizophrenia-spectrum disorders. FUNDING None.
Collapse
Affiliation(s)
- Sean Halstead
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia; Medical School, The University of Queensland, Brisbane, QLD, Australia
| | - Dan Siskind
- Medical School, The University of Queensland, Brisbane, QLD, Australia; Metro South Addiction and Mental Health, Brisbane, QLD, Australia
| | - Michaela Amft
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität München, Munich, Munich, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität München, Munich, Munich, Germany
| | - Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität München, Munich, Munich, Germany
| | - Zoe Shih-Jung Liu
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nicola Warren
- Medical School, The University of Queensland, Brisbane, QLD, Australia; Metro South Addiction and Mental Health, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Marino Y, Arangia A, Cordaro M, Siracusa R, D’Amico R, Impellizzeri D, Cupi R, Peritore AF, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Analysis of the Influence of IL-6 and the Activation of the Jak/Stat3 Pathway in Fibromyalgia. Biomedicines 2023; 11:biomedicines11030792. [PMID: 36979771 PMCID: PMC10045851 DOI: 10.3390/biomedicines11030792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Fibromyalgia is a medical condition that affects a small percentage of the population, with no known effective treatment. There is evidence to suggest that inflammation is a key factor in the nerve sensitization that characterizes the disorder. Therefore, this paper concentrates on the role of IL-6 in fibromyalgia and the related pain-like symptoms. Methods: This work aimed to evaluate Sprague–Dawley rats, which were injected for three consecutive days with 1 mg/kg of reserpine; IL-6-R Ab was intraperitoneally injected at 1.5 mg/kg seven days after the first reserpine injection. Behavioral analyses were conducted at the beginning of the experiment and at seven and twenty-one days from the first reserpine injection. At this timepoint, the animals were sacrificed, and tissues were collected for molecular and histological analysis. Results: Our data showed the analgesic effect of IL-6-R-Ab administration on mechanical allodynia and thermal hyperalgesia. Additionally, the reserpine + IL-6-R-Ab group showed a reduced expression of the pain-related mediators cFOS and NFG and reduced levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and chemokines (Cxcl5, Cxcl10 and Cx3cl1). From the molecular point of view, the IL-6-R-Ab administration reduced the gp130 phosphorylation and the activation of the Jak/STAT3 pathway. Additionally, the IL-6-R Ab reduced the activation of neuroinflammatory cells. Conclusions: Our study showed that IL-6 plays a crucial role in fibromyalgia by triggering the Jak/STAT3 pathway, leading to an increase in chemokine levels and activating glial cells.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Cupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
9
|
Sipahioglu H, Esmaoglu A, Kiris A, Dursun ZB, Kuzuguden S, Cavus MA, Artan C. Does serum butyrylcholinesterase level determine the severity and mortality of COVID-19 pneumonia?: Prospective study. Front Med (Lausanne) 2022; 9:940533. [PMID: 35957846 PMCID: PMC9357934 DOI: 10.3389/fmed.2022.940533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/08/2022] [Indexed: 01/08/2023] Open
Abstract
BackgroundThe WHO emphasized the importance of knowing the risk factors for the severity of the disease in the COVID-19 pandemic. Our aim in this study was to determine the relationship between serum Butyrylcholinesterase (BChE) level, which is rapidly affected by inflammation, and the severity of COVID-19 pneumonia and mortality.MethodsPatients diagnosed with COVID-19 pneumonia between March and May 2021 were included in the study. The patients were divided into two groups as severe and mild to moderate pneumonia according to the WHO's guidelines. Serum BChE levels were studied by ELISA method from the blood samples taken from the patients on the day of hospitalization. The severity of the disease and other factors affecting hospital mortality were also evaluated.Results147 patients with COVID-19 pneumonia were included in this study. Of these patients, 58% had severe pneumonia and 42% had mild to moderate pneumonia. The BChE level was median 13 (IQR: 11.2–21.5)ng/ml in patients with severe COVID-19 pneumonia and median 20 (IQR: 10–35.7)ng/ml in patients with mild to moderate pneumonia (p: 0.001). Hospital with mortality rate was higher in patients with low BChE levels. However, statistically, BChE hasn't associated mortality in COVID-19 pneumonia [OR 1.002 (0.957–1.049) p: 0.490]. CRP, procalcitonin, lactate, and D-dimer levels were associated mortality in COVID-19 pneumonia.ConclusionBeing not statistically significant, the mortality rate was higher in patients with low BChE levels. BChE level is an important marker in determining the severity of COVID-19 pneumonia. Early prediction of the severity of COVID-19 pneumonia will enable early planning of the treatment process.
Collapse
Affiliation(s)
- Hilal Sipahioglu
- Kayseri Education and Research Hospital, Kayseri, Turkey
- *Correspondence: Hilal Sipahioglu
| | - Aliye Esmaoglu
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayse Kiris
- Kayseri Education and Research Hospital, Kayseri, Turkey
| | | | | | | | - Cem Artan
- Kayseri Education and Research Hospital, Kayseri, Turkey
| |
Collapse
|
10
|
Kelly MJ, Breathnach C, Tracey KJ, Donnelly SC. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep Med 2022; 3:100696. [PMID: 35858588 PMCID: PMC9381415 DOI: 10.1016/j.xcrm.2022.100696] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 06/20/2021] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
The cholinergic anti-inflammatory pathway is the efferent arm of the inflammatory reflex, a neural circuit through which the CNS can modulate peripheral immune responses. Signals communicated via the vagus and splenic nerves use acetylcholine, produced by Choline acetyltransferase (ChAT)+ T cells, to downregulate the inflammatory actions of macrophages expressing α7 nicotinic receptors. Pre-clinical studies using transgenic animals, cholinergic agonists, vagotomy, and vagus nerve stimulation have demonstrated this pathway's role and therapeutic potential in numerous inflammatory diseases. In this review, we summarize what is understood about the inflammatory reflex. We also demonstrate how pre-clinical findings are being translated into promising clinical trials, and we draw particular attention to innovative bioelectronic methods of harnessing the cholinergic anti-inflammatory pathway for clinical use.
Collapse
Affiliation(s)
- Mark J Kelly
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Tallaght University Hospital, Dublin, Ireland
| | | | - Kevin J Tracey
- Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Seamas C Donnelly
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
11
|
Cordaro M, Siracusa R, D’Amico R, Genovese T, Franco G, Marino Y, Di Paola D, Cuzzocrea S, Impellizzeri D, Di Paola R, Fusco R. Role of Etanercept and Infliximab on Nociceptive Changes Induced by the Experimental Model of Fibromyalgia. Int J Mol Sci 2022; 23:ijms23116139. [PMID: 35682817 PMCID: PMC9181785 DOI: 10.3390/ijms23116139] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Fibromyalgia is a clinical condition that affects 1% to 5% of the population. No proper therapy has been currently found. It has been described that inflammation plays a central role in the nerve sensitizations that characterize the pathology. Methods: This paper aimed to evaluate the efficacy of etanercept and infliximab in the management of pain sensitization. Fibromyalgia was induced by three injections once a day of reserpine at the dose of 1 mg/kg. Etanercept (3 mg/kg) and infliximab (10 mg/kg) were administered the day after the last reserpine injection and then 5 days after that. Behavioral analyses were conducted once a week, and molecular investigations were performed at the end of the experiment. Results: Our data confirmed the major effect of infliximab administration as compared to etanercept: infliximab administration strongly reduced pain sensitization in thermal hyperalgesia and mechanical allodynia. From the molecular point of view, infliximab reduced the activation of microglia and astrocytes and the expression of the purinergic P2X7 receptor ubiquitously expressed on glia and neurons. Downstream of the P2X7 receptor, infliximab also reduced p38-MAPK overexpression induced by the reserpine administration. Conclusion: Etanercept and infliximab treatment caused a significant reduction in pain. In particular, rats that received infliximab showed less pain sensitization. Moreover, infliximab reduced the activation of microglia and astrocytes, reducing the expression of the purinergic receptor P2X7 and p38-MAPK pathway.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Gianluca Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
12
|
Biomarkers common for inflammatory periodontal disease and depression: A systematic review. Brain Behav Immun Health 2022; 21:100450. [PMID: 35330865 PMCID: PMC8938251 DOI: 10.1016/j.bbih.2022.100450] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dysregulated immune response arising in the periphery can induce depressive symptoms through neuroimmune interactions. Inflammatory oral pathology can be a potent inducer of chronic neuroimmune response relevant to depression. We aimed to synthesize available evidence for the association between inflammatory periodontal diseases (IPD) and major depression (MD) in relation to a broad range of biomarkers. Methods Medline, Embase, PsycInfo, Cochrane Library, Web of Science and Scopus databases were searched from inception until January 27, 2022. Search terms included subject headings and synonyms for inflammatory periodontal disease and depression. Studies that reported data on both depression and inflammatory periodontal disease as categories along with measurement of a biomarker were considered. Two reviewers independently selected the articles for inclusion, extracted data and assessed the quality of each study. The protocol for this study was registered with PROSPERO, CRD42021215524. Results Twenty-eight studies were included in the final review-eleven cross-sectional studies, seven case-control studies, and six prospective cohort studies conducted in humans; the remaining four were experimental animal studies. Eighteen studies including all animal studies reported a positive association between depression and periodontal disease; one study reported a negative association and another nine studies found no such associations. Twenty studies reported mixed associations between IPD and biomarkers (i.e, salivary, serum, urine or gingival crevicular fluid cortisol, C reactive protein, cytokines, etc.). Biomarkers related to depression were gingival crevicular fluid cortisol, interleukin 6 (IL-6), Il-1β, immunoglobulin G against Bacterioides forsythus; root canal lipopolysaccharides; blood IL-6, IL-1β, cortisol, advanced oxidation protein products, nitric oxide metabolites, lipid hydroperoxides and trapping antioxidant parameter; whereas five studies found no associations between depression and a biomarker. Although animal studies showed interaction of immune, inflammatory and neurotrophic biomarkers in the relationship between depression and periodontal disease, human studies showed mixed findings. In most studies, there were risks of bias due to the sample selection and assessment protocol. Study heterogeneity and limited number of comparable studies reporting on shared biomarkers precluded a meta-analysis. Conclusion Immune-inflammatory contribution to depression was evident in the context of inflammatory periodontal diseases, but whether biomarkers mediate the associations between IPD and MD needs to be tested through methodologically rigorous studies aiming specifically at this hypothesis.
Collapse
|
13
|
Kronsten VT, Tranah TH, Pariante C, Shawcross DL. Gut-derived systemic inflammation as a driver of depression in chronic liver disease. J Hepatol 2022; 76:665-680. [PMID: 34800610 DOI: 10.1016/j.jhep.2021.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Depression and chronic liver disease (CLD) are important causes of disability, morbidity and mortality worldwide and their prevalence continues to rise. The rate of depression in CLD is high compared to that of the general population and is comparable to the increased rates observed in other medical comorbidities and chronic inflammatory conditions. Notably, a comorbid diagnosis of depression has a detrimental effect on outcomes in cirrhosis. Systemic inflammation is pivotal in cirrhosis-associated immune dysfunction - a phenomenon present in advanced CLD (cirrhosis) and implicated in the development of complications, organ failure, disease progression, increased infection rates and poor outcome. The presence of systemic inflammation is also well-documented in a cohort of patients with depression; peripheral cytokine signals can result in neuroinflammation, behavioural change and depressive symptoms via neural mechanisms, cerebral endothelial cell and circumventricular organ signalling, and peripheral immune cell-to-brain signalling. Gut dysbiosis has been observed in both patients with cirrhosis and depression. It leads to intestinal barrier dysfunction resulting in increased bacterial translocation, in turn activating circulating immune cells, leading to cytokine production and systemic inflammation. A perturbed gut-liver-brain axis may therefore explain the high rates of depression in patients with cirrhosis. The underlying mechanisms explaining the critical relationship between depression and cirrhosis remain to be fully elucidated. Several other psychosocial and biological factors are likely to be involved, and therefore the cause is probably multifactorial. However, the role of the dysfunctional gut-liver-brain axis as a driver of gut-derived systemic inflammation requires further exploration and consideration as a target for the treatment of depression in patients with cirrhosis.
Collapse
Affiliation(s)
- Victoria T Kronsten
- Institute of Liver Studies, 1(st) Floor James Black Centre, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK.
| | - Thomas H Tranah
- Institute of Liver Studies, 1(st) Floor James Black Centre, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Carmine Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RT, UK
| | - Debbie L Shawcross
- Institute of Liver Studies, 1(st) Floor James Black Centre, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| |
Collapse
|
14
|
Kumar S, Singh P, Kumar A. Targeted therapy of irritable bowel syndrome with anti-inflammatory cytokines. Clin J Gastroenterol 2022; 15:1-10. [PMID: 34862947 PMCID: PMC8858303 DOI: 10.1007/s12328-021-01555-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a multifactorial disease of which infection, as well as inflammation, has recently been considered as an important cause. Inflammation works as a potential pathway for the pathogenesis of IBS. In this review, we have discussed the targeted therapy of IBS. We used the search term "inflammation in IBS" and "proinflammatory" and "antiinflammatory cytokines and IBS" using PubMed, MEDLINE, and Google Scholar. The literature search included only articles written in the English language. We have also reviewed currently available anti-inflammatory treatment and future perspectives. Cytokine imbalance in the systematic circulation and the intestinal mucosa may also characterize IBS presentation. Imbalances of pro-and anti-inflammatory cytokines and polymorphisms in cytokine genes have been reported in IBS. The story of targeted therapy of IBS with anti-inflammatory cytokines is far from complete and it seems that it has only just begun. This review describes the key issues related to pro-inflammatory cytokines associated with IBS, molecular regulation of immune response in IBS, inhibitors of pro-inflammatory cytokines in IBS, and clinical perspectives of pro- and anti-inflammatory cytokines in IBS.
Collapse
Affiliation(s)
- Sunil Kumar
- Faculty of Bio-Sciences, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Lucknow- Deva Road, Barabanki, 225003, Uttar Pradesh, India.
| | - Priyanka Singh
- Faculty of Bio-Sciences, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Lucknow- Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| |
Collapse
|
15
|
Singh G, Tucker EW, Rohlwink UK. Infection in the Developing Brain: The Role of Unique Systemic Immune Vulnerabilities. Front Neurol 2022; 12:805643. [PMID: 35140675 PMCID: PMC8818751 DOI: 10.3389/fneur.2021.805643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) infections remain a major burden of pediatric disease associated with significant long-term morbidity due to injury to the developing brain. Children are susceptible to various etiologies of CNS infection partly because of vulnerabilities in their peripheral immune system. Young children are known to have reduced numbers and functionality of innate and adaptive immune cells, poorer production of immune mediators, impaired responses to inflammatory stimuli and depressed antibody activity in comparison to adults. This has implications not only for their response to pathogen invasion, but also for the development of appropriate vaccines and vaccination strategies. Further, pediatric immune characteristics evolve across the span of childhood into adolescence as their broader physiological and hormonal landscape develop. In addition to intrinsic vulnerabilities, children are subject to external factors that impact their susceptibility to infections, including maternal immunity and exposure, and nutrition. In this review we summarize the current evidence for immune characteristics across childhood that render children at risk for CNS infection and introduce the link with the CNS through the modulatory role that the brain has on the immune response. This manuscript lays the foundation from which we explore the specifics of infection and inflammation within the CNS and the consequences to the maturing brain in part two of this review series.
Collapse
Affiliation(s)
- Gabriela Singh
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elizabeth W. Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula K. Rohlwink
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London, United Kingdom
| |
Collapse
|
16
|
Systemic LPS-induced microglial activation results in increased GABAergic tone: A mechanism of protection against neuroinflammation in the medial prefrontal cortex in mice. Brain Behav Immun 2022; 99:53-69. [PMID: 34582995 DOI: 10.1016/j.bbi.2021.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 02/01/2023] Open
Abstract
Neuroinflammation with excess microglial activation and synaptic dysfunction are early symptoms of most neurological diseases. However, how microglia-associated neuroinflammation regulates synaptic activity remains obscure. We report here that acute neuroinflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) results in cell-type-specific increases in inhibitory postsynaptic currents in the glutamatergic, but not the GABAergic, neurons of medial prefrontal cortex (mPFC), coinciding with excessive microglial activation. LPS causes upregulation in levels of GABAAR subunits, glutamine synthetase and vesicular GABA transporter, and downregulation in brain-derived neurotrophic factor (BDNF) and its receptor, pTrkB. Blockage of microglial activation by minocycline ameliorates LPS-induced abnormal expression of GABA signaling-related proteins and activity of synaptic and network. Moreover, minocycline prevents the mice from LPS-induced aberrant behavior, such as a reduction in total distance and time spent in the centre in the open field test; decreases in entries into the open arm of elevated-plus maze and in consumption of sucrose; increased immobility in the tail suspension test. Furthermore, upregulation of GABA signaling by tiagabine also prevents LPS-induced microglial activation and aberrant behavior. This study illustrates a mode of bidirectional constitutive signaling between the neural and immune compartments of the brain, and suggests that the mPFC is an important area for brain-immune system communication. Moreover, the present study highlights GABAergic signaling as a key therapeutic target for mitigating neuroinflammation-induced abnormal synaptic activity in the mPFC, together with the associated behavioral abnormalities.
Collapse
|
17
|
Pain control in tonic immobility (TI) and other immobility models. PROGRESS IN BRAIN RESEARCH 2022; 271:253-303. [DOI: 10.1016/bs.pbr.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Kazmi N, Wallen GR, Yang L, Alkhatib J, Schwandt ML, Feng D, Gao B, Diazgranados N, Ramchandani VA, Barb JJ. An exploratory study of pro-inflammatory cytokines in individuals with alcohol use disorder: MCP-1 and IL-8 associated with alcohol consumption, sleep quality, anxiety, depression, and liver biomarkers. Front Psychiatry 2022; 13:931280. [PMID: 36032219 PMCID: PMC9405018 DOI: 10.3389/fpsyt.2022.931280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND High levels of sleep disturbances reported among individuals with alcohol use disorder (AUD) can stimulate inflammatory gene expression, and in turn, may alter pro-inflammatory cytokines levels. We aimed to investigate associations between pro-inflammatory cytokine markers with subjective measures of sleep quality, psychological variables and alcohol consumption among individuals with AUD. METHODS This exploratory study is comprised of individuals with AUD (n = 50) and healthy volunteers (n = 14). Spearman correlation was used to investigate correlations between plasma cytokine levels and clinical variables of interest (liver and inflammatory markers, sleep quality, patient reported anxiety/depression scores, and presence of mood and/or anxiety disorders (DSM IV/5); and history of alcohol use variables. RESULTS The AUD group was significantly older, with poorer sleep quality, higher anxiety/depression scores, and higher average drinks per day as compared to controls. Within the AUD group, IL-8 and MCP-1 had positive significant correlations with sleep, anxiety, depression and drinking variables. Specifically, higher levels of MCP-1 were associated with poorer sleep (p = 0.004), higher scores of anxiety (p = 0.006) and depression (p < 0.001), and higher number of drinking days (p = 0.002), average drinks per day (p < 0.001), heavy drinking days (p < 0.001) and total number of drinks (p < 0.001). The multiple linear regression model for MCP-1 showed that after controlling for sleep status and heavy drinking days, older participants (p = 0.003) with more drinks per day (p = 0.016), and higher alkaline phosphatase level (p = 0.001) had higher MCP-1 level. CONCLUSION This exploratory analysis revealed associations with cytokines MCP-1 and IL-8 and drinking consumption, sleep quality, and anxiety and depression in the AUD group. Furthermore, inflammatory and liver markers were highly correlated with certain pro-inflammatory cytokines in the AUD group suggesting a possible relationship between chronic alcohol use and inflammation. These associations may contribute to prolonged inflammatory responses and potentially higher risk of co-morbid chronic diseases.
Collapse
Affiliation(s)
- Narjis Kazmi
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| | - Gwenyth R Wallen
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| | - Li Yang
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| | - Jenna Alkhatib
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Dechun Feng
- Laboratory of Liver Diseases, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Bin Gao
- Laboratory of Liver Diseases, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Vijay A Ramchandani
- Human Psychopharmacology Laboratory, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer J Barb
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| |
Collapse
|
19
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
20
|
Betlazar C, Middleton RJ, Howell N, Storer B, Davis E, Davies J, Banati R, Liu GJ. Mitochondrial Translocator Protein (TSPO) Expression in the Brain After Whole Body Gamma Irradiation. Front Cell Dev Biol 2021; 9:715444. [PMID: 34760884 PMCID: PMC8573390 DOI: 10.3389/fcell.2021.715444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
The brain's early response to low dose ionizing radiation, as may be encountered during diagnostic procedures and space exploration, is not yet fully characterized. In the brain parenchyma, the mitochondrial translocator protein (TSPO) is constitutively expressed at low levels by endothelial cells, and can therefore be used to assess the integrity of the brain's vasculature. At the same time, the inducible expression of TSPO in activated microglia, the brain's intrinsic immune cells, is a regularly observed early indicator of subtle or incipient brain pathology. Here, we explored the use of TSPO as a biomarker of brain tissue injury following whole body irradiation. Post-radiation responses were measured in C57BL/6 wild type (Tspo +/+) and TSPO knockout (Tspo -/-) mice 48 h after single whole body gamma irradiations with low doses 0, 0.01, and 0.1 Gy and a high dose of 2 Gy. Additionally, post-radiation responses of primary microglial cell cultures were measured at 1, 4, 24, and 48 h at an irradiation dose range of 0 Gy-2 Gy. TSPO mRNA and protein expression in the brain showed a decreased trend after 0.01 Gy relative to sham-irradiated controls, but remained unchanged after higher doses. Immunohistochemistry confirmed subtle decreases in TSPO expression after 0.01 Gy in vascular endothelial cells of the hippocampal region and in ependymal cells, with no detectable changes following higher doses. Cytokine concentrations in plasma after whole body irradiation showed differential changes in IL-6 and IL-10 with some variations between Tspo-/- and Tspo +/+ animals. The in vitro measurements of TSPO in primary microglial cell cultures showed a significant reduction 1 h after low dose irradiation (0.01 Gy). In summary, acute low and high doses of gamma irradiation up to 2 Gy reduced TSPO expression in the brain's vascular compartment without de novo induction of TSPO expression in parenchymal microglia, while TSPO expression in directly irradiated, isolated, and thus highly activated microglia, too, was reduced after low dose irradiation. The potential link between TSPO, its role in mitochondrial energy metabolism and the selective radiation sensitivity, notably of cells with constitutive TSPO expression such as vascular endothelial cells, merits further exploration.
Collapse
Affiliation(s)
- Calina Betlazar
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Nicholas Howell
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Ben Storer
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Emma Davis
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
21
|
Posillico CK, Garcia-Hernandez RE, Tronson NC. Sex differences and similarities in the neuroimmune response to central administration of poly I:C. J Neuroinflammation 2021; 18:193. [PMID: 34488804 PMCID: PMC8418962 DOI: 10.1186/s12974-021-02235-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neuroimmune system is required for normal neural processes, including modulation of cognition, emotion, and adaptive behaviors. Aberrant neuroimmune activation is associated with dysregulation of memory and emotion, though the precise mechanisms at play are complex and highly context dependent. Sex differences in neuroimmune activation and function further complicate our understanding of its roles in cognitive and affective regulation. METHODS Here, we characterized the physiological sickness and inflammatory response of the hippocampus following intracerebroventricular (ICV) administration of a synthetic viral mimic, polyinosinic:polycytidylic acid (poly I:C), in both male and female C57Bl/6N mice. RESULTS We observed that poly I:C induced weight loss, fever, and elevations of cytokine and chemokines in the hippocampus of both sexes. Specifically, we found transient increases in gene expression and protein levels of IL-1α, IL-1β, IL-4, IL-6, TNFα, CCL2, and CXCL10, where males showed a greater magnitude of response compared with females. Only males showed increased IFNα and IFNγ in response to poly I:C, whereas both males and females exhibited elevations of IFNβ, demonstrating a specific sex difference in the anti-viral response in the hippocampus. CONCLUSION Our data suggest that type I interferons are one potential node mediating sex-specific cytokine responses and neuroimmune effects on cognition. Together, these findings highlight the importance of using both males and females and analyzing a broad set of inflammatory markers in order to identify the precise, sex-specific roles for neuroimmune dysregulation in neurological diseases and disorders.
Collapse
Affiliation(s)
- Caitlin K Posillico
- Psychology Department, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA
| | | | - Natalie C Tronson
- Psychology Department, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Jung SJ, Lee GB, Nishimi K, Chibnik L, Koenen KC, Kim HC. Association between psychological resilience and cognitive function in older adults: effect modification by inflammatory status. GeroScience 2021; 43:2749-2760. [PMID: 34184172 PMCID: PMC8238632 DOI: 10.1007/s11357-021-00406-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
To examine the association between psychological resilience and cognitive function and investigate the role of acute inflammation as an effect modifier. Total 7535 people from the Cardiovascular and Metabolic Disease Etiology Research Center (CMERC), aged ≥ 50 years and residing in areas near Seoul, South Korea, were included in this cross-sectional analysis. Stressful life events in the past 6 months were gauged by the Life Experience Survey, and current depression symptoms were analyzed with the Beck Depression Inventory-II. Participants were categorized into the following four groups according to their past experience and depression status: reference, resilient, reactive depression, and vulnerable depression. Cognitive function was evaluated using the mini-mental state examination (MMSE). The level of high-sensitivity C-reactive protein (hsCRP) was measured from blood samples. A generalized linear model was used. Upon adjusting for socio-demographic factors, comorbidity, and lifestyle factors, the final model was stratified with the highest quartile of the hsCRP level by sex. Compared to the reference group, the resilient group showed higher MMSE, which was also significant in women (adj-β = 0.280, p-value < 0.001). Vulnerable depression group showed a significantly lower MMSE (adj-β = − -0.997, p-value 0.002), especially in men. This pattern seemed to be limited to the low hsCRP subgroup. We provided evidence from the largest Korean population used to evaluate the association between psychological resilience and cognition, which was more prominent in low inflammatory status. Psychological resilience was associated with a lower likelihood of cognitive deficit in women. This pattern was modulated by inflammatory status.
Collapse
Affiliation(s)
- Sun Jae Jung
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea. .,Department of Public Health, Graduate School of Yonsei University, Seoul, Korea. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Ga Bin Lee
- Department of Public Health, Graduate School of Yonsei University, Seoul, Korea
| | - Kristen Nishimi
- Department of Social Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Lori Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Department of Public Health, Graduate School of Yonsei University, Seoul, Korea
| |
Collapse
|
23
|
Lara-Espinosa JV, Arce-Aceves MF, Mata-Espinosa D, Barrios-Payán J, Marquina-Castillo B, Hernández-Pando R. The Therapeutic Effect of Intranasal Administration of Dexamethasone in Neuroinflammation Induced by Experimental Pulmonary Tuberculosis. Int J Mol Sci 2021; 22:ijms22115997. [PMID: 34206086 PMCID: PMC8199538 DOI: 10.3390/ijms22115997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is an important infectious disease and a public health problem. The organs most frequently affected by TB are the lungs; despite this, it has been reported that TB patients suffer from depression and anxiety, which have been attributed to social factors. In previous experimental work, we observed that the extensive pulmonary inflammation characteristic of TB with high cytokine production induces neuroinflammation, neuronal death and behavioral abnormalities in the absence of brain infection. The objective of the present work was to reduce this neuroinflammation and avoid the psycho-affective disorders showed during pulmonary TB. Glucocorticoids (GCs) are the first-line treatment for neuroinflammation; however, their systemic administration generates various side effects, mostly aggravating pulmonary TB due to immunosuppression of cellular immunity. Intranasal administration is a route that allows drugs to be released directly in the brain through the olfactory nerve, reducing their doses and side effects. In the present work, dexamethasone’s (DEX) intranasal administration was evaluated in TB BALB /c mice comparing three different doses (0.05, 0.25 and 2.5 mg/kg BW) on lung disease evolution, neuroinflammation and behavioral alterations. Low doses of dexamethasone significantly decreased neuroinflammation, improving behavioral status without aggravating lung disease.
Collapse
|
24
|
Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021; 12:658551. [PMID: 34054822 PMCID: PMC8155505 DOI: 10.3389/fimmu.2021.658551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.
Collapse
Affiliation(s)
- Marcia Manterola
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Programa de Doctorado en Ciencias, mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
25
|
Xie Y, Luo X, He H, Tang M. Novel Insight Into the Role of Immune Dysregulation in Amyotrophic Lateral Sclerosis Based on Bioinformatic Analysis. Front Neurosci 2021; 15:657465. [PMID: 33994932 PMCID: PMC8119763 DOI: 10.3389/fnins.2021.657465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. The causative pathogenic mechanisms in ALS remain unclear, limiting the development of treatment strategies. Neuroinflammation and immune dysregulation were involved in the disease onset and progression of several neurodegenerative disorders, including ALS. In this study, we carried out a bioinformatic analysis using publicly available datasets from Gene Expression Omnibus (GEO) to investigate the role of immune cells and genes alterations in ALS. Single-sample gene set enrichment analysis revealed that the infiltration of multiple types of immune cells, including macrophages, type-1/17 T helper cells, and activated CD4 + /CD8 + T cells, was higher in ALS patients than in controls. Weighted gene correlation network analysis identified immune genes associated with ALS. The Gene Ontology analysis revealed that receptor and cytokine activities were the most highly enriched terms. Pathway analysis showed that these genes were enriched not only in immune-related pathways, such as cytokine-cytokine receptor interaction, but also in PI3K-AKT and MAPK signaling pathways. Nineteen immune-related genes (C3AR1, CCR1, CCR5, CD86, CYBB, FCGR2B, FCGR3A, HCK, ITGB2, PTPRC, TLR1, TLR2, TLR7, TLR8, TYROBP, VCAM1, CD14, CTSS, and FCER1G) were identified as hub genes based on least absolute shrinkage and selection operator analysis. This gene signature could differentiate ALS patients from non-neurological controls (p < 0.001) and predict disease occurrence (AUC = 0.829 in training set; AUC = 0.862 in test set). In conclusion, our study provides potential biomarkers of ALS for disease diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ximei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Tang
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Lu B, Wu C, Azami NLB, Xie D, Zhao C, Xu W, Hui D, Chen X, Sun R, Song J, An Y, Li K, Wang H, Ye G, Sun M. Babao Dan improves neurocognitive function by inhibiting inflammation in clinical minimal hepatic encephalopathy. Biomed Pharmacother 2021; 135:111084. [PMID: 33383371 DOI: 10.1016/j.biopha.2020.111084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammation has been considered a precipitating event that contributes to neurocognitive dysfunction in minimal hepatic encephalopathy (MHE). Inhibition TLR-4 related inflammation can effectively improve neurocognitive dysfunction of MHE. Our previous study showed that Babao Dan (BBD) effectively inhibited inflammation and ameliorated neurocognitive function in rats with acute hepatic encephalopathy (HE) and chronic HE. The mechanism may lie in the regulation of TLR4 signaling pathway. Therefore, this study aimed to evaluate the role of BBD in the treatment of MHE patients with cirrhosis and to elucidate the underlying mechanism by which BBD regulated TLR4 pathway to alleviate inflammation. METHODS A randomized controlled trial (n = 62) was conducted to evaluate the clinical efficacy between BBD plus lactulose (n = 31) and lactulose alone (n = 31) in MHE patients by testing neurocognitive function (NCT-A and DST), blood ammonia, liver function (ALT, AST and TBIL) and blood inflammation (IL-1β, IL-6 and TNF-α). Afterward, we detected NO, inflammatory cytokines (IL-1β, IL-6 and TNF-α) and the phosphorylation of P65, JNK, ERK as well as P38 in LPS-activated rat primary bone marrow-derived macrophages (BMDMs), peritoneal macrophages (PMs), and mouse primary BMDMs/PMs/microglia/astrocytes, to investigate the underlying mechanism of BBD inhibiting inflammation through TLR4 pathway. Also, the survival rate of mice, liver function (ALT, AST), blood inflammation (IL-1β, IL-6 and TNF-α), inflammatory cytokines (IL-1β, IL-6 and TNF-α) and histopathological changes in the liver, brain and lung were measured to assess the anti-inflammatory effect of BBD on neurocognitive function in endotoxin shock/endotoxemia mice. RESULTS BBD combined with lactulose significantly ameliorated neurocognitive function by decreasing NCT-A (p<0.001) and increasing DST (p<0.001); inhibited systemic inflammation by decreasing IL-1β (p<0.001), IL-6(p<0.001) and TNF-α (p<0.001); reduced ammonia level (p = 0.005), and improved liver function by decreasing ALT(p = 0.043), AST(p = 0.003) and TBIL (p = 0.026) in MHE patients. Furthermore, BBD inhibited gene and protein expression of IL-1β, IL-6 and TNF-α as well as NO in rat primary BMDMs/PMs, and mouse primary BMDMs/PMs/microglia/astrocytes in a dose-dependent manner. BBD inhibited the activation of mouse primary BMDMs/PMs/microglia/astrocytes by regulating TLR4 pathway involving the phosphorylation of P65, JNK, ERK and P38. Also, BBD reduced the mortality of mice with endotoxin shock/endotoxemia; serum levels of ALT, AST, IL-1β, IL-6 and TNF-α; gene expression of IL-1β, IL-6 and TNF-α in the liver, brain and lung, and tissue damage in the liver and lung. CONCLUSION Our study provided for the first time clinical and experimental evidence supporting the use of BBD in MHE, and revealed that BBD could play a crucial role in targeting and regulating TLR4 inflammatory pathway to improve neurocognitive function in MHE patients.
Collapse
Affiliation(s)
- Bingjie Lu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chao Wu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Nisma Lena Bahaji Azami
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Changqing Zhao
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wan Xu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dengcheng Hui
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xi Chen
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200082, China.
| | - Runfei Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingru Song
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yongtong An
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| | - Kun Li
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| | - Mingyu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
27
|
Ni J, Wu Z. Inflammation Spreading: Negative Spiral Linking Systemic Inflammatory Disorders and Alzheimer's Disease. Front Cell Neurosci 2021; 15:638686. [PMID: 33716675 PMCID: PMC7947253 DOI: 10.3389/fncel.2021.638686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
As a physiological response to injury in the internal body organs, inflammation is responsible for removing dangerous stimuli and initiating healing. However, persistent and exaggerative chronic inflammation causes undesirable negative effects in the organs. Inflammation occurring in the brain and spinal cord is known as neuroinflammation, with microglia acting as the central cellular player. There is increasing evidence suggesting that chronic neuroinflammation is the most relevant pathological feature of Alzheimer’s disease (AD), regulating other pathological features, such as the accumulation of amyloid-β (Aβ) and hyperphosphorylation of Tau. Systemic inflammatory signals caused by systemic disorders are known to strongly influence neuroinflammation as a consequence of microglial activation, inflammatory mediator production, and the recruitment of peripheral immune cells to the brain, resulting in neuronal dysfunction. However, the neuroinflammation-accelerated neuronal dysfunction in AD also influences the functions of peripheral organs. In the present review, we highlight the link between systemic inflammatory disorders and AD, with inflammation serving as the common explosion. We discuss the molecular mechanisms that govern the crosstalk between systemic inflammation and neuroinflammation. In our view, inflammation spreading indicates a negative spiral between systemic diseases and AD. Therefore, “dampening inflammation” through the inhibition of cathepsin (Cat)B or CatS may be a novel therapeutic approach for delaying the onset of and enacting early intervention for AD.
Collapse
Affiliation(s)
- Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
Zefferino R, Di Gioia S, Conese M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav 2021; 11:e01960. [PMID: 33295155 PMCID: PMC7882157 DOI: 10.1002/brb3.1960] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The stress response is different in various individuals, however, the mechanisms that could explain these distinct effects are not well known and the molecular correlates have been considered one at the time. Particular harmful conditions occur if the subject, instead to cope the stressful events, succumb to them, in this case, a cascade reaction happens that through different signaling causes a specific reaction named "sickness behaviour." The aim of this article is to review the complex relations among important molecules belonging to Central nervous system (CNS), immune system (IS), and endocrine system (ES) during the chronic stress response. METHODS After having verified the state of art concerning the function of cortisol, norepinephrine (NE), interleukin (IL)-1β and melatonin, we describe as they work together. RESULTS We propose a speculative hypothesis concerning the complex interplay of these signaling molecules during chronic stress, highlighting the role of IL-1β as main biomarker of this effects, indeed, during chronic stress its increment transforms this inflammatory signal into a nervous signal (NE), in turn, this uses the ES (melatonin and cortisol) to counterbalance again IL-1β. During cortisol resistance, a vicious loop occurs that increments all mediators, unbalancing IS, ES, and CNS networks. This IL-1β increase would occur above all when the individual succumbs to stressful events, showing the Sickness Behaviour Symptoms. IL-1β might, through melatonin and vice versa, determine sleep disorders too. CONCLUSION The molecular links here outlined could explain how stress plays a role in etiopathogenesis of several diseases through this complex interplay.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
29
|
Lara-Espinosa JV, Santana-Martínez RA, Maldonado PD, Zetter M, Becerril-Villanueva E, Pérez-Sánchez G, Pavón L, Mata-Espinosa D, Barrios-Payán J, López-Torres MO, Marquina-Castillo B, Hernández-Pando R. Experimental Pulmonary Tuberculosis in the Absence of Detectable Brain Infection Induces Neuroinflammation and Behavioural Abnormalities in Male BALB/c Mice. Int J Mol Sci 2020; 21:9483. [PMID: 33322180 PMCID: PMC7763936 DOI: 10.3390/ijms21249483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease in which prolonged, non-resolutive inflammation of the lung may lead to metabolic and neuroendocrine dysfunction. Previous studies have reported that individuals coursing pulmonary TB experience cognitive or behavioural changes; however, the pathogenic substrate of such manifestations have remained unknown. Here, using a mouse model of progressive pulmonary TB, we report that, even in the absence of brain infection, TB is associated with marked increased synthesis of both inflammatory and anti-inflammatory cytokines in discrete brain areas such as the hypothalamus, the hippocampal formation and cerebellum accompanied by substantial changes in the synthesis of neurotransmitters. Moreover, histopathological findings of neurodegeneration and neuronal death were found as infection progressed with activation of p38, JNK and reduction in the BDNF levels. Finally, we perform behavioural analysis in infected mice throughout the infection, and our data show that the cytokine and neurochemical changes were associated with a marked onset of cognitive impairment as well as depressive- and anxiety-like behaviour. Altogether, our results suggest that besides pulmonary damage, TB is accompanied by an extensive neuroinflammatory and neurodegenerative state which explains some of the behavioural abnormalities found in TB patients.
Collapse
Affiliation(s)
- Jacqueline V. Lara-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Ricardo A. Santana-Martínez
- Laboratorio de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX 04510, Mexico;
| | - Perla D. Maldonado
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX 14269, Mexico;
| | - Mario Zetter
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Enrique Becerril-Villanueva
- Departamento de Psicoinmunologia, Instituto Nacional de Psiquiatria Ramón de la Fuente, CDMX 14370, Mexico; (E.B.-V.); (G.P.-S.); (L.P.)
| | - Gilberto Pérez-Sánchez
- Departamento de Psicoinmunologia, Instituto Nacional de Psiquiatria Ramón de la Fuente, CDMX 14370, Mexico; (E.B.-V.); (G.P.-S.); (L.P.)
| | - Lenin Pavón
- Departamento de Psicoinmunologia, Instituto Nacional de Psiquiatria Ramón de la Fuente, CDMX 14370, Mexico; (E.B.-V.); (G.P.-S.); (L.P.)
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Manuel O. López-Torres
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Brenda Marquina-Castillo
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| |
Collapse
|
30
|
Rps27a might act as a controller of microglia activation in triggering neurodegenerative diseases. PLoS One 2020; 15:e0239219. [PMID: 32941527 PMCID: PMC7498011 DOI: 10.1371/journal.pone.0239219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are increasing serious menaces to human health in the recent years. Despite exhibiting different clinical phenotypes and selective neuronal loss, there are certain common features in these disorders, suggesting the presence of commonly dysregulated pathways. Identifying causal genes and dysregulated pathways can be helpful in providing effective treatment in these diseases. Interestingly, in spite of the considerable researches on NDDs, to the best of our knowledge, no dysregulated genes and/or pathways were reported in common across all the major NDDs so far. In this study, for the first time, we have applied the three-way interaction model, as an approach to unravel sophisticated gene interactions, to trace switch genes and significant pathways that are involved in six major NDDs. Subsequently, a gene regulatory network was constructed to investigate the regulatory communication of statistically significant triplets. Finally, KEGG pathway enrichment analysis was applied to find possible common pathways. Because of the central role of neuroinflammation and immune system responses in both pathogenic and protective mechanisms in the NDDs, we focused on immune genes in this study. Our results suggest that "cytokine-cytokine receptor interaction" pathway is enriched in all of the studied NDDs, while "osteoclast differentiation" and "natural killer cell mediated cytotoxicity" pathways are enriched in five of the NDDs each. The results of this study indicate that three pathways that include "osteoclast differentiation", "natural killer cell mediated cytotoxicity" and "cytokine-cytokine receptor interaction" are common in five, five and six NDDs, respectively. Additionally, our analysis showed that Rps27a as a switch gene, together with the gene pair {Il-18, Cx3cl1} form a statistically significant and biologically relevant triplet in the major NDDs. More specifically, we suggested that Cx3cl1 might act as a potential upstream regulator of Il-18 in microglia activation, and in turn, might be controlled with Rps27a in triggering NDDs.
Collapse
|
31
|
Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Park J, Bikson M, Inan OT. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med 2020; 10:E119. [PMID: 32916852 PMCID: PMC7563188 DOI: 10.3390/jpm10030119] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. METHODS New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. RESULTS This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. CONCLUSIONS nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Mark H. Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Medicine, Renal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City University of New York, New York, NY 10010, USA;
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
32
|
Liu RT, Rowan-Nash AD, Sheehan AE, Walsh RFL, Sanzari CM, Korry BJ, Belenky P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav Immun 2020; 88:308-324. [PMID: 32229219 PMCID: PMC7415740 DOI: 10.1016/j.bbi.2020.03.026] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
We assessed the gut microbiota of 90 American young adults, comparing 43 participants with major depressive disorder (MDD) and 47 healthy controls, and found that the MDD subjects had significantly different gut microbiota compared to the healthy controls at multiple taxonomic levels. At the phylum level, participants with MDD had lower levels of Firmicutes and higher levels of Bacteroidetes, with similar trends in the at the class (Clostridia and Bacteroidia) and order (Clostridiales and Bacteroidales) levels. At the genus level, the MDD group had lower levels of Faecalibacterium and other related members of the family Ruminococcaceae, which was also reduced relative to healthy controls. Additionally, the class Gammaproteobacteria and genus Flavonifractor were enriched in participants with MDD. Accordingly, predicted functional differences between the two groups include a reduced abundance of short-chain fatty acid production pathways in the MDD group. We also demonstrated that the magnitude of taxonomic changes was associated with the severity of depressive symptoms in many cases, and that most changes were present regardless of whether depressed participants were taking psychotropic medications. Overall, our results support a link between MDD and lower levels of anti-inflammatory, butyrate-producing bacteria, and may support a connection between the gut microbiota and the chronic, low-grade inflammation often observed in MDD patients.
Collapse
Affiliation(s)
- Richard T Liu
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ana E Sheehan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Rachel F L Walsh
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Christina M Sanzari
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| |
Collapse
|
33
|
The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020; 107:234-256. [PMID: 32553197 DOI: 10.1016/j.neuron.2020.06.002] [Citation(s) in RCA: 1127] [Impact Index Per Article: 225.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Depression represents the number one cause of disability worldwide and is often fatal. Inflammatory processes have been implicated in the pathophysiology of depression. It is now well established that dysregulation of both the innate and adaptive immune systems occur in depressed patients and hinder favorable prognosis, including antidepressant responses. In this review, we describe how the immune system regulates mood and the potential causes of the dysregulated inflammatory responses in depressed patients. However, the proportion of never-treated major depressive disorder (MDD) patients who exhibit inflammation remains to be clarified, as the heterogeneity in inflammation findings may stem in part from examining MDD patients with varied interventions. Inflammation is likely a critical disease modifier, promoting susceptibility to depression. Controlling inflammation might provide an overall therapeutic benefit, regardless of whether it is secondary to early life trauma, a more acute stress response, microbiome alterations, a genetic diathesis, or a combination of these and other factors.
Collapse
|
34
|
Korte SM, Straub RH. Fatigue in inflammatory rheumatic disorders: pathophysiological mechanisms. Rheumatology (Oxford) 2020; 58:v35-v50. [PMID: 31682277 PMCID: PMC6827268 DOI: 10.1093/rheumatology/kez413] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Today, inflammatory rheumatic disorders are effectively treated, but many patients still suffer from residual fatigue. This work presents pathophysiological mechanisms of fatigue. First, cytokines can interfere with neurotransmitter release at the preterminal ending. Second, a long-term increase in serum concentrations of proinflammatory cytokines increase the uptake and breakdown of monoamines (serotonin, noradrenaline and dopamine). Third, chronic inflammation can also decrease monoaminergic neurotransmission via oxidative stress (oxidation of tetrahydrobiopterin [BH4]). Fourth, proinflammatory cytokines increase the level of enzyme indoleamine-2, 3-dioxygenase activity and shunt tryptophan away from the serotonin pathway. Fifth, oxidative stress stimulates astrocytes to inhibit excitatory amino acid transporters. Sixth, astrocytes produce kynurenic acid that acts as an antagonist on the α7-nicotinic acetylcholine receptor to inhibit dopamine release. Jointly, these actions result in increased glutamatergic and decreased monoaminergic neurotransmission. The above-described pathophysiological mechanisms negatively affect brain functioning in areas that are involved in fatigue.
Collapse
Affiliation(s)
- S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, (UIPS), Utrecht University, Utrecht, The Netherlands.,Department of Biopsychology, Faculty of Psychology, Ruhr-Universität, Bochum
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany
| |
Collapse
|
35
|
Jones CB, Davis CM, Sfanos KS. The Potential Effects of Radiation on the Gut-Brain Axis. Radiat Res 2020; 193:209-222. [DOI: 10.1667/rr15493.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences
| | | |
Collapse
|
36
|
Donia SA, Allison DJ, Gammage KL, Ditor DS. The effects of acute aerobic exercise on mood and inflammation in individuals with multiple sclerosis and incomplete spinal cord injury. NeuroRehabilitation 2019; 45:117-124. [PMID: 31450521 DOI: 10.3233/nre-192773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) and multiple sclerosis (MS) are associated with increased risks of depression. Acute exercise may improve mood in these populations via its affect on inflammation. OBJECTIVE To determine if acute exercise can positively affect mood in individuals with SCI and MS, and whether exercise-induced changes in inflammation contribute to such improvements. METHODS Thirteen participants completed 30 minutes of moderate-intensity exercise. Mood data (POMS questionnaire) and blood samples were taken before and after exercise, and blood was analyzed for inflammatory mediators and kynurenine pathway metabolites. RESULTS There was a significant reduction in total mood disturbance (TMD) pre to post-exercise, and pre to one-hour post-exercise. There was a significant decrease in TNF-α from pre to post-exercise, with further reductions one-hour post-exercise. There were no correlations between changes in TMD and changes in inflammation. However, changes in certain cytokines showed significant or trending correlations with changes in subsets of the POMS. Likewise, there was a trend for a correlation between exercise-induced changes in KYN/TRP and depression (p = 0.096). CONCLUSIONS Acute exercise can positively affect mood after SCI and MS, and this change may be partially accounted for by exercise-induced changes in inflammation. This relationship may be, in part, kynurenine pathway-dependent.
Collapse
Affiliation(s)
- Scott A Donia
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Brock-Niagara Centre for Health and Well-being, Brock University, St. Catharines, ON, Canada
| | - David J Allison
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Kimberley L Gammage
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Brock-Niagara Centre for Health and Well-being, Brock University, St. Catharines, ON, Canada
| | - David S Ditor
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Brock-Niagara Centre for Health and Well-being, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
37
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
38
|
Muthulingam JA, Olesen SS, Hansen TM, Brock C, Drewes AM, Frøkjær JB. Study protocol for a randomised double-blinded, sham-controlled, prospective, cross-over clinical trial of vagal neuromodulation for pain treatment in patients with chronic pancreatitis. BMJ Open 2019; 9:e029546. [PMID: 31603076 PMCID: PMC6720238 DOI: 10.1136/bmjopen-2019-029546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The management of chronic pancreatitis (CP) is challenging and requires a personalised approach focused on the individual patient's main symptoms. Abdominal pain is the most prominent symptom in CP, where central pain mechanisms, including sensitisation and impaired pain modulation, often are involved. Recent clinical studies suggest that vagal nerve stimulation (VNS) induces analgesic effects through the modulation of central pain pathways. This study aims to investigate the effect of 2 weeks transcutaneous VNS (t-VNS) on clinical pain in patients with CP, in comparison to the effect of sham treatment. METHODS AND ANALYSIS Twenty-one patients with CP will be enrolled in this randomised, double-blinded, single-centre, sham-controlled, cross-over study. The study has two treatment periods: A 2-week active t-VNS using GammaCore device and a 2-week treatment with a sham device. During both treatment periods, the patients are instructed to self-administer VNS bilaterally to the cervical vagal area, three times per day. Treatment periods will be separated by 2 weeks. During the study period, patients will record their daily pain experience in a diary (primary clinical endpoint). In addition, all subjects will undergo testing which will include MRI, quantitative sensory testing, cardiac vagal tone assessment and collecting blood samples, before and after the two treatments to investigate mechanisms underlying VNS effects. The data will be analysed using the principle of intention to treat. ETHICS AND DISSEMINATION The regional ethics committee has approved the study: N-20170023. Results of the trial will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER The study is registered at www.clinicaltrials.gov: NCT03357029.
Collapse
Affiliation(s)
- Janusiya Anajan Muthulingam
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Søren Schou Olesen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Tine Maria Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Christina Brock
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Aalborg University Hospital, Aalborg, UK
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
39
|
Relationships between neural activation during a reward task and peripheral cytokine levels in youth with diverse psychiatric symptoms. Brain Behav Immun 2019; 80:374-383. [PMID: 30953769 PMCID: PMC6660409 DOI: 10.1016/j.bbi.2019.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation has been hypothesized to contribute to reward dysfunction across psychiatric conditions, but little is known about this relationship in youth. Therefore, the present study investigated the associations between general and specific markers of inflammation and neural activation during reward processing, including anticipation and attainment, in youth with diverse psychiatric symptoms. METHODS Forty-six psychotropic medication-free youth with diverse psychiatric symptoms underwent a blood draw to measure 41 cytokines, as well as structural and functional magnetic resonance imaging. The Reward Flanker Task examined neural activation during reward anticipation and attainment. Relationships between inflammation and neural activation were assessed using data reduction techniques across the whole-brain, as well as in specific reward regions of interest (basal ganglia, anterior and mid-cingulate cortex [ACC/MCC]). RESULTS Whole-brain principal component analyses showed that factor 3 (12 cytokines: FGF-2, Flt3-L, fractalkine, GM-CSF, IFN-α2, IFN-γ, IL-3, IL-4, IL-7, IL-17A, MDC, and VEGF) was negatively correlated with precuneus/posterior cingulate cortex activity during anticipation. Factor 2 (11 cytokines: eotaxin, IL-1α, IL-1Rα, IL-2, IL-5, IL-9, IL-12p40, IL-13, IL-15, MCP-3, and TNF-β) was negatively correlated with angular gyrus activity during attainment. ROI analyses additionally showed that multiple cytokines were related to activity in the basal ganglia (EGF, FGF-2, Flt-3L, IL-2, IL-13, IL-15, IL-1Rα, MCP-3) and ACC/MCC (Flt-3L) during attainment. C-reactive protein (CRP) was not associated with neural activation. CONCLUSIONS Investigation of specific markers of immune function showed associations between inflammatory processes and activation of posterior default mode network, prefrontal cortex, and basal ganglia regions during multiple phases of reward processing.
Collapse
|
40
|
Are Signs of Central Sensitization in Acute Low Back Pain a Precursor to Poor Outcome? THE JOURNAL OF PAIN 2019; 20:994-1009. [DOI: 10.1016/j.jpain.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/13/2019] [Accepted: 03/02/2019] [Indexed: 12/20/2022]
|
41
|
Liu X, Qian X, Xing J, Wang J, Sun Y, Wang Q, Li H. Particulate Matter Triggers Depressive-Like Response Associated With Modulation of Inflammatory Cytokine Homeostasis and Brain-Derived Neurotrophic Factor Signaling Pathway in Mice. Toxicol Sci 2019; 164:278-288. [PMID: 29688525 DOI: 10.1093/toxsci/kfy086] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Particulate matter (PM) exposure may contribute to depressive-like response in mice. However, few studies have evaluated the adaptive impacts of long-term PM exposure on depressive-like response associated with systemic inflammation and brain-derived neurotrophic factor (BDNF) signaling pathway. We studied the association among depressive-like behaviors, mRNA levels of pro and anti-inflammatory cytokines, and the expression of BDNF signaling pathway in mice by long-term PM exposure. C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency air PM (HEPA) filter. Depressive-like behaviors were assessed together with proinflammatory, anti-inflammatory cytokine mRNA levels and the modulation of BDNF pathway in hippocampus and olfactory-bulb of mice exposed to PM for 4, 8, and 12 weeks. Exposure to HEPA-filtered air for 4 weeks may exert antidepressant like effects in mice. Proinflammatory cytokines were up-regulated while the expression of BDNF, its high-affinity receptor tropomyosin-related kinase B (TrkB), and the transcription factor (cyclic adenosine monophosphate)-response element-binding protein (CREB) were down-regulated in ambient air mice. However, after 8 weeks, there was no significant difference in the rate of depressive-like behaviors between the 2 groups. After 12 weeks, mice exposed to ambient air again had a higher rate of depressive-like behaviors, significant up-regulation of proinflammatory cytokines, down-regulation of interleukin-10, BDNF, TrkB, and CREB than HEPA mice. Ultrafine PM in brain tissues of mice exposed to ambient air was observed. Our results suggest continuous high-level PM exposure alters the depressive-like response in mice and induces a damage-repair-imbalance reaction.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.,School of the Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jing Xing
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinhua Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yixuan Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qin'geng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Huiming Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
42
|
Smith DG, Martinelli R, Besra GS, Illarionov PA, Szatmari I, Brazda P, Allen MA, Xu W, Wang X, Nagy L, Dowell RD, Rook GAW, Rosa Brunet L, Lowry CA. Identification and characterization of a novel anti-inflammatory lipid isolated from Mycobacterium vaccae, a soil-derived bacterium with immunoregulatory and stress resilience properties. Psychopharmacology (Berl) 2019; 236:1653-1670. [PMID: 31119329 PMCID: PMC6626661 DOI: 10.1007/s00213-019-05253-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/22/2019] [Indexed: 12/14/2022]
Abstract
RATIONALE Mycobacterium vaccae (NCTC 11659) is an environmental saprophytic bacterium with anti-inflammatory, immunoregulatory, and stress resilience properties. Previous studies have shown that whole, heat-killed preparations of M. vaccae prevent allergic airway inflammation in a murine model of allergic asthma. Recent studies also demonstrate that immunization with M. vaccae prevents stress-induced exaggeration of proinflammatory cytokine secretion from mesenteric lymph node cells stimulated ex vivo, prevents stress-induced exaggeration of chemically induced colitis in a model of inflammatory bowel disease, and prevents stress-induced anxiety-like defensive behavioral responses. Furthermore, immunization with M. vaccae induces anti-inflammatory responses in the brain and prevents stress-induced exaggeration of microglial priming. However, the molecular mechanisms underlying anti-inflammatory effects of M. vaccae are not known. OBJECTIVES Our objective was to identify and characterize novel anti-inflammatory molecules from M. vaccae NCTC 11659. METHODS We have purified and identified a unique anti-inflammatory triglyceride, 1,2,3-tri [Z-10-hexadecenoyl] glycerol, from M. vaccae and evaluated its effects in freshly isolated murine peritoneal macrophages. RESULTS The free fatty acid form of 1,2,3-tri [Z-10-hexadecenoyl] glycerol, 10(Z)-hexadecenoic acid, decreased lipopolysaccharide-stimulated secretion of the proinflammatory cytokine IL-6 ex vivo. Meanwhile, next-generation RNA sequencing revealed that pretreatment with 10(Z)-hexadecenoic acid upregulated genes associated with peroxisome proliferator-activated receptor alpha (PPARα) signaling in lipopolysaccharide-stimulated macrophages, in association with a broad transcriptional repression of inflammatory markers. We confirmed using luciferase-based transfection assays that 10(Z)-hexadecenoic acid activated PPARα signaling, but not PPARγ, PPARδ, or retinoic acid receptor (RAR) α signaling. The effects of 10(Z)-hexadecenoic acid on lipopolysaccharide-stimulated secretion of IL-6 were prevented by PPARα antagonists and absent in PPARα-deficient mice. CONCLUSION Future studies should evaluate the effects of 10(Z)-hexadecenoic acid on stress-induced exaggeration of peripheral inflammatory signaling, central neuroinflammatory signaling, and anxiety- and fear-related defensive behavioral responses.
Collapse
Affiliation(s)
- David G Smith
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Department of Pathology, Anatomy, and Cellular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Roberta Martinelli
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, WC1E 6BT, UK
- Merck Research Laboratories, MSD, Kenilworth, NJ, USA
| | - Gurdyal S Besra
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Petr A Illarionov
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Istvan Szatmari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, 1, Debrecen, 4032, Hungary
| | - Peter Brazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, 1, Debrecen, 4032, Hungary
| | - Mary A Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Wenqing Xu
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiang Wang
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, 1, Debrecen, 4032, Hungary
- MTA-DE "Lendület" Immunogenomics Research Group, University of Debrecen, Egyetem tér, 1, Debrecen, 4012, Hungary
- Department of Medicine, Johns Hopkins University, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, 33701, USA
| | - Robin D Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Graham A W Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, WC1E 6BT, UK
| | - Laura Rosa Brunet
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, WC1E 6BT, UK
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA.
- inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ, 07093, USA.
| |
Collapse
|
43
|
Dayakar A, Chandrasekaran S, Kuchipudi SV, Kalangi SK. Cytokines: Key Determinants of Resistance or Disease Progression in Visceral Leishmaniasis: Opportunities for Novel Diagnostics and Immunotherapy. Front Immunol 2019; 10:670. [PMID: 31024534 PMCID: PMC6459942 DOI: 10.3389/fimmu.2019.00670] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Leishmaniasis is a parasitic disease of humans, highly prevalent in parts of the tropics, subtropics, and southern Europe. The disease mainly occurs in three different clinical forms namely cutaneous, mucocutaneous, and visceral leishmaniasis (VL). The VL affects several internal organs and is the deadliest form of the disease. Epidemiology and clinical manifestations of VL are variable based on the vector, parasite (e.g., species, strains, and antigen diversity), host (e.g., genetic background, nutrition, diversity in antigen presentation and immunity) and the environment (e.g., temperature, humidity, and hygiene). Chemotherapy of VL is limited to a few drugs which is expensive and associated with profound toxicity, and could become ineffective due to the parasites developing resistance. Till date, there are no licensed vaccines for humans against leishmaniasis. Recently, immunotherapy has become an attractive strategy as it is cost-effective, causes limited side-effects and do not suffer from the downside of pathogens developing resistance. Among various immunotherapeutic approaches, cytokines (produced by helper T-lymphocytes) based immunotherapy has received great attention especially for drug refractive cases of human VL. Therefore, a comprehensive knowledge on the molecular interactions of immune cells or components and on cytokines interplay in the host defense or pathogenesis is important to determine appropriate immunotherapies for leishmaniasis. Here, we summarized the current understanding of a wide-spectrum of cytokines and their interaction with immune cells that determine the clinical outcome of leishmaniasis. We have also highlighted opportunities for the development of novel diagnostics and intervention therapies for VL.
Collapse
Affiliation(s)
| | | | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Suresh K Kalangi
- Department of Biosciences, School of Sciences, Indrashil University, Mehsana, India
| |
Collapse
|
44
|
VanElzakker MB, Brumfield SA, Lara Mejia PS. Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Front Neurol 2019; 9:1033. [PMID: 30687207 PMCID: PMC6335565 DOI: 10.3389/fneur.2018.01033] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is the label given to a syndrome that can include long-term flu-like symptoms, profound fatigue, trouble concentrating, and autonomic problems, all of which worsen after exertion. It is unclear how many individuals with this diagnosis are suffering from the same condition or have the same underlying pathophysiology, and the discovery of biomarkers would be clarifying. The name "myalgic encephalomyelitis" essentially means "muscle pain related to central nervous system inflammation" and many efforts to find diagnostic biomarkers have focused on one or more aspects of neuroinflammation, from periphery to brain. As the field uncovers the relationship between the symptoms of this condition and neuroinflammation, attention must be paid to the biological mechanisms of neuroinflammation and issues with its potential measurement. The current review focuses on three methods used to study putative neuroinflammation in ME/CFS: (1) positron emission tomography (PET) neuroimaging using translocator protein (TSPO) binding radioligand (2) magnetic resonance spectroscopy (MRS) neuroimaging and (3) assays of cytokines circulating in blood and cerebrospinal fluid. PET scanning using TSPO-binding radioligand is a promising option for studies of neuroinflammation. However, methodological difficulties that exist both in this particular technique and across the ME/CFS neuroimaging literature must be addressed for any results to be interpretable. We argue that the vast majority of ME/CFS neuroimaging has failed to use optimal techniques for studying brainstem, despite its probable centrality to any neuroinflammatory causes or autonomic effects. MRS is discussed as a less informative but more widely available, less invasive, and less expensive option for imaging neuroinflammation, and existing studies using MRS neuroimaging are reviewed. Studies seeking to find a peripheral circulating cytokine "profile" for ME/CFS are reviewed, with attention paid to the biological and methodological reasons for lack of replication among these studies. We argue that both the biological mechanisms of cytokines and the innumerable sources of potential variance in their measurement make it unlikely that a consistent and replicable diagnostic cytokine profile will ever be discovered.
Collapse
Affiliation(s)
- Michael B. VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | |
Collapse
|
45
|
Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:173-215. [PMID: 31456184 DOI: 10.1007/978-3-030-20301-6_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the result of a cell's acquisition of a variety of biological capabilities or 'hallmarks' as outlined by Hanahan and Weinberg. These include sustained proliferative signalling, the ability to evade growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and the ability to invade other tissue and metastasize. More recently, the ability to escape immune destruction has been recognized as another important hallmark of tumours. It is suggested that genome instability and inflammation accelerates the acquisition of a variety of the above hallmarks. Inflammation, is a product of the body's response to tissue damage or pathogen invasion. It is required for tissue repair and host defense, but prolonged inflammation can often be the cause for disease. In a cancer patient, it is often unclear whether inflammation plays a protective or deleterious role in disease progression. Chemotherapy drugs can suppress tumour growth but also induce pathways in tumour cells that have been shown experimentally to support tumour progression or, in other cases, encourage an anti-tumour immune response. Thus, with the goal of better understanding the context under which each of these possible outcomes occurs, recent progress exploring chemotherapy-induced inflammatory cytokine production and the effects of cytokines on drug efficacy in the tumour microenvironment will be reviewed. The implications of chemotherapy on host and tumour cytokine pathways and their effect on the treatment of cancer patients will also be discussed.
Collapse
|
46
|
Cowan M, Petri WA. Microglia: Immune Regulators of Neurodevelopment. Front Immunol 2018; 9:2576. [PMID: 30464763 PMCID: PMC6234957 DOI: 10.3389/fimmu.2018.02576] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/18/2018] [Indexed: 12/29/2022] Open
Abstract
Microglia, the tissue-resident macrophages of the central nervous system (CNS), have characterized roles in combating infection, clearing cellular debris, and maintaining tissue homeostasis. In addition to these typical immunological roles, microglia have been revealed to be active players in complex neurodevelopmental programs such as neurogenesis and synaptic pruning, during which they interact with neurons and macroglia to provide trophic support, respond to cytokine, and metabolic signals derived from the local neural environment, and drive the refinement of functional neuronal circuits. Microglia appear to be developmentally regulated by the host microbiome, and have been shown to dynamically respond to metabolic products from gut microbiota in a sex-dependent manner. Due to their constant surveillance of the brain parenchyma, involvement in development, and salient reactivity to both peripheral immune and microbiome-derived signals, microglia may additionally serve as a key cellular intermediate linking neurodevelopmental disorders such as autism and schizophrenia with microbiota influences in models of maternal immune activation (MIA). This review examines both well-established and emerging literature and perspectives on microglia in the context of neurodevelopment, with a particular emphasis on the role of the host microbiome in influencing microglial function during health and disease states.
Collapse
Affiliation(s)
- Maureen Cowan
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
47
|
Maintenance of diet participation in individuals with spinal cord injury: effect on mood and neuropathic pain. Spinal Cord Ser Cases 2018; 4:97. [PMID: 30393568 DOI: 10.1038/s41394-018-0131-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Abstract
Study design One-year follow-up of a randomized clinical trial. Objectives Examine voluntary dietary compliance 1 year following the cessation of the intervention and the persistence of accrued benefits related to neuropathic pain and mood. Setting Outpatient rehabilitation program within the Niagara region. Methods Five individuals (4 female, 1 male; age 50.6 ± 11.8 years) with chronic SCI (C5-L3; ISNCSCI: A-D; 7-40 years post injury) who had previously completed a 3-month anti-inflammatory diet were reassessed after 1 year for measures related to dietary compliance, CES-D scores of depression, and NPQ scores of neuropathic pain. Results There was a significant reduction in diet compliance at the 1-year follow-up in comparison to the end of the dietary intervention at 3 months (92.6% versus 43.0%, p < 0.01). CES-D scores showed a trend toward an increase from 3 months to follow-up (8.0 versus 21.4, p = .10) whereby follow-up CES-D scores were no longer statistically different from baseline (p = 0.74). Sensory NPQ scores showed no significant change from 3 months to follow-up (25.2 versus 29.1, p = 0.42) and remained significantly lower than baseline (p = 0.02). Affective NPQ scores were significantly increased from 3 months to follow-up (27.7 versus 40.1, p = 0.05). Sensitivity NPQ scores showed no significant change from 3 month to follow-up (28.2 versus 33.5, p = 0.34), but returned to a score that was statistically similar to baseline (p = 0.15). Conclusions These results emphasize the importance of continued compliance to a diet with anti-inflammatory properties for the purposes of maintaining benefits related to mood and neuropathic pain in individuals with SCI. Sponsorship This study was supported by the Ontario Neurotrauma Foundation.
Collapse
|
48
|
Manley K, Han W, Zelin G, Lawrence DA. Crosstalk between the immune, endocrine, and nervous systems in immunotoxicology. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Zila I, Mokra D, Kopincova J, Kolomaznik M, Javorka M, Calkovska A. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway. Physiol Res 2018; 66:S139-S145. [PMID: 28937230 DOI: 10.33549/physiolres.933671] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammation and other immune responses are involved in the variety of diseases and disorders. The acute response to endotoxemia includes activation of innate immune mechanisms as well as changes in autonomic nervous activity. The autonomic nervous system and the inflammatory response are intimately linked and sympathetic and vagal nerves are thought to have anti-inflammation functions. The basic functional circuit between vagus nerve and inflammatory response was identified and the neuroimmunomodulation loop was called cholinergic anti-inflammatory pathway. Unique function of vagus nerve in the anti-inflammatory reflex arc was found in many experimental and pre-clinical studies. They brought evidence on the cholinergic signaling interacting with systemic and local inflammation, particularly suppressing immune cells function. Pharmacological/electrical modulation of vagal activity suppressed TNF-alpha and other proinflammatory cytokines production and had beneficial therapeutic effects. Many questions related to mapping, linking and targeting of vagal-immune interactions have been elucidated and brought understanding of its basic physiology and provided the initial support for development of Tracey´s inflammatory reflex. This review summarizes and critically assesses the current knowledge defining cholinergic anti-inflammatory pathway with main focus on studies employing an experimental approach and emphasizes the potential of modulation of vagally-mediated anti-inflammatory pathway in the treatment strategies.
Collapse
Affiliation(s)
- I Zila
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | | | | | | | | | | |
Collapse
|
50
|
Chauhan A, Al Mamun A, Spiegel G, Harris N, Zhu L, McCullough LD. Splenectomy protects aged mice from injury after experimental stroke. Neurobiol Aging 2018; 61:102-111. [PMID: 29059593 PMCID: PMC5947993 DOI: 10.1016/j.neurobiolaging.2017.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022]
Abstract
Elderly stroke patients and aged animals subjected to experimental stroke have significantly worse functional recovery and higher mortality compared to younger subjects. Activation of the peripheral immune system is known to influence stroke outcome. Prior studies have shown that splenectomy reduces ischemic brain injury in young mice. As immune function changes with aging, it is unclear whether splenectomy will confer similar benefits in aged animals. We investigated the contribution of spleen to brain injury after cerebral ischemia in aged male mice. Splenic architecture and immune cell composition were altered in aged mice. Splenectomy 2 weeks before stroke resulted in improved neurobehavioral and infarct outcomes in aged male mice. In addition, there was a reduction in peripheral immune cell infiltration into the brain and decreased levels of peripheral inflammatory cytokines after stroke in aged splenectomized mice. Splenectomy immediately after reperfusion also improved behavioral and infarct outcomes. This study suggests that inhibition of the splenic immune response is a translationally relevant target to pursue for stroke treatment in aged individuals.
Collapse
Affiliation(s)
- Anjali Chauhan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Abdullah Al Mamun
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriel Spiegel
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Nia Harris
- University of Connecticut Health Science Center, Farmington, Connecticut, USA
| | - Liang Zhu
- Biostatistics & Epidemiology Research Design Core, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA.
| |
Collapse
|