1
|
Field SL, Marrero MG, Dado-Senn B, Skibiel AL, Ramos PM, Scheffler TL, Laporta J. Peripheral serotonin regulates glucose and insulin metabolism in Holstein dairy calves. Domest Anim Endocrinol 2021; 74:106519. [PMID: 32739765 DOI: 10.1016/j.domaniend.2020.106519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
Peripheral serotonin regulates energy metabolism in several mammalian species, however, the potential contribution of serotonergic mechanisms as metabolic and endocrine regulators in growing dairy calves remain unexplored. Objectives were to characterize the role of serotonin in glucose and insulin metabolism in dairy calves with increased serotonin bioavailability. Milk replacer was supplemented with saline, 5-hydroxytryptophan (90 mg/d), or fluoxetine (40 mg/d) for 10-d (n = 8/treatment). Blood was collected daily during supplementation and on days 2, 7, and 14 during withdrawal. Calves were euthanized after 10-d supplementation or 14-d withdrawal periods to harvest liver and pancreas tissue. 5-hydroxytryptophan increased circulating insulin concentrations during the supplementation period, whereas both treatments increased circulating glucose concentration during the withdrawal period. The liver and pancreas of preweaned calves express serotonin factors (ie, TPH1, SERT, and cell surface receptors), indicating their ability to synthesize, uptake, and respond to serotonin. Supplementation of 5-hydroxytryptophan increased hepatic and pancreatic serotonin concentrations. After the withdrawal period, fluoxetine cleared from the pancreas but not liver tissue. Supplementation of 5-hydroxytryptophan upregulated hepatic mRNA expression of serotonin receptors (ie, 5-HTR1B, -1D, -2A, and -2B), and downregulated pancreatic 5-HTR1F mRNA and insulin-related proteins (ie, Akt and pAkt). Fluoxetine-supplemented calves had fewer pancreatic islets per microscopic field with reduced insulin intensity, whereas 5-hydroxytryptophan supplemented calves had increased islet number and area with greater insulin and serotonin and less glucagon intensities. After the 14-d withdrawal of 5-hydroxytryptophan, hepatic mRNA expression of glycolytic and gluconeogenic enzymes were simultaneously downregulated. Improving serotonin bioavailability could serve as a potent regulator of endocrine and metabolic processes in dairy calves.
Collapse
Affiliation(s)
- S L Field
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - M G Marrero
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - B Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - A L Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - P M Ramos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - T L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
2
|
Pacher KAS, Camargo TF, Andrade TAM, Barbosa-Sampaio HCL, Amaral MECD. Involvement of M1 and M3 receptors in isolated pancreatic islets function during weight cycling in ovariectomized rats. Biochem Cell Biol 2019; 97:647-654. [PMID: 30707596 DOI: 10.1139/bcb-2018-0306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigated the structural and functional adaptations of the pancreas during weight cycling in animals submitted to hypoestrogenism. Female Wistar rats were distributed among the following test groups: ShamAL (AL, ad libitum); OVXAL (ovariectomized); and OVXcycle (dietary restriction with weight cycling). The ShamAL and OVXAL groups received commercial feed ad libitum, whereas the OVXcycle group received 21 days of commercial feed ad libitum, and 21 days of caloric restriction, with caloric intake amounting to 40% of the amount of feed consumed by the rats in the OVXAL group. The tolerance tests for glucose and insulin were applied. After euthanasia, the pancreas and adipose tissue were collected. The disappearance of glucose during the insulin assay occurred at a higher rate in tissues from the OVXcycle group, compared with the OVXAL group. Fasting glycemia and perirenal adipose tissue were lower in the OVXcycle group. By comparison with the ShamAL and OVXAL groups, the OVXcycle group showed higher protein expression of the M1 and M3 receptors and SOD1-2, as well as higher carbachol-induced insulin secretion. Under highly stimulatory conditions with 16.7 mmol/L glucose, the OVXAL and OVXcycle groups presented lower insulin secretion compared with the ShamAL group. Morphological analysis revealed higher iron deposition in the OVXAL islets by comparison with the OVXcycle group. These results show that ovariectomy accelerated the loss of pancreatic islet function, and that weight cycling could restore the function of the islets.
Collapse
Affiliation(s)
- Kayo Augusto Salandin Pacher
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, São Paulo, Brazil
| | - Thaís Furtado Camargo
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, São Paulo, Brazil
| | | | | | | |
Collapse
|
3
|
Valero-Muñoz M, Backman W, Sam F. Murine Models of Heart Failure with Preserved Ejection Fraction: a "Fishing Expedition". JACC Basic Transl Sci 2017; 2:770-789. [PMID: 29333506 PMCID: PMC5764178 DOI: 10.1016/j.jacbts.2017.07.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype.
Collapse
Affiliation(s)
- Maria Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Warren Backman
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
4
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
5
|
Tau hyperphosphorylation in the brain of ob/ob mice is due to hypothermia: Importance of thermoregulation in linking diabetes and Alzheimer's disease. Neurobiol Dis 2017; 98:1-8. [DOI: 10.1016/j.nbd.2016.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/05/2016] [Accepted: 10/23/2016] [Indexed: 12/16/2022] Open
|
6
|
Parween S, Kostromina E, Nord C, Eriksson M, Lindström P, Ahlgren U. Intra-islet lesions and lobular variations in β-cell mass expansion in ob/ob mice revealed by 3D imaging of intact pancreas. Sci Rep 2016; 6:34885. [PMID: 27713548 PMCID: PMC5054357 DOI: 10.1038/srep34885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
The leptin deficient ob/ob mouse is a widely used model for studies on initial aspects of metabolic disturbances leading to type 2 diabetes, including insulin resistance and obesity. Although it is generally accepted that ob/ob mice display a dramatic increase in β-cell mass to compensate for increased insulin demand, the spatial and quantitative dynamics of β-cell mass distribution in this model has not been assessed by modern optical 3D imaging techniques. We applied optical projection tomography and ultramicroscopy imaging to extract information about individual islet β-cell volumes throughout the volume of ob/ob pancreas between 4 and 52 weeks of age. Our data show that cystic lesions constitute a significant volume of the hyperplastic ob/ob islets. We propose that these lesions are formed by a mechanism involving extravasation of red blood cells/plasma due to increased islet vessel blood flow and vessel instability. Further, our data indicate that the primary lobular compartments of the ob/ob pancreas have different potentials for expanding their β-cell population. Unawareness of the characteristics of β-cell expansion in ob/ob mice presented in this report may significantly influence ex vivo and in vivo assessments of this model in studies of β-cell adaptation and function.
Collapse
Affiliation(s)
- Saba Parween
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Elena Kostromina
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Christoffer Nord
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Maria Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Per Lindström
- Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Colegrove KM, Venn-Watson S. Histomorphology of the bottlenose dolphin (Tursiops truncatus) pancreas and association of increasing islet β-cell size with chronic hypercholesterolemia. Gen Comp Endocrinol 2015; 214:17-23. [PMID: 25745813 DOI: 10.1016/j.ygcen.2015.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/12/2014] [Accepted: 02/14/2015] [Indexed: 01/09/2023]
Abstract
Bottlenose dolphins (Tursiops truncatus) can develop metabolic states mimicking prediabetes, including hyperinsulinemia, hyperlipidemia, elevated glucose, and fatty liver disease. Little is known, however, about dolphin pancreatic histomorphology. Distribution and area of islets, α, β, and δ cells were evaluated in pancreatic tissue from 22 dolphins (mean age 25.7years, range 0-51). Associations of these measurements were evaluated by sex, age, percent high glucose and lipids during the last year of life, and presence or absence of fatty liver disease and islet cell vacuolation. The most common pancreatic lesions identified were exocrine pancreas fibrosis (63.6%) and mild islet cell vacuolation (47.4%); there was no evidence of insulitis or amyloid deposition, changes commonly associated with type 2 diabetes. Dolphin islet architecture appears to be most similar to the pig, where α and β cells are localized to the central or periphery of the islet, respectively, or are well dispersed throughout the islet. Unlike pigs, large islets (greater than 10,000μm(2)) were common in dolphins, similar to that found in humans. A positive linear association was identified between dolphin age and islet area average, supporting a compensatory response similar to other species. The strongest finding in this study was a positive linear association between islet size, specifically β-cells, and percent blood samples with high cholesterol (greater than 280mg/dl, R(2)=0.57). This study is the most comprehensive assessment of the dolphin pancreas to date and may help direct future studies, including associations between chronic hypercholesterolemia and β-cell size.
Collapse
Affiliation(s)
- Kathleen M Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, LUMC, Building 101, Room 0745, Maywood, IL 60153, USA.
| | - Stephanie Venn-Watson
- Translational Medicine and Research Program, National Marine Mammal Foundation, 2240 Shelter Island Suite 200, San Diego, CA 92106, USA.
| |
Collapse
|
8
|
Lindström P. β-Cell Function in Obese-Hyperglycemic Mice (ob /ob Mice). ISLETS OF LANGERHANS 2015:767-784. [DOI: 10.1007/978-94-007-6686-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B, Sinzato YK, Bueno A, Calderon IMP, Rudge MVC. Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:819065. [PMID: 24977161 PMCID: PMC4058231 DOI: 10.1155/2014/819065] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/30/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022]
Abstract
Glucose homeostasis is controlled by endocrine pancreatic cells, and any pancreatic disturbance can result in diabetes. Because 8% to 12% of diabetic pregnant women present with malformed fetuses, there is great interest in understanding the etiology, pathophysiological mechanisms, and treatment of gestational diabetes. Hyperglycemia enhances the production of reactive oxygen species, leading to oxidative stress, which is involved in diabetic teratogenesis. It has also been suggested that maternal diabetes alters embryonic gene expression, which might cause malformations. Due to ethical issues involving human studies that sometimes have invasive aspects and the multiplicity of uncontrolled variables that can alter the uterine environment during clinical studies, it is necessary to use animal models to better understand diabetic pathophysiology. This review aimed to gather information about pathophysiological mechanisms and fetal outcomes in streptozotocin-induced diabetic rats. To understand the pathophysiological mechanisms and factors involved in diabetes, the use of pancreatic regeneration studies is increasing in an attempt to understand the behavior of pancreatic beta cells. In addition, these studies suggest a new preventive concept as a treatment basis for diabetes, introducing therapeutic efforts to minimize or prevent diabetes-induced oxidative stress, DNA damage, and teratogenesis.
Collapse
Affiliation(s)
- D. C. Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
- Department of Gynecology and Obstetrics, Botucatu Medical School, UNESP-Univsidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - A. O. Netto
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - I. L. Iessi
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - F. Q. Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - S. B. Corvino
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - B. Dallaqua
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - Y. K. Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - A. Bueno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - I. M. P. Calderon
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - M. V. C. Rudge
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| |
Collapse
|
10
|
Ye Q, Danzer CF, Fuchs A, Vats D, Wolfrum C, Rudin M. Longitudinal evaluation of hepatic lipid deposition and composition in ob/ob and ob/+ control mice. NMR IN BIOMEDICINE 2013; 26:1079-1088. [PMID: 23355481 DOI: 10.1002/nbm.2921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 11/05/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
Obesity is associated with insulin resistance (IR) and hepatosteatosis. Understanding the link between IR and hepatosteatosis could be relevant to chronic clinical outcomes. The objective of this study was to quantitatively assess lipid deposition (fractional lipid mass, fLM) and composition (fraction of polyunsaturated lipids, fPUL and mean chain length, MCL) in livers of ob/ob mice, a genetic model of obesity and mild diabetes, and ob/+ heterozygous control animals in a noninvasive manner using (1) H-MRS at 9.4T. For accurate quantification, intensity values were corrected for differences in T2 values while T1 effects were considered minimal due to the long TR values used. Values of fLM, fPUL and MCL were derived from T2 -corrected signal intensities of lipids and water resonance. Hepatic lipid signals were compared with fasted plasma insulin, glucose and lipid levels. Statistically significant correlations between fPUL and fasting plasma insulin/glucose levels were found in adolescent ob/ob mice. A similar correlation was found between fLM and fasting plasma insulin levels; however, the correlation between fLM and fasting plasma glucose levels was less obvious in adolescent ob/ob mice. These correlations were lost in adult ob/ob mice. The study showed that in adolescent ob/ob mice, there was an obvious link between lipid deposition/composition in the liver and plasma insulin/glucose levels. This correlation was lost in adult animals, probably due to the limited lipid storage capacity of the liver.
Collapse
Affiliation(s)
- Qiong Ye
- Institute for Biomedical Engineering, ETH Zürich and University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Ando H, Kumazaki M, Motosugi Y, Ushijima K, Maekawa T, Ishikawa E, Fujimura A. Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology 2011; 152:1347-54. [PMID: 21285316 DOI: 10.1210/en.2010-1068] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have demonstrated relationships between the dysfunction of circadian clocks and the development of metabolic abnormalities, but the chicken-and-egg question remains unresolved. To address this issue, we investigated the cause-effect relationship in obese, diabetic ob/ob mice. Compared with control C57BL/6J mice, the daily mRNA expression profiles of the clock and clock-controlled genes Clock, Bmal1, Cry1, Per1, Per2, and Dbp were substantially dampened in the liver and adipose tissue, but not the hypothalamic suprachiasmatic nucleus, of 10-wk-old ob/ob mice. Four-week feeding of a low-calorie diet and administration of leptin over a 7-d period attenuated, to a significant and comparable extent, the observed metabolic abnormalities (obesity, hyperglycemia, hyperinsulinemia, and hypercholesterolemia) in the ob/ob mice. However, only leptin treatment improved the impaired peripheral clocks. In addition, clock function, assessed by measuring levels of Per1, Per2, and Dbp mRNA at around peak times, was also reduced in the peripheral tissues of 3-wk-old ob/ob mice without any overt metabolic abnormalities. Collectively these results indicate that the impairment of peripheral clocks in ob/ob mice does not result from metabolic abnormalities but may instead be at least partially caused by leptin deficiency itself. Further studies are needed to clarify how leptin deficiency affects peripheral clocks.
Collapse
Affiliation(s)
- Hitoshi Ando
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Vogel P, Read R, Hansen G, Wingert J, Dacosta CM, Buhring LM, Shadoan M. Pathology of congenital generalized lipodystrophy in Agpat2-/- mice. Vet Pathol 2010; 48:642-54. [PMID: 21051554 DOI: 10.1177/0300985810383870] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital generalized lipodystrophy (CGL) comprises a heterogeneous group of rare diseases associated with partial or total loss of adipose tissue. Of these, autosomal recessive Berardinelli-Seip congenital lipodystrophy (BSCL) is characterized by the absence of metabolically active subcutaneous and visceral adipose tissues. Metabolic abnormalities associated with lipodystrophy include insulin resistance, hypertriglyceridemia, hepatic steatosis, and diabetes. One form of BSCL has been linked to genetic mutations affecting the lipid biosynthetic enzyme 1-acyl-sn-glycerol 3-phosphate O-acyltransferase 2 (AGPAT2), which is highly expressed in adipose tissue. Precisely how AGPAT2 deficiency causes lipodystrophy remains unresolved, but possible mechanisms include impaired lipogenesis (triglyceride synthesis and storage), blocked adipogenesis (differentiation of preadipocytes to adipocytes), or apoptosis/necrosis of adipocytes. Agpat2(-/-) mice share important pathophysiologic features of CGL previously reported in humans. However, the small white adipose tissue (WAT) depots consisting largely of amoeboid adipocytes with microvesiculated basophilic cytoplasm showed that adipogenesis with deficient lipogenesis was present in all usual locations. Although well-defined lobules of brown adipose tissue (BAT) were present, massive necrosis resulted in early ablation of BAT. Although necrotic or apoptotic adipocytes were not detected in WAT of 10-day-old Agpat2(-/-), the absence of adipocytes in aged mice indicates that these cells must undergo necrosis/apoptosis at some point. Another significant finding in aged lipodystrophic mice was massive pancreatic islet hypertrophy in the face of chronic hyperglycemia, which suggests that glucotoxicity is insufficient by itself to cause β-cell loss and that adipocyte-derived factors help regulate total β-cell mass.
Collapse
Affiliation(s)
- P Vogel
- Lexicon Pharmaceuticals, Inc, Pathology Department, The Woodlands, TX 77381-1160, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
beta-cell function in obese-hyperglycemic mice [ob/ob Mice]. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:463-77. [PMID: 20217510 DOI: 10.1007/978-90-481-3271-3_20] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review summarizes key aspects of what has been learned about the physiology of pancreatic islets and leptin deficiency from studies in obese ob/ob mice. ob/ob Mice lack functional leptin. They are grossly overweight and hyperphagic particularly at young ages and develop severe insulin resistance with hyperglycemia and hyperinsulinemia. ob/ob Mice have large pancreatic islets. The beta-cells respond adequately to most stimuli, and ob/ob mice have been used as a rich source of pancreatic islets with high insulin release capacity. ob/ob Mice can perhaps be described as a model for the prediabetic state. The large capacity for islet growth and insulin release makes ob/ob mice a good model for studies on how beta-cells can cope with prolonged functional stress.
Collapse
|
14
|
Abstract
Emerging reports on the organization of the different hormone-secreting cell types (alpha, glucagon; beta, insulin; and delta, somatostatin) in human islets have emphasized the distinct differences between human and mouse islets, raising questions about the relevance of studies of mouse islets to human islet physiology. Here, we examine the differences and similarities between the architecture of human and mouse islets. We studied islets from various mouse models including ob/ob and db/db and pregnant mice. We also examined the islets of monkeys, pigs, rabbits and birds for further comparisons. Despite differences in overall body and pancreas size as well as total beta-cell mass among these species, the distribution of their islet sizes closely overlaps, except in the bird pancreas in which the delta-cell population predominates (both in singlets and clusters) along with a small number of islets. Markedly large islets (>10,000 mum(2)) were observed in human and monkey islets as well as in islets from ob/ob and pregnant mice. The fraction of alpha-, beta- and delta-cells within an islet varied between islets in all the species examined. Furthermore, there was variability in the distribution of alpha- and delta-cells within the same species. In summary, human and mouse islets share common architectural features that may reflect demand for insulin. Comparative studies of islet architecture may lead to a better understanding of islet development and function.
Collapse
Affiliation(s)
- Abraham Kim
- Department of Medicine; The University of Chicago; Chicago, IL USA
| | - Kevin Miller
- Department of Medicine; The University of Chicago; Chicago, IL USA
| | - Junghyo Jo
- Laboratory of Biological Modeling; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health; Bethesda, MD USA
| | - German Kilimnik
- Department of Medicine; The University of Chicago; Chicago, IL USA
| | - Pawel Wojcik
- Department of Medicine; The University of Chicago; Chicago, IL USA
| | - Manami Hara
- Department of Medicine; The University of Chicago; Chicago, IL USA
- Correspondence to: Manami Hara;
| |
Collapse
|
15
|
Abstract
The ability of pancreatic beta-cell mass to vary according to insulin requirements is an important component of optimal long-term control of glucose homeostasis. It is generally assumed that alteration of this property largely contributes to the impairment of insulin secretion in type 2 diabetes. However, data in humans are scarce and it is impossible to correlate beta-cell mass and function with the various stages of the disease. Thus, the importance of animal models is obvious. In rodents, increased beta-cell mass associated with an increase in the function of individual beta-cells contributes to the adaptation of the insulin response to insulin resistance in late pregnancy and in obesity. A reduction in beta-cell mass always corresponds to an alteration in insulin secretory capacity of islet tissue (Zucker diabetic fatty and Goto-Kakisaki rats, db/db mice). During regenerative processes following experimental reduction of beta-cell mass [partial pancreatectomy, streptozocin (STZ) injection], beta-cell mass increase is not associated with a corresponding improvement of beta-cell function, thus indicating that regenerative beta-cells did not achieve functional maturity. The main lesson from experimental diabetes is therefore that beta-cell mass cannot always predict functional capacity of the beta-cell tissue and that the functional beta-cell mass rather than the anatomical beta-cell mass must be taken into account at all times.
Collapse
Affiliation(s)
- C Kargar
- Diabetes and Metabolic Diseases Research Department, Institut de Recherches Servier, Suresnes, France.
| | | |
Collapse
|
16
|
Persson-Sjögren S, Forsgren S, Lindström P. Vasoactive intestinal polypeptide and pituitary adenylate cyclase activating polypeptide: effects on insulin release in isolated mouse islets in relation to metabolic status and age. Neuropeptides 2006; 40:283-90. [PMID: 16797701 DOI: 10.1016/j.npep.2006.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/20/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
Obesity and development of the metabolic syndrome is related to an increased parasympathetic tone and hyperinsulinemia. We have now studied the effects of age and metabolic status on glucose-induced insulin release stimulated by the neuropeptides vasoactive intestinal polypeptide (VIP; 10 nM) and pituitary adenylate cyclase activating polypeptide (PACAP; 10 nM), that are constituents of the parasympathetic nerves in the islets, and the cholinergic agonists acetylcholine (ACh; 10 microM) and carbachol (10 microM), in isolated islets from female obese ob/ob mice and lean mice. Both VIP and PACAP enhanced insulin secretion in islets from 4-week-old hyperglycemic ob/ob mice. VIP did not increase 11.1 mM glucose-induced insulin release in islets from 4-week-old lean normoglycemic mice and neither did PACAP in the absence of bicarbonate. The neuropeptides increased insulin release in islets from 9 to 10-month-old mice but VIP and PACAP had no effect in islets from very old mice. ACh had no effect in islets from 9 to 10-months and older ob/ob mice in the absence of bicarbonate. The combination of VIP and cholinergic agonists had an additive effect in islets from ob/ob mice, and PACAP combined with carbachol potentiated insulin release in islets from 4-week-old lean mice. VIP increased early phase insulin release in perifused islets from young mice. A higher concentration of theophylline was needed to potentiate glucose-induced insulin release in islets from young lean mice than in islets from old lean mice and ob/ob mice. The present results demonstrate age-related dynamics in the effects of neuropeptides affecting cAMP in pancreatic islets. We suggest that VIP and PACAP contribute to the developing metabolic syndrome in ob/ob mice by aggravating hyperinsulinemia.
Collapse
Affiliation(s)
- Solveig Persson-Sjögren
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
17
|
Lalloyer F, Vandewalle B, Percevault F, Torpier G, Kerr-Conte J, Oosterveer M, Paumelle R, Fruchart JC, Kuipers F, Pattou F, Fiévet C, Staels B. Peroxisome proliferator-activated receptor alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes 2006; 55:1605-13. [PMID: 16731822 DOI: 10.2337/db06-0016] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) alpha is a transcription factor controlling lipid and glucose homeostasis. PPARalpha-deficient (-/-) mice are protected from high-fat diet-induced insulin resistance. However, the impact of PPARalpha in the pathophysiological setting of obesity-related insulin resistance is unknown. Therefore, PPARalpha(-/-) mice in an obese (ob/ob) background were generated. PPARalpha deficiency did not influence the growth curves of the obese mice but surprisingly resulted in a severe, age-dependent hyperglycemia. PPARalpha deficiency did not aggravate peripheral insulin resistance. By contrast, PPARalpha(-/-) ob/ob mice developed pancreatic beta-cell dysfunction characterized by reduced mean islet area and decreased insulin secretion in response to glucose in vitro and in vivo. In primary human pancreatic islets, PPARalpha agonist treatment prevented fatty acid-induced impairment of glucose-stimulated insulin secretion, apoptosis, and triglyceride accumulation. These results indicate that PPARalpha improves the adaptative response of the pancreatic beta-cell to pathological conditions. PPARalpha could thus represent a promising target in the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Fanny Lalloyer
- Institut Pasteur de Lille, Département d'Athérosclérose, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Persson-Sjögren S, Lindström P. Effects of cholinergic m-receptor agonists on insulin release in islets from obese and lean mice of different ages: the importance of bicarbonate. Pancreas 2004; 29:e90-9. [PMID: 15502638 DOI: 10.1097/00006676-200411000-00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Decreased beta-cell function is often observed in older individuals and may predispose to the development of type 2 diabetes. We have studied the age-related effects of M-receptor agonism on insulin release in islets isolated from female ob/ ob and lean mice. METHODS Islets were challenged with 11.1 or 16.7 mmol/L glucose in media with HCO3/CO2 (KRBH) or without (KRH). RESULTS Acetylcholine (ACh) (10 micromol/L) increased glucose-induced insulin release in islets from 4- to 5-week-old ob/ob mice both in KRBH and KRH. In islets from 9- to 13-month-old ob/ob mice, 10 micromol/L ACh and 10 micromol/L carbachol enhanced insulin release in KRBH but not in KRH. ACh increased insulin release in islets from 4- to 5-week-old and 16-month-old lean mice incubated in KRH but not in islets from 24-month-old lean mice. The Na/H exchange inhibitor dimethylamiloride (100 micromol/L) did not affect insulin release stimulated by M-receptor agonists. Carbachol did not enhance glucose-induced insulin secretion in islets from 9- to 10-month-old ob/ob mice in the presence of low extracellular Na concentration. ACh stimulated cytoplasmic Ca mobilization in islets from 9- to 10-month-old mice also when bicarbonate was omitted. The results suggest that cholinergic signal transduction involving extracellular bicarbonate and Na is reduced with age in mouse pancreatic islets. CONCLUSION Chronic hyperglycemia may add to the age-related decrease in M-receptor-mediated insulin release by affecting the buffering capacity of the islets through mechanisms other than amiloride-sensitive proton exchange.
Collapse
Affiliation(s)
- Solveig Persson-Sjögren
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden.
| | | |
Collapse
|
19
|
Abstract
It is important for our understanding of the pancreatic islets to study whether new islets are able to form in the intact pancreas. We developed a new method to determine the total number and the mean volume of the pancreatic islets, and we used this method to study the expansion of the islet mass in ob/ob mice (n = 8), using ob/+ mice (n = 8) as controls. The total islet volume was increased by a factor of 3.6 in ob/ob mice compared with ob/+ mice, whereas, importantly, the total number of islets did not differ among ob/ob mice and ob/+ mice (3,193 +/- 160 islets in ob/ob mice vs. 3,184 +/- 142 islets in ob/+ mice, P = 0.97). The coefficient of variation in the volume distribution of islets was equal in the two groups, showing that in ob/ob mice, the existing islets expand their volume by the same proportion, without a net formation of new islets. We suggest that the pancreatic islets should be considered as anatomically such complex structures that islet neogenesis does not spontaneously occur in an intact pancreas. Cells within the existing islets are presumably the most important sources for islet cell hyperplasia during expansion of the total islet mass.
Collapse
Affiliation(s)
- Troels Bock
- H:S Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | |
Collapse
|
20
|
Edvell A, Lindström P. Initiation of increased pancreatic islet growth in young normoglycemic mice (Umeå +/?). Endocrinology 1999; 140:778-83. [PMID: 9927305 DOI: 10.1210/endo.140.2.6514] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pancreatic islets from obese hyperglycemic mice are large and contain a high proportion of normally functioning beta-cells. We have previously shown that young obese mice have an elevated beta-cell proliferation rate at 3 weeks of age. We now wanted to investigate possible factors involved in the initiation of islet growth, including blood glucose, C peptide, glucagon-like peptide-1, vasoactive intestinal polypeptide, and L-5-hydroxytryptophan. We found that the increased beta-cell proliferation on day 20 precedes the rise in blood glucose by 2 days. The islet cell proliferation, measured as the 5-bromo-2'-deoxyuridine labeling index, in 20-day-old lean mice, was enhanced in a dose-dependent manner when glucagon-like peptide-1 or C peptide was injected s.c. for 2 days. L-5-Hydroxytryptophan inhibited the proliferation. C Peptide also increased the islet cell labeling index during islet culture. We conclude that in addition to the effect of glucose, islet proliferation can be triggered by other factors involved in the physiological regulation of increased insulin release. Stimulation of islet proliferation may be related to the actual release of insulin, and C peptide may function as a mediator of such responses.
Collapse
Affiliation(s)
- A Edvell
- Department of Histology and Cell Biology, Umeå University, Sweden.
| | | |
Collapse
|
21
|
Edvell A, Lindström P. Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E1034-9. [PMID: 9611153 DOI: 10.1152/ajpendo.1998.274.6.e1034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obese hyperglycemic mice have large pancreatic islets and high levels of serum insulin and blood glucose. Vagotomy was performed on 3-wk-old animals to investigate the role of gut cholinergic innervation in young Umea ob/ob mice. After vagotomy, obesity and hyperglycemia are dissociated. Weight increase in obese vagotomized mice was lower than in sham-operated controls during the 1st wk postoperatively but not thereafter. Blood glucose was lower up to 5 mo after vagotomy, but vagotomized mice showed reduced glucose tolerance. Islet cell proliferation rate was reduced 2 and 3 wk but not 5 mo after vagotomy. After 5 mo, islet volume was smaller in vagotomized mice. Serum insulin levels were the same in vagotomized animals as in sham-operated controls. The effects of reduced cholinergic innervation are probably caused both by direct effects of denervation and by lowered metabolic demand.
Collapse
Affiliation(s)
- A Edvell
- Department of Histology and Cell Biology, Umea University, S-90187 Umea, Sweden
| | | |
Collapse
|