1
|
Novikov DV, Vasilchikova EA, Vasilchikov PI. Prospects for the use of viral proteins for the construction of chimeric toxins. Arch Virol 2024; 169:208. [PMID: 39327316 DOI: 10.1007/s00705-024-06139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
One of the actively developing areas of drug development is the creation of chimeric toxins, recombinant bifunctional molecules designed to affect target cells selectively. The prevalent approach involves fusing bacterial and plant toxins with molecules that facilitate targeted delivery. However, the therapeutic use of such toxins often encounters challenges associated with negative side effects. Concurrently, viruses encode proteins possessing toxin-like properties, exerting multiple effects on the vital activity of cells. In contrast to bacterial and plant toxins, the impact of viral proteins is typically milder, presenting a significant advantage by potentially reducing the likelihood of side effects. This review delineates the characteristics of extensively studied viral proteins with toxic and immunomodulatory properties and explores the prospects of incorporating them into chimeric toxins.
Collapse
Affiliation(s)
- D V Novikov
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - E A Vasilchikova
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - P I Vasilchikov
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| |
Collapse
|
2
|
Perry JL, Scribano FJ, Gebert JT, Engevik KA, Ellis JM, Hyser JM. Host IP 3R channels are dispensable for rotavirus Ca 2+ signaling but critical for intercellular Ca 2+ waves that prime uninfected cells for rapid virus spread. mBio 2024; 15:e0214523. [PMID: 38112482 PMCID: PMC10790754 DOI: 10.1128/mbio.02145-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Many viruses exploit host Ca2+ signaling to facilitate their replication; however, little is known about how Ca2+ signals from different host and viral channels contribute to the overall dysregulation of Ca2+ signaling or promote virus replication. Using cells lacking IP3R, a host ER Ca2+ channel, we delineated intracellular Ca2+ signals within virus-infected cells and intercellular Ca2+ waves (ICWs), which increased Ca2+ signaling in neighboring, uninfected cells. In infected cells, IP3R was dispensable for rotavirus-induced Ca2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP3R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.
Collapse
Affiliation(s)
- Jacob L. Perry
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesca J. Scribano
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - John T. Gebert
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kristen A. Engevik
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenna M. Ellis
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Perry JL, Scribano FJ, Gebert JT, Engevik KA, Ellis JM, Hyser JM. The Inositol Trisphosphate Receptor (IP 3 R) is Dispensable for Rotavirus-induced Ca 2+ Signaling and Replication but Critical for Paracrine Ca 2+ Signals that Prime Uninfected Cells for Rapid Virus Spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552719. [PMID: 37609335 PMCID: PMC10441394 DOI: 10.1101/2023.08.09.552719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Rotavirus is a leading cause of viral gastroenteritis. A hallmark of rotavirus infection is an increase in cytosolic Ca 2+ caused by the nonstructural protein 4 (NSP4). NSP4 is a viral ion channel that releases Ca 2+ from the endoplasmic reticulum (ER) and the increase in Ca 2+ signaling is critical for rotavirus replication. In addition to NSP4 itself, host inositol 1,4,5- trisphosphate receptor (IP 3 R) ER Ca 2+ channels may contribute to rotavirus-induced Ca 2+ signaling and by extension, virus replication. Thus, we set out to determine the role of IP 3 R Ca 2+ signaling during rotavirus infection using IP 3 R-knockout MA104-GCaMP6s cells (MA104- GCaMP6s-IP 3 R-KO), generated by CRISPR/Cas9 genome editing. Live Ca 2+ imaging showed that IP 3 R-KO did not reduce Ca 2+ signaling in infected cells but eliminated rotavirus-induced intercellular Ca 2+ waves (ICWs) and therefore the increased Ca 2+ signaling in surrounding, uninfected cells. Further, MA104-GCaMP6s-IP 3 R-TKO cells showed similar rotavirus susceptibility, single-cycle replication, and viral protein expression as parental MA104- GCaMP6s cells. However, MA104-GCaMP6s-IP 3 R-TKO cells exhibited significantly smaller rotavirus plaques, decreased multi-round replication kinetics, and delayed virus spread, suggesting that rotavirus-induced ICW Ca 2+ signaling stimulates virus replication and spread. Inhibition of ICWs by blocking the P2Y1 receptor also resulted in decreased rotavirus plaque size. Conversely, exogenous expression of P2Y1 in LLC-MK2-GCaMP6s cells, which natively lack P2Y1 and rotavirus ICWs, rescued the generation of rotavirus-induced ICWs and enabled plaque formation. In conclusion, this study shows that NSP4 Ca 2+ signals fully support rotavirus replication in individual cells; however, IP 3 R is critical for rotavirus-induced ICWs and virus spread by priming Ca 2+ -dependent pathways in surrounding cells. Importance Many viruses exploit host Ca 2+ signaling to facilitate their replication; however, little is known about how distinct types of Ca 2+ signals contribute to the overall dysregulation of Ca 2+ signaling or promote virus replication. Using cells lacking IP 3 R, a host ER Ca 2+ channel, we could differentiate between intracellular Ca 2+ signals within virus-infected cells and intercellular Ca 2+ waves (ICWs), which increase Ca 2+ signaling in neighboring, uninfected cells. In infected cells, IP 3 R was dispensable for rotavirus-induced Ca 2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP 3 R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca 2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.
Collapse
|
4
|
Gebert JT, Scribano F, Engevik KA, Perry JL, Hyser JM. Gastrointestinal organoids in the study of viral infections. Am J Physiol Gastrointest Liver Physiol 2023; 324:G51-G59. [PMID: 36414538 PMCID: PMC9799139 DOI: 10.1152/ajpgi.00152.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Viruses are among the most prevalent enteric pathogens. Although virologists historically relied on cell lines and animal models, human intestinal organoids (HIOs) continue to grow in popularity. HIOs are nontransformed, stem cell-derived, ex vivo cell cultures that maintain the cell type diversity of the intestinal epithelium. They offer higher throughput than standard animal models while more accurately mimicking the native tissue of infection than transformed cell lines. Here, we review recent literature that highlights virological advances facilitated by HIOs. We discuss the variations and limitations of HIOs, how HIOs have allowed for the cultivation of previously uncultivatable viruses, and how they have offered insight into tropism, entry, replication kinetics, and host-pathogen interactions. In each case, we discuss exemplary viruses and archetypal studies. We discuss how the speed and flexibility of HIO-based studies contributed to our knowledge of SARS-CoV-2 and antiviral therapeutics. Finally, we discuss the current limitations of HIOs and future directions to overcome these.
Collapse
Affiliation(s)
- J Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Francesca Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Jacob L Perry
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Zhu X, Li K, Zheng J, Xia G, Jiang F, Liu H, Shi J. Usage of procalcitonin and sCD14-ST as diagnostic markers for postoperative spinal infection. J Orthop Traumatol 2022; 23:25. [PMID: 35648304 PMCID: PMC9160164 DOI: 10.1186/s10195-022-00644-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Identifying biomarkers for early diagnosis of postoperative spinal infection is essential to avoid complications after spine surgery. The presented study evaluated serum levels of procalcitonin (PCT), C-reactive protein (CRP), and soluble CD14 subtype (sCD14-ST) in patients who underwent spinal surgery to assess the diagnosis values of PCT and sCD14-ST. METHODS Serum levels of PCT, CRP, and sCD14-ST were measured in 490 (289 male/201 female) patients who underwent spinal surgery (SS) before and 1 day after surgery. PCT and sCD14-ST levels of patients diagnosed with postoperative infection (PI) and patients diagnosed with postoperative non-infection (PN) were compared. RESULTS Serum levels of PCT, CRP, and sCD14-ST were significantly increased after surgery (F = 58.393, P = 0.000). In patients diagnosed as having a PI, serum levels of PCT and sCD14-ST were positively correlated with each other (r = 0.90, P < 0.01) and with operation duration (r = 0.92, 0.88, P < 0.01). Receiver operating characteristic (ROC) models showed that both PCT (AUC = 0.817, optimal cutoff: 0.69 ng/ml, P = 0.000) and sCD14-ST (AUC = 0.824, optimal cutoff: 258.27 pg/ml, P = 0.000) can distinguish PI versus PN patients well. CONCLUSION Our results demonstrated that serum levels of PCT and sCD14-ST have the potential to be used as a diagnostic markers for postoperative spinal infection.
Collapse
Affiliation(s)
- Xi Zhu
- Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kaige Li
- Department of Surgery, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jianping Zheng
- Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Gen Xia
- Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Feng Jiang
- Department of Medicine, School of Medicine and Dentistry, Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, USA
| | - Huan Liu
- Department of Medicine, School of Medicine and Dentistry, Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, USA
| | - Jiandang Shi
- Department of Surgery, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
6
|
Could Lower Testosterone in Older Men Explain Higher COVID-19 Morbidity and Mortalities? Int J Mol Sci 2022; 23:ijms23020935. [PMID: 35055119 PMCID: PMC8781054 DOI: 10.3390/ijms23020935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023] Open
Abstract
The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection’s outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.
Collapse
|
7
|
Chang-Graham AL, Perry JL, Engevik MA, Engevik KA, Scribano FJ, Gebert JT, Danhof HA, Nelson JC, Kellen JS, Strtak AC, Sastri NP, Estes MK, Britton RA, Versalovic J, Hyser JM. Rotavirus induces intercellular calcium waves through ADP signaling. Science 2020; 370:370/6519/eabc3621. [PMID: 33214249 PMCID: PMC7957961 DOI: 10.1126/science.abc3621] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/16/2020] [Indexed: 01/14/2023]
Abstract
Rotavirus causes severe diarrheal disease in children by broadly dysregulating intestinal homeostasis. However, the underlying mechanism(s) of rotavirus-induced dysregulation remains unclear. We found that rotavirus-infected cells produce paracrine signals that manifested as intercellular calcium waves (ICWs), observed in cell lines and human intestinal enteroids. Rotavirus ICWs were caused by the release of extracellular adenosine 5'-diphosphate (ADP) that activated P2Y1 purinergic receptors on neighboring cells. ICWs were blocked by P2Y1 antagonists or CRISPR-Cas9 knockout of the P2Y1 receptor. Blocking the ADP signal reduced rotavirus replication, inhibited rotavirus-induced serotonin release and fluid secretion, and reduced diarrhea severity in neonatal mice. Thus, rotavirus exploited paracrine purinergic signaling to generate ICWs that amplified the dysregulation of host cells and altered gastrointestinal physiology to cause diarrhea.
Collapse
Affiliation(s)
- Alexandra L. Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Jacob L. Perry
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Francesca J. Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - J. Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Joel C. Nelson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Joseph S. Kellen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Alicia C. Strtak
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Narayan P. Sastri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Department of Medicine, Gastroenterology and Hepatology, Baylor College of Medicine, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Corresponding author. Correspondence and requests for materials should be addressed to J.H.
| |
Collapse
|
8
|
Host Calcium Channels and Pumps in Viral Infections. Cells 2019; 9:cells9010094. [PMID: 31905994 PMCID: PMC7016755 DOI: 10.3390/cells9010094] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/29/2022] Open
Abstract
Ca2+ is essential for virus entry, viral gene replication, virion maturation, and release. The alteration of host cells Ca2+ homeostasis is one of the strategies that viruses use to modulate host cells signal transduction mechanisms in their favor. Host calcium-permeable channels and pumps (including voltage-gated calcium channels, store-operated channels, receptor-operated channels, transient receptor potential ion channels, and Ca2+-ATPase) mediate Ca2+ across the plasma membrane or subcellular organelles, modulating intracellular free Ca2+. Therefore, these Ca2+ channels or pumps present important aspects of viral pathogenesis and virus–host interaction. It has been reported that viruses hijack host calcium channels or pumps, disturbing the cellular homeostatic balance of Ca2+. Such a disturbance benefits virus lifecycles while inducing host cells’ morbidity. Evidence has emerged that pharmacologically targeting the calcium channel or calcium release from the endoplasmic reticulum (ER) can obstruct virus lifecycles. Impeding virus-induced abnormal intracellular Ca2+ homeostasis is becoming a useful strategy in the development of potent antiviral drugs. In this present review, the recent identified cellular calcium channels and pumps as targets for virus attack are emphasized.
Collapse
|
9
|
Rotavirus Calcium Dysregulation Manifests as Dynamic Calcium Signaling in the Cytoplasm and Endoplasmic Reticulum. Sci Rep 2019; 9:10822. [PMID: 31346185 PMCID: PMC6658527 DOI: 10.1038/s41598-019-46856-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023] Open
Abstract
Like many viruses, rotavirus (RV) dysregulates calcium homeostasis by elevating cytosolic calcium ([Ca2+]cyt) and decreasing endoplasmic reticulum (ER) stores. While an overall, monophasic increase in [Ca2+]cyt during RV infection has been shown, the nature of the RV-induced aberrant calcium signals and how they manifest over time at the single-cell level have not been characterized. Thus, we generated cell lines and human intestinal enteroids (HIEs) stably expressing cytosolic and/or ER-targeted genetically-encoded calcium indicators to characterize calcium signaling throughout RV infection by time-lapse imaging. We found that RV induces highly dynamic [Ca2+]cyt signaling that manifest as hundreds of discrete [Ca2+]cyt spikes, which increase during peak infection. Knockdown of nonstructural protein 4 (NSP4) attenuates the [Ca2+]cyt spikes, consistent with its role in dysregulating calcium homeostasis. RV-induced [Ca2+]cyt spikes were primarily from ER calcium release and were attenuated by inhibiting the store-operated calcium entry (SOCE) channel Orai1. RV-infected HIEs also exhibited prominent [Ca2+]cyt spikes that were attenuated by inhibiting SOCE, underlining the relevance of these [Ca2+]cyt spikes to gastrointestinal physiology and role of SOCE in RV pathophysiology. Thus, our discovery that RV increases [Ca2+]cyt by dynamic calcium signaling, establishes a new, paradigm-shifting understanding of the spatial and temporal complexity of virus-induced calcium signaling.
Collapse
|
10
|
Abstract
Eukaryotic cells have evolved a myriad of ion channels, transporters, and pumps to maintain and regulate transmembrane ion gradients. As intracellular parasites, viruses also have evolved ion channel proteins, called viroporins, which disrupt normal ionic homeostasis to promote viral replication and pathogenesis. The first viral ion channel (influenza M2 protein) was confirmed only 23 years ago, and since then studies on M2 and many other viroporins have shown they serve critical functions in virus entry, replication, morphogenesis, and immune evasion. As new candidate viroporins and viroporin-mediated functions are being discovered, we review the experimental criteria for viroporin identification and characterization to facilitate consistency within this field of research. Then we review recent studies on how the few Ca(2+)-conducting viroporins exploit host signaling pathways, including store-operated Ca(2+) entry, autophagy, and inflammasome activation. These viroporin-induced aberrant Ca(2+) signals cause pathophysiological changes resulting in diarrhea, vomiting, and proinflammatory diseases, making both the viroporin and host Ca(2+) signaling pathways potential therapeutic targets for antiviral drugs.
Collapse
Affiliation(s)
- Joseph M Hyser
- Alkek Center for Metagenomic and Microbiome Research.,Department of Molecular Virology and Microbiology, and
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, and.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411;
| |
Collapse
|
11
|
Lobeck I, Donnelly B, Dupree P, Mahe MM, McNeal M, Mohanty SK, Tiao G. Rhesus rotavirus VP6 regulates ERK-dependent calcium influx in cholangiocytes. Virology 2016; 499:185-195. [PMID: 27668997 DOI: 10.1016/j.virol.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022]
Abstract
The Rhesus rotavirus (RRV) induced murine model of biliary atresia (BA) is a useful tool in studying the pathogenesis of this neonatal biliary obstructive disease. In this model, the mitogen associated protein kinase pathway is involved in RRV infection of biliary epithelial cells (cholangiocytes). We hypothesized that extracellular signal-related kinase (ERK) phosphorylation is integral to calcium influx, allowing for viral replication within the cholangiocyte. Utilizing ERK and calcium inhibitors in immortalized cholangiocytes and BALB/c pups, we determined that ERK inhibition resulted in reduced viral yield and subsequent decreased symptomatology in mice. In vitro, the RRV VP6 protein induced ERK phosphorylation, leading to cellular calcium influx. Pre-treatment with an ERK inhibitor or Verapamil resulted in lower viral yields. We conclude that the pathogenesis of RRV-induced murine BA is dependent on the VP6 protein causing ERK phosphorylation and triggering calcium influx allowing replication in cholangiocytes.
Collapse
Affiliation(s)
- Inna Lobeck
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bryan Donnelly
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Phylicia Dupree
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maxime M Mahe
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sujit K Mohanty
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Perry JL, Ramachandran NK, Utama B, Hyser JM. Use of genetically-encoded calcium indicators for live cell calcium imaging and localization in virus-infected cells. Methods 2015; 90:28-38. [PMID: 26344758 PMCID: PMC4655165 DOI: 10.1016/j.ymeth.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023] Open
Abstract
Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections.
Collapse
Affiliation(s)
- Jacob L Perry
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, United States
| | - Nina K Ramachandran
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, United States
| | - Budi Utama
- Shared Equipment Authority, Rice University, Houston, TX 77030, United States
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
13
|
Viral Membrane Channels: Role and Function in the Virus Life Cycle. Viruses 2015; 7:3261-84. [PMID: 26110585 PMCID: PMC4488738 DOI: 10.3390/v7062771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/20/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022] Open
Abstract
Viroporins are small, hydrophobic trans-membrane viral proteins that oligomerize to form hydrophilic pores in the host cell membranes. These proteins are crucial for the pathogenicity and replication of viruses as they aid in various stages of the viral life cycle, from genome uncoating to viral release. In addition, the ion channel activity of viroporin causes disruption in the cellular ion homeostasis, in particular the calcium ion. Fluctuation in the calcium level triggers the activation of the host defensive programmed cell death pathways as well as the inflammasome, which in turn are being subverted for the viruses’ replication benefits. This review article summarizes recent developments in the functional investigation of viroporins from various viruses and their contributions to viral replication and virulence.
Collapse
|
14
|
The Emerging Roles of Viroporins in ER Stress Response and Autophagy Induction during Virus Infection. Viruses 2015; 7:2834-57. [PMID: 26053926 PMCID: PMC4488716 DOI: 10.3390/v7062749] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 01/14/2023] Open
Abstract
Viroporins are small hydrophobic viral proteins that oligomerize to form aqueous pores on cellular membranes. Studies in recent years have demonstrated that viroporins serve important functions during virus replication and contribute to viral pathogenicity. A number of viroporins have also been shown to localize to the endoplasmic reticulum (ER) and/or its associated membranous organelles. In fact, replication of most RNA viruses is closely linked to the ER, and has been found to cause ER stress in the infected cells. On the other hand, autophagy is an evolutionarily conserved "self-eating" mechanism that is also observed in cells infected with RNA viruses. Both ER stress and autophagy are also known to modulate a wide variety of signaling pathways including pro-inflammatory and innate immune response, thereby constituting a major aspect of host-virus interactions. In this review, the potential involvement of viroporins in virus-induced ER stress and autophagy will be discussed.
Collapse
|
15
|
Alterations in oxidant/antioxidant balance, high-mobility group box 1 protein and acute phase response in cross-bred suckling piglets suffering from rotaviral enteritis. Trop Anim Health Prod 2014; 46:1127-33. [PMID: 24848720 DOI: 10.1007/s11250-014-0616-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 01/01/2023]
Abstract
Rotaviral enteritis has emerged as a major cause of morbidity and mortality in piglets during their post-natal life. The present study was carried out to examine high-mobility group box 1 (HMGB1) protein, acute phase response and oxidative stress indices in the serum of suckling piglets suffering from enteritis with or without association of porcine group A rotavirus infection. The present investigation utilized 23 clinical cases with signs of acute enteritis and 12 more healthy piglets of a similar age group as control animals. Out of 23 enteritis cases, 12 cases were found to be positive for porcine group A rotavirus infection as confirmed by reverse transcription-polymerase chain reaction (RT-PCR) using specific primers for group A rotavirus, and the rest were found negative. The acute enteritis cases in piglets were associated with an elevated level of HMGB1 protein and serum haptoglobin and ceruloplasmin suggestive of an acute phase response. Among the oxidative stress indices, the concentrations of malondialdehyde (MDA) and nitric oxide (NO) in serum were significantly increased. A pronounced drop of total antioxidant capacity and the activity of antioxidant enzymes such as catalase and superoxide dismutase in the serum of piglets suffering from acute enteritis compared to healthy ones were also noticed. The alterations in HMGB1 protein, acute phase response and oxidative stress indices were more pronounced in cases with the involvement of porcine rotavirus as compared to rotavirus-negative cases. It is concluded that HMGB1 protein, markers of oxidative stress and acute phase proteins might play an important role in the aetiopathogenesis of porcine diarrhoea caused by rotavirus and might be true markers in diagnosing the conditions leading to the extension of the prompt and effective therapeutic care.
Collapse
|
16
|
Yeom JS, Kim YS, Park JS, Seo JH, Park ES, Lim JY, Park CH, Woo HO, Youn HS. Role of Ca2+ homeostasis disruption in rotavirus-associated seizures. J Child Neurol 2014; 29:331-5. [PMID: 23271755 DOI: 10.1177/0883073812469052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rotavirus infection disturbs cellular Ca(2+) homeostasis by triggering an increase in Ca(2+) permeation. A theoretical link between Ca(2+) dysregulation and seizures in patients with rotavirus gastroenteritis has been suggested, but no prior studies have investigated this relationship. To test our hypothesis that patients with rotavirus-associated seizures have greater Ca(2+) homeostasis disruption than those without seizures, we compared clinical and laboratory data--including corrected total serum Ca(2+) levels--between the 2 groups. Age, gender, maximum body temperature, day of admission, levels of electrolytes except Ca(2+), blood pH, and urine ketone levels were not related to seizure occurrence. Significantly lower Ca(2+) levels were found among the seizure (+) group (9.22 ± 0.50 vs 9.66 ± 0.46 mg/dL, P = .01). Although Ca(2+) levels were within normal ranges and did not directly cause the seizures, our results provide preliminary evidence for a relationship between Ca(2+) homeostasis disruption and seizures in rotavirus patients.
Collapse
Affiliation(s)
- Jung Sook Yeom
- 1Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity. J Virol 2013; 87:13579-88. [PMID: 24109210 DOI: 10.1128/jvi.02629-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rotavirus nonstructural protein 4 (NSP4) induces dramatic changes in cellular calcium homeostasis. These include increased endoplasmic reticulum (ER) permeability, resulting in decreased ER calcium stores and activation of plasma membrane (PM) calcium influx channels, ultimately causing a 2- to 4-fold elevation in cytoplasmic calcium. Elevated cytoplasmic calcium is absolutely required for virus replication, but the underlying mechanisms responsible for calcium influx remain poorly understood. NSP4 is an ER-localized viroporin, whose activity depletes ER calcium, which ultimately leads to calcium influx. We hypothesized that NSP4-mediated depletion of ER calcium activates store-operated calcium entry (SOCE) through activation of the ER calcium sensor stromal interaction molecule 1 (STIM1). We established and used a stable yellow fluorescent protein-expressing STIM1 cell line (YFP-STIM1) as a biosensor to assess STIM1 activation (puncta formation) by rotavirus infection and NSP4 expression. We found that STIM1 is constitutively active in rotavirus-infected cells and that STIM1 puncta colocalize with the PM-localized Orai1 SOCE calcium channel. Expression of wild-type NSP4 activated STIM1, resulting in PM calcium influx, but an NSP4 viroporin mutant failed to induce STIM1 activation and did not activate the PM calcium entry pathway. Finally, knockdown of STIM1 significantly reduced rotavirus yield, indicating STIM1 plays a critical role in virus replication. These data demonstrate that while rotavirus may ultimately activate multiple calcium channels in the PM, calcium influx is predicated on NSP4 viroporin-mediated activation of STIM1 in the ER. This is the first report of viroporin-mediated activation of SOCE, reinforcing NSP4 as a robust model to understand dysregulation of calcium homeostasis during virus infections.
Collapse
|
18
|
Dissecting the Ca²⁺ entry pathways induced by rotavirus infection and NSP4-EGFP expression in Cos-7 cells. Virus Res 2012; 167:285-96. [PMID: 22634036 DOI: 10.1016/j.virusres.2012.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/13/2012] [Accepted: 05/16/2012] [Indexed: 01/09/2023]
Abstract
Rotavirus infection modifies Ca(2+) homeostasis provoking an increase in Ca(2+) permeation, cytoplasmic Ca(2+) concentration ([Ca(2+)](cyto)), total Ca(2+) pools and, a decrease of Ca(2+) response to agonists. These effects are mediated by NSP4. The mechanism by which NSP4 deranges Ca(2+) homeostasis is not yet known. It has been proposed that the increase in [Ca(2+)](cyto) is the result of Ca(2+) release from intracellular stores, thereby activating store-operated Ca(2+) entry (SOCE). We studied the mechanisms involved in the changes of Ca(2+) permeability of the plasma membrane elicited by rotavirus infection and NSP4 expression in Cos-7 cells loaded with fura-2 or fluo-4, using inhibitors and activators of different pathways. Total depletion of ER Ca(2+) stores induced by thapsigargin or ATP was not able to elicit Ca(2+) entry in mock-infected cells to the level attained with infection or NSP4-EGFP expression. The pathway induced by NSP4-EGFP expression or infection shows properties shared by SOCE: it can be inactivated by high [Ca(2+)](cyto), is permeable to Mn(2+) and inhibited by La(3+) and the SOC inhibitor 2-aminoethoxydiphenyl borate (2-APB). Contribution of the agonist-operated channels (AOCs) to Ca(2+) entry is small and not modified by infection. The plasma membrane permeability to Ca(2+) in rotavirus infected or NSP4-EGFP expressing cells is also blocked by KB-R7943, an inhibitor of the plasma membrane Na(+)/Ca(2+) exchanger (NCX), operating in its reverse mode. In conclusion, the expression of NSP4 in infected Cos-7 cells appears to activate the NCX in reverse mode and the SOCE pathway to induce increased Ca(2+) entry.
Collapse
|
19
|
Zambrano JL, Ettayebi K, Maaty WS, Faunce NR, Bothner B, Hardy ME. Rotavirus infection activates the UPR but modulates its activity. Virol J 2011; 8:359. [PMID: 21774819 PMCID: PMC3149005 DOI: 10.1186/1743-422x-8-359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/20/2011] [Indexed: 12/15/2022] Open
Abstract
Background Rotaviruses are known to modulate the innate antiviral defense response driven by IFN. The purpose of this study was to identify changes in the cellular proteome in response to rotavirus infection in the context of the IFN response. We also sought to identify proteins outside the IFN induction and signaling pathway that were modulated by rotavirus infection. Methods 2D-DIGE and image analysis were used to identify cellular proteins that changed in levels of expression in response to rotavirus infection, IFN treatment, or IFN treatment prior to infection. Immunofluorescence microscopy was used to determine the subcellular localization of proteins associated with the unfolded protein response (UPR). Results The data show changes in the levels of multiple proteins associated with cellular stress in infected cells, including levels of ER chaperones GRP78 and GRP94. Further investigations showed that GRP78, GRP94 and other proteins with roles in the ER-initiated UPR including PERK, CHOP and GADD34, were localized to viroplasms in infected cells. Conclusions Together the results suggest rotavirus infection activates the UPR, but modulates its effects by sequestering sensor, transcription factor, and effector proteins in viroplasms. The data consequently also suggest that viroplasms may directly or indirectly play a fundamental role in regulating signaling pathways associated with cellular defense responses.
Collapse
Affiliation(s)
- Jose Luis Zambrano
- Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hagbom M, Istrate C, Engblom D, Karlsson T, Rodriguez-Diaz J, Buesa J, Taylor JA, Loitto VM, Magnusson KE, Ahlman H, Lundgren O, Svensson L. Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS Pathog 2011; 7:e1002115. [PMID: 21779163 PMCID: PMC3136449 DOI: 10.1371/journal.ppat.1002115] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/26/2011] [Indexed: 11/18/2022] Open
Abstract
Rotavirus (RV) is the major cause of severe gastroenteritis in young children. A virus-encoded enterotoxin, NSP4 is proposed to play a major role in causing RV diarrhoea but how RV can induce emesis, a hallmark of the illness, remains unresolved. In this study we have addressed the hypothesis that RV-induced secretion of serotonin (5-hydroxytryptamine, 5-HT) by enterochromaffin (EC) cells plays a key role in the emetic reflex during RV infection resulting in activation of vagal afferent nerves connected to nucleus of the solitary tract (NTS) and area postrema in the brain stem, structures associated with nausea and vomiting. Our experiments revealed that RV can infect and replicate in human EC tumor cells ex vivo and in vitro and are localized to both EC cells and infected enterocytes in the close vicinity of EC cells in the jejunum of infected mice. Purified NSP4, but not purified virus particles, evoked release of 5-HT within 60 minutes and increased the intracellular Ca2+ concentration in a human midgut carcinoid EC cell line (GOT1) and ex vivo in human primary carcinoid EC cells concomitant with the release of 5-HT. Furthermore, NSP4 stimulated a modest production of inositol 1,4,5-triphosphate (IP3), but not of cAMP. RV infection in mice induced Fos expression in the NTS, as seen in animals which vomit after administration of chemotherapeutic drugs. The demonstration that RV can stimulate EC cells leads us to propose that RV disease includes participation of 5-HT, EC cells, the enteric nervous system and activation of vagal afferent nerves to brain structures associated with nausea and vomiting. This hypothesis is supported by treating vomiting in children with acute gastroenteritis with 5-HT3 receptor antagonists. Rotavirus (RV) can cause severe dehydration and is a leading cause of childhood deaths worldwide. While most deaths occur due to excessive loss of fluids and electrolytes through vomiting and diarrhoea, the pathophysiological mechanisms that underlie this life-threatening disease remain to be clarified. Our previous studies revealed that drugs that inhibit the function of the enteric nervous system can reduce symptoms of RV disease in mice. In this study we have addressed the hypothesis that RV infection triggers the release of serotonin (5-hydroxytryptamine, 5-HT) from enterochromaffin (EC) cells in the intestine leading to activation of vagal afferent nerves connected to brain stem structures associated with vomiting. RV activated Fos expression in the nucleus of the solitary tract of CNS, the main target for incoming fibers from the vagal nerve. Both secreted and recombinant forms of the viral enterotoxin (NSP4), increased intracellular Ca2+ concentration and released 5-HT from EC cells. 5-HT induced diarrhoea in mice within 60 min, thereby supporting the role of 5-HT in RV disease. Our study provides novel insight into the complex interaction between RV, EC cells, 5-HT and nerves.
Collapse
Affiliation(s)
- Marie Hagbom
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Claudia Istrate
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
- Unidade de Biologia Molecular, Centro de Malaria e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - David Engblom
- Division of Cell Biology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Thommie Karlsson
- Division of Medical Microbiology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Jesus Rodriguez-Diaz
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - John A. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Vesa-Matti Loitto
- Division of Medical Microbiology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Karl-Eric Magnusson
- Division of Medical Microbiology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Håkan Ahlman
- Department of Surgery, University of Gothenburg, Gothenburg, Sweden
| | - Ove Lundgren
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
- * E-mail:
| |
Collapse
|
21
|
Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio 2010; 1. [PMID: 21151776 PMCID: PMC2999940 DOI: 10.1128/mbio.00265-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/27/2010] [Indexed: 12/22/2022] Open
Abstract
Many viruses alter intracellular calcium homeostasis. The rotavirus nonstructural protein 4 (NSP4), an endoplasmic reticulum (ER) transmembrane glycoprotein, increases intracellular levels of cytoplasmic Ca2+ ([Ca2+]cyto) through a phospholipase C-independent pathway, which is required for virus replication and morphogenesis. However, the NSP4 domain and mechanism that increases [Ca2+]cyto are unknown. We identified an NSP4 domain (amino acids [aa] 47 to 90) that inserts into membranes and has structural characteristics of viroporins, a class of small hydrophobic viral proteins that disrupt membrane integrity and ion homeostasis to facilitate virus entry, assembly, or release. Mutational analysis showed that NSP4 viroporin activity was mediated by an amphipathic α-helical domain downstream of a conserved lysine cluster. The lysine cluster directed integral membrane insertion of the viroporin domain and was critical for viroporin activity. In epithelial cells, expression of wild-type NSP4 increased the levels of free cytoplasmic Ca2+ by 3.7-fold, but NSP4 viroporin mutants maintained low levels of [Ca2+]cyto, were retained in the ER, and failed to form cytoplasmic vesicular structures, called puncta, which surround viral replication and assembly sites in rotavirus-infected cells. When [Ca2+]cyto was increased pharmacologically with thapsigargin, viroporin mutants formed puncta, showing that elevation of calcium levels and puncta formation are distinct functions of NSP4 and indicating that NSP4 directly or indirectly responds to elevated cytoplasmic calcium levels. NSP4 viroporin activity establishes the mechanism for NSP4-mediated elevation of [Ca2+]cyto, a critical event that regulates rotavirus replication and virion assembly. Rotavirus is the leading cause of viral gastroenteritis in children and young animals. Rotavirus infection and expression of nonstructural protein 4 (NSP4) alone dramatically increase cytosolic calcium, which is essential for replication and assembly of infectious virions. This work identifies the intracellular mechanism by which NSP4 disrupts calcium homeostasis by showing that NSP4 is a viroporin, a class of virus-encoded transmembrane pores. Mutational analyses identified residues critical for viroporin activity. Viroporin mutants did not elevate the levels of cytoplasmic calcium in mammalian cells and were maintained in the endoplasmic reticulum rather than forming punctate vesicular structures that are critical for virus replication and morphogenesis. Pharmacological elevation of cytoplasmic calcium levels rescued puncta formation in viroporin mutants, demonstrating that elevation of calcium levels and puncta formation are distinct NSP4 functions. While viroporins typically function in virus entry or release, elevation of calcium levels by NSP4 viroporin activity may serve as a regulatory function to facilitate virus replication and assembly.
Collapse
|
22
|
Zhou Y, Frey TK, Yang JJ. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 2009; 46:1-17. [PMID: 19535138 PMCID: PMC3449087 DOI: 10.1016/j.ceca.2009.05.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
Ca2+ is one of the most universal and versatile signaling molecules and is involved in almost every aspect of cellular processes. Viruses are adept at utilizing the universal Ca2+ signal to create a tailored cellular environment that meets their own demands. This review summarizes most of the known mechanisms by which viruses perturb Ca2+ homeostasis and utilize Ca2+ and cellular Ca2+-binding proteins to their benefit in their replication cycles. Ca2+ plays important roles in virion structure formation, virus entry, viral gene expression, posttranslational processing of viral proteins and virion maturation and release. As part of the review, we introduce an algorithm to identify linear “EF-hand” Ca2+-binding motifs which resulted in the prediction of a total of 93 previously unrecognized Ca2+-binding motifs in virus proteins. Many of these proteins are nonstructural proteins, a class of proteins among which Ca2+ interactions had not been formerly appreciated. The presence of linear Ca2+-binding motifs in viral proteins enlarges the spectrum of Ca2+–virus interplay and expands the total scenario of viral calciomics.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, 50 Decatur St., Atlanta, GA 30303 USA
| | | | | |
Collapse
|
23
|
Díaz Y, Chemello ME, Peña F, Aristimuño OC, Zambrano JL, Rojas H, Bartoli F, Salazar L, Chwetzoff S, Sapin C, Trugnan G, Michelangeli F, Ruiz MC. Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells. J Virol 2008; 82:11331-43. [PMID: 18787006 PMCID: PMC2573286 DOI: 10.1128/jvi.00577-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/28/2008] [Indexed: 12/22/2022] Open
Abstract
Rotavirus infection modifies Ca(2+) homeostasis, provoking an increase in Ca(2+) permeation, the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyto)), and total Ca(2+) pools and a decrease in Ca(2+) response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca(2+) and the amount of Ca(2+) sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca(2+) pools were evaluated as (45)Ca(2+) uptake. Infection with SA11 clone 28 induced an increase in Ca(2+) permeability and (45)Ca(2+) uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca(2+) homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased (45)Ca(2+) uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca(2+) homeostasis of infected cells through an initial increase of cell membrane permeability to Ca(2+).
Collapse
Affiliation(s)
- Yuleima Díaz
- Laboratorio de Fisiología Gastrointestinal, IVIC, Caracas 1020A, Venezuela
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Silencing of rotavirus NSP4 or VP7 expression reduces alterations in Ca2+ homeostasis induced by infection of cultured cells. J Virol 2008; 82:5815-24. [PMID: 18400845 DOI: 10.1128/jvi.02719-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rotavirus infection of cells in culture induces major changes in Ca(2+) homeostasis. These changes include increases in plasma membrane Ca(2+) permeability, cytosolic Ca(2+) concentration, and total cell Ca(2+) content and a reduction in the amount of Ca(2+) released from intracellular pools sensitive to agonists. Various lines of evidence suggest that the nonstructural glycoprotein NSP4 and possibly the major outer capsid glycoprotein VP7 are responsible for these effects. In order to evaluate the functional roles of NSP4 and other rotavirus proteins in the changes in Ca(2+) homeostasis observed in infected cells, the expressions of NSP4, VP7, and VP4 were silenced using the short interfering RNA (siRNA) technique. The transfection of specific siRNAs resulted in a strong and specific reduction of the expression of NSP4, VP7, and VP4 and decreased the yield of new viral progeny by more than 90%. Using fura-2 loaded cells, we observed that knocking down the expression of NSP4 totally prevented the increase in Ca(2+) permeability of the plasma membrane and cytosolic Ca(2+) concentration measured in infected cells. A reduction in the levels of VP7 expression partially reduced the effect of infection on plasma membrane Ca(2+) permeability and Ca(2+) pools released by agonist (ATP). In addition, the increase of total Ca(2+) content (as measured by (45)Ca(2+) uptake) observed in infected cells was reduced to the levels in mock-infected cells when NSP4 and VP7 were silenced. Finally, when the expression of VP4 was silenced, none of the disturbances of Ca(2+) homeostasis caused by rotaviruses in infected cells were affected. These data altogether indicate that NSP4 is the main protein responsible for the changes in Ca(2+) homeostasis observed in rotavirus-infected cultured cells. Nevertheless, VP7 may contribute to these effects.
Collapse
|
25
|
Ruiz MC, Aristimuño OC, Díaz Y, Peña F, Chemello ME, Rojas H, Ludert JE, Michelangeli F. Intracellular disassembly of infectious rotavirus particles by depletion of Ca2+ sequestered in the endoplasmic reticulum at the end of virus cycle. Virus Res 2007; 130:140-50. [PMID: 17643542 DOI: 10.1016/j.virusres.2007.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 05/31/2007] [Accepted: 06/11/2007] [Indexed: 01/24/2023]
Abstract
Rotavirus infection is characterized by a number of Ca(2+) dependent virus-cell interactions. The structure of rotavirus triple-layered particles (TLP) is dependent on Ca(2+) concentration. Acquisition of the capsid outer layer requires a high Ca(2+) concentration inside the ER. Infection modifies Ca(2+) homeostasis of the cell, increasing ER Ca(2+) content, which may be advantageous to virus replication. We studied the role of sequestered Ca(2+) on the stabilization of already mature viral particles within the ER. Thapsigargin (TG), a SERCA pump inhibitor, added for 30min at the end of infection depleted ER Ca(2+) and reduced the titer of already mature TLP accumulated in the cell. Another inhibitor, cyclopiazonic acid, and two Ca(2+) ionophores (A23187 and ionomycin) in the presence of EGTA had similar effects. TG eliminated the peak of radiolabeled TLP, increasing that of DLP in CsCl gradients. Electron microscopy revealed accumulation of clustered particles in the ER, which had lost their integrity. The [Ca(2+)] in the ER of infected cells is important for virus maturation and for maintaining the integrity of mature TLP. Viral particles in this compartment may be potentially infectious, already containing VP7 and VP4.
Collapse
Affiliation(s)
- Marie Christine Ruiz
- Laboratorio de Fisiología Gastrointestinal, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Martin-Latil S, Mousson L, Autret A, Colbère-Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol 2007; 81:4457-64. [PMID: 17301139 PMCID: PMC1900143 DOI: 10.1128/jvi.02344-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 02/05/2007] [Indexed: 12/30/2022] Open
Abstract
Rotaviruses are the leading cause of infantile viral gastroenteritis worldwide. Mature enterocytes of the small intestine infected by rotavirus undergo apoptosis, and their replacement by less differentiated dividing cells probably leads to defective absorptive function of the intestinal epithelium, which, in turn, contributes to osmotic diarrhea and rotavirus pathogenesis. Here we show that infection of MA104 cells by the simian rhesus rotavirus strain RRV induced caspase-3 activation, DNA fragmentation, and cleavage of poly(ADP-ribose) polymerase; all three phenomena are features of apoptosis. RRV induced the release of cytochrome c from mitochondria to the cytosol, indicating that the mitochondrial apoptotic pathway was activated. RRV infection of MA104 cells activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change. Most importantly, Bax-specific small interfering RNAs partially inhibited cytochrome c release in RRV-infected cells. Thus, mitochondrial dysfunction induced by rotavirus is Bax dependent. Apoptosis presumably leads to impaired intestinal functions, so our findings contribute to improving our understanding of rotavirus pathogenesis at the cellular level.
Collapse
Affiliation(s)
- Sandra Martin-Latil
- Unité de Biologie des Virus Entériques, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | | | | | | | |
Collapse
|
27
|
Iovane G, Pisanelli G, Pagnini U. Rotavirus diarrhoea in Buffaloes: epidemiology, pathogenesys and prophilaxis. ITALIAN JOURNAL OF ANIMAL SCIENCE 2007. [DOI: 10.4081/ijas.2007.s2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Bugarcic A, Taylor JA. Rotavirus nonstructural glycoprotein NSP4 is secreted from the apical surfaces of polarized epithelial cells. J Virol 2006; 80:12343-9. [PMID: 17035333 PMCID: PMC1676281 DOI: 10.1128/jvi.01378-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NSP4, a nonstructural glycoprotein encoded by rotavirus, is involved in the morphogenesis of virus particles in the endoplasmic reticulum of infected cells. NSP4 is also implicated in the pathophysiology of rotavirus-induced diarrhea by acting as an enterotoxin. To mediate enterotoxic effects in vivo, NSP4 must be secreted or released from rotavirus-infected cells in a soluble form; however, previous studies have indicated that NSP4 is a transmembrane glycoprotein localized within endomembrane compartments in infected cells. In this study, we examined the fate of NSP4 synthesized in Caco-2 cells infected with bovine rotavirus. Our studies reveal that NSP4 is actively secreted into the culture medium, preferentially from the infected-cell apical surface. The secretion of NSP4 is dramatically inhibited by brefeldin A and monensin, suggesting that a Golgi-dependent pathway is involved in release of the protein. In agreement with the proposed involvement of the Golgi apparatus during secretion, secreted NSP4 appears to undergo additional posttranslational modification compared to its cell-associated counterpart and is partially resistant to deglycosylation by endoglycosidase H. Our experiments identify a novel, soluble form of NSP4 secreted from virus-infected cells with the potential to carry out the enterotoxigenic role previously attributed to recombinant forms of the protein.
Collapse
Affiliation(s)
- Andrea Bugarcic
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
29
|
Berkova Z, Crawford SE, Trugnan G, Yoshimori T, Morris AP, Estes MK. Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J Virol 2006; 80:6061-71. [PMID: 16731945 PMCID: PMC1472611 DOI: 10.1128/jvi.02167-05] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rotavirus is a major cause of infantile viral gastroenteritis. Rotavirus nonstructural protein 4 (NSP4) has pleiotropic properties and functions in viral morphogenesis as well as pathogenesis. Recent reports show that the inhibition of NSP4 expression by small interfering RNAs leads to alteration of the production and distribution of other viral proteins and mRNA synthesis, suggesting that NSP4 also affects virus replication by unknown mechanisms. This report describes studies aimed at correlating the localization of intracellular NSP4 in cells with its functions. To be able to follow the localization of NSP4, we fused the C terminus of full-length NSP4 with the enhanced green fluorescent protein (EGFP) and expressed this fusion protein inducibly in a HEK 293-based cell line to avoid possible cytotoxicity. NSP4-EGFP was initially localized in the endoplasmic reticulum (ER) as documented by Endo H-sensitive glycosylation and colocalization with ER marker proteins. Only a small fraction of NSP4-EGFP colocalized with the ER-Golgi intermediate compartment (ERGIC) marker ERGIC-53. NSP4-EGFP did not enter the Golgi apparatus, in agreement with the Endo H sensitivity and a previous report that secretion of an NSP4 cleavage product generated in rotavirus-infected cells is not inhibited by brefeldin A. A significant population of expressed NSP4-EGFP was distributed in novel vesicular structures throughout the cytoplasm, not colocalizing with ER, ERGIC, Golgi, endosomal, or lysosomal markers, thus diverging from known biosynthetic pathways. The appearance of vesicular NSP4-EGFP was dependent on intracellular calcium levels, and vesicular NSP4-EGFP colocalized with the autophagosomal marker LC3. In rotavirus-infected cells, NSP4 colocalized with LC3 in cap-like structures associated with viroplasms, the site of nascent viral RNA replication, suggesting a possible new mechanism for the involvement of NSP4 in virus replication.
Collapse
Affiliation(s)
- Z Berkova
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030-3404, USA
| | | | | | | | | | | |
Collapse
|
30
|
Rodríguez-Díaz J, Banasaz M, Istrate C, Buesa J, Lundgren O, Espinoza F, Sundqvist T, Rottenberg M, Svensson L. Role of nitric oxide during rotavirus infection. J Med Virol 2006; 78:979-85. [PMID: 16721855 DOI: 10.1002/jmv.20650] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pathophysiological mechanisms behind rotavirus-induced diarrhoea still remain incomplete. Current views suggest that the non-structural protein 4 (NSP4) of rotavirus and the enteric nervous system (ENS) participate in water secretion and diarrhoea. In the present work the role of nitric oxide (NO) in rotavirus infection and disease has been studied in vitro, mice and humans. Incubation of human intestinal epithelial cells (HT-29) with purified NSP4 but not with infectious virus produced NO2/NO3 accumulation in the incubation media. The NSP4-induced release of NO metabolites occurred within the first minutes after the addition of the toxin. Mice infected with murine rotavirus (strain EDIM) accumulated NO2/NO3 in the urine at the onset for diarrhoea. Following rotavirus infection, inducible nitric oxide synthetase (iNOS) mRNA was upregulated in ileum, but not in duodenum or jejunum of newborn pups within 5 days post-infection. A prospective clinical study including 46 children with acute rotavirus infection and age-matched controls concluded that rotavirus infection stimulates NO production during the course of the disease (P < 0.001). These observations identify NO as an important mediator of host responses during rotavirus infection.
Collapse
|
31
|
Ruiz MC, Díaz Y, Peña F, Aristimuño OC, Chemello ME, Michelangeli F. Ca2+ permeability of the plasma membrane induced by rotavirus infection in cultured cells is inhibited by tunicamycin and brefeldin A. Virology 2005; 333:54-65. [PMID: 15708592 DOI: 10.1016/j.virol.2004.12.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/18/2004] [Accepted: 12/05/2004] [Indexed: 11/17/2022]
Abstract
Rotavirus infection of cultured cells induces a progressive increase in plasma membrane permeability to Ca2+. The viral product responsible for this effect is not known. We have used tunicamycin and brefeldin A to prevent glycosylation and membrane traffic and study the involvement of viral glycoproteins, NSP4 and/or VP7, in rotavirus-infected HT29 and MA104 cells. In infected cells, we observed an increase of plasma membrane Ca2+ permeability and a progressive depletion of agonist-releasable ER pools measured with fura 2 and an enhancement of total Ca2+ content measured as 45Ca2+ uptake. Tunicamycin inhibited the increase in membrane Ca2+ permeability, induced a depletion of agonist-releasable and 45Ca2+-sequestered pools. Brefeldin A inhibited the increase of Ca2+ permeability and the increase in 45Ca2+ uptake induced by infection. We propose that the glycosylated viral product NSP4 (and/or VP7) travels to the plasma membrane to form a Ca2+ channel and hence elevate Ca2+ permeability.
Collapse
Affiliation(s)
- Marie Christine Ruiz
- Laboratorio de Fisiología Gastrointestinal, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela.
| | | | | | | | | | | |
Collapse
|
32
|
Viral Proteins that Enhance Membrane Permeability. VIRAL MEMBRANE PROTEINS: STRUCTURE, FUNCTION, AND DRUG DESIGN 2005. [PMCID: PMC7122156 DOI: 10.1007/0-387-28146-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Affiliation(s)
- Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Tafazoli F, Zeng CQ, Estes MK, Magnusson KE, Svensson L. NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J Virol 2001; 75:1540-6. [PMID: 11152526 PMCID: PMC114059 DOI: 10.1128/jvi.75.3.1540-1546.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonstructural NSP4 protein of rotavirus has been described as the first viral enterotoxin. In this study we have examined the effect of NSP4 on polarized epithelial cells (MDCK-1) grown on permeable filters. Apical but not basolateral administration of NSP4 was found to cause a reduction in the transepithelial electrical resistance, redistribution of filamentous actin, and an increase in paracellular passage of fluorescein isothiocyanate-dextran. Significant effects on transepithelial electrical resistance were noted after a 20- to 30-h incubation with 1 nmol of NSP4. Most surprisingly, the epithelium recovered its original integrity and electrical resistance upon removal of NSP4. Preincubation of nonconfluent MDCK-1 cells with NSP4 prevented not only development of a permeability barrier but also lateral targeting of the tight-junction-associated Zonula Occludens-1 (ZO-1) protein. Taken together, these data indicate new and specific effects of NSP4 on tight-junction biogenesis and show a novel effect of NSP4 on polarized epithelia.
Collapse
Affiliation(s)
- F Tafazoli
- Division of Medical Microbiology, Department of Health and Environment, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
35
|
Brunet JP, Jourdan N, Cotte-Laffitte J, Linxe C, Géniteau-Legendre M, Servin A, Quéro AM. Rotavirus infection induces cytoskeleton disorganization in human intestinal epithelial cells: implication of an increase in intracellular calcium concentration. J Virol 2000; 74:10801-6. [PMID: 11044126 PMCID: PMC110956 DOI: 10.1128/jvi.74.22.10801-10806.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus infection is the most common cause of severe infantile gastroenteritis worldwide. In vivo, rotavirus exhibits a marked tropism for the differentiated enterocytes of the intestinal epithelium. In vitro, differentiated and undifferentiated intestinal cells can be infected. We observed that rotavirus infection of the human intestinal epithelial Caco-2 cells induces cytoskeleton alterations as a function of cell differentiation. The vimentin network disorganization detected in undifferentiated Caco-2 cells was not found in fully differentiated cells. In contrast, differentiated Caco-2 cells presented Ca(2+)-dependent microtubule disassembly and Ca(2+)-independent cytokeratin 18 rearrangement, which both require viral replication. We propose that these structural alterations could represent the first manifestations of rotavirus-infected enterocyte injury leading to functional perturbations and then to diarrhea.
Collapse
Affiliation(s)
- J P Brunet
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie, Université Paris XI, 92296 Ch atenay-Malabry cedex, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ruiz MC, Cohen J, Michelangeli F. Role of Ca2+in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium 2000; 28:137-49. [PMID: 11020376 DOI: 10.1054/ceca.2000.0142] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ca2+ plays a key role in many pathological processes, including viral infections. Rotavirus, the major etiological agent of viral gastroenteritis in children and young animals, provides a useful model to study a number of Ca2+ dependent virus-cell interactions. Rotavirus entry, activation of transcription, morphogenesis, cell lysis, particle release, and the distant action of viral proteins are Ca2+ dependent processes. In the extracellular medium, Ca2+ stabilizes the structure of the viral capsid. During entry into the cell the low cytoplasmic Ca2+ concentration induced the solubilization of the outer protein layer of the capsid and transcriptase activation. Viral protein synthesis modifies Ca2+ homeostasis which, in turn, favours viral morphogenesis and induces cell death. The generation of diarrhea is a multifactorial process involving Ca2+ dependent secretory processes of mediators and water and electrolytes, as well as the induction of cell death in the different cell types that compose the intestinal epithelium. The discovery of the non-structural viral protein NSP4 as a viral enterotoxin and the possible participation of the enteric nervous system in the pathogenesis of diarrhea represent significant advances in its understanding. Ca2+ also plays a role in the replication cycles and pathogenesis of other viral diseases such as poliovirus, Coxsackie virus, cytomegalovirus, vaccinia and measles virus and HIV.
Collapse
Affiliation(s)
- M C Ruiz
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC) Caracas, Venezuela
| | | | | |
Collapse
|
37
|
Browne EP, Bellamy AR, Taylor JA. Membrane-destabilizing activity of rotavirus NSP4 is mediated by a membrane-proximal amphipathic domain. J Gen Virol 2000; 81:1955-1959. [PMID: 10900033 DOI: 10.1099/0022-1317-81-8-1955] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the rotavirus non-structural glycoprotein NSP4 in E. coli leads to a decrease in optical density of the culture and release of [(3)H]uridine into the medium, effects attributable to the ability of NSP4 to perturb the bacterial membrane. To identify a domain of NSP4 responsible, different regions of the polypeptide were expressed in E. coli. Membrane destabilization is associated with a region of the protein located within residues 48-91, which includes a potential cationic amphipathic helix. A second region of NSP4 that contains a coiled-coil oligomerization domain and a sequence reported to function as a viral enterotoxin enhances the membrane-destabilizing activity of residues 48-91, but has no direct effect on the membrane stability. These studies suggest that the membrane-destabilizing and enterotoxic properties of NSP4 may be mediated by different regions of the polypeptide and suggest a possible basis for the cytotoxicity of NSP4 in mammalian cells.
Collapse
Affiliation(s)
- Edward P Browne
- Microbiology and Virology Research Group, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand1
| | - A Richard Bellamy
- Microbiology and Virology Research Group, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand1
| | - John A Taylor
- Microbiology and Virology Research Group, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand1
| |
Collapse
|
38
|
Brunet JP, Cotte-Laffitte J, Linxe C, Quero AM, Géniteau-Legendre M, Servin A. Rotavirus infection induces an increase in intracellular calcium concentration in human intestinal epithelial cells: role in microvillar actin alteration. J Virol 2000; 74:2323-32. [PMID: 10666263 PMCID: PMC111714 DOI: 10.1128/jvi.74.5.2323-2332.2000] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotaviruses, which infect mature enterocytes of the small intestine, are recognized as the most important cause of viral gastroenteritis in young children. We have previously reported that rotavirus infection induces microvillar F-actin disassembly in human intestinal epithelial Caco-2 cells (N. Jourdan, J. P. Brunet, C. Sapin, A. Blais, J. Cotte-Laffitte, F. Forestier, A. M. Quero, G. Trugnan, and A. L. Servin, J. Virol. 72:7228-7236, 1998). In this study, to determine the mechanism responsible for rotavirus-induced F-actin alteration, we investigated the effect of infection on intracellular calcium concentration ([Ca(2+)](i)) in Caco-2 cells, since Ca(2+) is known to be a determinant factor for actin cytoskeleton regulation. As measured by quin2 fluorescence, viral replication induced a progressive increase in [Ca(2+)](i) from 7 h postinfection, which was shown to be necessary and sufficient for microvillar F-actin disassembly. During the first hours of infection, the increase in [Ca(2+)](i) was related only to an increase in Ca(2+) permeability of plasmalemma. At a late stage of infection, [Ca(2+)](i) elevation was due to both extracellular Ca(2+) influx and Ca(2+) release from the intracellular organelles, mainly the endoplasmic reticulum (ER). We noted that at this time the [Ca(2+)](i) increase was partially related to a phospholipase C (PLC)-dependent mechanism, which probably explains the Ca(2+) release from the ER. We also demonstrated for the first time that viral proteins or peptides, released into culture supernatants of rotavirus-infected Caco-2 cells, induced a transient increase in [Ca(2+)](i) of uninfected Caco-2 cells, by a PLC-dependent efflux of Ca(2+) from the ER and by extracellular Ca(2+) influx. These supernatants induced a Ca(2+)-dependent microvillar F-actin alteration in uninfected Caco-2 cells, thus participating in rotavirus pathogenesis.
Collapse
Affiliation(s)
- J P Brunet
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie, Université Paris XI, 92296 Châtenay-Malabry cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Tian P, Ottaiano A, Reilly PA, Udem S, Zamb T. The authentic sequence of rotavirus SA11 nonstructural protein NSP4. Virus Res 2000; 66:117-22. [PMID: 10725544 DOI: 10.1016/s0168-1702(99)00130-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent studies demonstrate that the rotavirus nonstructural protein NSP4 functions as an enterotoxin and plays an important role in viral pathogenesis. Previous in vitro studies of NSP4 have used a cDNA clone of gene 10 derived from the prototypic rotavirus strain, SA11. We recently compared the sequence of the commonly used NSP4 cDNA with the sequence obtained from several SA11 isolates by direct sequencing of reverse transcription polymerase chain reaction products. One codon difference was identified between the cDNA clone and the SA11 virus isolates, and this resulted in a predicted amino acid substitution at position 47. The cDNA sequence specifies an asparagine at position 47, and the SA11 virus gene 10 encodes a hisitidine. To determine if this amino acid substitution altered the function of NSP4, we analyzed the ability of both NSP4-Asn47 and NSP4-His47 to regulate intracellular calcium levels and exhibit cell cytotoxicity. Our results indicate that the expression of NSP4-His47 from a recombinant baculovirus displays enhanced cytotoxicity and calcium flux.
Collapse
Affiliation(s)
- P Tian
- Viral Vaccine Research, Wyeth-Lederle Vaccines, Building 180/216-16, 401 North Middleton Road, Pearl River, NY 10965, USA.
| | | | | | | | | |
Collapse
|
40
|
Morris AP, Scott JK, Ball JM, Zeng CQ, O'Neal WK, Estes MK. NSP4 elicits age-dependent diarrhea and Ca(2+)mediated I(-) influx into intestinal crypts of CF mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G431-44. [PMID: 10444458 DOI: 10.1152/ajpgi.1999.277.2.g431] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Homologous disruption of the murine gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) leads to the loss of cAMP-mediated ion transport. Mice carrying this gene defect exhibit meconium ileus at birth and gastrointestinal plugging during the neonatal period, both contributing to high rates of mortality. We investigated whether infectious mammalian rotavirus, the recently characterized rotaviral enterotoxin protein NSP4, or its active NSP4(114-135) peptide, can overcome these gastrointestinal complications in CF (CFTR(m3Bay) null mutation) mice. All three agents elicited diarrhea when administered to wild-type (CFTR(+/+)), heterozygous (CFTR(+/-)), or homozygous (CFTR(-/-)) 7- to 14-day-old mouse pups but were ineffective when given to older mice. The diarrheal response was accompanied by non-age-dependent intracellular Ca(2+) mobilization within both small and large intestinal crypt epithelia. Significantly, NSP4 elicited cellular I(-) influx into intestinal epithelial cells from all three genotypes, whereas both carbachol and the cAMP-mobilizing agonist forskolin failed to evoke influx in the CFTR(-/-) background. This unique plasma membrane halide permeability pathway was age dependent, being observed only in mouse pup crypts, and was abolished by either the removal of bath Ca(2+) or the transport inhibitor DIDS. These findings indicate that NSP4 or its active peptide may induce diarrhea in neonatal mice through the activation of an age- and Ca(2+)-dependent plasma membrane anion permeability distinct from CFTR. Furthermore, these results highlight the potential for developing synthetic analogs of NSP4(114-135) to counteract chronic constipation/obstructive bowel syndrome in CF patients.
Collapse
Affiliation(s)
- A P Morris
- Department of Integrative Biology, University of Texas at Houston Health Science Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Pérez JF, Ruiz MC, Chemello ME, Michelangeli F. Characterization of a membrane calcium pathway induced by rotavirus infection in cultured cells. J Virol 1999; 73:2481-90. [PMID: 9971833 PMCID: PMC104495 DOI: 10.1128/jvi.73.3.2481-2490.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Some viruses induce changes in membrane permeability during infection. We have shown previously that the porcine strain of rotavirus, OSU, induced an increase in the permeability to Na+, K+, and Ca2+ during replication in MA104 cells. In this work, we have characterized the divalent cation entry pathway by measuring intracellular Ca2+ in fura-2-loaded MA104 and HT29 cells in suspension. The permeability to Ca2+ and other cations was evaluated by the change of the intracellular concentration following an extracellular cation pulse. Rotavirus infection induced an increase in permeability to Ca2+, Ba2+, Sr2+, Mn2+, and Co2+. The rate of cation entry decreased over time as the intracellular concentration increased during the first 20 s. This indicates that regulatory mechanisms, including channel inactivation, are triggered. La3+ did not enter the cell and blocked the entry of the divalent cations in a dose-dependent manner. Metoxyverapamil (D600), a blocker of L-type voltage-gated channels, partially inhibited the entry of Ca2+ in virus-infected MA104 and HT29 cells. The results suggest that rotavirus infection of cultured cells activates a cation channel rather than nonspecific permeation through the plasma membrane. This activation involves the synthesis of viral proteins through mechanisms yet unknown. The increase in intracellular Ca2+ induced by the activation of this channel may be related to the increase in cytoplasmic and endoplasmic reticulum Ca2+ pools required for virus maturation and cell death.
Collapse
Affiliation(s)
- J F Pérez
- Laboratorio de Fisiología Gastrointestinal, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela
| | | | | | | |
Collapse
|
42
|
|
43
|
Pérez JF, Chemello ME, Liprandi F, Ruiz MC, Michelangeli F. Oncosis in MA104 cells is induced by rotavirus infection through an increase in intracellular Ca2+ concentration. Virology 1998; 252:17-27. [PMID: 9875312 DOI: 10.1006/viro.1998.9433] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotavirus infection modifies the metabolism and ionic homeostasis of the host cell. First, there is an induction of viral synthesis with a parallel shutoff of cell protein production, followed by an increase of plasma membrane Ca2+ permeability, thereby inducing an increase of free cytoplasmic and sequestered Ca2+ concentrations. Cell death follows at a later stage. We studied the role of the increase in Ca2+ concentration in cell death. An elevation of extracellular Ca2+ concentration during infection induced an increase in [Ca2+]i and potentiated cell death. Buffering the increases in [Ca2+]i with BAPTA added at 6 h p.i. reduced the cytopathic effect without inhibiting viral protein synthesis and infectious particle production. Metoxyverapamil (D600), a Ca2+ channel inhibitor, added at 1 h p.i. reduced Ca2+ permeability, the increases in [Ca2+]i, and cell death produced by infection without modifying viral protein synthesis and infectious titer. Thapsigargin, the inhibitor of Ca(2+)-ATPase of endoplasmic reticulum, potentiated the increase of [Ca2+]i and accelerated the time course of cell death. Double staining with fluorescein diacetate and ethidium bromide or acridine orange and ethidium bromide showed that infected MA104 cells had lost plasma membrane integrity without DNA fragmentation or formation of apoptotic bodies. These results support the hypothesis that the increase in [Ca2+]i due to a product of viral protein synthesis triggers the chain of events that leads to cell death by oncosis.
Collapse
Affiliation(s)
- J F Pérez
- Laboratorio de Fisiología Gastrointestinal, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | | | | | | |
Collapse
|
44
|
Xu A, Bellamy AR, Taylor JA. BiP (GRP78) and endoplasmin (GRP94) are induced following rotavirus infection and bind transiently to an endoplasmic reticulum-localized virion component. J Virol 1998; 72:9865-72. [PMID: 9811722 PMCID: PMC110498 DOI: 10.1128/jvi.72.12.9865-9872.1998] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus infection induces profound alterations in the morphology and biochemistry of the host cell. Using two-dimensional (2D) gel electrophoresis combined with metabolic labeling, we have identified four proteins that are specifically upregulated in rotavirus-infected cells. Two of these have been identified as BiP (GRP78) and endoplasmin (GRP94), members of a family of glucose-regulated chaperone proteins that reside in the endoplasmic reticulum (ER) lumen, the site of rotavirus morphogenesis. The level of mRNA and the transcriptional activity of the BiP and endoplasmin genes are increased markedly in rotavirus-infected cells, and these genes are also induced when a single rotavirus protein, the nonstructural glycoprotein NSP4, is expressed in MA104 cells. However, NSP4 does not associate with either BiP or endoplasmin, implying that the mechanism of BiP and endoplasmin gene activation by NSP4 may differ from that triggered by viral membrane glycoproteins of other viruses. The interaction of BiP and endoplasmin with rotavirus structural polypeptides suggests that these chaperones are involved in the process of viral maturation in the ER lumen.
Collapse
Affiliation(s)
- A Xu
- Biochemistry and Molecular Biology Research Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
45
|
Jourdan N, Brunet JP, Sapin C, Blais A, Cotte-Laffitte J, Forestier F, Quero AM, Trugnan G, Servin AL. Rotavirus infection reduces sucrase-isomaltase expression in human intestinal epithelial cells by perturbing protein targeting and organization of microvillar cytoskeleton. J Virol 1998; 72:7228-36. [PMID: 9696817 PMCID: PMC109945 DOI: 10.1128/jvi.72.9.7228-7236.1998] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus infection is the most common cause of severe infantile gastroenteritis worldwide. These viruses infect mature enterocytes of the small intestine and cause structural and functional damage, including a reduction in disaccharidase activity. It was previously hypothesized that reduced disaccharidase activity resulted from the destruction of rotavirus-infected enterocytes at the villus tips. However, this pathophysiological model cannot explain situations in which low disaccharidase activity is observed when rotavirus-infected intestine exhibits few, if any, histopathologic changes. In a previous study, we demonstrated that the simian rotavirus strain RRV replicated in and was released from human enterocyte-like Caco-2 cells without cell destruction (N. Jourdan, M. Maurice, D. Delautier, A. M. Quero, A. L. Servin, and G. Trugnan, J. Virol. 71:8268-8278, 1997). In the present study, to reinvestigate disaccharidase expression during rotavirus infection, we studied sucrase-isomaltase (SI) in RRV-infected Caco-2 cells. We showed that SI activity and apical expression were specifically and selectively decreased by RRV infection without apparent cell destruction. Using pulse-chase experiments and cell surface biotinylation, we demonstrated that RRV infection did not affect SI biosynthesis, maturation, or stability but induced the blockade of SI transport to the brush border. Using confocal laser scanning microscopy, we showed that RRV infection induces important alterations of the cytoskeleton that correlate with decreased SI apical surface expression. These results lead us to propose an alternate model to explain the pathophysiology associated with rotavirus infection.
Collapse
Affiliation(s)
- N Jourdan
- Institut National de la Santé et de la Recherche Médicale, CJF 94 07, Pathogénie Cellulaire et Moléculaire des Microorganismes Entérovirulents, Faculté de Pharmacie, Université Paris XI, 92296 Chatenay-Malabry Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Newton K, Meyer JC, Bellamy AR, Taylor JA. Rotavirus nonstructural glycoprotein NSP4 alters plasma membrane permeability in mammalian cells. J Virol 1997; 71:9458-65. [PMID: 9371607 PMCID: PMC230251 DOI: 10.1128/jvi.71.12.9458-9465.1997] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The endoplasmic reticulum-localized transmembrane glycoprotein NSP4 of rotavirus is a key protein involved in rotavirus cytopathology. We have used a dual-recombinant vaccinia virus system to express NSP4 in monkey kidney epithelial cells at a level comparable to that observed during rotavirus infection. Expression of NSP4 results in loss of plasma membrane integrity, which can be demonstrated by release of both 51Cr and lactate dehydrogenase into the medium. The cytotoxic behavior of NSP4 is dose dependent, and morphological analysis reveals gross changes to cell ultrastructure, indicative of cell death. Thus, intracellular expression of a single rotavirus protein which localizes to the endoplasmic reticulum membrane has profound effects on the stability of the plasma membrane and cell viability. Analysis of NSP4 deletion mutants indicates that a membrane-proximal region located within the cytoplasmic domain may mediate cytotoxicity.
Collapse
Affiliation(s)
- K Newton
- Biochemistry and Molecular Biology, School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
47
|
Aldabe R, Irurzun A, Carrasco L. Poliovirus protein 2BC increases cytosolic free calcium concentrations. J Virol 1997; 71:6214-7. [PMID: 9223520 PMCID: PMC191886 DOI: 10.1128/jvi.71.8.6214-6217.1997] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Poliovirus-infected cells undergo an increase in cytoplasmic calcium concentrations from the 4th h postinfection. The protein responsible for this effect was identified by the expression of different poliovirus nonstructural proteins in HeLa cells by using a recombinant vaccinia virus system. Synthesis of protein 2BC enhances cytoplasmic calcium concentrations in a manner similar to that observed in poliovirus-infected cells. To identify the regions in 2BC involved in modifying cytoplasmic calcium levels, several 2BC variants were generated. Regions present in both 2B and 2C are necessary to augment cellular free calcium levels. Therefore, in addition to inducing proliferation of membranous vesicles, poliovirus protein 2BC also alters cellular calcium homeostasis.
Collapse
Affiliation(s)
- R Aldabe
- Centro de Biología Molecular, UAM-CSIC, Universidad Autonoma de Madrid, Canto Blanco, Spain
| | | | | |
Collapse
|
48
|
van Kuppeveld FJ, Hoenderop JG, Smeets RL, Willems PH, Dijkman HB, Galama JM, Melchers WJ. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 1997; 16:3519-32. [PMID: 9218794 PMCID: PMC1169977 DOI: 10.1093/emboj/16.12.3519] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Digital-imaging microscopy was performed to study the effect of Coxsackie B3 virus infection on the cytosolic free Ca2+ concentration and the Ca2+ content of the endoplasmic reticulum (ER). During the course of infection a gradual increase in the cytosolic free Ca2+ concentration was observed, due to the influx of extracellular Ca2+. The Ca2+ content of the ER decreased in time with kinetics inversely proportional to those of viral protein synthesis. Individual expression of protein 2B was sufficient to induce the influx of extracellular Ca2+ and to release Ca2+ from ER stores. Analysis of mutant 2B proteins showed that both a cationic amphipathic alpha-helix and a second hydrophobic domain in 2B were required for these activities. Consistent with a presumed ability of protein 2B to increase membrane permeability, viruses carrying a mutant 2B protein exhibited a defect in virus release. We propose that 2B gradually enhances membrane permeability, thereby disrupting the intracellular Ca2+ homeostasis and ultimately causing the membrane lesions that allow release of virus progeny.
Collapse
Affiliation(s)
- F J van Kuppeveld
- Department of Medical Microbiology, University of Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Coulson BS, Londrigan SL, Lee DJ. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci U S A 1997; 94:5389-94. [PMID: 9144247 PMCID: PMC24688 DOI: 10.1073/pnas.94.10.5389] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rotavirus contains two outer capsid viral proteins, the spike protein VP4 and major capsid component VP7, both of which are implicated in cell entry. We show that VP4 and VP7 contain tripeptide sequences previously shown to act as recognition sites for integrins in extracellular matrix proteins. VP4 contains the alpha2beta1 integrin ligand site DGE. In VP7, the alphaxbeta2 integrin ligand site GPR and the alpha4beta1 integrin ligand site LDV are embedded in a novel disintegrin-like domain that also shows sequence similarity to fibronectin and the tie receptor tyrosine kinase. Microorganism sequence homology to these ligand motifs and to disintegrins has not been reported previously. In our experiments, peptides including these rotaviral tripeptides and mAbs directed to these integrins specifically blocked rotavirus infection of cells shown to express alpha2beta1 and beta2 integrins. Rotavirus VP4-mediated cell entry may involve the alpha2beta1 integrin, whereas VP7 appears to interact with alphaxbeta2 and alpha4beta1 integrins.
Collapse
Affiliation(s)
- B S Coulson
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
50
|
Dong Y, Zeng CQ, Ball JM, Estes MK, Morris AP. The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1,4,5-trisphosphate production. Proc Natl Acad Sci U S A 1997; 94:3960-5. [PMID: 9108087 PMCID: PMC20550 DOI: 10.1073/pnas.94.8.3960] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1996] [Accepted: 01/31/1997] [Indexed: 02/04/2023] Open
Abstract
Rotavirus infection is the leading cause of severe diarrhea in infants and young children worldwide. The rotavirus nonstructural protein NSP4 acts as a viral enterotoxin to induce diarrhea and causes Ca2+-dependent transepithelial Cl- secretion in young mice. The cellular basis of this phenomenon was investigated in an in vitro cell line model for the human intestine. Intracellular calcium concentration ([Ca2+]i) was monitored in fura-2-loaded HT-29 cells using microscope-based fluorescence imaging. NSP4 (1 nM to 5 microM) induced both Ca2+ release from intracellular stores and plasmalemma Ca2+ influx. During NSP4-induced [Ca2+]i mobilization, [Na+]i homeostasis was not disrupted, demonstrating that NSP4 selectively regulated extracellular Ca2+ entry into these cells. The ED50 of the NSP4 effect on peak [Ca2+]i mobilization was 4.6 +/- 0.8 nM. Pretreatment of cells with either 2.3 x 10(-3) units/ml trypsin or 4.4 x 10(-2) units/ml chymotrypsin for 1-10 min abolished the NSP4-induced [Ca2+]i mobilization. Superfusing cells with U-73122, an inhibitor of phospholipase C, ablated the NSP4 response. NSP4 induced a rapid onset and transient stimulation of inositol 1,4,5-trisphosphate (IP3) production in an IP3-specific radioreceptor assay. Taken together, these results suggest that NSP4 mobilizes [Ca2+]i in human intestinal cells through receptor-mediated phospholipase C activation and IP3 production.
Collapse
Affiliation(s)
- Y Dong
- Division of Molecular Virology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|