1
|
Hoa NT, Afzal H, Gundegmaa U, Raadan O, Cheng LT, Chu CY, Doan TD, Chung YC. Enhanced immune response with baculovirus-expressed BoHV-1 glycoprotein D in vaccine development. Vet J 2024; 308:106228. [PMID: 39243806 DOI: 10.1016/j.tvjl.2024.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1), a significant pathogen in the alpha-herpesvirus subfamily, primarily infects cattle and causes the upper respiratory disease known as infectious bovine rhinotracheitis (IBR). In silico studies evaluated the BoHV-1 D protein to be non-allergenic, non-toxic, and highly antigenic, highlighting its potential as an antigen for vaccine development. Therefore, this study aimed to evaluate the efficacy of a subunit vaccine using the ectodomain of glycoprotein D (gD34-380) as an antigen. The truncated gD was successfully cloned and expressed in both Escherichia coli (E. coli, termed EgD) and baculovirus (termed BgD) systems, with expected molecular weights of 65 kDa and 50 kDa, respectively. For the vaccine formulation, the gD proteins were used either alone or in combination with in-house inactivated BoHV-1. Vaccination of mice and bovines showed that baculovirus-expressed gD34-380 accelerated the antibody response. Moreover, the BgD-vaccinated group also showed significantly higher neutralizing antibody levels against BoHV-1 than the control group (p<0.0001). In conclusion, our study found that BgD from BoHV-1 can increase the immune response and enhance vaccine efficacy.
Collapse
Affiliation(s)
- Nguyen-Thanh Hoa
- International Program in Animal Vaccine Technology, National Pingtung University Science and Technology, Pingtung 91201, Taiwan; Department of Virology, National Institute of Veterinary Research NIVR, Hanoi 11500, Vietnam
| | - Haroon Afzal
- International Program in Animal Vaccine Technology, National Pingtung University Science and Technology, Pingtung 91201, Taiwan
| | - Uudamsaikhan Gundegmaa
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Khan-Uul district, Zaisan, Ulaanbaatar 17042, Mongolia
| | - Odbileg Raadan
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Khan-Uul district, Zaisan, Ulaanbaatar 17042, Mongolia
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chun-Yen Chu
- International Program in Animal Vaccine Technology, National Pingtung University Science and Technology, Pingtung 91201, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Thu-Dung Doan
- International Program in Animal Vaccine Technology, National Pingtung University Science and Technology, Pingtung 91201, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yao-Chi Chung
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
2
|
Delhon G, Khatiwada S, Doub D, Harris S, Chaulagain S, El-Gaffary M, Rock DL. Bovine papular stomatitis virus as a vaccine vector for cattle. J Gen Virol 2023; 104:001914. [PMID: 37976092 PMCID: PMC10768693 DOI: 10.1099/jgv.0.001914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Virus vectored vaccines are not available commercially for cattle even though compelling potential applications exist. Bovine papular stomatitis virus (BPSV), a highly prevalent parapoxvirus, causes self-limited oral lesions in cattle. Ability of virus to accommodate large amounts of foreign DNA, induce low level of antiviral immunity, and circulate and likely persist in cattle populations, make BPSV an attractive candidate viral vector. Here, recombinant BPSV were constructed expressing either Bovine herpesvirus 1 (BoHV-1) glycoprotein gD (BPSVgD), or gD and gB (BPSVgD/gB). Immunization of BPSV serologically-positive calves with BPSVgD or BPSVgD/gB induced BoHV-1 neutralization antibodies and provided protection for three of four animals following a high dose BoHV-1 challenge at day 70 pi. Results indicate BPSV suitability as a candidate virus vector for cattle vaccines.
Collapse
Affiliation(s)
- Gustavo Delhon
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Sushil Khatiwada
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
- Present address: Boehringer Ingelheim Animal Health, Ames, IA, USA
| | - David Doub
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Seth Harris
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Sabal Chaulagain
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
- Present address: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa El-Gaffary
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
- Present address: Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Daniel L. Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
3
|
Quintero Barbosa JS, Alméciga-Díaz CJ, Pérez SE, Gutierrez MF. Humoral Immune Response of Mice against a Vaccine Candidate Composed of a Chimera of gB of Bovine Alphaherpesviruses 1 and 5. Vaccines (Basel) 2023; 11:1173. [PMID: 37514988 PMCID: PMC10386439 DOI: 10.3390/vaccines11071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious bovine rhinotracheitis (IBR) and bovine meningoencephalitis are caused by Bovine alphaherpesvirus (BoHV) types 1 and 5, which seriously threaten the global cattle industry. Vaccination to improve immunity is the most direct and effective means to prevent these conditions. Glycoprotein B (gB) is essential for the attachment of both viruses to permissive cells, and is a major target of the host immune system, inducing a strong humoral response. The aim of this study was to evaluate, in a murine model, the immune response of a candidate vaccine formulation composed of a chimeric BoHV-1 and BoHV-5 gB (DgB), expressed in Komagataella phaffii. The chimeric DgB vaccine adjuvanted with Montanide 50 ISA V2 or aluminum hydroxide was administered intramuscularly or subcutaneously. A control group and a group that received a commercial vaccine were inoculated subcutaneously. Higher titers of neutralizing antibodies against BoHV-1, BoHV-5, and a natural BoHV-1/5 recombinant strain were obtained with the oil-based candidate vaccine formulation administered intramuscularly. The results demonstrated that the chimeric DgB conserved important epitopes that were able to stimulate a humoral immune response capable of neutralizing BoHV-1, BoHV-5, and the recombinant strain, suggesting that the vaccine antigen is a promising candidate to be further evaluated in cattle.
Collapse
Affiliation(s)
- Juan Sebastian Quintero Barbosa
- Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Sandra E Pérez
- Tandil Veterinary Research Center (CIVETAN)-CONICET, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Tandil B7000GHG, Argentina
| | - María Fernanda Gutierrez
- Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| |
Collapse
|
4
|
Quintero Barbosa JS, Rojas HYT, Gonzalez J, Espejo-Mojica AJ, Díaz CJA, Gutierrez MF. Characterization and expression of domains of Alphaherpesvirus bovine 1/5 envelope glycoproteins B in Komagataella phaffi. BMC Vet Res 2023; 19:28. [PMID: 36721143 PMCID: PMC9887784 DOI: 10.1186/s12917-023-03590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Bovine herpes virus (BoHV 1 and BoHV-5) are the causative agents of infectious bovine rhinotracheitis (IBR). IBR is responsible for important economic losses in the cattle industry. The envelope glycoprotein B (gB) is essential for BoHV infection of cattle's upper respiratory and genital tract. gB is one of the main candidate antigens for a potential recombinant vaccine since it induces a strong and persistent immune response. RESULTS In this study, gB of BoHV-1 and BoHV-5 was characterized in terms of function, structure, and antigenicity through bioinformatics tools. gB showed conserved sequence and structure, so, both domains named PH Like 1 and 2 domains of each virus were selected for the design of a bivalent vaccine candidate. The immunoinformatic study showed that these two domains have epitopes recognizable by B and T lymphocytes, followed by this, the cDNA domains from BoHV-1/5 gB (Domains-gB) were transformed into the yeast Komagataella phaffii GS115 (previously known as Pichia pastoris). A recombinant protein with molecular weight of about 110 kDa was obtained from the culture media. The vaccine candidate protein (Domains-gB) was recognized by a monoclonal antibody from a commercial ELISA kit used for IBR diagnostic, which may suggest that the epitopes are conserved of the entire infectious virus. CONCLUSION Overall, it was shown that the recombinant domains of BoHV-1/5 gB have antigenic and immunogenic properties similar to the native gB. This vaccine candidate is promising to be used in future studies to assess its immunogenicity in an animal model.
Collapse
Affiliation(s)
- Juan Sebastián Quintero Barbosa
- grid.41312.350000 0001 1033 6040Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science Pontificia, Universidad Javeriana, Bogotá, D.C Colombia
| | - Heidy Yohana Triana Rojas
- grid.41312.350000 0001 1033 6040Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C Colombia
| | - Janneth Gonzalez
- grid.41312.350000 0001 1033 6040Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C Colombia
| | - Angela Johana Espejo-Mojica
- grid.41312.350000 0001 1033 6040Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C Colombia
| | - Carlos Javier Alméciga Díaz
- grid.41312.350000 0001 1033 6040Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C Colombia
| | - María Fernanda Gutierrez
- grid.41312.350000 0001 1033 6040Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science Pontificia, Universidad Javeriana, Bogotá, D.C Colombia
| |
Collapse
|
5
|
Guo W, Xie J, Liu J, Chen H, Jung YS. The full-genome characterization and phylogenetic analysis of bovine herpesvirus type 1.2 isolated in China. Front Microbiol 2022; 13:1033008. [PMID: 36386697 PMCID: PMC9664903 DOI: 10.3389/fmicb.2022.1033008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Bovine herpesvirus type 1 (BHV-1) causes bovine respiratory disease that poses a significant threat to the cattle industry. The prevalence of BHV-1 has recently increased in China. However, the lack of information about the prevalent isolates limits the control of the disease. In this study, a novel strain of BHV-1 was isolated from nasal swabs of Holstein cows in 2020 in China, designated as BHV SHJS. The genome of BHV strain SHJS is 135, 102 bp in length and highly similar to strain SP1777 (KM258883.1) with an identity of 99.64%. Mutations, insertions, or deletions mainly occur in UL27, UL44, and US8, etc., relative to the different genomic coordinates. Phylogenetic tree of UL44 (gC) showed that BHV strain SHJS belongs to BHV-1.2b cluster. The result showed that the strain had a different evolutionary origin from those prevalent in China. This study will enrich our knowledge regarding BHV outbreak strains in China and contribute to the prevention and pathogenic studies of BHV-1.2.
Collapse
Affiliation(s)
- Weiqiang Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia Xie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingyi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China,*Correspondence: Yong-Sam Jung,
| |
Collapse
|
6
|
Hou LN, Wang FX, Wang YX, Guo H, Liu CY, Zhao HZ, Yu MH, Wen YJ. Subunit vaccine based on glycoprotein B protects pattern animal guinea pigs from tissue damage caused by infectious bovine rhinotracheitis virus. Virus Res 2022; 320:198899. [PMID: 36030927 DOI: 10.1016/j.virusres.2022.198899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Infectious bovine rhinotracheitis (IBR) is caused by Bovine herpesvirus type 1 (BoHV-1), which seriously threatens the global cattle industry. Only vaccination to improve immunity is the most direct and effective means to prevent IBR. Attempts are being made to use subunit vaccines, deleted or recombinant viral vaccines to reduce or eradicate IBR. For investigating the immunological characteristics of glycoprotein B subunit vaccine in pattern animal guinea pigs, the partial glycoprotein B (gB) of BoHV-1 with dominant antigenic characteristic was selected. A recombinant prokaryotic expression vector pET-32a-gB with the truncated gB gene was constructed, expressed, identified and the purified proteins were used to immunize guinea pigs. The immune effect of the subunit vaccine was assessed by monitoring clinical symptoms, viral load, antibody secretion, and histopathological changes. The results indicated that guinea pigs immunized with the gB subunit vaccine produced high levels of anti-gB antibodies and virus-neutralizing antibodies. The gB subunit vaccine significantly reduced viral shedding and lung tissue damage after IBRV challenge. The animals inoculated the gB subunit vaccine also had less virus reactivation. Its protective effect on viral shedding and tissue damage was similar to that of inactivated BoHV-1 vaccine. This work is a proof-of-concept study of subunit vaccine-induced protection against BoHV-1. And it is expected to be a candidate vaccine for the prevention of IBR.
Collapse
Affiliation(s)
- Li-Na Hou
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Feng-Xue Wang
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Ya-Xin Wang
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Hao Guo
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Chun-Yu Liu
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Hong-Zhe Zhao
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Ming-Hua Yu
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Yong-Jun Wen
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China.
| |
Collapse
|
7
|
Langellotti CA, Gammella M, Soria I, Bellusci C, Quattrocchi V, Vermeulen M, Mongini C, Zamorano PI. An Improved DNA Vaccine Against Bovine Herpesvirus-1 Using CD40L and a Chemical Adjuvant Induces Specific Cytotoxicity in Mice. Viral Immunol 2020; 34:68-78. [PMID: 33146595 DOI: 10.1089/vim.2020.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bovine herpesvirus-1 (BoHV-1) uses many mechanisms to elude the immune system; one of them is spreading intracellularly, even in the presence of specific antiviral antibodies. Cytotoxic T lymphocytes (CTLs) are necessary to eliminate the virus. The main preventive strategy is vaccination based on inactivated virus. These vaccines are poor inducers of cellular immune responses, and complicate serological diagnosis and determination of the real prevalence of infection. DNA vaccines are a good option because of the capacity of Differentiating Infected from Vaccinated Animals-(DIVA vaccine)-and may be the best way to induce cytotoxic responses. Although this type of vaccines leads to only weak "in vivo" expression and poor immune responses, incorporation of molecular and/or chemical adjuvants can improve the latter, both in magnitude and in direction. In this study, we have investigated the specific immune responses elicited in mice by DNA vaccines based on the BoHV-1 glycoprotein D (pCIgD) with and without two different adjuvants: a plasmid encoding for murine CD40L (pCD40L) or Montanide™ 1113101PR (101). Mice vaccinated with pCIgD+CD40L, pCIgD+101, and pCIgD+CD40L+101 developed significantly higher specific antibody titers against BoHV-1 than the pCIgD group (p < 0.01). The animals vaccinated with pCgD+pCD40L+101 raised significantly higher levels of IgG2a and IgG2b (p < 0.01 and p < 0.001, respectively) than mice vaccinated with pCIgD alone. On the contrary, when the activity of CTL against cells infected with BoHV-1 was measured, the vaccine pCgD+pCD40L+101 induced significantly higher levels of cytotoxicity activity (p < 0.001) than pCIgD alone. A significant increase in the CD4+ populations in the group receiving pCIgD+CD40L+101 in comparison with the pCIgD group was observed and, also, interferon gamma, interleukin (IL)-6, and IL-17A levels were higher. Considering the results obtained from this study for humoral and cellular responses in mice, the inclusion of pCD40L and 101 as adjuvants in a BoHV-1 DNA vaccine for cattle is highly recommendable.
Collapse
Affiliation(s)
| | - Mariela Gammella
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Carolina Bellusci
- Universidad Nacional de Rio Negro, Sede Atlántica, Viedma, Río Negro, Argentina
| | | | - Monica Vermeulen
- Laboratorio de células presentadoras de antígeno y respuesta inflamatoria. Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Claudia Mongini
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Patricia I Zamorano
- Cátedra de Inmunología Aplicada, Universidad del Salvador, Buenos Aires, Argentina
| |
Collapse
|
8
|
Kornuta CA, Bidart JE, Soria I, Gammella M, Quattrocchi V, Pappalardo JS, Salmaso S, Torchilin VP, Cheuquepán Valenzuela F, Hecker YP, Moore DP, Zamorano PI, Langellotti CA. MANα1-2MAN decorated liposomes enhance the immunogenicity induced by a DNA vaccine against BoHV-1. Transbound Emerg Dis 2020; 68:587-597. [PMID: 32643286 DOI: 10.1111/tbed.13718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/13/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Abstract
New technologies in the field of vaccinology arise as a necessity for the treatment and control of many diseases. Whole virus inactivated vaccines and modified live virus ones used against Bovine Herpesvirus-1 (BoHV-1) infection have several disadvantages. Previous works on DNA vaccines against BoHV-1 have demonstrated the capability to induce humoral and cellular immune responses. Nevertheless, 'naked' DNA induces low immunogenic response. Thus, loading of antigen encoding DNA sequences in liposomal formulations targeting dendritic cell receptors could be a promising strategy to better activate these antigen-presenting cells (APC). In this work, a DNA-based vaccine encoding the truncated version of BoHV-1 glycoprotein D (pCIgD) was evaluated alone and encapsulated in a liposomal formulation containing LPS and decorated with MANα1-2MAN-PEG-DOPE (pCIgD-Man-L). The vaccinations were performed in mice and bovines. The results showed that the use of pCIgD-Man-L enhanced the immune response in both animal models. For humoral immunity, significant differences were achieved when total antibody titres and isotypes were assayed in sera. Regarding cellular immunity, a significant increase in the proliferative response against BoHV-1 was detected in animals vaccinated with pCIgD-Man-L when compared to the response induced in animals vaccinated with pCIgD. In addition, upregulation of CD40 molecules on the surface of bovine dendritic cells (DCs) was observed when cells were stimulated and activated with the vaccine formulations. When viral challenge was performed, bovines vaccinated with MANα1-2MAN-PEG-DOPE elicited better protection which was evidenced by a lower viral excretion. These results demonstrate that the dendritic cell targeting using MANα1-2MAN decorated liposomes can boost the immunogenicity resulting in a long-lasting immunity. Liposomes decorated with MANα1-2MAN-PEG-DOPE were tested for the first time as a DNA vaccine nanovehicle in cattle as a preventive treatment against BoHV-1. These results open new perspectives for the design of vaccines for the control of bovine rhinotracheitis.
Collapse
Affiliation(s)
- Claudia A Kornuta
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan E Bidart
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Juan S Pappalardo
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), Río Negro, Argentina
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, Universita degli Studi di Padova, Padova PD, Italy
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Felipe Cheuquepán Valenzuela
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,EEA Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
| | - Yanina P Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,EEA Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
| | - Dadin P Moore
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Balcarce, Argentina
| | - Patricia I Zamorano
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Universidad del Salvador, Buenos Aires, Argentina
| | - Cecilia A Langellotti
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
9
|
Quattrocchi V, Soria I, Langellotti CA, Gnazzo V, Gammella M, Moore DP, Zamorano PI. A DNA Vaccine Formulated with Chemical Adjuvant Provides Partial Protection against Bovine Herpes Virus Infection in Cattle. Front Immunol 2017; 8:37. [PMID: 28179907 PMCID: PMC5263161 DOI: 10.3389/fimmu.2017.00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Bovine herpesvirus-1 (BoHV-1) is the causative agent of bovine infectious rhinotracheitis, an important disease worldwide. Although conventional BoHV-1 vaccines, including those based on the use of modified live virus and also inactivated vaccines, are currently used in many countries, they have several disadvantages. DNA vaccines have emerged as an attractive approach since they have the potential to induce both humoral and cellular immune response; nevertheless, it is largely known that potency of naked DNA vaccines is limited. We demonstrated previously, in the murine model, that the use of adjuvants in combination with a DNA vaccine against BoHV-1 is immunologically beneficial. In this study, we evaluate the immune response and protection against challenge elicited in bovines, by a DNA vaccine carrying the sequence of secreted version of glycoprotein D (gD) of BoHV-1 formulated with chemical adjuvants. Bovines were vaccinated with formulations containing the sequence of gD alone or in combination with adjuvants ESSAI 903110 or Montanide™ 1113101PR. After prime vaccination and two boosters, animals were challenged with infectious BoHV-1. Formulations containing adjuvants Montanide™ 1113101PR and ESSAI 903110 were both, capable of increasing humoral immune response against the virus and diminishing clinical symptoms. Nevertheless, only formulations containing adjuvant Montanide™ 1113101PR was capable of improving cellular immune response and diminishing viral excretion. To our knowledge, it is the first time that a BoHV-1 DNA vaccine is combined with adjuvants and tested in cattle. These results could be useful to design a vaccine for the control of bovine rhinotracheitis.
Collapse
Affiliation(s)
- Valeria Quattrocchi
- Instituto de virología, CICVyA, INTA Castelar , Hurlingham, Buenos Aires , Argentina
| | | | | | | | - Mariela Gammella
- Instituto de virología, CICVyA, INTA Castelar , Hurlingham, Buenos Aires , Argentina
| | | | - Patricia I Zamorano
- Instituto de virología, CICVyA, INTA Castelar, Hurlingham, Buenos Aires, Argentina; CONICET, CABA, Buenos Aires, Argentina; Universidad del Salvador, Pilar, Buenos Aires, Argentina
| |
Collapse
|
10
|
Patil SS, Prajapati A, Hemadri D, Suresh KP, Desai GS, Reddy GBM, Chandranaik BM, Ranganatha S, Rahman H. Phylogenetic analysis of glycoprotein B gene sequences of bovine herpesvirus 1 isolates from India reveals the predominance of subtype 1.1. Vet World 2016; 9:1364-1369. [PMID: 28096606 PMCID: PMC5234048 DOI: 10.14202/vetworld.2016.1364-1369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/17/2016] [Indexed: 11/21/2022] Open
Abstract
AIM This study was conducted for the isolation and molecular characterization of bovine herpesvirus 1 (BoHV-1) isolated from the nasal and vaginal swabs collected from naturally infected cattle showing clinical symptoms of the respiratory disease. MATERIALS AND METHODS Isolation of BoHV-1 virus performed on clinical samples collected from 65 cattle from five states of India. The BoHV-1 isolates were further confirmed by polymerase chain reaction (PCR) using primers specific for glycoprotein B (gB) genomic region. PCR amplification was performed using previously published gB gene-specific primer pairs. gB PCR amplicons obtained from all isolates were sequenced, and phylogenetic analysis was performed using software. RESULTS A total of 12 samples were found positive in cell culture isolation. 11 isolates showed the visible cytopathic effect on Madin-Darby bovine kidney after 72 h. Partial sequence analysis of gB gene of all isolates revealed 99.0-100% homology between them. All isolates showed 99.2-99.8% homology with Cooper stain. CONCLUSION BoHV-1.1 is the predominant circulating subtype of BoHV in India, and all isolates have homology with Cooper stain.
Collapse
Affiliation(s)
- S. S. Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru - 560 064, Karnataka, India
| | - A. Prajapati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru - 560 064, Karnataka, India
| | - D. Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru - 560 064, Karnataka, India
| | - K. P. Suresh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru - 560 064, Karnataka, India
| | - G. S. Desai
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru - 560 064, Karnataka, India
| | - G. B. Manjunatha Reddy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru - 560 064, Karnataka, India
| | - B. M. Chandranaik
- Institute of Animal Health and Veterinary Biologicals, Bengaluru - 560 024, Karnataka, India
| | - S. Ranganatha
- Institute of Animal Health and Veterinary Biologicals, Bengaluru - 560 024, Karnataka, India
| | - H. Rahman
- Division of Animal Sciences, Indian Council of Agriculture Research, Krishi Bhawan, New Delhi - 110 001, India
| |
Collapse
|
11
|
Traesel CK, Bernardes LM, Spilki FR, Weiblen R, Flores EF. Sequence analysis of the 5' third of glycoprotein C gene of South American bovine herpesviruses 1 and 5. ACTA ACUST UNITED AC 2015; 48:470-8. [PMID: 25760029 PMCID: PMC4445672 DOI: 10.1590/1414-431x20144266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) share high genetic and antigenic
similarities, but exhibit marked differences in tissue tropism and neurovirulence.
The amino-terminal region of glycoprotein C (gC), which is markedly different in each
of the viruses, is involved in virus binding to cellular receptors and in
interactions with the immune system. This study investigated the genetic and
antigenic differences of the 5′ region of the gC (5′ gC) gene (amino-terminal) of
South American BoHV-1 (n=19) and BoHV-5 (n=25) isolates. Sequence alignments of 374
nucleotides (104 amino acids) revealed mean similarity levels of 97.3 and 94.2% among
BoHV-1 gC (gC1), respectively, 96.8 and 95.6% among BoHV-5 gC (gC5), and 62 and 53.3%
between gC1 and gC5. Differences included the absence of 40 amino acid residues (27
encompassing predicted linear epitopes) scattered throughout 5′ gC1 compared to 5′
gC5. Virus neutralizing assays testing BoHV-1 and BoHV-5 antisera against each
isolate revealed a high degree of cross-neutralization between the viruses, yet some
isolates were neutralized at very low titers by heterologous sera, and a few BoHV-5
isolates reacted weakly with either sera. The virus neutralization differences
observed within the same viral species, and more pronounced between BoHV-1 and
BoHV-5, likely reflect sequence differences in neutralizing epitopes. These results
demonstrate that the 5′ gC region is well conserved within each viral species but is
divergent between BoHV-1 and BoHV-5, likely contributing to their biological and
antigenic differences.
Collapse
Affiliation(s)
- C K Traesel
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - L M Bernardes
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - F R Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brasil
| | - R Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - E F Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| |
Collapse
|
12
|
Glycoprotein-based enzyme-linked immunosorbent assays for serodiagnosis of infectious laryngotracheitis. J Clin Microbiol 2015; 53:1727-30. [PMID: 25694519 DOI: 10.1128/jcm.02540-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/14/2015] [Indexed: 11/20/2022] Open
Abstract
For detection of infectious laryngotracheitis virus (ILTV) antibody, glycoprotein B-, C-, and D-based enzyme-linked immunosorbent assays (B-, C-, and D-ELISAs, respectively) were developed. The B- and D-ELISAs showed enhanced detection of anti-ILTV antibodies in infected chickens compared to that of the commercial ELISA. Furthermore, the D-ELISA was efficient in detecting seroconversion with vectored vaccine, using recombinant Newcastle disease virus (rNDV) expressing glycoprotein D (gD) as the vaccine vector.
Collapse
|
13
|
Alves Dummer L, Pereira Leivas Leite F, van Drunen Littel-van den Hurk S. Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. Vet Res 2014; 45:111. [PMID: 25359626 PMCID: PMC4252008 DOI: 10.1186/s13567-014-0111-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022] Open
Abstract
The viral envelope glycoprotein D from bovine herpesviruses 1 and 5 (BoHV-1 and -5), two important pathogens of cattle, is a major component of the virion and plays a critical role in the pathogenesis of herpesviruses. Glycoprotein D is essential for virus penetration into permissive cells and thus is a major target for virus neutralizing antibodies during infection. In view of its role in the induction of protective immunity, gD has been tested in new vaccine development strategies against both viruses. Subunit, DNA and vectored vaccine candidates have been developed using this glycoprotein as the primary antigen, demonstrating that gD has the capacity to induce robust virus neutralizing antibodies and strong cell-mediated immune responses, as well as protection from clinical symptoms, in target species. This review highlights the structural and functional characteristics of BoHV-1, BoHV-5 and where appropriate, Human herpesvirus gD, as well as its role in viral entry and interactions with host cell receptors. Furthermore, the interactions of gD with the host immune system are discussed. Finally, the application of this glycoprotein in new vaccine design is reviewed, taking its structural and functional characteristics into consideration.
Collapse
Affiliation(s)
- Luana Alves Dummer
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Fábio Pereira Leivas Leite
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Sylvia van Drunen Littel-van den Hurk
- Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada. .,VIDO-Intervac, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada.
| |
Collapse
|
14
|
Levings RL, Stoll IR, Warg JV, Patterson PA, Hobbs LA, Kaeberle ML, Roth JA. Generation by self re-fusion of bovine3×murine2 heterohybridomas secreting virus-neutralizing bovine monoclonal antibodies to bovine herpesvirus 1 glycoproteins gB, gC, and gD. Vet Immunol Immunopathol 2014; 159:58-73. [DOI: 10.1016/j.vetimm.2014.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 12/26/2013] [Accepted: 02/07/2014] [Indexed: 11/28/2022]
|
15
|
Kanabagatte Basavarajappa M, Kumar S, Khattar SK, Gebreluul GT, Paldurai A, Samal SK. A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens. Vaccine 2014; 32:3555-63. [PMID: 24793943 DOI: 10.1016/j.vaccine.2014.04.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/15/2022]
Abstract
Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). Currently, modified live ILTV vaccines are used to control ILT infections. However, the live ILTV vaccines can revert to virulence after bird-to-bird passage and are capable of establishing latent infections, suggesting the need to develop safer vaccines against ILT. We have evaluated the role of three major ILTV surface glycoproteins, namely, gB, gC, and gD in protection and immunity against ILTV infection in chickens. Using reverse genetics approach, three recombinant Newcastle disease viruses (rNDVs) designated rNDV gB, rNDV gC, and rNDV gD were generated, each expressing gB, gC, and gD, respectively, of ILTV. Chickens received two immunizations with rNDVs alone (gB, gC, and gD) or in combination (gB+gC, gB+gD, gC+gD, and gB+gC+gD). Immunization with rNDV gD induced detectable levels of neutralizing antibodies with the magnitude of response greater than the rest of the experimental groups including those vaccinated with commercially available vaccines. The birds immunized with rNDV gD showed complete protection against virulent ILTV challenge. The birds immunized with rNDV gC alone or multivalent vaccines consisting of combination of rNDVs displayed partial protection with minimal disease and reduced replication of challenge virus in trachea. Immunization with rNDV gB neither reduced the severity of the disease nor the replication of challenge virus in trachea. The superior protective efficacy of rNDV gD vaccine compared to rNDV gB or rNDV gC vaccine was attributed to the higher levels of envelope incorporation and infected cell surface expression of gD than gB or gC. Our results suggest that rNDV expressing gD is a safe and effective bivalent vaccine against NDV and ILTV.
Collapse
Affiliation(s)
| | - Sachin Kumar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Sunil K Khattar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Girmay T Gebreluul
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
16
|
Immune responses of mice against recombinant bovine herpesvirus 5 glycoprotein D. Vaccine 2014; 32:2413-9. [PMID: 24657716 DOI: 10.1016/j.vaccine.2014.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 11/23/2022]
Abstract
Glycoprotein D (gD) is essential for attachment and penetration of Bovine herpesvirus 5 (BoHV-5) into permissive cells, and is a major target of the host immune system, inducing strong humoral and cellular immune responses. The aim of this study was to evaluate in mice the immunogenicity of recombinant BoHV-5 gD (rgD5) expressed in Pichia pastoris. Vaccines formulated with rgD5 alone or adjuvanted with Montanide 50 ISA V2; Emulsigen or Emulsigen-DDA was administered intramuscularly or subcutaneously. Almost all formulations stimulated a humoral immune response after the first inoculation. The only exception was observed when the rgD5 was administered subcutaneously without adjuvant, in this case, the antibodies were observed after three doses. Higher titers of neutralizing antibodies were obtained with the three oil-based adjuvant formulations when compared to non-adjuvanted vaccine formulations. The rgD5 vaccine stimulated high mRNA expression levels of Th1 (INF-γ) and pro-inflammatory cytokines (IL-17, GM-CSF). The results demonstrated that the recombinant gD from BoHV-5 conserved important epitopes for viral neutralization from native BoHV-5 gD and was able to elicit mixed Th1/Th2 immune response in mice.
Collapse
|
17
|
Abstract
Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease.
Collapse
|
18
|
Zhao Y, Cao Y, Cui L, Ma B, Mu X, Li Y, Zhang Z, Li D, Wei W, Gao M, Wang J. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks. PLoS One 2014; 9:e95093. [PMID: 24736466 PMCID: PMC3988170 DOI: 10.1371/journal.pone.0095093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/22/2014] [Indexed: 11/19/2022] Open
Abstract
DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.
Collapse
Affiliation(s)
- Yan Zhao
- Group of Avian Respiratory infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Northeast Agricultural University, Harbin, China
| | | | - Lihong Cui
- Northeast Agricultural University, Harbin, China
| | - Bo Ma
- Northeast Agricultural University, Harbin, China
| | - Xiaoyu Mu
- Northeast Agricultural University, Harbin, China
| | - Yanwei Li
- Northeast Agricultural University, Harbin, China
| | - Zhihui Zhang
- Northeast Agricultural University, Harbin, China
| | - Dan Li
- Northeast Agricultural University, Harbin, China
| | - Wei Wei
- Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- Northeast Agricultural University, Harbin, China
| | - Junwei Wang
- Northeast Agricultural University, Harbin, China
- * E-mail:
| |
Collapse
|
19
|
Arthington JD, Havenga LJ. Effect of injectable trace minerals on the humoral immune response to multivalent vaccine administration in beef calves1. J Anim Sci 2012; 90:1966-71. [DOI: 10.2527/jas.2011-4024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. D. Arthington
- Range Cattle Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Ona 33865
| | | |
Collapse
|
20
|
Gnazzo V, Cebrian I, Langellotti C, Chabalgoity J, Mongini C, Quattrocchi V, Zamorano P. Immunogenicity of a bovine herpes virus I peptide expressed in tandem copies in attenuated Salmonella. Viral Immunol 2012; 25:63-72. [PMID: 22233252 DOI: 10.1089/vim.2011.0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
A live system to release heterologous antigens using an attenuated Salmonella strain was developed. We transformed Salmonella typhimurium LVR03 (S. LVR03) with a recombinant pTECH2 vector encoding 0, 1, 2, and 4 tandem copies of an imunogenic peptide of bovine herpes virus-1 (BoHV-1) glycoprotein D (gD). The system used yielded peptides fused to the non-toxic C fragment of the tetanus toxin (TetC), which has been shown to have adjuvant properties. Inoculation of BALB/c mice with the transformed Salmonella strains gave rise to a mild self-limited infection, with primary replication of bacteria occurring in Peyer's patches, even when the bacteria was administered intranasally. Humoral and cellular immune responses directed against the BoHV-1 antigens were evaluated after oral or intranasal administration of the recombinant bacteria. The results showed that the S. LVR03-dimer vaccine induced specific humoral (IgG in serum and IgG(1) and IgA in saliva), and cellular immune responses (lymphoproliferation and lymphokine secretion), against not only the selected peptide and whole gD, but also against BoHV-1, when administered intranasally. This is the first time Salmonella has been used as an expression vector to induce immunity against BoHV-1. This work demonstrates the feasibility of using this antigen-release system and encourages future experimentation with a bovine experimental model.
Collapse
Affiliation(s)
- Victoria Gnazzo
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnologia Agropecuaria, Castelar, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
21
|
Ferrer MF, Del Médico Zajac MP, Zanetti FA, Valera AR, Zabal O, Calamante G. Recombinant MVA expressing secreted glycoprotein D of BoHV-1 induces systemic and mucosal immunity in animal models. Viral Immunol 2011; 24:331-9. [PMID: 21830904 DOI: 10.1089/vim.2011.0018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bovine herpesvirus-1 (BoHV-1) infection is distributed worldwide and the development of new tools to fight against this pathogen has become extremely important. In this work a recombinant modified vaccinia virus Ankara (MVA) vector expressing the secreted version of glycoprotein D, MVA-gDs, was obtained and evaluated as a candidate vaccine. First, the correct expression, antigenicity, and N-glycosylation of glycoprotein D were confirmed by molecular techniques. Then MVA-gDs was used as parenteral immunogen in BALB/C mice in which a specific anti-gD humoral immune response was induced and maintained for 7 mo. Two doses of MVA-gDs supplemented with cholera toxin delivered by intranasal immunization induced IgA anti-gD humoral immune responses in nasal and bronchopulmonary washes, as well as IgG anti-gD antibodies in serum samples. In order to evaluate the protection conferred by MVA-gDs immunization, a rabbit BoHV-1 challenge assay was performed. A shorter viral excretion period and a reduction in the number of animals shedding BoHV-1 was observed in the group immunized with recombinant MVA-gDs. In conclusion our data encourage further studies to evaluate MVA-gDs, alone or combined with other immunogens, as a candidate vaccine for BoHV-1.
Collapse
Affiliation(s)
- María Florencia Ferrer
- Consejo Nacional de Investigaciones Científicas y Técnicas, Castilla de Correo 25, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
22
|
Langellotti C, Pappalardo J, Quattrocchi V, Mongini C, Zamorano P. Induction of specific cytotoxic activity for bovine herpesvirus-1 by DNA immunization with different adjuvants. Antiviral Res 2011; 90:134-42. [DOI: 10.1016/j.antiviral.2011.03.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/10/2011] [Accepted: 03/22/2011] [Indexed: 11/28/2022]
|
23
|
Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1. Vaccine 2010; 28:3159-70. [PMID: 20189484 PMCID: PMC3428038 DOI: 10.1016/j.vaccine.2010.02.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/05/2010] [Accepted: 02/12/2010] [Indexed: 11/28/2022]
Abstract
Bovine herpesvirus-1 (BHV-1) is a major cause of respiratory tract diseases in cattle. Vaccination of cattle against BHV-1 is a high priority. A major concern of currently modified live BHV-1 vaccines is their ability to cause latent infection and subsequent reactivation resulting in many outbreaks. Thus, there is a need for alternative strategies. We generated two recombinant Newcastle disease viruses (NDVs) expressing the glycoprotein D (gD) of BHV-1 from an added gene. One recombinant, rLaSota/gDFL, expressed gD without any modification. The other recombinant, rLaSota/gDF, expressed a chimeric gD in which the ectodomain of gD was fused with the transmembrane domain and cytoplasmic tail of the NDV fusion F glycoprotein. Remarkably, the native gD expressed by rLaSota/gDFL virus was incorporated into the NDV virion 2.5-fold more efficiently than the native NDV proteins, whereas the chimeric gD was not detectably incorporated even though it was abundantly expressed on the infected cell surface. The expression of gD did not increase the virulence of the rNDV vectors in chickens. A single intranasal and intratracheal inoculation of calves with either recombinant NDV elicited mucosal and systemic antibodies specific to BHV-1, with the responses to rLaSota/gDFL being higher than those to rLaSota/gDF. Following challenge with BHV-1, calves immunized with the recombinant NDVs had lower titers and earlier clearance of challenge virus compared to the empty vector control, and reduced disease was observed with rLaSota/gDFL. Following challenge, the titers of serum antibodies specific to BHV-1 were higher in the animals immunized with the rNDV vaccines compared to the rNDV parent virus, indicating that the vaccines primed for secondary responses. Our data suggest that NDV can be used as a vaccine vector in bovines and that BHV-1 gD may be useful in mucosal vaccine against BHV-1 infection, but might require augmentation by a second dose or the inclusion of additional BHV-1 antigens.
Collapse
|
24
|
Zou Q, Sun K, Cheng A, Wang M, Xu C, Zhu D, Jia R, Luo Q, Zhou Y, Chen Z, Chen X. Detection of anatid herpesvirus 1 gC gene by TaqMan fluorescent quantitative real-time PCR with specific primers and probe. Virol J 2010; 7:37. [PMID: 20152046 PMCID: PMC2837632 DOI: 10.1186/1743-422x-7-37] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anatid herpesvirus 1 (AHV-1) is known for the difficulty of monitoring and controlling, because it has a long period of asymptomatic carrier state in waterfowls. Furthermore, as a significant essential agent for viral attachment, release, stability and virulence, gC (UL44) gene and its protein product (glycoprotein C) may play a key role in the epidemiological screening. The objectives of this study were to rapidly, sensitively, quantitatively detect gC gene of AHV-1 and provide the underlying basis for further investigating pcDNA3.1-gC DNA vaccine in infected ducks by TaqMan fluorescent quantitative real-time PCR assay (FQ-PCR) with pcDNA3.1-gC plasmid. RESULTS The repeatable and reproducible quantitative assay was established by the standard curve with a wide dynamic range (eight logarithmic units of concentration) and very good correlation values (1.000). This protocol was able to detect as little as 1.0 x 101 DNA copies per reaction and it was highly specific to AHV-1. The TaqMan FQ-PCR assay successfully detected the gC gene in tissue samples from pcDNA3.1-gC and AHV-1 attenuated vaccine (AHV-1 Cha) strain inoculated ducks respectively. CONCLUSIONS The assay offers an attractive method for the detection of AHV-1, the investigation of distribution pattern of AHV-1 in vivo and molecular epidemiological screening. Meanwhile, this method could expedite related AHV-1 and gC DNA vaccine research.
Collapse
Affiliation(s)
- Qing Zou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
AbstractBovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.
Collapse
|
26
|
Abstract
The prevention of infectious diseases of animals by vaccination has been routinely practiced for decades and has proved to be one of the most cost-effective methods of disease control. However, since the pioneering work of Pasteur in the 1880s, the composition of veterinary vaccines has changed very little from a conceptual perspective and this has, in turn, limited their application in areas such as the control of chronic infectious diseases. New technologies in the areas of vaccine formulation and delivery as well as our increased knowledge of disease pathogenesis and the host responses associated with protection from disease offer promising alternatives for vaccine formulation as well as targets for the prevention of bacterial disease. These new vaccines have the potential to lessen our reliance on antibiotics for disease control, but will only reach their full potential when used in combination with other intervention strategies.
Collapse
|
27
|
|
28
|
Liu F, Ma B, Zhao Y, Zhang Y, Wu YH, Liu X, Wang J. Characterization of the gene encoding glycoprotein C of duck enteritis virus. Virus Genes 2008; 37:328-32. [PMID: 18690531 DOI: 10.1007/s11262-008-0266-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/21/2008] [Indexed: 11/29/2022]
Abstract
A total of 2,718 bp of DNA fragment was amplified from the C-KCE strain of duck enteritis virus (DEV) genome using thermal asymmetric interlaced PCR. This newly identified viral DNA fragment contained two non-overlapping open reading frames (ORFs) oriented from the 5' to 3' direction. The first ORF was comprised of 43.5% G + C and contained the full-length genomic sequence of the UL44 gene (1,296 bp) encoding 431 amino acid residues of DEV glycoprotein C (gC). The second ORF encoded a partial peptide of the UL43 gene. The sequences of DNA and deduced amino acids of the DEV gC gene shared high homology with other members of known herpesviruses, supporting the classification of DEV. Phylogenetic analysis of the DEV gC gene revealed that the gC gene had a close evolutionary relationship with the subfamily of Alphaherpesvirinae.
Collapse
Affiliation(s)
- Fengyuan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Comparative Approaches to the Investigation of Responses to Stress and Viral Infection in Cattle. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 11:413-34. [DOI: 10.1089/omi.2007.0023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
van Drunen Littel-van den Hurk S. Rationale and perspectives on the success of vaccination against bovine herpesvirus-1. Vet Microbiol 2006; 113:275-82. [PMID: 16330163 DOI: 10.1016/j.vetmic.2005.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several characteristics of BHV-1 have contributed to the successful development of both conventional and marker vaccines. BHV-1 is a stable virus, which grows to high titers in vitro, has a limited host range and causes acute viremic infections. Furthermore, the protective antigens, as well as the antigens that are suitable as marker, are present in the predominant virus isolates and induce significant and long-lasting immune responses, both in naïve and in previously vaccinated animals. In many parts of the world including North-America control of BHV-1 is achieved by vaccination with conventional attenuated or inactivated vaccines. With parts of Europe being BHV-1 free, the ability to differentiate infected from vaccinated animals has become critical as a trading tool. Live and killed gE-deleted marker vaccines are now widely used in Europe, in combination with gE-based diagnostic tests to monitor cattle. However, several issues remain to be resolved. BHV-1 causes latency, which creates a need for stringent management practices in case eradication is to be achieved. Since intramuscular delivery with a syringe and needle leads to considerable tissue damage, needle-free delivery methods should be adopted for beef cattle. Furthermore, conventional inactivated and attenuated vaccines are less efficacious in neonates, so alternative vaccine types such as CpG adjuvanted protein vaccines or DNA vaccines are required for effective vaccination of this age group.
Collapse
|
31
|
Okazaki K, Fujii S, Takada A, Kida H. The amino-terminal residue of glycoprotein B is critical for neutralization of bovine herpesvirus 1. Virus Res 2005; 115:105-11. [PMID: 16153736 DOI: 10.1016/j.virusres.2005.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 11/26/2022]
Abstract
In order to address the neutralization epitope on bovine herpesvirus 1 (BHV1) glycoprotein B (gB), a panel of monoclonal antibodies (MAbs), a series of truncation forms of the glycoprotein and an MAb-escape mutant were used in this study. Immunocytochemistry on the truncations using MAbs against the glycoprotein revealed that the neutralization epitopes recognized by the MAbs lay between residues 1 and 52 of mature gB. Comparison of the sequences among the mutant, parent, and revertant viruses demonstrated that the amino-terminal residue of mature gB of the escape mutant was changed from Arg to Gln. These findings indicate that the amino-terminal residue of gB is critical for neutralization of BHV1.
Collapse
Affiliation(s)
- Katsunori Okazaki
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | |
Collapse
|
32
|
Cândido A, Resende M, Bessa L, Leite R. Serological responses in sheep injected with plasmids encoding bovine herpesvirus 1 (BHV-1) gD glycoprotein. ARQ BRAS MED VET ZOO 2003. [DOI: 10.1590/s0102-09352003000300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A genetic vaccine consisting of the bovine herpesvirus-1.2a (BHV-1.2a) glycoprotein D (gD) gene under the control of the cytomegalovirus immediate-early promoter/enhancer was generated and administered to sheep intramuscularly in the neck. All animals developed serum antibodies which recognized the homologous antigen (BHV-1.2a strain BH-83) and also exhibited cross-reactivity against the heterologous antigen (BHV-5 strain EVI-190). Three intramuscularly injections were given but serological responses were not improved after the second inoculation. Specific antibodies were detected against BHV-1.2a until at least 12 months after the first inoculation. However, the capacity to induce antibodies against BHV-5 was lower and of shorter duration than to BHV-1.2a.
Collapse
|
33
|
Pontarollo RA, Babiuk LA, Hecker R, van Drunen Littel-van den Hurk S. Augmentation of cellular immune responses to bovine herpesvirus-1 glycoprotein D by vaccination with CpG-enhanced plasmid vectors. J Gen Virol 2002; 83:2973-2981. [PMID: 12466473 DOI: 10.1099/0022-1317-83-12-2973] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The potential of CpG-enhanced plasmid DNA vectors encoding a truncated secreted form of bovine herpesvirus-1 (BHV-1) glycoprotein D (tgD) to induce enhanced immune responses in cattle was investigated. We created tgD expression plasmids containing 0, 40 or 88 copies of the hexamer 5' GTCGTT 3', a known pan-activating CpG motif in several species. The total tgD-specific IgG titre of calves immunized with these plasmids did not correlate with the CpG content of the plasmid backbone. However, the pBISIA88-tgD-vaccinated group showed a significantly lower IgG1:IgG2 ratio than calves immunized with pBISIA40-tgD or pMASIA-tgD, which has no CpG motifs inserted. Antigen-specific lymphocyte proliferation and IFN-gamma secretion by peripheral blood mononuclear cells correlated positively with the CpG content of the vectors. In contrast, calves that received a killed BHV-1 vaccine had an IgG1-predominant isotype and low lymphocyte proliferation and IFN-gamma levels. Following challenge, the pBISIA88-tgD-immunized group developed the greatest anamnestic response, the highest BHV-1 neutralization titres in serum and a significantly lower level of virus shedding than the saline control group. However, there were no significant differences in clinical symptoms of infection between the DNA-immunized groups and the saline control group. These data indicate that CpG-enhanced plasmids induce augmented immune responses and could be used to vaccinate against pathogens requiring a strong cellular response for protection.
Collapse
Affiliation(s)
- R A Pontarollo
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaS7N 5E31
| | - L A Babiuk
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaS7N 5E31
| | - R Hecker
- Qiagen GmbH, 40724 Hilden, Germany2
| | | |
Collapse
|
34
|
Deshpande MS, Ambagala TC, Hegde NR, Hariharan MJ, Navaratnam M, Srikumaran S. Induction of cytotoxic T-lymphocytes specific for bovine herpesvirus-1 by DNA immunization. Vaccine 2002; 20:3744-51. [PMID: 12399204 DOI: 10.1016/s0264-410x(02)00375-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytotoxic T-lymphocytes (CTLs) are critical for the defense against herpesvirus infections, in which cell-to-cell spread occurs earlier than the hematogenous spread. The ability of bovine herpesvirus-1 (BHV-1) to undergo latency, to induce apoptosis of CD4(+) T-lymphocytes, and to down-regulate the expression of major histocompatibility complex (MHC) class I molecules, necessitates the development of immunization strategies that do not involve the live virus. The objective of this study was to evaluate the feasibility of DNA immunization as a means of induction of CTLs against BHV-1. Mice were injected either by intramuscular (IM) or intradermal (ID) route with a Sindbis virus-based plasmid carrying the gene encoding the glycoprotein D (gD) of BHV-1. Splenocytes from the immunized mice were re-stimulated in vitro with gD-transduced syngeneic fibroblasts. The CTLs generated specifically lysed syngeneic targets, either transduced with gD or infected with BHV-1. IM route of inoculation induced a better CTL response when compared to ID route with respect to onset, magnitude and duration of immunity. These results indicate the feasibility of using a plasmid carrying the gene encoding BHV-1 gD as an immunogen to induce CTLs against BHV-1.
Collapse
MESH Headings
- Animals
- Cattle
- Cell Extracts/immunology
- Cell Line
- Culture Media, Conditioned
- Cytotoxicity, Immunologic/genetics
- DNA, Viral/therapeutic use
- Female
- Genetic Vectors
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 1, Bovine/immunology
- Injections, Intradermal
- Injections, Intramuscular
- L Cells
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred BALB C
- Sindbis Virus/genetics
- Sindbis Virus/immunology
- Sindbis Virus/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Transduction, Genetic
- Tumor Cells, Cultured
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/therapeutic use
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/therapeutic use
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/therapeutic use
Collapse
Affiliation(s)
- Muralidhar S Deshpande
- Department of Veterinary and Biomedical Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583, USA
| | | | | | | | | | | |
Collapse
|
35
|
Zamorano P, Taboga O, Domínguez M, Romera A, Puntel M, Tami C, Mongini C, Waldner C, Palma E, Sadir A. BHV-1 DNA vaccination: effect of the adjuvant RN-205 on the modulation of the immune response in mice. Vaccine 2002; 20:2656-64. [PMID: 12034090 DOI: 10.1016/s0264-410x(02)00211-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well documented that adjuvants improve the immune response generated by traditional viral vaccines, but less is known about the effects of adjuvants on the immune response elicited by DNA vaccines. In this study, we have investigated the use of RN-205 (immunomodulator containing a membrane rich in lipopolysaccharide from gram-negative bacteria) as an adjuvant and analyzed the humoral and cellular specific immune responses elicited by DNA vaccines based on the bovine herpesvirus-1 (BHV-1) glycoprotein D (gD). The comparison of the antibody response induced in mice by a mixture of the three different versions of DNA gD (membrane-anchored, secreted and cytosolic) formulated with or without RN-205 showed that the immunomodulator did not affect the total specific humoral response. The cellular immune response induced in mice immunized with vaccines plus RN-205 was higher than that obtained in mice vaccinated without RN-205, not only in the indexes of proliferation tests but in the number of IL-4 and gammaIFN secreting cells. When total spleen cells were marked with specific monoclonal antibodies against surface markers, a significant increase in the macrophage population of all the groups receiving RN-205 was observed. CD8 and CD4 positive cells were also increased but to a lesser extent. Our results indicate that the incorporation of RN-205 into DNA vaccines induces an increase of the cellular specific immune response in mice.
Collapse
Affiliation(s)
- P Zamorano
- Centro de Investigación en Ciencias Veterinarias y Agronómicas, INTA, CC25, (1712) Castelar, Serrano 669, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The complete open reading frame and promoter region of the glycoprotein B (gB) gene has been identified and sequenced from five poorly characterized alphaherpesviruses of ruminants, bovine herpesvirus 5 (BHV-5), buffalo herpesvirus 1 (BuHV-1), cervine herpesvirus 1 (CerHV-1), rangiferine herpesvirus 1 (RanHV-1), and caprine herpesvirus 1 (CapHV-1). One of the two regions identified with considerable sequence and length variation is also target of the immune system, as two B cell epitopes have been identified in this location. Features shared with bovine herpesvirus 1 (BHV-1) gB include two broad hydrophobic regions, six N-glycosylation sites and ten conserved cysteine residues in the gB extracellular domain. Phylogenetic analysis showed that the studied ruminant alphaherpesviruses form, together with BHV-1, a consistent group within the alpha2 subgroup of the herpesviruses. BHV-5 and BuHV-1 are most closely related to BHV-1, followed by CerHV-1, RanHV-1 and more distantly by CapHV-1. A remarkable high degree of sequence similarity was observed between BuHV-1 and the neuropathogenic BHV-5.
Collapse
Affiliation(s)
- Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, Switzerland.
| | | |
Collapse
|
37
|
Gogev S, Vanderheijden N, Lemaire M, Schynts F, D'Offay J, Deprez I, Adam M, Eloit M, Thiry E. Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD. Vaccine 2002; 20:1451-65. [PMID: 11818166 DOI: 10.1016/s0264-410x(01)00458-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication-defective human adenoviruses type 5 (HAd5) expressing the bovine herpesvirus type 1 (BHV-1) glycoprotein gC or gD under the control of the human cytomegalovirus immediate-early promoter/enhancer (AdCMVgC or AdCMVgD) or the 5' regulatory region of the human desmin gene (AdDESMgC or AdDESMgD) were generated. A preliminary experiment performed on rabbits showed that the intranasal administration of AdCMV elicited higher levels of BHV-1 neutralizing antibodies than the intramuscular administration of AdDESM. The obtained results allowed to select the replication-defective AdCMVgC and AdCMVgD for further assessment of their potential as a recombinant vaccine in cattle. Calves were injected intranasally twice 3 weeks apart with either AdCMVgC or AdCMVgD or a combination of these two recombinants or a commercially available live vaccine for comparison. The highest BHV-1 neutralizing antibody titres were obtained with AdCMVgD followed by the live vaccine and to a lower extent with the combination of the two recombinants (AdCMVgC+AdCMVgD). Calves were protected against intranasal BHV-1 challenge performed 3 weeks after the second immunization. In view of the obtained results, recombinant HAd5 may be developed as an intranasal vaccine vector in cattle administrated either alone or sequentially with non-human adenovirus-based vectors.
Collapse
Affiliation(s)
- Sacha Gogev
- Laboratory of Virology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Lie'ge, Boulevard de Colonster, 20-B 43 bis, 4000, Sart Tilman-Lie'ge, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Suradhat S, Braun RP, Lewis PJ, Babiuk LA, van Drunen Littel-van den Hurk S, Griebel PJ, Baca-Estrada ME. Fusion of C3d molecule with bovine rotavirus VP7 or bovine herpesvirus type 1 glycoprotein D inhibits immune responses following DNA immunization. Vet Immunol Immunopathol 2001; 83:79-92. [PMID: 11604163 DOI: 10.1016/s0165-2427(01)00369-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The binding of the complement C3d molecule with receptors on B cells and/or follicular dendritic cells (FDCs) influences the induction of humoral immune responses. For example, C3d fused to an antigen has been shown to have a strong adjuvant effect on antibody production. We investigated the possibility that co-expression of antigen and C3d as a fusion protein could enhance antigen-specific immune responses, following plasmid immunization. One or two copies of murine C3d-cDNA, C3d or (C3d)(2), respectively, were cloned together with bovine rotavirus (BRV) VP7 or bovine herpesvirus type 1 (BHV-1) glycoprotein D (gD) genes. All constructs contained a signal peptide that resulted in the secretion of the expressed proteins. In vitro, the characterization of the chimeric proteins indicated that both VP7 and gD retained their antigenicity and the C3d remained biologically active. However, immunization with plasmids encoding VP7-C3d chimeras did not enhance rotavirus-specific antibody responses and the frequency of BRV-specific IFN-gamma secreting cells in the spleens were significantly lower in mice immunized with pVP7-(C3d)(2) when compared with mice immunized with plasmid encoding VP7. The same pattern of immune responses was observed for plasmids encoding gD-C3d. Both gD-specific antibody responses and the frequency of gD-specific IFN-gamma secreting cells were significantly lower in mice immunized with plasmid expressing gD-C3d chimeras when compared with mice immunized with plasmid encoding gD alone. These results indicate that co-expression of C3d with an antigen actually inhibit both humoral and cell-mediated antigen-specific immune responses.
Collapse
Affiliation(s)
- S Suradhat
- Veterinary Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | | | | | | | | | |
Collapse
|
39
|
Loehr BI, Rankin R, Pontarollo R, King T, Willson P, Babiuk LA, van Drunen Littel-van den Hurk S. Suppository-mediated DNA immunization induces mucosal immunity against bovine herpesvirus-1 in cattle. Virology 2001; 289:327-33. [PMID: 11689054 DOI: 10.1006/viro.2001.1143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mucosal surfaces are the primary sites for the transmission of infectious agents including viruses, so effective vaccines generally should induce mucosal immunity. Furthermore, noninvasive delivery is desirable because of the ease of application, the high degree of patient compliance, and the improved safety for patients and clinicians due to the elimination of needles. Unfortunately, most of the conventional vaccines are parenterally administered and result in systemic rather than mucosal immunity. Here we present the first report of mucosal immunity by noninvasive DNA immunization in a target species. As an approach to induce mucosal immunity against bovine herpesvirus-1, cows were immunized intravaginally with suppositories containing plasmid coding for glycoprotein D. Serum IgG, as well as IgA both in the serum and in the nasal fluids, were detected, which supports the contention of a common mucosal immune system. This level of immunity was of sufficient magnitude to minimize weight loss and significantly reduce the duration of virus shedding after intranasal viral challenge, which demonstrates the efficacy of suppository-based administration of DNA vaccines to target species. As this is a very practical method of delivery, it has great potential to be applied as vaccine or therapy in a variety of species.
Collapse
Affiliation(s)
- B I Loehr
- Veterinary Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Gupta PK, Saini M, Gupta LK, Rao VD, Bandyopadhyay SK, Butchaiah G, Garg GK, Garg SK. Induction of immune responses in cattle with a DNA vaccine encoding glycoprotein C of bovine herpesvirus-1. Vet Microbiol 2001; 78:293-305. [PMID: 11182496 DOI: 10.1016/s0378-1135(00)00304-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A DNA vaccine expressing glycoprotein C (gC) of bovine herpesvirus-1 (BHV-1) was evaluated for inducing immunity in bovines. The plasmid encoding gC of BHV-1 was injected six times intramuscularly or intradermally into calves at monthly intervals. After immunization by both routes neutralizing antibody and lymphoproliferative responses developed. The responses in the intradermally immunized calves were better than those in calves immunized intramuscularly. However, the intradermal (i.d.) route was found to be less efficacious when protection against BHV-1 challenge was compared. Following intranasal BHV-1 challenge, all immunized calves demonstrated a rise in IgG antibody titre on day 3, indicating an anamnestic response. The control non-immunized calf developed a neutralizing antibody response on day 7 post-challenge. The immunized calves showed a slight rise in temperature and mild clinical symptoms after challenge. The intramuscularly immunized calves showed earlier clearance of challenge virus compared with intradermally immunized calves. These results indicate that DNA immunization with gC could induce neutralizing antibody and lymphoproliferative responses with BHV-1 responsive memory B cells in bovines. However, the immunity developed was not sufficient to protect calves completely from BHV-1 challenge.
Collapse
Affiliation(s)
- P K Gupta
- National Biotechnology Center, Indian Veterinary Research Institute, 243 122, Izatnagar, India.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Navaratnam M, Deshpande MS, Hariharan MJ, Zatechka DS, Srikumaran S. Heat shock protein-peptide complexes elicit cytotoxic T-lymphocyte and antibody responses specific for bovine herpesvirus 1. Vaccine 2001; 19:1425-34. [PMID: 11163665 DOI: 10.1016/s0264-410x(00)00381-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epitope-based vaccines offer a promising alternative to modified live vaccines against viruses such as herpesviruses which give rise to latent infections, and induce immunosuppression. The success of this approach depends on the ability to direct the CTL epitopes to the MHC class I antigen presentation pathway. The objective of this study was to evaluate the potential of the heat shock protein gp96 in this regard. A group of BALB/c mice was injected with three murine CTL epitope peptides of bovine herpesvirus 1 (BHV-1) complexed in vitro with bovine gp96 (gp96-peptides). Three other groups were injected with either the peptides alone, gp96 alone, or the peptides complexed with BSA. CTLs from mice immunized with gp96-peptides specifically lysed the peptide-pulsed syngeneic targets, as well as BHV-1-infected targets. CTLs from the other three groups did not lyse these targets. To further evaluate the utility of this approach, groups of BALB/c mice were immunized with gp96 isolated from a syngeneic cell-line transduced with BHV-1 glycoprotein D (BC-gD). Mice immunized with gp96 from BC-gD developed CTLs, as well as Abs specific for BHV-1 gD. Furthermore, in vitro stimulation of naive bovine PBMCs with gp96 from BC-gD resulted in CTLs specific for BHV-1. These results demonstrate the feasibility of using gp96-peptide complexes isolated from cells expressing BHV-1 proteins to induce CTL and Ab responses against BHV-1, without the prior knowledge of the CTL and Ab epitope sequences.
Collapse
Affiliation(s)
- M Navaratnam
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA
| | | | | | | | | |
Collapse
|
42
|
Babiuk LA, Tikoo SK. Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J Biotechnol 2000; 83:105-13. [PMID: 11000466 PMCID: PMC7126179 DOI: 10.1016/s0168-1656(00)00314-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1999] [Revised: 11/13/1999] [Accepted: 12/09/1999] [Indexed: 11/27/2022]
Abstract
Immunization of mucosal surfaces has become an attractive route of vaccine delivery because of its ability to induce mucosal immunity. Although various methods of inducing mucosal immunity are being developed, our laboratory has focused on developing adenoviruses as replication-competent and replication-incompetent vectors. The present report will summarize our progress in sequencing the entire bovine adenovirus-3 genome and identifying regions which can be deleted and subsequently used as insertion sites for foreign genes in developing recombinant viral vaccines. Using these recombinant viruses, we demonstrated the 'proof-of-principle' in developing mucosal immunity and, more importantly, inducing protection against bovine herpes virus in a natural host-cattle. Finally, we demonstrated that immunity and protection occurred even in animals that had pre-existing antibodies to the vector.
Collapse
Affiliation(s)
- L A Babiuk
- Veterinary Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, S7N 5E3, Saskatoon, Canada
| | | |
Collapse
|
43
|
Loehr BI, Willson P, Babiuk LA. Gene gun-mediated DNA immunization primes development of mucosal immunity against bovine herpesvirus 1 in cattle. J Virol 2000; 74:6077-86. [PMID: 10846091 PMCID: PMC112106 DOI: 10.1128/jvi.74.13.6077-6086.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination by a mucosal route is an excellent approach to the control of mucosally acquired infections. Several reports on rodents suggest that DNA vaccines can be used to achieve mucosal immunity when applied to mucosal tissues. However, with the exception of one study with pigs and another with horses, there is no information on mucosal DNA immunization of the natural host. In this study, the potential of inducing mucosal immunity in cattle by immunization with a DNA vaccine was demonstrated. Cattle were immunized with a plasmid encoding bovine herpesvirus 1 (BHV-1) glycoprotein B, which was delivered with a gene gun either intradermally or intravulvomucosally. Intravulvomucosal DNA immunization induced strong cellular immune responses and primed humoral immune responses. This was evident after BHV-1 challenge when high levels of both immunoglobulin G (IgG) and IgA were detected. Intradermal delivery resulted in lower levels of immunity than mucosal immunization. To determine whether the differences between the immune responses induced by intravulvomucosal and intradermal immunizations might be due to the efficacy of antigen presentation, the distributions of antigen and Langerhans cells in the skin and mucosa were compared. After intravulvomucosal delivery, antigen was expressed early and throughout the mucosa, but after intradermal administration, antigen expression occurred later and superficially in the skin. Furthermore, Langerhans cells were widely distributed in the mucosal epithelium but found primarily in the basal layers of the epidermis of the skin. Collectively, these observations may account for the stronger immune response induced by mucosal administration.
Collapse
Affiliation(s)
- B I Loehr
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
44
|
Lewis PJ, Babiuk LA. Altering the cellular location of an antigen expressed by a DNA-based vaccine modulates the immune response. J Virol 1999; 73:10214-23. [PMID: 10559338 PMCID: PMC113075 DOI: 10.1128/jvi.73.12.10214-10223.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential for DNA vaccines encoding mutated versions of the same antigen to modulate immune responses in C3H/HeN mice was investigated. We created expression plasmids that encoded several versions of glycoprotein D (gD) from bovine herpesvirus 1, including authentic membrane-anchored glycoprotein (pSLRSV.AgD), a secreted glycoprotein (pSLRSV.SgD), and an intracellular protein (pSLRSV.CgD). Immunization of an inbred strain of mice with these plasmids resulted in highly efficacious and long-lasting humoral and cell-mediated immunity. We also demonstrated that the cell compartment in which plasmid-encoded gD was expressed caused a deviation in the serum immunoglobulin (Ig) isotype profile as well as the predominant cytokines secreted from the draining lymph node. Immunization of C3H/HeN mice with DNA vaccines encoding cell-associated forms of gD resulted in a predominance of serum IgG2a and gamma interferon-secreting cells within the spleens and draining lymph nodes. In contrast, mice immunized with a secreted form of this same antigen displayed immune responses characterized by greater levels of interleukin 4 in the draining lymph node and IgG1 as the predominant serum isotype. We also showed evidence of compartmentalization of distinct immune responses within different lymphoid organs.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- COS Cells
- Cattle
- Cell Line
- Female
- Gene Expression
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 1, Bovine/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunoglobulin Isotypes/blood
- Immunoglobulin Isotypes/immunology
- Immunophenotyping
- Lymph Nodes
- Mice
- Mice, Inbred C3H
- Neutralization Tests
- Spleen/cytology
- Spleen/immunology
- Th1 Cells/immunology
- Transfection
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/metabolism
Collapse
Affiliation(s)
- P J Lewis
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | | |
Collapse
|
45
|
|
46
|
Babiuk LA, Lewis PJ, van Drunen Little-van den Hurk S, Tikoo S, Liang X. Nucleic acid vaccines: veterinary applications. Curr Top Microbiol Immunol 1998; 226:90-106. [PMID: 9479838 DOI: 10.1007/978-3-642-80475-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- L A Babiuk
- Veterinary Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
47
|
Kapil S, Basaraba RJ. Infectious bovine rhinotracheitis, parainfluenza-3, and respiratory coronavirus. Vet Clin North Am Food Anim Pract 1997; 13:455-69. [PMID: 9368989 PMCID: PMC7135389 DOI: 10.1016/s0749-0720(15)30308-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of viruses have been proven to be primary respiratory pathogens of cattle. Viruses may play an important role in making cattle susceptible to secondary respiratory bacterial pathogens. Epidemiology, pathogenesis, laboratory diagnosis, and important properties in infectious bovine rhinotracheitis (IBR), parainfluenza-3 (PI-3), and bovine respiratory coronavirus (BRCV) are described in this article.
Collapse
Affiliation(s)
- S Kapil
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | | |
Collapse
|
48
|
Chowdhury SI. Fine mapping of bovine herpesvirus 1 (BHV-1) glycoprotein C neutralizing epitopes by type-specific monoclonal antibodies and synthetic peptides. Vet Microbiol 1997; 58:309-14. [PMID: 9453139 DOI: 10.1016/s0378-1135(97)00146-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine herpesvirus glycoprotein C (gC) functions as a major virus attachment protein. Here, two BHV-1 gC-specific epitopes that are specified by complement-dependent neutralizing MAbs are mapped. The BHV-1 gC-specific peptides and MAbs were used to specifically localize continuous epitopes by direct binding to the MAbs and by blocking the Mab reactivity (competitive ELISA) to authentic viral antigen. The results of competitive ELISA indicated that the complement-dependent neutralizing epitopes recognized by MAbs F2 and 24 were located between BHV-1 gC amino acids (aa) 47-69 and (aa) 109-119, respectively.
Collapse
Affiliation(s)
- S I Chowdhury
- Department of Diagnostic Medicine, Pathobiology College of Veterinary Medicine, Kansas State University, Manhattan 66506, USA.
| |
Collapse
|
49
|
Affiliation(s)
- S Russo
- Institute of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Milan, Italy
| | | | | | | | | |
Collapse
|
50
|
Abstract
Immune responses to bovine herpesvirus 1 (BHV-1) have been studied following exposure of animals to virulent virus, conventional live or killed vaccines, genetically engineered live virus vaccines, subunit vaccines and, more recently, following immunization with plasmids encoding putative protective antigens. In all cases reported to date, exposure to BHV-1 or its glycoproteins induced specific responses to the virus which are capable of neutralizing virus and killing virus infected cells. These studies clearly indicate that the responses to BHV-1 are broad based, including both Th1 and Th2. In addition to inducing neutralizing antibodies, which can prevent virus attachment and penetration, these antibodies can also participate in antibody complement lysis of infected cells or in antibody dependent cell cytotoxicity. The virus also induces a myriad of specific cellular responses including the induction of cytokines, which either directly or indirectly inhibit virus replication by activation of effector cells. These activities have been associated with lymphocytes, NK-like cells, macrophages and polymorphonuclear neutrophils. These effector cells can kill virus infected cells either directly or by interacting with antibody to induce cell death by antibody dependent cell cytotoxicity. Killing of virus infected cells occurs after the expression of viral antigens on the cell surface of infected cells. Since the relationship between the time of cell killing and completion of virus assembly will influence whether the infectious cycle is aborted or results in productive viral replication any enhancement in viral killing will dramatically reduce the virus load. Based on these studies, many people conclude that antibody is critical in preventing infection and spread to susceptible contacts. In contrast, cell mediated immunity is involved in recovery from infection. However, none of these events occur in isolation in a body and a defect in one will dramatically influence the other. Furthermore, the relative importance of each effector mechanism will clearly depend on whether the animal is exposed to the virus for the first time (primary infection) or it is a secondary exposure following vaccination or infection with the field virus. Following a primary infection, where there is no antibody to interfere with the initial virus-cell interaction at the receptor level, the virus initiates an infection. These initial interactions are mediated primarily by the viral glycoproteins. Following the initial infection, viral protein synthesis induces a series of events which stimulate the nonspecific immune responses of the host. Therefore, the nonspecific immune responses (mediated primarily by viral products which induce early cytokines) are amongst the first line of defense in helping clear the infection both directly as well as indirectly by stimulating the specific immune response. The macrophage is instrumental in focusing the specific immune response by producing various cytokines and subsequently responding to cytokines produced by T-cells to kill to virus infected cells. This activity is detectable within 2 days after infection in lung parenchymal cells and 5-7 days in peripheral blood leukocytes. Interactions between various effector functions in limiting virus replication are described.
Collapse
Affiliation(s)
- L A Babiuk
- Veterinary Infectious Disease Organization, Saskatoon, Sask., Canada
| | | | | |
Collapse
|