1
|
Treffers EE, Tas A, Scholte FEM, de Ru AH, Snijder EJ, van Veelen PA, van Hemert MJ. The alphavirus nonstructural protein 2 NTPase induces a host translational shut-off through phosphorylation of eEF2 via cAMP-PKA-eEF2K signaling. PLoS Pathog 2023; 19:e1011179. [PMID: 36848386 PMCID: PMC9997916 DOI: 10.1371/journal.ppat.1011179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/09/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging alphavirus. Since 2005, it has infected millions of people during outbreaks in Africa, Asia, and South/Central America. CHIKV replication depends on host cell factors at many levels and is expected to have a profound effect on cellular physiology. To obtain more insight into host responses to infection, stable isotope labeling with amino acids in cell culture and liquid chromatography-tandem mass spectrometry were used to assess temporal changes in the cellular phosphoproteome during CHIKV infection. Among the ~3,000 unique phosphorylation sites analyzed, the largest change in phosphorylation status was measured on residue T56 of eukaryotic elongation factor 2 (eEF2), which showed a >50-fold increase at 8 and 12 h p.i. Infection with other alphaviruses (Semliki Forest, Sindbis and Venezuelan equine encephalitis virus (VEEV)) triggered a similarly strong eEF2 phosphorylation. Expression of a truncated form of CHIKV or VEEV nsP2, containing only the N-terminal and NTPase/helicase domains (nsP2-NTD-Hel), sufficed to induce eEF2 phosphorylation, which could be prevented by mutating key residues in the Walker A and B motifs of the NTPase domain. Alphavirus infection or expression of nsP2-NTD-Hel resulted in decreased cellular ATP levels and increased cAMP levels. This did not occur when catalytically inactive NTPase mutants were expressed. The wild-type nsP2-NTD-Hel inhibited cellular translation independent of the C-terminal nsP2 domain, which was previously implicated in directing the virus-induced host shut-off for Old World alphaviruses. We hypothesize that the alphavirus NTPase activates a cellular adenylyl cyclase resulting in increased cAMP levels, thus activating PKA and subsequently eukaryotic elongation factor 2 kinase. This in turn triggers eEF2 phosphorylation and translational inhibition. We conclude that the nsP2-driven increase of cAMP levels contributes to the alphavirus-induced shut-off of cellular protein synthesis that is shared between Old and New World alphaviruses. MS Data are available via ProteomeXchange with identifier PXD009381.
Collapse
Affiliation(s)
- Emmely E. Treffers
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Florine E. M. Scholte
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A. van Veelen
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J. van Hemert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
2
|
Westcott CE, Isom CM, Karki D, Sokoloski KJ. Dancing with the Devil: A Review of the Importance of Host RNA-Binding Proteins to Alphaviral RNAs during Infection. Viruses 2023; 15:164. [PMID: 36680204 PMCID: PMC9865062 DOI: 10.3390/v15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease (CPM), University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Remenyi R, Roberts GC, Zothner C, Merits A, Harris M. SNAP-tagged Chikungunya Virus Replicons Improve Visualisation of Non-Structural Protein 3 by Fluorescence Microscopy. Sci Rep 2017; 7:5682. [PMID: 28720784 PMCID: PMC5515888 DOI: 10.1038/s41598-017-05820-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes febrile disease, muscle and joint pain, which can become chronic in some individuals. The non-structural protein 3 (nsP3) plays essential roles during infection, but a complete understanding of its function is lacking. Here we used a microscopy-based approach to image CHIKV nsP3 inside human cells. The SNAP system consists of a self-labelling enzyme tag, which catalyses the covalent linking of exogenously supplemented synthetic ligands. Genetic insertion of this tag resulted in viable replicons and specific labelling while preserving the effect of nsP3 on stress granule responses and co-localisation with GTPase Activating Protein (SH3 domain) Binding Proteins (G3BPs). With sub-diffraction, three-dimensional, optical imaging, we visualised nsP3-positive structures with variable density and morphology, including high-density rod-like structures, large spherical granules, and small, low-density structures. Next, we confirmed the utility of the SNAP-tag for studying protein turnover by pulse-chase labelling. We also revealed an association of nsP3 with cellular lipid droplets and examined the spatial relationships between nsP3 and the non-structural protein 1 (nsP1). Together, our study provides a sensitive, specific, and versatile system for fundamental research into the individual functions of a viral non-structural protein during infection with a medically important arthropod-borne virus (arbovirus).
Collapse
Affiliation(s)
- Roland Remenyi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Grace C Roberts
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Carsten Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom.
| |
Collapse
|
4
|
Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication. Virus Res 2017; 234:44-57. [DOI: 10.1016/j.virusres.2017.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
5
|
Campos-Gomez J, Ahmad F, Rodriguez E, Saeed MF. A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease. Virology 2016; 496:77-89. [PMID: 27261892 DOI: 10.1016/j.virol.2016.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 04/06/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022]
Abstract
The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc. The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro.
Collapse
Affiliation(s)
- Javier Campos-Gomez
- Department of Infectious Diseases, Drug Discovery Division, Southern Research, Birmingham, AL 35205, United States
| | - Fahim Ahmad
- Department of Infectious Diseases, Drug Discovery Division, Southern Research, Birmingham, AL 35205, United States
| | - Efrain Rodriguez
- Department of Infectious Diseases, Drug Discovery Division, Southern Research, Birmingham, AL 35205, United States
| | - Mohammad F Saeed
- Department of Infectious Diseases, Drug Discovery Division, Southern Research, Birmingham, AL 35205, United States.
| |
Collapse
|
6
|
Development of novel antibodies against non-structural proteins nsP1, nsP3 and nsP4 of chikungunya virus: potential use in basic research. Arch Virol 2015; 160:2749-61. [PMID: 26280524 DOI: 10.1007/s00705-015-2564-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
Chikungunya virus (CHIKV) has reemerged recently as an important pathogen, causing several large epidemics worldwide. This necessitates the development of better reagents to understand its biology and to establish effective and safe control measures. The present study describes the development and characterization of polyclonal antibodies (pAbs) against synthetic peptides of CHIKV non-structural proteins (nsPs; nsP1, nsP3 and nsP4). The reactivity of these pAbs was demonstrated by ELISA and Western blot. Additionally, in vitro infection studies in a mammalian system confirmed that these pAbs are highly sensitive and specific for CHIKV nsPs, as these proteins were detected very early during viral replication. Homology analysis of the selected epitope sequences revealed that they are conserved among all of the CHIKV strains of different genotypes, while comparison with other alphavirus sequences showed that none of them are 100% identical to the epitope sequences (except Onyong-nyong and Igbo Ora viruses, which show 100% identity to the nsP4 epitope). Interestingly, two different forms of CHIKV nsP1 and three different forms of nsP3 were detected in Western blot analysis during infection; however, further experimental investigations are required to confirm their identity. Also, the use of these antibodies demonstrated faster and enhanced expression profiles of all CHIKV nsPs in 2006 Indian outbreak strains when compared to the CHIKV prototype strain, suggesting the epidemic potential of the 2006 isolate. Accordingly, it can be suggested that the pAbs reported in this study can be used as sensitive and specific tools for experimental investigations of CHIKV replication and infection.
Collapse
|
7
|
Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW. Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol 2015. [PMID: 26219641 DOI: 10.1099/jgv.0.000249] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field.
Collapse
Affiliation(s)
- Jonathan C Rupp
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Kevin J Sokoloski
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Natasha N Gebhart
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Richard W Hardy
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Chung DH, Jonsson CB, Tower NA, Chu YK, Sahin E, Golden JE, Noah JW, Schroeder CE, Sotsky JB, Sosa MI, Cramer DE, McKellip SN, Rasmussen L, White EL, Schmaljohn CS, Julander JG, Smith JM, Filone CM, Connor JH, Sakurai Y, Davey RA. Discovery of a novel compound with anti-venezuelan equine encephalitis virus activity that targets the nonstructural protein 2. PLoS Pathog 2014; 10:e1004213. [PMID: 24967809 PMCID: PMC4072787 DOI: 10.1371/journal.ppat.1004213] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/13/2014] [Indexed: 12/27/2022] Open
Abstract
Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection. Alphaviruses occur worldwide, causing significant diseases such as encephalitis or arthritis in humans and animals. In addition, some alphaviruses, such as VEEV, pose a biothreat due to their high infectivity and lack of available treatments. To discover small molecule inhibitors with lead development potential, we used a cell-based assay to screen 348,140 compounds for inhibition of a VEEV-induced cytopathic effect. The screen revealed a scaffold with high inhibitory VEEV cellular potency and low cytotoxicity liability. While most previously reported anti-alphavirus compounds inhibit host proteins, evidence supported that this scaffold targeted the VEEV nsP2 protein, and that inhibition was associated with viral replication. Interestingly, compound resistance studies with VEEV mapped activity to the N-terminal domain of nsP2, to which no known function has been attributed. Ultimately, this discovery has delivered a small molecule-derived class of potent VEEV inhibitors whose activity is coupled to the nsP2 viral protein, a novel target with a previously unestablished biological role that is now implicated in viral replication.
Collapse
Affiliation(s)
- Dong-Hoon Chung
- Departments of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - Colleen B. Jonsson
- Departments of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| | - Nichole A. Tower
- Drug Discovery Department, Southern Research Institute, Birmingham, Alabama, United States of America
| | - Yong-Kyu Chu
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Ergin Sahin
- Departments of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Jennifer E. Golden
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - James W. Noah
- Drug Discovery Department, Southern Research Institute, Birmingham, Alabama, United States of America
| | - Chad E. Schroeder
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Julie B. Sotsky
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Melinda I. Sosa
- Drug Discovery Department, Southern Research Institute, Birmingham, Alabama, United States of America
| | - Daniel E. Cramer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Sara N. McKellip
- Drug Discovery Department, Southern Research Institute, Birmingham, Alabama, United States of America
| | - Lynn Rasmussen
- Drug Discovery Department, Southern Research Institute, Birmingham, Alabama, United States of America
| | - E. Lucile White
- Drug Discovery Department, Southern Research Institute, Birmingham, Alabama, United States of America
| | - Connie S. Schmaljohn
- The United States Army Medical Research Institute for Infectious Diseases, Ft. Detrick, Maryland, United States of America
| | - Justin G. Julander
- Institute for Antiviral Research, Utah State University, Logan, Utah, United States of America
| | - Jeffrey M. Smith
- The United States Army Medical Research Institute for Infectious Diseases, Ft. Detrick, Maryland, United States of America
| | | | - John H. Connor
- Boston University, Boston, Massachusetts, United States of America
| | - Yasuteru Sakurai
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Robert A. Davey
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
9
|
Presentation overrides specificity: probing the plasticity of alphaviral proteolytic activity through mutational analysis. J Virol 2013; 87:10207-20. [PMID: 23864614 DOI: 10.1128/jvi.01485-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semliki Forest virus (genus Alphavirus) is an important model for studying regulated nonstructural (ns) polyprotein processing. In this study, we evaluated the strictness of the previously outlined cleavage rules, accounting for the timing and outcome of each of three cleavages within the ns polyprotein P1234, and assessed the significance of residues P6 to P4 within the cleavage sites using an alanine scanning approach. The processing of the 1/2 and 3/4 sites was most strongly affected following changes in residues P5 and P4, respectively. However, none of the mutations had a detectable effect on the processing of the 2/3 site. An analysis of recombinant viruses bearing combinations of mutations in cleavage sites revealed tolerance toward the cooccurrence of native and mutated cleavage sites within the same polyprotein, suggesting a remarkable plasticity of the protease recognition pocket. Even in a virus in which all of the cleavage sequences were replaced with alanines in the P6, P5, and P4 positions, the processing pattern was largely preserved, without leading to reversion of cleavage site mutations. Instead, the emergence of second-site mutations was identified, among which Q706R/L in nsP2 was confirmed to be associated with the recognition of the P4 position within the modified cleavage sites. Our results imply that the spatial arrangement of the viral replication complex inherently contributes to scissile-site presentation for the protease, alleviating stringent sequence recognition requirements yet ensuring the precision and the correct order of processing events. Obtaining a proper understanding of the consequences of cleavage site manipulations may provide new tools for taming alphaviruses.
Collapse
|
10
|
|
11
|
Macromolecular assembly-driven processing of the 2/3 cleavage site in the alphavirus replicase polyprotein. J Virol 2011; 86:553-65. [PMID: 22031949 DOI: 10.1128/jvi.05195-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semliki Forest virus (SFV) is a member of the Alphavirus genus, which produces its replicase proteins in the form of a nonstructural (ns) polyprotein precursor P1234. The maturation of the replicase occurs in a temporally controlled manner by protease activity of nsP2. The template preference and enzymatic capabilities of the alphaviral replication complex have a very important connection with its composition, which is irreversibly altered by proteolysis. The final cleavage of the 2/3 site in the ns polyprotein apparently leads to significant rearrangements within the replication complex and thus denotes the "point of no return" for viral replication progression. Numerous studies have devised rules for when and how ns protease acts, but how the alphaviral 2/3 site is recognized remained largely unexplained. In contrast to the other two cleavage sites within the ns polyprotein, the 2/3 site evidently lacks primary sequence elements in the vicinity of the scissile bond sufficient for specific protease recognition. In this study, we sought to investigate the molecular details of the regulation of the 2/3 site processing in the SFV ns polyprotein. We present evidence that correct macromolecular assembly, presumably strengthened by exosite interactions rather than the functionality of the individual nsP2 protease, is the driving force for specific substrate targeting. We conclude that structural elements within the macrodomain of nsP3 are used for precise positioning of a substrate recognition sequence at the catalytic center of the protease and that this process is coordinated by the exact N-terminal end of nsP2, thus representing a unique regulation mechanism used by alphaviruses.
Collapse
|
12
|
Beitzel BF, Bakken RR, Smith JM, Schmaljohn CS. High-resolution functional mapping of the venezuelan equine encephalitis virus genome by insertional mutagenesis and massively parallel sequencing. PLoS Pathog 2010; 6:e1001146. [PMID: 20976195 PMCID: PMC2954836 DOI: 10.1371/journal.ppat.1001146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022] Open
Abstract
We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system. Venezuelan equine encephalitis virus (VEEV) is a New World Alphavirus that was first identified in Venezuela in 1938. VEEV normally circulates in rodent populations, but during outbreaks it can jump to horses and humans where it can cause debilitating and potentially fatal disease. There are currently no vaccines or antiviral agents against VEEV licensed for use in humans. In this study, we describe a technique that we have developed that allows for the rapid identification of viral mutants that can be useful for studying the basic biology of viral replication. These mutants can also be used to generate vaccines that protect against infection with wild-type virus. We demonstrate the utility of this technique by identifying over 200 mutations spread throughout VEEV genome that make the virus unable to replicate efficiently at higher temperatures (37°C or 40°C.) Furthermore, we show that two of the mutant viruses work as vaccines, and protect mice against lethal infection with VEEV. This technique can be applied to studying other viruses, and may allow for the rapid identification of numerous vaccine candidates.
Collapse
Affiliation(s)
- Brett F. Beitzel
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Russell R. Bakken
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jeffrey M. Smith
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Connie S. Schmaljohn
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mudiganti U, Hernandez R, Brown DT. Insect response to alphavirus infection--establishment of alphavirus persistence in insect cells involves inhibition of viral polyprotein cleavage. Virus Res 2010; 150:73-84. [PMID: 20214937 DOI: 10.1016/j.virusres.2010.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Alphavirus persistence in the insect vector is an essential element in the vector-host transmission cycle of the virus and provides a model to study the biochemical and molecular basis for virus-vector coexistence. The prototype alphavirus Sindbis (SV) establishes persistent infections in invertebrate cell cultures which are characterized by low levels of virus production. We hypothesized that antiviral factors may be involved in decreasing the virus levels as virus persistence is established in invertebrate cells. Transcription profiles in Drosophila S2 cells at 5 days post-infection with SV identified families of gene products that code for factors that can explain previous observations seen in insect cells infected with alphaviruses. Genomic array analysis identified up-regulation of gene products involved in intracellular membrane vesicle formation, cell growth rate changes and immune-related functions in S2 cells infected with SV. Transcripts coding for factors involved in different aspects of the Notch signaling pathway had increased in expression. Increased expression of ankyrin, plap, syx13, unc-13, csp, rab1 and rab8 may aid in formation of virus containing vesicles and in intracellular transport of viral structural proteins. Possible functions of these gene products and relevant hypotheses are discussed. We confirmed the up-regulation of a wide-spectrum protease inhibitor, Thiol-ester containing Protein (TEP) II. We report inhibition of the viral polyprotein cleavage at 5 days post-infection (dpi) and after superinfection of SV-infected cells at 5 dpi. We propose that inefficient cleavage of the polyprotein may, at least in part, lead to reduced levels of virus seen as persistence is established.
Collapse
Affiliation(s)
- Usharani Mudiganti
- Department of Molecular and Structural Biochemistry, North Carolina State, University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
14
|
Role for conserved residues of sindbis virus nonstructural protein 2 methyltransferase-like domain in regulation of minus-strand synthesis and development of cytopathic infection. J Virol 2008; 82:7284-97. [PMID: 18495773 DOI: 10.1128/jvi.00224-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plus-strand RNA genome of Sindbis virus (SINV) encodes four nonstructural proteins (nsP1 to nsP4) that are involved in the replication of the viral RNA. The approximately 800-amino-acid nsP2 consists of an N-terminal domain with nucleoside triphosphatase and helicase activities and a C-terminal protease domain. Recently, the structure determined for Venezuelan equine encephalitis virus nsP2 indicated the presence of a previously unrecognized methyltransferase (MTase)-like domain within the C-terminal approximately 200 residues and raised a question about its functional importance. To assess the role of this MTase-like region in viral replication, highly conserved arginine and lysine residues were mutated to alanine. The plaque phenotypes of these mutants ranged from large/wild-type to small plaques with selected mutations demonstrating temperature sensitive lethality. The proteolytic polyprotein processing activity of nsP2 was unaffected in most of the mutants. Some of the temperature-sensitive mutants showed reduction in the minus-strand RNA synthesis, a function that has not yet been ascribed to nsP2. Mutation of SINV residue R615 rendered the virus noncytopathic and incapable of inhibiting the host cell translation but with no effects on the transcriptional inhibition. This property differentiated the mutation at R615 from previously described noncytopathic mutations. These results implicate nsP2 in regulation of minus-strand synthesis and suggest that different regions of the nsP2 MTase-like domain differentially modulate host defense mechanisms, independent of its role as the viral protease.
Collapse
|
15
|
Sawicki DL, Perri S, Polo JM, Sawicki SG. Role for nsP2 proteins in the cessation of alphavirus minus-strand synthesis by host cells. J Virol 2007; 80:360-71. [PMID: 16352561 PMCID: PMC1317508 DOI: 10.1128/jvi.80.1.360-371.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to establish nonlytic persistent infections (PI) of BHK cells, replicons derived from Sindbis (SIN) and Semliki Forest (SFV) viruses have mutations in nsP2. Five different nsP2 PI replicons were compared to wild-type (wt) SIN, SFV, and wt nsPs SIN replicons. Replicon PI BHK21 cells had viral RNA synthesis rates that were less than 5% of those of the wt virus and approximately 10% or less of those of SIN wt replicon-infected cells, and, in contrast to wt virus and replicons containing wt nsP2, all showed a phenotype of continuous minus-strand synthesis and of unstable, mature replication/transcription complexes (RC+) that are active in plus-strand synthesis. Minus-strand synthesis and incorporation of [3H]uridine into replicative intermediates differed among PI replicons, depending on the location of the mutation in nsP2. Minus-strand synthesis by PI cells appeared normal; it was dependent on continuous P123 and P1234 polyprotein synthesis and ceased when protein synthesis was inhibited. The failure by the PI replicons to shut off minus-strand synthesis was not due to some defect in the PI cells but rather was due to the loss of some function in the mutated nsP2. This was demonstrated by showing that superinfection of PI cells with wt SFV triggered the shutdown of minus-strand synthesis, which we believe is a host response to infection with alphaviruses. Together, the results indicate alphavirus nsP2 functions to engage the host response to infection and activate a switch from the early-to-late phase. The loss of this function leads to continuous viral minus-strand synthesis and the production of unstable RC+.
Collapse
Affiliation(s)
- Dorothea L Sawicki
- Medical University of Ohio, Department of Microbiology and Immunology, 3055 Arlington Avenue, Toledo, OH 43614, USA.
| | | | | | | |
Collapse
|
16
|
Dé I, Fata-Hartley C, Sawicki SG, Sawicki DL. Functional analysis of nsP3 phosphoprotein mutants of Sindbis virus. J Virol 2004; 77:13106-16. [PMID: 14645567 PMCID: PMC296081 DOI: 10.1128/jvi.77.24.13106-13116.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus nsP3 phosphoprotein is essential for virus replication and functions initially within polyprotein P123 or P23 components of the short-lived minus-strand replicase, and upon polyprotein cleavage, mature nsP3 likely functions also in plus-strand synthesis. We report the identification of a second nsP3 mutant from among the A complementation group of Sindbis virus (SIN) heat-resistant strain, ts RNA-negative mutants. The ts138 mutant possessed a change of G4303 to C, predicting an Ala68-to-Gly alteration that altered a conserved His-Ala-Val tripeptide in the ancient (pre-eukaryotic), "X" or histone 2A phosphoesterase-like macrodomain that in SIN encompasses nsP3 residues 1 to 161 and whose role is unknown. We undertook comparative analysis of three nsP3 N-terminal region mutants and observed (i) that nsP3 and nsP2 functioned initially as a single unit as deduced from complementation analysis and in agreement with our previous studies, (ii) that the degree of phosphorylation varied among the nsP3 mutants, and (iii) that reduced phosphorylation of nsP3 correlated with reduced minus-strand synthesis. The most striking phenotype was exhibited by ts4 (Ala268 to Val), which after shift to 40 degrees C made significantly underphosphorylated P23/nsP3 and lost selectively the ability to make minus strands. After shift to 40 degrees C, mutant ts7 (Phe312 to Ser) made phosphorylated P23/nsP3 and minus strands but failed to increase plus-strand synthesis. Macrodomain mutant ts138 was intermediate, making at 40 degrees C partially phosphorylated P23/nsP3 and reduced amounts of minus strands. The mutants were able to assemble their nsPs at 40 degrees C into complexes that were membrane associated. Our analyses argue that P23/P123 phosphorylation is affected by macrodomain and Ala268 region sequences and in turn affects the efficient transcription of the alphavirus genome.
Collapse
Affiliation(s)
- Indra Dé
- Department of Microbiology, Medical College of Ohio, Toledo, Ohio 43699, USA
| | | | | | | |
Collapse
|
17
|
Heise MT, White LJ, Simpson DA, Leonard C, Bernard KA, Meeker RB, Johnston RE. An attenuating mutation in nsP1 of the Sindbis-group virus S.A.AR86 accelerates nonstructural protein processing and up-regulates viral 26S RNA synthesis. J Virol 2003; 77:1149-56. [PMID: 12502831 PMCID: PMC140780 DOI: 10.1128/jvi.77.2.1149-1156.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sindbis-group alphavirus S.A.AR86 encodes a threonine at nonstructural protein 1 (nsP1) 538 that is associated with neurovirulence in adult mice. Mutation of the nsP1 538 Thr to the consensus Ile found in nonneurovirulent Sindbis-group alphaviruses attenuates S.A.AR86 for adult mouse neurovirulence, while introduction of Thr at position 538 in a nonneurovirulent Sindbis virus background confers increased neurovirulence (M. T. Heise et al., J. Virol. 74:4207-4213, 2000). Since changes in the viral nonstructural region are likely to affect viral replication, studies were performed to evaluate the effect of Thr or Ile at nsP1 538 on viral growth, nonstructural protein processing, and RNA synthesis. Multistep growth curves in Neuro2A and BHK-21 cells revealed that the attenuated s51 (nsP1 538 Ile) virus had a slight, but reproducible growth advantage over the wild-type s55 (nsP1 538 Thr) virus. nsP1 538 lies within the cleavage recognition domain between nsP1 and nsP2, and the presence of the attenuating Ile at nsP1 538 accelerated the processing of S.A.AR86 nonstructural proteins both in vitro and in infected cells. Since nonstructural protein processing is known to regulate alphavirus RNA synthesis, experiments were performed to evaluate the effect of Ile or Thr at nsP1 538 on viral RNA synthesis. A combination of S.A.AR86-derived reporter assays and RNase protection assays determined that the presence of Ile at nsP1 538 led to earlier expression from the viral 26S promoter without affecting viral minus- or plus-strand synthesis. These results suggest that slower nonstructural protein processing and delayed 26S RNA synthesis in wild-type S.A.AR86 infections may contribute to the adult mouse neurovirulence phenotype of S.A.AR86.
Collapse
Affiliation(s)
- Mark T Heise
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Fata CL, Sawicki SG, Sawicki DL. Modification of Asn374 of nsP1 suppresses a Sindbis virus nsP4 minus-strand polymerase mutant. J Virol 2002; 76:8641-9. [PMID: 12163583 PMCID: PMC136982 DOI: 10.1128/jvi.76.17.8641-8649.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our recent study (C. L. Fata, S. G. Sawicki, and D. L. Sawicki, J. Virol. 76:8632-8640, 2002) found minus-strand synthesis to be temperature sensitive in vertebrate and invertebrate cells when the Arg183 residue of the Sindbis virus nsP4 polymerase was changed to Ser, Ala, or Lys. Here we report the results of studies identifying an interacting partner of the region of the viral polymerase containing Arg183 that suppresses the Ser183 codon mutation. Large-plaque revertants were observed readily following growth of the nsP4 Ser183 mutant at 40 degrees C. Fifteen revertants were characterized, and all had a mutation in the Asn374 codon of nsP1 that changed it to either a His or an Ile codon. When combined with nsP4 Ser183, substitution of either His374 or Ile374 for Asn374 restored wild-type growth in chicken embryo fibroblast (CEF) cells at 40 degrees C. In Aedes albopictus cells at 34.5 degrees C, neither nsP1 substitution suppressed the nsP4 Ser183 defect in minus-strand synthesis. This argued that the nsP4 Arg183 residue itself is needed for minus-strand replicase assembly or function in the mosquito environment. The nsP1 His374 suppressor when combined with the wild-type nsP4 gave greater than wild-type levels of viral RNA synthesis in CEF cells at 40 degrees C ( approximately 140%) and in Aedes cells at 34.5 degrees C (200%). Virus producing nsP1 His374 and wild-type nsP4 Arg183 made more minus strands during the early period of infection and before minus-strand synthesis ceased at about 4 h postinfection. Shirako et al. (Y. Shirako, E. G. Strauss, and J. H. Strauss, Virology 276:148-160, 2000) identified amino acid substitutions in nsP1 and nsP4 that suppressed mutations that changed the N-terminal Tyr of nsP4. The nsP4 N-terminal mutants were defective also in minus-strand synthesis. Our study implicates an interaction between another conserved nsP1 region and an internal region, predicted to be in the finger domain, of nsP4 for the formation or activity of the minus-strand polymerase. Finally, the observation that a single point mutation in nsP1 results in minus-strand synthesis at greater than wild-type levels supports the concept that the wild-type nsP sequences are evolutionary compromises.
Collapse
Affiliation(s)
- Cori L Fata
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | |
Collapse
|
19
|
Merits A, Vasiljeva L, Ahola T, Kääriäinen L, Auvinen P. Proteolytic processing of Semliki Forest virus-specific non-structural polyprotein by nsP2 protease. J Gen Virol 2001; 82:765-773. [PMID: 11257180 DOI: 10.1099/0022-1317-82-4-765] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA replicase proteins of Semliki Forest virus (SFV) are translated as a P1234 polyprotein precursor that contains two putative autoproteases. Point mutations introduced into the predicted active sites of both proteases nsP2 (P2) and nsP4 (P4), separately or in combination, completely abolished virus replication in mammalian cells. The effects of these mutations on polyprotein processing were studied by in vitro translation and by expression of wild-type polyproteins P1234, P123, P23, P34 and their mutated counterparts in insect cells using recombinant baculoviruses. A mutation in the catalytic site of the P2 protease, C(478)A, (P2(CA)) completely abolished the processing of P12(CA)34, P12(CA)3 and P2(CA)3. Co-expression of P23 and P12(CA)34 in insect cells resulted in in trans cleavages at the P2/3 and P3/4 sites. Co-expression of P23 and P34 resulted in cleavage at the P3/4 site. In contrast, a construct with a mutation in the active site of the putative P4 protease, D(6)A, (P1234(DA)) was processed like the wild-type protein. P34 or its truncated forms were not processed when expressed alone. In insect cells, P4 was rapidly destroyed unless an inhibitor of proteosomal degradation was used. It is concluded that P2 is the only protease needed for the processing of SFV polyprotein P1234. Analysis of the cleavage products revealed that P23 or P2 could not cleave the P1/2 site in trans.
Collapse
Affiliation(s)
- Andres Merits
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, FIN-00014, Helsinki, Finland1
| | - Lidia Vasiljeva
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, FIN-00014, Helsinki, Finland1
| | - Tero Ahola
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, FIN-00014, Helsinki, Finland1
| | - Leevi Kääriäinen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, FIN-00014, Helsinki, Finland1
| | - Petri Auvinen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, FIN-00014, Helsinki, Finland1
| |
Collapse
|
20
|
Affiliation(s)
- Edwin Ten Dam
- School of Biomedical Sciences, University of St Andrews, Biomolecular Sciences Building, North Haugh, St Andrews KY16 9ST, UK1
| | - Michael Flint
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK2
| | - Martin D Ryan
- School of Biomedical Sciences, University of St Andrews, Biomolecular Sciences Building, North Haugh, St Andrews KY16 9ST, UK1
| |
Collapse
|
21
|
Sawicki DL, Sawicki SG. Role of the nonstructural polyproteins in alphavirus RNA synthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:187-98. [PMID: 9782280 DOI: 10.1007/978-1-4615-5331-1_23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- D L Sawicki
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo 43699, USA
| | | |
Collapse
|
22
|
Karpf AR, Lenches E, Strauss EG, Strauss JH, Brown DT. Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J Virol 1997; 71:7119-23. [PMID: 9261447 PMCID: PMC192010 DOI: 10.1128/jvi.71.9.7119-7123.1997] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three Aedes albopictus (mosquito) cell lines persistently infected with Sindbis virus excluded the replication of both homologous (various strains of Sindbis) and heterologous (Aura, Semliki Forest, and Ross River) alphaviruses. In contrast, an unrelated flavivirus, yellow fever virus, replicated equally well in uninfected and persistently infected cells of each line. Sindbis virus and Semliki Forest virus are among the most distantly related alphaviruses, and our results thus indicate that mosquito cells persistently infected with Sindbis virus are broadly able to exclude other alphaviruses but that exclusion is restricted to members of the alphavirus genus. Superinfection exclusion occurred to the same extent in three biologically distinct cell clones, indicating that the expression of superinfection exclusion is conserved among A. albopictus cell types. Superinfection of persistently infected C7-10 cells, which show a severe cytopathic effect during primary Sindbis virus infection, by homologous virus does not produce cytopathology, consistent with the idea that cytopathology requires significant levels of viral replication. A possible model for the molecular basis of superinfection exclusion, which suggests a central role for the alphavirus trans-acting protease that processes the nonstructural proteins, is discussed in light of these results.
Collapse
Affiliation(s)
- A R Karpf
- Cell Research Institute, University of Texas at Austin 78713, USA
| | | | | | | | | |
Collapse
|
23
|
Kuhn RJ, Griffin DE, Owen KE, Niesters HG, Strauss JH. Chimeric Sindbis-Ross River viruses to study interactions between alphavirus nonstructural and structural regions. J Virol 1996; 70:7900-9. [PMID: 8892913 PMCID: PMC190862 DOI: 10.1128/jvi.70.11.7900-7909.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sindbis virus and Ross River virus are alphaviruses whose nonstructural proteins share 64% identity and whose structural proteins share 48% identity. Starting from full-length cDNA clones of both viruses, we have generated two reciprocal Sindbis-Ross River chimeric viruses in which the structural and nonstructural regions have been exchanged. These chimeric viruses replicate readily in several cell lines. Both chimeras grow more poorly than do the parental viruses, with the chimera containing Sindbis virus nonstructural proteins and Ross River virus structural proteins growing considerably better in both mosquito and Vero cell lines than the reciprocal chimera does. The reduction in replicative capacity in comparison with the parental viruses appears to result at least in part from a reduction in RNA synthesis, which suggests that the structural proteins or sequence elements within the structural region interact with the nonstructural proteins or sequence elements within the nonstructural region, that these interactions are required for efficient RNA replication, and that these interactions are suboptimal in the chimeras. The chimeras are able to infect mice, but their growth is attenuated. Western equine encephalitis virus, a virus widely distributed throughout the Americas, has been previously shown to have arisen by natural recombination between two distinct alphaviruses, but other naturally occurring recombinant alphaviruses have not been found. The present results suggest that most nonstructural/structural chimeras that might arise by natural recombination will be viable but that interactions between different regions of the genome, some of which were previously known but some of which remain unknown, limit the ability of such recombinants to become established.
Collapse
Affiliation(s)
- R J Kuhn
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
24
|
Dé I, Sawicki SG, Sawicki DL. Sindbis virus RNA-negative mutants that fail to convert from minus-strand to plus-strand synthesis: role of the nsP2 protein. J Virol 1996; 70:2706-19. [PMID: 8627744 PMCID: PMC190127 DOI: 10.1128/jvi.70.5.2706-2719.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We identified mutations in the gene for nsP2, a nonstructural protein of the alphavirus Sindbis virus, that appear to block the conversion of the initial, short-lived minus-strand replicase complex (RCinitial) into mature, stable forms that are replicase and transcriptase complexes (RCstable), producing 49S genome or 26S mRNA. Base changes at nucleotide (nt) 2166 (G-->A, predicting a change of Glu-163-->Lys), at nt 2502 (G-->A, predicting a change of Val-275-->Ile), and at nt 2926 (C-->U, predicting a change of Leu-416-->Ser) in the nsP2 N domain were responsible for the phenotypes of ts14, ts16, and ts19 members of subgroup 11 (D.L. Sawicki and S.G. Sawicki, Virology 44:20-34, 1985) of the A complementation group of Sindbis virus RNA-negative mutants. Unlike subgroup I mutants, the RCstable formed at 30 degrees C transcribed 26S mRNA normally and did not synthesize minus strands in the absence of protein synthesis after temperature shift. The N-domain substitutions did not inactivate the thiol protease in the C domain of nsP2 and did not stop the proteolytic processing of the polyprotein containing the nonstructural proteins. The distinct phenotypes of subgroup I and 11 A complementation group mutants are evidence that the two domains of nsP2 are essential and functionally distinct. A detailed analysis of ts14 found that its nsPs were synthesized, processed, transported, and assembled at 40 degrees C into complexes with the properties of RCinitial and synthesized minus strands for a short time after shift to 40 degrees C. The block in the pathway to the formation of RCstable occurred after cleavage of the minus-strand replicase P123 or P23 polyprotein into mature nsP1, nsP2, nsP3, and nsP4, indicating that structures resembling RCstable, were formed at 40 degrees C. However, these RCstable or pre-RCstable structures were not capable of recovering activity at 30 degrees C. Therefore, failure to increase the rate of plus-strand synthesis after shift to 40 degrees C appears to result from failure to convert RCinitial to RCstable. We conclude that RCstable is derived from RCinitial by a conversion process and that ts14 is a conversion mutant. From their similar phenotypes, we predict that other nsP2 N-domain mutants are blocked also in the conversion of RCinitial to RCstable. Thus, the N domain of nsP2 plays an essential role in a folding pathway of the nsPs responsible for formation of the initial minus-strand replicase and for its conversion into stable plus-strand RNA-synthesizing enzymes.
Collapse
Affiliation(s)
- I Dé
- Department of Microbiology, Medical College of Ohio, Toledo 43699, USA
| | | | | |
Collapse
|
25
|
Wang YF, Sawicki SG, Sawicki DL. Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. J Virol 1994; 68:6466-75. [PMID: 8083984 PMCID: PMC237067 DOI: 10.1128/jvi.68.10.6466-6475.1994] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The alphavirus mutant Sindbis virus HR ts4, which has been assigned to the A complementation group, possessed a selective defect in negative-strand synthesis that was similar although not identical to that observed for the B complementation group mutant ts11 (Y.-F. Wang, S. G. Sawicki, and D. L. Sawicki, J. Virol. 65:985-988, 1991). The causal mutation was identified as a change of a C to a U residue at nucleotide 4903 in the nsP3 open reading frame that predicted a change of Ala-268 to Val. Thus, both nsP3 and nsP1 play a role selectively in the transcription of negative strands early in infection. The assignment of the mutation carried by an A complementation group mutant of Sindbis virus HR to nsP3 was unexpected, as mutations in other A complementation group mutants studied to date mapped to nsP2. Another mutant with a conditionally lethal mutation, ts7 of the G complementation group, also possessed a causal mutation resulting from a single-residue change in nsP3. Negative-strand synthesis ceased more slowly after a shift to the nonpermissive temperature in ts7-than in ts4-infected cells, and ts7 complemented ts11, but ts4 did not. However, the nsP3 of both ts4 and ts7 allowed reactivation of negative-strand synthesis by stable replication complexes containing nsP4 from ts24. Therefore, mutations in nsP3 affected only early events in replication and probably prevent the formation and/or function of the initial replication complex that synthesizes its negative-strand template. Because neither ts4 nor ts7 complemented 10A complementation group mutants, the genes for nsP2 and nsP3 function initially as a single cistron. We interpret these findings and present a model to suggest that the initial alphavirus replication complex is formed from tightly associated nsP2 and nsP3, perhaps in the form of P23, and proteolytically processed and trans-active nsP4 and nsP1.
Collapse
Affiliation(s)
- Y F Wang
- Department of Microbiology, Medical College of Ohio, Toledo 43699
| | | | | |
Collapse
|
26
|
Abstract
The alphaviruses are a genus of 26 enveloped viruses that cause disease in humans and domestic animals. Mosquitoes or other hematophagous arthropods serve as vectors for these viruses. The complete sequences of the +/- 11.7-kb plus-strand RNA genomes of eight alphaviruses have been determined, and partial sequences are known for several others; this has made possible evolutionary comparisons between different alphaviruses as well as comparisons of this group of viruses with other animal and plant viruses. Full-length cDNA clones from which infectious RNA can be recovered have been constructed for four alphaviruses; these clones have facilitated many molecular genetic studies as well as the development of these viruses as expression vectors. From these and studies involving biochemical approaches, many details of the replication cycle of the alphaviruses are known. The interactions of the viruses with host cells and host organisms have been exclusively studied, and the molecular basis of virulence and recovery from viral infection have been addressed in a large number of recent papers. The structure of the viruses has been determined to about 2.5 nm, making them the best-characterized enveloped virus to date. Because of the wealth of data that has appeared, these viruses represent a well-characterized system that tell us much about the evolution of RNA viruses, their replication, and their interactions with their hosts. This review summarizes our current knowledge of this group of viruses.
Collapse
Affiliation(s)
- J H Strauss
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
27
|
LaStarza MW, Lemm JA, Rice CM. Genetic analysis of the nsP3 region of Sindbis virus: evidence for roles in minus-strand and subgenomic RNA synthesis. J Virol 1994; 68:5781-91. [PMID: 8057460 PMCID: PMC236982 DOI: 10.1128/jvi.68.9.5781-5791.1994] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sindbis virus nonstructural polyproteins and their cleavage products are believed to be essential components of viral RNA replication and transcription complexes. Although numerous studies have investigated the effect of mutations in nsP1-, nsP2-, and nsP4-coding regions on Sindbis virus-specific RNA synthesis, relatively little is known about the function of the region encoding nsP3. nsP3 is a phosphoprotein comprising two regions: an N-terminal portion which is highly conserved among alphaviruses and a C-terminal portion which is not conserved, varying both in sequence and in length. We have constructed a library of random linker insertion mutations in the nsP3-coding region and characterized selected viable mutants. Initially, 126 mutants containing insertions in the conserved region and 23 with insertions in the nonconserved region were screened for temperature-sensitive (ts) plaque formation or for significant differences in plaque morphology. All nonconserved-region mutants were similar to the parental virus, whereas 13 of those in the conserved region were either ts or exhibited altered plaque phenotypes. Ten of these 13 mutants were ts for plaque formation as well as RNA accumulation at 40 degrees C. Highly ts mutants CR3.36 and CR3.39 were defective in their ability to synthesize minus-strand RNAs at the nonpermissive temperature. The CR3.36 and CR3.39 insertion mutations localized to different regions near nsP3 residues 58 and 226, respectively. CR3.39 was able to complement ts mutants from Sindbis virus complementation groups A, B, F, and G. Another mutant isolated from the library, CR3.34, while not ts for plaque formation or RNA synthesis, formed smaller plaques and was defective in subgenomic RNA synthesis at all temperatures examined. These results suggest a role for nsP3 or nsP3-containing polyproteins in the synthesis of viral minus-strand and subgenomic RNAs.
Collapse
Affiliation(s)
- M W LaStarza
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | | | |
Collapse
|
28
|
Shirako Y, Strauss JH. Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J Virol 1994; 68:1874-85. [PMID: 8107248 PMCID: PMC236650 DOI: 10.1128/jvi.68.3.1874-1885.1994] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nonstructural proteins of Sindbis virus, nsP1, nsP2, nsP3, and nsP4, as well as intermediate polyproteins, are produced from two precursor polyproteins, P123 and P1234, by a proteolytic enzyme encoded in the C-terminal half of nsP2. We studied the requirements for and the functions of the intermediate and mature processing products for Sindbis virus RNA synthesis by using site-directed mutants which have a defect(s) in processing the 1/2, 2/3, or 3/4 cleavage sites either singly or in various combinations. A mutant defective in cleaving both the 1/2 and 2/3 sites, which makes only uncleavable P123 and mature nsP4 as final products, produced 10(-3) as much virus as did the wild-type virus after 10 h at 30 degrees C and was nonviable at 40 degrees C. A mutant defective in processing the 2/3 site, which makes nsP1, nsP4, and P23 as well as precursor P123, grew 10(-1) as efficiently as wild-type virus at 30 degrees C and 10(-3) as efficiently at 40 degrees C. Early minus-strand RNA synthesis by these mutants was as efficient as that by wild-type virus, whereas plus-strand RNA synthesis was substantially decreased compared with that by wild-type virus. A mutant defective in processing the 3/4 site was nonviable at either 30 or 40 degrees C. The 3/4 site mutant could be complemented by the mutant unable to cleave either the 1/2 or 2/3 site, which can provide mature nsP4. We interpret these results to signify that (i) mature nsP4 is required for RNA replication, (ii) nsP4 and uncleaved P123 function in minus-strand RNA synthesis, and (iii) cleavage of P123 is required for efficient plus-strand RNA synthesis. We propose that Sindbis virus RNA replication is regulated by differential proteolysis of P123. Early in infection, nsP4 and uncleaved P123 form transient minus-strand RNA replication complexes which vanish upon cleavage of P123. Later in infection, an elevated level of viral proteinase activity eliminates de novo synthesis of P123, and no further synthesis of minus-strand RNA is possible. In contrast, nsP4 and cleavage products from P123 form plus-strand RNA replication complexes which are stable and remain active throughout the infection cycle.
Collapse
Affiliation(s)
- Y Shirako
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
29
|
Abstract
Purified virions of Aura virus, a South American alphavirus related to Sindbis virus, were found to contain two RNA species, one of 12 kb and the other of 4.2 kb. Northern (RNA) blot analysis, primer extension analysis, and limited sequencing showed that the 12-kb RNA was the viral genomic RNA, whereas the 4.2-kb RNA present in virus preparations was identical to the 26S subgenomic RNA present in infected cells. The subgenomic RNA is the messenger for translation of the viral structural proteins, and its synthesis is absolutely required for replication of the virus. Although 26S RNA is present in the cytosol of all cells infected by alphaviruses, this is the first report of incorporation of the subgenomic RNA into alphavirus particles. Packaging of the Aura virus subgenomic mRNA occurred following infection of mosquito (Aedes albopictus C6/36), hamster (BHK-21), or monkey (Vero) cells. Quantitation of the amounts of genomic and subgenomic RNA both in virions and in infected cells showed that the ratio of genomic to subgenomic RNA was 3- to 10-fold higher in Aura virions than in infected cells. Thus, although the subgenomic RNA is packaged efficiently, the genomic RNA has a selective advantage during packaging. In contrast, in parallel experiments with Sindbis virus, packaging of subgenomic RNA was not detectable. We also found that subgenomic RNA was present in about threefold-greater amounts relative to genomic RNA in cells infected by Aura virus than in cells infected by Sindbis virus. Packaging of the Aura virus subgenomic RNA, but not those of other alphaviruses, suggests that Aura virus 26S RNA contains a packaging signal for incorporation into virions. The importance of the packaging of this RNA into virions in the natural history of the virus remains to be determined.
Collapse
Affiliation(s)
- T Rümenapf
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
30
|
Dougherty WG, Semler BL. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev 1993; 57:781-822. [PMID: 8302216 PMCID: PMC372939 DOI: 10.1128/mr.57.4.781-822.1993] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors.
Collapse
Affiliation(s)
- W G Dougherty
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | |
Collapse
|
31
|
Sawicki DL, Sawicki SG. A second nonstructural protein functions in the regulation of alphavirus negative-strand RNA synthesis. J Virol 1993; 67:3605-10. [PMID: 8388513 PMCID: PMC237709 DOI: 10.1128/jvi.67.6.3605-3610.1993] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous studies (D.L. Sawicki, D. B. Barkhimer, S. G. Sawicki, C. M. Rice, and S. Schlesinger, Virology 174:43-52, 1990) identified a temperature-sensitive (ts) defect in Sindbis virus nonstructural protein 4 (nsP4) that reactivated negative-strand synthesis after its normal cessation at the end of the early phase of replication. We now report identification of two different ts alterations in nsP2 of Ala-517 to Thr in ts17 or Asn-700 to Lys in ts133 that also reactivated negative-strand synthesis. These same mutations caused severely reduced protease processing by nsP2 and recognition of the internal promoter for subgenomic mRNA synthesis and were responsible for the conditional lethality and RNA negativity of these mutants. Reactivation of negative-strand synthesis by mutations in nsP2 resembled that in nsP4: it was a reversible property of stable replication complexes and did not require continuation of viral protein synthesis. Recombinant viruses expressing both mutant nsP2 and nsP4 reactivated negative-strand synthesis more efficiently than did either mutant protein alone, consistent with the hypothesis that both nsP2 and nsP4 participate in template recognition. We propose that these alterations cause nsP2 and nsP4 to switch from their normal preference to recognize negative strands as templates to recognize positive strands and thereby mimic the initial formation of a replication complex.
Collapse
Affiliation(s)
- D L Sawicki
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008
| | | |
Collapse
|
32
|
Lemm JA, Rice CM. Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription. J Virol 1993; 67:1916-26. [PMID: 8445717 PMCID: PMC240259 DOI: 10.1128/jvi.67.4.1916-1926.1993] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Using vaccinia virus to express Sindbis virus (SIN) nonstructural proteins (nsPs) and template RNAs, we showed previously that synthesis of all three viral RNAs occurred only during expression of either the entire nonstructural coding region or the polyprotein precursors P123 and P34. In this report, the vaccinia virus system was used to express cleavage-defective polyproteins and nsP4 proteins containing various N-terminal extensions to directly examine the roles of the P123 and P34 polyproteins in RNA replication. Replication and subgenomic mRNA transcription occurred during coexpression of P34 and P123 polyproteins in which cleavage was blocked at either or both of the 1/2 and 2/3 sites. For all cleavage-defective P123 polyproteins, however, the ratio of subgenomic to genomic RNA was decreased, suggesting that both the 1/2 and 2/3 cleavages are required for efficient subgenomic RNA transcription. These studies indicate that the uncleaved P123 polyprotein can function as a component of the viral replicase capable of synthesizing both plus- and minus-strand RNAs. In contrast, cleavage-defective P34 was unable to function in RNA replication, even in complementation experiments in which minus-strand RNAs were provided by nsP4. A P34 polyprotein whose cleavage site was not altered could only function in RNA replication in the presence of an active nsP2 protease. Although nsP4, the putative RNA polymerase, was capable of synthesizing only minus-strand RNAs during coexpression with P123, the addition of only 22 upstream residues to nsP4 allowed both replication and transcription of subgenomic RNA to occur. These data show that the conserved domains of both nsP3 and the nsP4 polymerase do not need to be present in a P34 polyprotein to form a functional plus-strand replicase-transcriptase and suggest that the presence of an active nsP2 protease and a cleavable 3/4 site correlates with synthesis of all virus-specific RNA species.
Collapse
Affiliation(s)
- J A Lemm
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | |
Collapse
|
33
|
Lemm JA, Rice CM. Assembly of functional Sindbis virus RNA replication complexes: requirement for coexpression of P123 and P34. J Virol 1993; 67:1905-15. [PMID: 8445716 PMCID: PMC240258 DOI: 10.1128/jvi.67.4.1905-1915.1993] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A vaccinia virus transient expression system was used to determine which of the Sindbis virus (SIN) proteins and/or polyproteins are necessary for the formation of active replication complexes and, in particular, to analyze the role of nsP4, the putative polymerase, versus P34 in RNA replication. We generated vaccinia virus recombinants in which the cDNA for the entire SIN nonstructural coding region as well as cDNA copies of the individual nonstructural proteins (nsPs) and several intermediate polyproteins were placed downstream of the promoter for T7 RNA polymerase and the encephalomyocarditis virus 5' untranslated region. The proteins expressed by the vaccinia virus recombinants comigrate with authentic proteins synthesized in SIN-infected cells, and the polyproteins appear to be processed to the individual proteins of the correct size. To examine the replication efficiencies of different protein combinations, a vaccinia virus recombinant was designed to express an engineered substrate RNA which could serve as a template for replication and subgenomic mRNA transcription by the SIN nsPs. Expression of the entire SIN nonstructural coding region resulted in the synthesis of high levels of both genomic and subgenomic RNAs derived from the engineered template. No RNA replication could be detected during coexpression of the four individual nsPs, although the proteins were indistinguishable, in terms of electrophoretic mobility, from those synthesized in SIN-infected cells. Coexpression of polyproteins P12, P23, and/or P34 with the individual nsPs also did not result in detectable levels of RNA replication. However, when P123 and P34 were coexpressed, efficient RNA replication and subgenomic mRNA transcription of the substrate RNA was observed. Coexpression of nsP4 with P123 resulted in the synthesis of only minus-strand RNAs. These studies show that expression of both P123 and P34 is necessary for establishment of functional RNA replication and transcription complexes and raise the possibility that the polyproteins themselves may be functional components of these complexes. In addition, these data indicate that an nsP4 moiety expressed independently with an additional N-terminal methionine is capable of functioning in minus-strand but not plus-strand RNA synthesis.
Collapse
Affiliation(s)
- J A Lemm
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | |
Collapse
|
34
|
de Andrade AF, Carvalho MDG. Metabolic and morphological changes in A. albopictus cells infected with Mayaro virus under heat-shock conditions. Arch Virol 1993; 131:101-14. [PMID: 8392316 DOI: 10.1007/bf01379083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We addressed the question how temperature elevation inhibits Mayaro virus replication in Aedes albopictus infected cells. The morphology and macromolecular changes induced by temperature, infection and high serum concentration were investigated in these cells. Cells incubated with 2 and 10% serum at 28 degrees C disclosed an intense vacuolization and inhibition of [35S]methionine incorporation in a time-dependent manner. 34 and 50 kDa viral structural proteins were detected 24 h after infection. In contrast, an inhibition of viral proteins synthesis occurred when infected cells were kept at 37 degrees C (heat-shock conditions). Total cellular RNA was isolated from mock and infected cells incubated at 28 or 37 degrees C. Northern blot analysis with a Mayaro genomic probe coding for viral structural proteins showed a decrease in the amount of viral 26S RNA in stressed cells when compared to those kept at 28 degrees C. Taken together, these results suggest that the inhibition of viral proteins synthesis in response to temperature elevation is associated with a decrease in the amount of subgenomic 26S RNA.
Collapse
Affiliation(s)
- A F de Andrade
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | | |
Collapse
|
35
|
Strauss EG, De Groot RJ, Levinson R, Strauss JH. Identification of the active site residues in the nsP2 proteinase of Sindbis virus. Virology 1992; 191:932-40. [PMID: 1448929 PMCID: PMC7131396 DOI: 10.1016/0042-6822(92)90268-t] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nonstructural polyproteins of Sindbis virus are processed by a virus-encoded proteinase which is located in the C-terminal domain of nsP2. Here we have performed a mutagenic analysis to identify the active site residues of this proteinase. Substitution of other amino acids for either Cys-481 or His-558 completely abolished proteolytic processing of Sindbis virus polyproteins in vitro. Substitutions within this domain for a second cysteine conserved among alphaviruses, for four other conserved histidines, or for a conserved serine did not affect the activity of the enzyme. These results suggest that nsP2 is a papain-like proteinase whose catalytic dyad is composed of Cys-481 and His-558. Since an asparagine residue has been implicated in the active site of papain, we changed the four conserved asparagine residues in the C-terminal half of nsP2 and found that all could be substituted without total loss of activity. Among papain-like proteinases, the residue following the catalytic histidine is alanine or glycine in the plant and animal enzymes, and the presence of Trp-559 in alphaviruses is unusual. A mutant enzyme containing Ala-559 was completely inactive, implying that Trp-559 is essential for a functional proteinase. All of these mutations were introduced into a full-length clone of Sindbis virus from which infectious RNA could be transcribed in vitro, and the effects of these changes on viability were tested. In all cases it was found that mutations which abolished proteolytic activity were lethal, whether or not these mutations were in the catalytic residues, indicating that proteolysis of the nonstructural polyprotein is essential for Sindbis replication.
Collapse
Affiliation(s)
- E G Strauss
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|
36
|
Hertz JM, Huang HV. Utilization of heterologous alphavirus junction sequences as promoters by Sindbis virus. J Virol 1992; 66:857-64. [PMID: 1309918 PMCID: PMC240786 DOI: 10.1128/jvi.66.2.857-864.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We used Sindbis virus, an alphavirus, as a model to study the evolution of the recognition of viral cis-acting sequences. During the life cycle of alphaviruses, a full-length minus-strand RNA is made and serves as a template for both genomic RNA replication and subgenomic mRNA transcription. Transcription initiates at an internal promoter site, the junction sequence, to produce a subgenomic mRNA. The junction sequences of alphaviruses are highly conserved, but they do contain a number of base differences. These could have been essentially neutral mutations during evolution, such that any of the contemporary sequences can be recognized efficiently by any of the alphaviruses. Alternately, the changes could have resulted in significant functional divergence, such that the contemporary viruses can no longer recognize heterologous junction sequences as promoters. To distinguish between these possibilities, we constructed Sindbis virus derivatives with two subgenomic mRNA promoters. One is the wild-type Sindbis virus promoter used for expression of the structural proteins. The other is either the minimal Sindbis virus promoter or the corresponding junction sequences from other alphaviruses, which are placed upstream of the bacterial chloramphenicol acetyltransferase (CAT) gene. RNA analyses were used to determine the relative promoter strengths of the various junction sequences. The results showed that all but two were recognized as promoters by Sindbis virus. CAT enzyme assays were used to measure the accumulation of CAT protein made from mRNAs transcribed by using the heterologous junction sequences as promoters. Most of the viruses expressed amounts of CAT enzyme within 10-fold of each other. The two viruses with junction sequences that were not recognized as promoters did not give significant CAT expression. We conclude that, with respect to Sindbis virus, the junction sequences are functionally conserved; i.e., most of the contemporary nucleotide differences in the junction sequences are neutral or near-neutral mutations. The functional conservation suggests that neither the cis-acting sequence nor the cognate binding site of the transcription factor can change independently. This type of coupled evolution between cis-acting sequences and their cognate viral protein binding sites may be a general phenomenon. For example, it explains the ubiquitous presence of conserved cis-acting sequences in each of the families of RNA viruses. There are implications of this hypothesis for the design of antiviral drugs.
Collapse
Affiliation(s)
- J M Hertz
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | |
Collapse
|
37
|
Li GP, Prágai BM, Rice CM. Rescue of Sindbis virus-specific RNA replication and transcription by using a vaccinia virus recombinant. J Virol 1991; 65:6714-23. [PMID: 1834861 PMCID: PMC250750 DOI: 10.1128/jvi.65.12.6714-6723.1991] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A heterologous system expressing functional Sindbis virus nonstructural proteins (nsPs) has several possible uses for studying Sindbis virus-specific RNA replication and transcription in vivo and in vitro. Of the many possible approaches, vaccinia virus offers an attractive transient expression system given that Sindbis virus replication can occur in cells which have been previously infected by vaccinia virus. In this report, a vaccinia virus recombinant (called vSINNS), which contains the cDNA encoding the Sindbis virus nsPs under the control of either the vaccinia virus 7.5K promoter or the bacteriophage T7 promoter, has been constructed and characterized. Upon infection of several cell types with vSINNS, Sindbis virus nsP precursors and processed forms, including nsP1, nsP2, and both phosphorylated and nonphosphorylated forms of nsP3, were synthesized. Proteins containing the putative RNA-dependent RNA polymerase domain (nsP4 and nsP34), which are normally produced in small amounts by readthrough of an opal termination codon, were not detected in vSINNS-infected cells. However, all nsP functions necessary for Sindbis virus-specific RNA synthesis must have been expressed, since both replication and subgenomic mRNA transcription of an engineered Sindbis virus defective interfering RNA in cells infected with vSINNS was observed. Furthermore, vSINNS could be used as a helper virus to amplify, to relatively high titers, a replication-defective Sindbis virus mutant containing an in-frame deletion in the conserved N-terminal domain of nsP3. These data, as well as the observation that normal yields of parental Sindbis virus are produced in cells which have been previously infected with vSINNS, indicate that expression of Sindbis virus nsPs, in the absence of Sindbis virus-specific RNA replication, is not sufficient to block the formation of active RNA replication complexes by superinfecting Sindbis virus.
Collapse
Affiliation(s)
- G P Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | | | |
Collapse
|
38
|
Abstract
To investigate the nature of the bovine coronavirus (BCV) ns2 protein, the gene encoding this protein was cloned and was expressed as a beta-galactosidase fusion protein. Antiserum raised against this protein reacted specifically with BCV-infected fixed cells in indirect immunofluorescence microscopy and precipitated an in vitro synthesized product approximately 32-kDa in molecular weight and an equivalent protein from BCV-infected cells. The synthesis of ns2 was found to be similar to the structural proteins of BCV and pulse-chase experiments indicated that ns2 protein was stable and that it accumulated in BCV-infected cells. Synthesis of ns2 in the presence of [32P] orthophosphate revealed that it is a phosphoprotein. Phosphoamino acid analysis confirmed the phosphorylated nature of ns2 and identified serine and threonine as its phosphorylated amino acid residues. This is the first demonstration of a phosphorylated nonstructural protein in coronavirus-infected cells.
Collapse
Affiliation(s)
- G J Cox
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
39
|
de Groot RJ, Rümenapf T, Kuhn RJ, Strauss EG, Strauss JH. Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proc Natl Acad Sci U S A 1991; 88:8967-71. [PMID: 1924357 PMCID: PMC52632 DOI: 10.1073/pnas.88.20.8967] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Upon infection of animal cells by Sindbis virus, four nonstructural (ns) proteins, termed nsP1-4 in order from 5' to 3' in the genome, are produced by posttranslational cleavage of a polyprotein. nsP4 is believed to function as the viral RNA polymerase and is short-lived in infected cells. We show here that nsP4 produced in reticulocyte lysates is degraded by the N-end rule pathway, one ubiquitin-dependent proteolytic pathway. When the N-terminal residue of nsP4 is changed by mutagenesis, the metabolic stabilities of the mutant nsP4s follow the N-end rule, in that the half-life of nsP4 bearing different N-terminal residues decreases in the order Met greater than Ala greater than Tyr greater than or equal to Phe greater than Agr. Addition of dipeptides Tyr-Ala, Trp-Ala, or Phe-Ala to the translation mixture inhibits degradation of Tyr-nsP4 and Phe-nsP4, but not of Arg-nsP4. Conversely, dipeptides His-Ala, Arg-Ala, and Lys-Ala inhibit the degradation of Arg-nsP4 but not of Tyr-nsP4 or Phe-nsP4. We found that there is no lysine in the first 43 residues of nsP4 that is required for its degradation, indicating that a more distal lysine functions as the ubiquitin acceptor. Strict control of nsP4 concentration appears to be an important aspect of the virus life cycle, since the concentration of nsP4 in infected cells is regulated at three levels: translation of nsP4 requires read-through of an opal termination codon such that it is underproduced; differential processing by the virus-encoded proteinase results in temporal regulation of nsP4; and nsP4 itself is a short-lived protein degraded by the ubiquitin-dependent N-end rule pathway.
Collapse
Affiliation(s)
- R J de Groot
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | | | |
Collapse
|
40
|
Barton DJ, Sawicki SG, Sawicki DL. Solubilization and immunoprecipitation of alphavirus replication complexes. J Virol 1991; 65:1496-506. [PMID: 1847467 PMCID: PMC239930 DOI: 10.1128/jvi.65.3.1496-1506.1991] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alphavirus replication complexes that are located in the mitochondrial fraction of infected cells which pellets at 15,000 x g (P15 fraction) were used for the in vitro synthesis of viral 49S genome RNA, subgenomic 26S mRNA, and replicative intermediates (RIs). Comparison of the polymerase activity in P15 fractions from Sindbis virus (SIN)- and Semliki Forest virus (SFV)-infected cells indicated that both had similar kinetics of viral RNA synthesis in vitro but the SFV fraction was twice as active and produced more labeled RIs than SIN. When assayed in vitro under conditions of high specific activity, which limits incorporation into RIs, at least 70% of the polymerase activity was recovered after detergent treatment. Treatment with Triton X-100 or with Triton X-100 plus deoxycholate (DOC) solubilized some prelabeled SFV RIs but little if any SFV or SIN RNA polymerase activity from large structures that also contained cytoskeletal components. Treatment with concentrations of DOC greater than 0.25% or with 1% Triton X-100-0.5% DOC in the presence of 0.5 M NaCl released the polymerase activity in a soluble form, i.e., it no longer pelleted at 15,000 x g. The DOC-solubilized replication complexes, identified by their polymerase activity in vitro and by the presence of prelabeled RI RNA, had a density of 1.25 g/ml, were 20S to 100S in size, and contained viral nsP1, nsP2, phosphorylated nsP3, nsP4, and possibly nsP34 proteins. Immunoprecipitation of the solubilized structures indicated that the nonstructural proteins were complexed together and that a presumed cellular protein of approximately 120 kDa may be part of the complex. Antibodies specific for nsP3, and to a lesser extent antibodies to nsP1, precipitated native replication complexes that retained prelabeled RIs and were active in vitro in viral RNA synthesis. Thus, antibodies to nsP3 bound but did not disrupt or inhibit the polymerase activity of replication complexes in vitro.
Collapse
Affiliation(s)
- D J Barton
- Department of Microbiology, Medical College of Ohio, Toledo 43699
| | | | | |
Collapse
|
41
|
Abstract
A mutation at nucleotide 1101 of Sindbis virus ts11 nsP1 caused temperature-sensitive negative-strand synthesis and suppressed the 24R phenotype, which is caused by a mutation in nsP4. Nonstructural proteins synthesized and accumulated by ts11 at 40 degrees C did not cause the reactivation of negative-strand synthesis upon return to 30 degrees C and did not prevent the formation of new replication complexes at 30 degrees C.
Collapse
Affiliation(s)
- Y F Wang
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008
| | | | | |
Collapse
|
42
|
Li GP, La Starza MW, Hardy WR, Strauss JH, Rice CM. Phosphorylation of Sindbis virus nsP3 in vivo and in vitro. Virology 1990; 179:416-27. [PMID: 2145690 DOI: 10.1016/0042-6822(90)90310-n] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
nsP3 is one of four viral nonstructural proteins required for RNA replication of Sindbis virus. In this report, post-translational modifications of nsP3 which occur in both vertebrate and mosquito cell cultures have been examined. In pulse-chase experiments, analyzed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, nsP3 was initially observed as a single species (termed nsP3a, approximately 76 kDa) which was gradually converted to slower mobility forms ranging from 78 kDa (termed nsP3b) to 106 kDa (termed nsP3c). The slower mobility forms, but not nsP3a or the other nonstructural proteins, could be labeled in vivo with [32P]orthophosphate. Treatment of nsP3 immunoprecipitates with calf intestinal alkaline phosphatase converted the slower mobility forms to nsP3a. Phosphoamino acid analysis of nsP3b and nsP3c demonstrated that both contained phosphoserine and phosphothreonine but not phosphotyrosine, nsP34, a polyprotein produced by readthrough of the in-frame opal codon preceding nsP4, was also phosphorylated on serine and threonine residues. nsP3 phosphorylation did not require ongoing RNA synthesis since phosphorylated forms were also observed in the absence of Sindbis-specific RNA synthesis. Furthermore, when immunoprecipitates of nsP3 were incubated with [gamma-32P]ATP in the presence of Mg2+ or Mn2+, a kinase activity which was able to phosphorylate nsP3 on serine and threonine residues in vitro was detected. This kinase activity was inhibited by heparin, was activated by spermidine, and could utilize GTP and ATP as the phosphate donor. These latter properties are similar to those of cellular casein kinase II. Although it is possible that this nsP3-associated kinase is of cellular origin, autophosphorylation of nsP3 has not been excluded.
Collapse
Affiliation(s)
- G P Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | | | | | | | |
Collapse
|