1
|
Messina M, Barnes S, Setchell KD. Perspective: Isoflavones-Intriguing Molecules but Much Remains to Be Learned about These Soybean Constituents. Adv Nutr 2025; 16:100418. [PMID: 40157603 DOI: 10.1016/j.advnut.2025.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Isoflavones are naturally occurring compounds found in a wide range of plants, but among commonly consumed foods are especially abundant in soybeans and foods derived from this legume. Much of the substantial amount of research conducted on soy protein and soy foods over the past 30 y is because of their isoflavone content. Research interest in isoflavones increased dramatically beginning in the early 1990s as evidence highlighted their possible role in the prevention of a wide range of cancers, including breast, prostate, and colon cancer. Recognition that isoflavones preferentially bind to estrogen receptor (ER)β in comparison with ERα provided a conceptual basis for classifying these diphenolic molecules as selective ER modulators (SERMs). Isoflavone research soon greatly expanded beyond cancer to include areas such as coronary artery disease, bone health, cognitive function, and vasomotor symptoms of menopause. Nevertheless, safety concerns about isoflavones, based primarily on the results of rodent studies and presumed estrogenic effects, also arose. However, recent work challenges the traditional view of the estrogenicity of isoflavones. Furthermore, safety concerns have largely been refuted by intervention and population studies. On the other hand, investigation of the proposed benefits of isoflavones has produced inconsistent data. The small sample size and short duration common to many intervention trials, combined with marked interindividual differences in isoflavone metabolism, likely contribute to the conflicting findings. Also, many different intervention products have been employed, which vary not only in the total amount, but also in the relative proportion of the 3 soybean isoflavones, and the form in which they are delivered (glycoside compared with aglycone). For those interested in exploring the proposed benefits of isoflavones, studies justify an intake recommendation of ∼50 mg/d, an amount provided by ∼2 servings of traditional Asian soy foods.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Science and Research, Soy Nutrition Institute Global, Washington, DC, United States.
| | - Stephen Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth Dr Setchell
- Clinical Mass Spectrometry, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
2
|
Kalandakanond-Thongsong S, Daendee S, Tongta S, Thongsong B, Srikiatkhachorn A. Preventive and therapeutic effects of genistein and daidzein on anxiety-like behaviors in ovariectomized rats. Neurosci Lett 2025; 845:138073. [PMID: 39647693 DOI: 10.1016/j.neulet.2024.138073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Estrogen has demonstrated beneficial effects; however, it can also have unfavorable effects. Phytoestrogens are present in many consumable products and commonly used as supplements. These are of interest as they may have beneficial effects on mood with fewer undesirable effects on reproductive tissues. This study investigated the anxiolytic-like effects of the phytoestrogens genistein and daidzein on ovariectomized (Ovx) rats and their effects on the expression of uterine estrogen receptors (ER) and brain monoamines. In experiment 1, Ovx rats received either vehicle, 17β-estradiol, or 0.25 - 1 mg/kg of genistein or daidzein for 4 weeks before behavioral tests of anxiety. In experiment 2, we assessed the therapeutic effects of genistein and daidzein. The ovariectomies were used to induce anxiety, so the treatments were started 3 weeks post-ovariectomy. The Ovx rats received vehicle, 17β-estradiol, or 0.25 mg/kg of genistein or daidzein daily for 4 weeks before behavioral tests. We found daidzein and genistein comparable to 17β-estradiol in their anxiolytic-like effects. Further, while 17β-estradiol decreased body weight gain, increased uterine weight, and increased the uterine ERα/ERβ ratio, neither genistein nor daidzein had these undesirable effects. The alterations in brain monoamines following genistein or daidzein treatments were somewhat different from those seen after 17β-estradiol treatment. In conclusion, daily daidzein or genistein administration for 4 weeks did not negatively affect body weight, food intake, uterine tissue, uterine ER expressions, or ERα/ERβ ratio but demonstrated anxiolytic-like effects on Ovx rats. We conclude that low-dose (0.25 mg/kg) genistein or daidzein can alleviate anxiety in a female anxious rat model.
Collapse
Affiliation(s)
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Sushawadee Tongta
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonrit Thongsong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
3
|
Genistein, a tool for geroscience. Mech Ageing Dev 2022; 204:111665. [DOI: 10.1016/j.mad.2022.111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
|
4
|
Liu M, Wang G, Xu R, Shen C, Ni H, Lai R. Soy Isoflavones Inhibit Both GPIb-IX Signaling and αIIbβ3 Outside-In Signaling via 14-3-3ζ in Platelet. Molecules 2021; 26:4911. [PMID: 34443497 PMCID: PMC8399232 DOI: 10.3390/molecules26164911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
Soy diet is thought to help prevent cardiovascular diseases in humans. Isoflavone, which is abundant in soybean and other legumes, has been reported to possess antiplatelet activity and potential antithrombotic effect. Our study aims to elucidate the potential target of soy isoflavone in platelet. The anti-thrombosis formation effect of genistein and daidzein was evaluated in ex vivo perfusion chamber model under low (300 s-1) and high (1800 s-1) shear forces. The effect of genistein and daidzein on platelet aggregation and spreading was evaluated with platelets from both wildtype and GPIbα deficient mice. The interaction of these soy isoflavone with 14-3-3ζ was detected by surface plasmon resonance (SPR) and co-immunoprecipitation, and the effect of αIIbβ3-mediated outside-in signaling transduction was evaluated by western blot. We found both genistein and daidzein showed inhibitory effect on thrombosis formation in perfusion chamber, especially under high shear force (1800 s-1). These soy isoflavone interact with 14-3-3ζ and inhibited both GPIb-IX and αIIbβ3-mediated platelet aggregation, integrin-mediated platelet spreading and outside-in signaling transduction. Our findings indicate that 14-3-3ζ is a novel target of genistein and daidzein. 14-3-3ζ, an adaptor protein that regulates both GPIb-IX and αIIbβ3-mediated platelet activation is involved in soy isoflavone mediated platelet inhibition.
Collapse
Affiliation(s)
- Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China;
| | - Gan Wang
- Key Laboratory of Bioactive Peptides, Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650032, China; (G.W.); (R.X.)
| | - Runjia Xu
- Key Laboratory of Bioactive Peptides, Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650032, China; (G.W.); (R.X.)
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; (C.S.); (H.N.)
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; (C.S.); (H.N.)
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON M5G 2M1, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ren Lai
- Key Laboratory of Bioactive Peptides, Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650032, China; (G.W.); (R.X.)
| |
Collapse
|
5
|
Lourenço de Freitas N, Deberaldini MG, Gomes D, Pavan AR, Sousa Â, Dos Santos JL, Soares CP. Histone Deacetylase Inhibitors as Therapeutic Interventions on Cervical Cancer Induced by Human Papillomavirus. Front Cell Dev Biol 2021; 8:592868. [PMID: 33634093 PMCID: PMC7901962 DOI: 10.3389/fcell.2020.592868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
The role of epigenetic modifications on the carcinogenesis process has received a lot of attention in the last years. Among those, histone acetylation is a process regulated by histone deacetylases (HDAC) and histone acetyltransferases (HAT), and it plays an important role in epigenetic regulation, allowing the control of the gene expression. HDAC inhibitors (HDACi) induce cancer cell cycle arrest, differentiation, and cell death and reduce angiogenesis and other cellular events. Human papillomaviruses (HPVs) are small, non-enveloped double-stranded DNA viruses. They are major human carcinogens, being intricately linked to the development of cancer in 4.5% of the patients diagnosed with cancer worldwide. Long-term infection of high-risk (HR) HPV types, mainly HPV16 and HPV18, is one of the major risk factors responsible for promoting cervical cancer development. In vitro and in vivo assays have demonstrated that HDACi could be a promising therapy to HPV-related cervical cancer. Regardless of some controversial studies, the therapy with HDACi could target several cellular targets which HR-HPV oncoproteins could be able to deregulate. This review article describes the role of HDACi as a possible intervention in cervical cancer treatment induced by HPV, highlighting the main advances reached in the last years and providing insights for further investigations regarding those agents against cervical cancer.
Collapse
Affiliation(s)
- Natália Lourenço de Freitas
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Gabriela Deberaldini
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Diana Gomes
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Aline Renata Pavan
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ângela Sousa
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jean Leandro Dos Santos
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | - Christiane P. Soares
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
6
|
Alloisio S, Clericuzio M, Nobile M, Salis A, Damonte G, Canali C, Fortuna-Perez AP, Cornara L, Burlando B. Cannabis-like activity of Zornia latifolia Sm. detected in vitro on rat cortical neurons: major role of the flavone syzalterin. Drug Chem Toxicol 2020; 45:919-931. [PMID: 32628037 DOI: 10.1080/01480545.2020.1788057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Zornia latifolia is a plant suspected to possess psychoactive properties and marketed as a marijuana substitute under the name 'maconha brava'. In this study, the effects of fractions obtained from a 2-propanol extract of aerial portions of the plant were determined by multielectrode array (MEA) analyses on cultured networks of rat cortical neurons. Lipophilic (ZL_lipo, mainly containing flavonoid aglycones), and hydrophilic (ZL_hydro, mainly containing flavonoid glycosides) fractions were initially obtained from the raw extract. ZL_lipo significantly inhibited mean firing rate (MFR) and mean bursting rate (MBR) of MEA recordings, while ZL_hydro induced no inhibition. Column chromatography separation of ZL_lipo yielded five fractions (ZL1-ZL5), among which ZL1 induced the strongest MFR and MBR inhibition. NMR and HPLC-MS analyses of ZL1 revealed the prevalence of the common flavonoids genistein (1) and apigenin (2) (in about a 1:1 ratio), and the presence of the rare flavone syzalterin (6,8-dimethylapigenin) (3) as a minor compound. Exposures of MEA to apigenin and genistein standards did not induce the MFR and MBR inhibition observed with ZL1, whereas exposure to syzalterin standard or to a 1:9 mixture syzalterin-genistein induced effects similar to ZL1. These inhibitory effects were comparable to that observed with high-THC hashish, possibly accounting for the plant psychoactive properties. Data indicate that Z. latifolia, currently marketed as a free herbal product, should be subjected to measures of control. In addition, syzalterin showed distinctive pharmacological properties, opening the way to its possible exploitation as a neuroactive drug.
Collapse
Affiliation(s)
- Susanna Alloisio
- ETT Spa, Genova, Italy.,National Research Council (CNR), Institute of Biophysics, Genova, Italy
| | - Marco Clericuzio
- Department of Sciences and Technological Innovation (DISIT), University of Eastern Piedmont, Alessandria, Italy
| | - Mario Nobile
- National Research Council (CNR), Institute of Biophysics, Genova, Italy
| | - Annalisa Salis
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Gianluca Damonte
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Claudia Canali
- Forensic Science Police Service, Italian National Police, Genova, Italy
| | | | - Laura Cornara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Bruno Burlando
- Department of Pharmacy (DIFAR), University of Genova, Genova, Italy
| |
Collapse
|
7
|
Ge J, Zhou Q, Cheng X, Qian J, Yan Q, Wu C, Chen Y, Yang H, Zou J. The protein tyrosine kinase inhibitor, Genistein, delays intervertebral disc degeneration in rats by inhibiting the p38 pathway-mediated inflammatory response. Aging (Albany NY) 2020; 12:2246-2260. [PMID: 32023553 PMCID: PMC7041767 DOI: 10.18632/aging.102743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
The treatment for intervertebral disc degeneration (IDD) has drawn great attention and recent studies have revealed that the p38 MAPK pathway is a potential therapeutic target for delaying the degeneration of intervertebral discs. In this study, we analyzed a nature-derived protein tyrosine kinase inhibitor, Genistein, and its function in delaying IDD in rats both in vitro and in vivo via the p38 MAPK pathway. Nucleus pulposus cells treated with Genistein showed better function compared with untreated cells. Further study revealed that Genistein could play a protective role in IDD by inhibiting phosphorylation of p38, consequently inhibiting the p38 pathway-mediated inflammatory response. The rat IDD model also demonstrated that Genistein could effectively delay the degeneration of intervertebral disc tissue. The current study reveals new biological functions of Genistein, further demonstrates the effects of the p38 MAPK pathway on intervertebral disc degeneration, and deepens our understanding of the treatment and prevention of IDD.
Collapse
Affiliation(s)
- Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Quan Zhou
- Department of Orthopaedic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, China
| | - Xiaoqiang Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiale Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qi Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yufeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
8
|
Fusi F, Trezza A, Tramaglino M, Sgaragli G, Saponara S, Spiga O. The beneficial health effects of flavonoids on the cardiovascular system: Focus on K+ channels. Pharmacol Res 2020; 152:104625. [DOI: 10.1016/j.phrs.2019.104625] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023]
|
9
|
Ma XX, Xu JL, Jia YY, Zhang YX, Wang W, Li C, He W, Zhou SY, Zhang BL. Enhance transgene responses through improving cellular uptake and intracellular trafficking by bio-inspired non-viral vectors. J Nanobiotechnology 2020; 18:26. [PMID: 32005170 PMCID: PMC6995230 DOI: 10.1186/s12951-020-0582-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/18/2020] [Indexed: 11/10/2022] Open
Abstract
Background Gene therapy remains a significant challenge due to lots of barriers limiting the genetic manipulation technologies. As for non-viral delivery vectors, they often suffer insufficient performance due to inadequate cellular uptake and gene degradation in endosome or lysosome. The importance of overcoming these conserved intracellular barriers is increasing as the delivery of genetic cargo. Results A surface-functionalized non-viral vector involving the biomimetic mannitol moiety is initiated, which can control the cellular uptake and promote the caveolae-mediated pathway and intracellular trafficking, thus avoiding acidic and enzymatic lysosomal degradation of loaded gene internalized by clathrin-mediated pathway. Different degrees of mannitol moiety are anchored onto the surface of the nanoparticles to form bio-inspired non-viral vectors and CaP-MA-40 exhibits remarkably high stability, negligible toxicity, and significantly enhanced transgene expression both in vitro and in vivo. Conclusions This strategy highlights a paradigmatic approach to construct vectors that need precise intracellular delivery for innovative applications.
Collapse
Affiliation(s)
- Xi-Xi Ma
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Liang Xu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-Yang Jia
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Xuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China. .,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Tang Q, Ma J, Sun J, Yang L, Yang F, Zhang W, Li R, Wang L, Wang Y, Wang H. Genistein and AG1024 synergistically increase the radiosensitivity of prostate cancer cells. Oncol Rep 2018; 40:579-588. [PMID: 29901146 PMCID: PMC6072286 DOI: 10.3892/or.2018.6468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
Radiosensitivity of prostate cancer (PCa) cells promotes the curative treatment for PCa. The present study was designed to investigate the synergistic effect of genistein and AG1024 on the radiosensitivity of PCa cells. The optimal X-irradiation dose (4 Gy) and genistein concentration (30 µM) were selected by using the CCK-8 assay. Before X-irradiation (4 Gy), PC3 and DU145 cells were treated with genistein (30 µM), AG1024 (10 µM) and their combination. All treatments significantly reduced cell proliferation and enhanced cell apoptosis. Using flow cytometric analysis, we found that genistein arrested the cell cycle at S phase and AG1024 arrested the cell cycle at G2/M phase. Genistein treatment suppressed the homologous recombination (HRR) and the non-homologous end joining (NHEJ) pathways by inhibiting the expression of Rad51 and Ku70, and AG1024 treatment only inhibited the NHEJ pathway via the inactivation of Ku70 as detected by western blot analysis. Moreover, the combination treatment with genistein and AG1024 more effectively radiosensitized PCa cells than single treatments by suppressing cell proliferation, enhancing cell apoptosis and inactivating the HRR and NHEJ pathways. In vivo experiments demonstrated that animals receiving the combination treatment with genistein and AG1024 displayed obviously decreased tumor volume compared with animals treated with single treatment with either genistein or AG1024. We conclude that the combination of genistein (30 µM) and AG1024 (10 µM) exhibited a synergistic effect on the radiosensitivity of PCa cells by suppressing the HRR and NHEJ pathways.
Collapse
Affiliation(s)
- Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Jianjun Ma
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Longfei Yang
- Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Ruixiao Li
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Lei Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| |
Collapse
|
11
|
Ma XX, Gao H, Zhang YX, Jia YY, Li C, Zhou SY, Zhang BL. Construction and evaluation of BSA-CaP nanomaterials with enhanced transgene performance via biocorona-inspired caveolae-mediated endocytosis. NANOTECHNOLOGY 2018; 29:085101. [PMID: 29256442 DOI: 10.1088/1361-6528/aaa2b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Non-viral nanovectors have attracted much attention owing to their ability to condense genetic materials and their ease of modification. However, their poor stability, low biocompatibility and gene degradation in endosomes or lysosomes has significantly hampered their application in vivo and in the clinic. In an attempt to overcome these difficulties a series of bovine serum albumin (BSA)-calcium phosphate (CaP) nanoparticles were constructed. The CaP condenses with DNA to form nanocomplexes coated with a biomimetic corona of BSA. Such complexes may retain the inherent endocytosis profile of BSA, with improved biocompatibility. In particular the transgene performance may be enhanced by stimulating the cellular uptake pathway via caveolae-mediated endocytosis. Two methods were employed to construct and optimize the formulation of BSA-CaP nanomaterials. The optimized BSA-CaP-50-M2 nanoparticles prepared by our second method exhibited good stability, negligible cytotoxicity and enhanced transgene performance with long-term expression for 72 h in vivo even with a single dose. Determination of the cellular uptake pathway and Western blot revealed that cellular uptake of the designed BSA-CaP-50-M2 nanoparticles was mainly via caveolae-mediated endocytosis in a non-degradative pathway in which the biomimetic uptake profile of BSA was retained.
Collapse
Affiliation(s)
- Xi-Xi Ma
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Schreihofer DA, Oppong-Gyebi A. Genistein: mechanisms of action for a pleiotropic neuroprotective agent in stroke. Nutr Neurosci 2017; 22:375-391. [PMID: 29063799 DOI: 10.1080/1028415x.2017.1391933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genistein is a plant estrogen promoted as an alternative to post-menopausal hormone therapy because of a good safety profile and its promotion as a natural product. Several preclinical studies of cerebral ischemia and other models of brain injury support a beneficial role for genistein in protecting the brain from injury whether administered chronically or acutely. Like estrogen, genistein is a pleiotropic molecule that engages several different mechanisms to enhance brain health, including reduction of oxidative stress, promotion of growth factor signaling, and immune suppression. These actions occur in endothelial, glial, and neuronal cells to provide a coordinated beneficial action to ischemic challenge. Though many of these protective actions are associated with estrogen-like actions of genistein, additional activities on other receptors and intracellular targets suggest that genistein is more than a mere estrogen-mimic. Importantly, genistein lacks some of the detrimental effects associated with post-menopausal estrogen treatment and may provide an alternative to hormone therapy in those patients at risk for ischemic events.
Collapse
Affiliation(s)
- Derek A Schreihofer
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| | - Anthony Oppong-Gyebi
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| |
Collapse
|
13
|
Sureda A, Sanches Silva A, Sánchez-Machado DI, López-Cervantes J, Daglia M, Nabavi SF, Nabavi SM. Hypotensive effects of genistein: From chemistry to medicine. Chem Biol Interact 2017; 268:37-46. [PMID: 28242380 DOI: 10.1016/j.cbi.2017.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/06/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
Genistein (4', 5, 7-trihydroxyisoflavone), a naturally occurring flavonoid characteristic of Leguminoseae plants, is a phyto-oestrogen exerting oestrogenic activity as both an agonist and an antagonist substance. A large body of evidence suggests that genistein possesses many physiological and pharmacological properties that make this molecule a potential agent for the prevention and treatment of a number of chronic diseases. Growing evidence suggests that genistein could act as a vasodilating, anti-thrombotic, and anti-atherosclerotic agent, exerting these effects through different mechanisms of action. This paper aims to review data from the literature assessing the beneficial effects of genistein on hypertension, one of the most important cardiovascular disease risk factors along with hyperglycemia and hyperlidipemia. In addition, we discuss the chemistry, main sources and bioavailability of genistein. Scientific findings support genistein's potential as a promising anti-hypertensive agent in different experimental models. However, clinical trials are very limited and more research will be required before genistein intake can be recommended as part of therapies targeting raised blood pressure.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Ana Sanches Silva
- National Institute of Health Dr. Ricardo Jorge, I.P., Department of Food and Nutrition - Av. Padre Cruz, Lisbon 1649-016, Portugal; Centro de Estudos de Ciência Animal (CECA), ICETA - Instituto de Ciências, Tecnologias e Agroambiente da Universidade Do Porto, Universidade Do Porto - Praça Gomes Teixeira, Apartado 55142, Oporto 4051-401, Portugal
| | | | - Jaime López-Cervantes
- Instituto Tecnológico de Sonora, 5 de Febrero No. 818 sur, Apdo. 335, Ciudad Obregón C.P. 85000, Sonora, Mexico
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Xiao GS, Zhang YH, Wu W, Sun HY, Wang Y, Li GR. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K + current of human atria by inhibiting EGF receptor tyrosine kinase. Br J Pharmacol 2017; 174:454-467. [PMID: 28072464 DOI: 10.1111/bph.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The ultra-rapidly activating delayed rectifier K+ current IKur (encoded by Kv 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). EXPERIMENTAL APPROACH Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial IKur and hKv1.5 channels stably expressed in HEK 293 cells. KEY RESULTS Human atrial IKur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of IKur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hKv 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced IKur and hKv 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hKv 1.5 channels and that the decrease was countered by orthovanadate. CONCLUSION AND IMPLICATIONS The PTK inhibitors genistein and AG556 decrease human atrial IKur and cloned hKv 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases IKur and hKv 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial IKur .
Collapse
Affiliation(s)
- Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Zhang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wei Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
15
|
EDCs Mixtures: A Stealthy Hazard for Human Health? TOXICS 2017; 5:toxics5010005. [PMID: 29051438 PMCID: PMC5606671 DOI: 10.3390/toxics5010005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed “body burden” of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex “body burden” of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce.
Collapse
|
16
|
Schilling D, Brauburger J, Ruiner W, Nixdorff K. Modulation of interleukin 1β production in macrophages stimulated with lipopolysaccharide by the protein kinase inhibitor staurosporine. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199700400402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitors of key components of intracellular signaling pathways were used to detect differences in the regulation of the production of interleukin 1β (IL-1β) and tumor necrosis factor α (TNFα) in macrophages activated with lipopolysaccharide (LPS). The protein kinase inhibitor staurosporine caused an increase in the level of IL-1β in supernatants of macrophages stimulated with LPS. Calphostin C and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) dihydrochloride, specific inhibitors of protein kinase C (PKC), also promoted enhancement of IL-1β secretion, but the effect was not as pronounced as that of staurosporine. In contrast, all three substances inhibited TNFα production. Measurement of IL-1β in lysates and supernatants of macrophage cultures indicated that staurosporine effected enhancement of the production of the cytokine in the cellular fraction, the greater portion of which was not secreted. Kinetics of accumulation of IL-1β mRNA and production of the cytokine during a 24 h period showed that enhanced production of IL-1β obtained 24 h after LPS stimulation of macrophages in the presence of staurosporine paralleled the increased levels in mRNA specific for the cytokine.
Collapse
Affiliation(s)
- D. Schilling
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - J. Brauburger
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - W. Ruiner
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - K. Nixdorff
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
17
|
The Role of Natural Polyphenols in the Prevention and Treatment of Cervical Cancer-An Overview. Molecules 2016; 21:molecules21081055. [PMID: 27548122 PMCID: PMC6274328 DOI: 10.3390/molecules21081055] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer represents the second leading cause of death for women worldwide. The importance of the diet and its impact on specific types of neoplasia has been highlighted, focusing again interest in the analysis of dietary phytochemicals. Polyphenols have shown a wide range of cellular effects: they may prevent carcinogens from reaching the targeted sites, support detoxification of reactive molecules, improve the elimination of transformed cells, increase the immune surveillance and the most important factor is that they can influence tumor suppressors and inhibit cellular proliferation, interfering in this way with the steps of carcinogenesis. From the studies reviewed in this paper, it is clear that certain dietary polyphenols hold great potential in the prevention and therapy of cervical cancer, because they interfere in carcinogenesis (in the initiation, development and progression) by modulating the critical processes of cellular proliferation, differentiation, apoptosis, angiogenesis and metastasis. Specifically, polyphenols inhibit the proliferation of HPV cells, through induction of apoptosis, growth arrest, inhibition of DNA synthesis and modulation of signal transduction pathways. The effects of combinations of polyphenols with chemotherapy and radiotherapy used in the treatment of cervical cancer showed results in the resistance of cervical tumor cells to chemo- and radiotherapy, one of the main problems in the treatment of cervical neoplasia that can lead to failure of the treatment because of the decreased efficiency of the therapy.
Collapse
|
18
|
Castro L, Gao X, Moore AB, Yu L, Di X, Kissling GE, Dixon D. A High Concentration of Genistein Induces Cell Death in Human Uterine Leiomyoma Cells by Autophagy. ACTA ACUST UNITED AC 2016; 5. [PMID: 27512718 DOI: 10.4172/2325-9655.s1-003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genistein, an estrogenic, soy-derived isoflavone, may play a protective role against hormone-related cancers. We have reported that a high concentration of genistein inhibits cell proliferation and induces apoptosis in human uterine smooth muscle cells, but not in leiomyoma (fibroid) cells. To better understand the differential cell death responses of normal and tumor cells to a high concentration of genistein, we treated uterine smooth muscle cells and uterine leiomyoma cells with 50 μg/ml of genistein for 72 h and 168 h, and assessed for mediators of apoptosis, cytotoxicity and autophagy. We found that leiomyoma cells had increased protection from apoptosis by expressing an increased ratio of Bcl-2: bak at 72 h and 168 h; however, in smooth muscle cells, the Bcl-2: bak ratio was decreased at 72 h, but significantly rebounded by 168 h. The apoptosis extrinsic factors, Fas ligand and Fas receptor, were highly expressed in uterine smooth muscle cells following genistein treatment at both time points as evidenced by confocal microscopy. This was not seen in the uterine leiomyoma cells; however, cytotoxicity as indicated by elevated lactate dehydrogenase levels was significantly enhanced at 168 h. Increased immunoexpression of an autophagy/autophagosome marker was also observed in the leiomyoma cells, although minimally present in smooth muscle cells at 72 h. Ultrastructurally, there was evidence of autophagic vacuoles in the leiomyoma cells; whereas, the normal smooth muscle cells showed nuclear fragmentation indicative of apoptosis. In summary, our data show differential cell death pathways induced by genistein in tumor and normal uterine smooth muscle cells, and suggest novel cell death pathways that can be targeted for preventive and intervention strategies for inhibiting fibroid tumor cell growth in vivo.
Collapse
Affiliation(s)
- Lysandra Castro
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina 27709, USA
| | - Xioahua Gao
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina 27709, USA
| | - Alicia B Moore
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina 27709, USA
| | - Linda Yu
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina 27709, USA
| | - Xudong Di
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Grace E Kissling
- Biostatistics and Computational Biology Branch, Division of the Intramural Program (DIR) and NTP, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
19
|
Regulation of Candida albicans Interaction with Macrophages through the Activation of HOG Pathway by Genistein. Molecules 2016; 21:162. [PMID: 26828477 PMCID: PMC6274511 DOI: 10.3390/molecules21020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/23/2022] Open
Abstract
The severity of infections caused by Candida albicans, the most common opportunistic human fungal pathogen, needs rapid and effective antifungal treatments. One of the effective ways is to control the virulence factors of the pathogen. Therefore, the current study examined the effects of genistein, a natural isoflavone present in soybeans, on C. albicans. The genistein-treated C. albicans cells were then exposed to macrophages. Although no inhibition effect on the growth rates of C. albicans was noted an enhancement of the immune response to macrophages has been observed, indicated by phagocytosis and release of cytokines TNF-α and IL-10. The effect of genistein on the enhanced phagocytosis can be mimicked by the fungicides fludioxonil or iprodione, which inhibit the histidine kinase Cos1p and lead to activation of HOG pathway. The western blot results showed a clear phosphorylation of Hog1p in the wild type strain of C. albicans after incubation with genistein. In addition, effects of genistein on the phosphorylation of Hog1p in the histidine kinase mutants Δcos1 and Δsln1 were also observed. Our results thus indicate a new bio-activity of genistein on C. albicans by activation of the HOG pathway of the human pathogen C. albicans.
Collapse
|
20
|
Kiatprasert P, Deachapunya C, Benjanirat C, Poonyachoti S. Soy isoflavones improves endometrial barrier through tight junction gene expression. Reproduction 2015; 149:269-80. [DOI: 10.1530/rep-14-0269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Contamination with bacterial endotoxin causes the disruption of the tight junction (TJ) barrier. We investigated the ameliorative effect of dietary flavonoids genistein (Ge) and daidzein (Di) in normal or lipopolysaccharide (LPS)-induced disruption of epithelial barrier function of the endometrium. Using the immortalized porcine glandular endometrial epithelial cells (PEG), transepithelial electrical resistance (TER) and FITC-dextran flux (FD-4) across the monolayer were measured. The mRNA expression of TJ proteins, zona occludens-1 (ZO1), and claudin-1, -3, -4, -7 and -8 was evaluated by real-time RT-PCR for coinciding effect of Ge or Di occurred at the gene transcription level. The results revealed that Ge and Di altered the TER, depending on times and concentrations. Low concentration (10−10 M) of both compounds decreased the TER, whereas higher concentrations (10−8and 10−6 M) increased the TER which was not related to the FD-4 flux. The increased TER by Ge or Di was parallel to the induction ofclaudin-3and-4or-8mRNA expression respectively. With LPS inoculation, all isoflavone treatments inhibited the decreased TER induced by LPS, but only Ge (10−8or 10−6 M) or Di (10−10or 10−6 M) was coincidence with the decreased FD-4 flux. Under this LPS-stimulated condition, some or all examined TJ gene expressions appeared to be promoted by specific concentration of Ge or Di respectively. Our findings suggest that the soy isoflavones treatment could promote and restore the impaired endometrial barrier function caused by LPS contamination.
Collapse
|
21
|
The involvement of FAK and Src in the invasion of cardiomyocytes by Trypanosoma cruzi. Exp Parasitol 2014; 139:49-57. [PMID: 24582948 DOI: 10.1016/j.exppara.2014.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
Abstract
The activation of signaling pathways involving protein tyrosine kinases (PTKs) has been demonstrated during Trypanosoma cruzi invasion. Herein, we describe the participation of FAK/Src in the invasion of cardiomyocytes by T. cruzi. The treatment of cardiomyocytes with genistein, a PTK inhibitor, significantly reduced T. cruzi invasion. Also, PP1, a potent Src-family protein inhibitor, and PF573228, a specific FAK inhibitor, also inhibited T. cruzi entry; maximal inhibition was achieved at concentrations of 25μM PP1 (53% inhibition) and 40μM PF573228 (50% inhibition). The suppression of FAK expression in siRNA-treated cells and tetracycline-uninduced Tet-FAK(WT)-46 cells significantly reduced T. cruzi invasion. The entry of T. cruzi is accompanied by changes in FAK and c-Src expression and phosphorylation. An enhancement of FAK activation occurs during the initial stages of T. cruzi-cardiomyocyte interaction (30 and 60min), with a concomitant increase in the level of c-Src expression and phosphorylation, suggesting that FAK/Src act as an integrated signaling pathway that coordinates parasite entry. These data provide novel insights into the signaling pathways that are involved in cardiomyocyte invasion by T. cruzi. A better understanding of the signal transduction networks involved in T. cruzi invasion may contribute to the development of more effective therapies for the treatment of Chagas' disease.
Collapse
|
22
|
Cui S, Wienhoefer N, Bilitewski U. Genistein induces morphology change and G2/M cell cycle arrest by inducing p38 MAPK activation in macrophages. Int Immunopharmacol 2013; 18:142-50. [PMID: 24290959 DOI: 10.1016/j.intimp.2013.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023]
Abstract
Genistein is a well known natural compound which is present in soy foods and exerts many beneficial functions such as anticancer, anti-inflammatory and antioxidant. However, until now little is known about the effects of genistein on the function of macrophages. The murine macrophage cell line RAW264.7 was used as target cell line. The results show that at concentrations of 50-100μM, genistein reduced cell viability to 70%-80% (after 24h) and 50%-60% (after 48h), which was due to G2/M phase cell cycle arrest. Treatment of the macrophages with genistein for 24 or 48h also led to significant morphological changes, such as elongation of the cells and development of long pseudopodia-like protrusions. By staining the F-actin cytoskeleton, we observed accumulation of actin-filaments at the edges of the cells. The morphology change and G2/M phase arrest after genistein treatment is due to the activation of the phosphorylation of MAP kinase p38. The morphology change and cell cycle arrest can be significantly reverted when treatment is combined with p38 inhibitor SB203580. Moreover, after treatment of the macrophages with genistein for 24 and 48h, the phagocytotic efficiency for Candida albicans was decreased in a time- and dose-dependent manner which correlates to the morphology change. The production of cytokines (TNF-α) stimulated by C. albicans was strongly inhibited by genistein. In conclusion, genistein showed a strong immune modulatory effect on the macrophages.
Collapse
Affiliation(s)
- Shuna Cui
- Medical College of Yangzhou University, Huaihai Road 11, 225001, Yangzhou, China; Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Nina Wienhoefer
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Ursula Bilitewski
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany.
| |
Collapse
|
23
|
Figueiras-Fierro D, Acevedo JJ, Martínez-López P, Escoffier J, Sepúlveda FV, Balderas E, Orta G, Visconti PE, Darszon A. Electrophysiological evidence for the presence of cystic fibrosis transmembrane conductance regulator (CFTR) in mouse sperm. J Cell Physiol 2013; 228:590-601. [PMID: 22833409 DOI: 10.1002/jcp.24166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
Abstract
Mammalian sperm must undergo a maturational process, named capacitation, in the female reproductive tract to fertilize the egg. Sperm capacitation is regulated by a cAMP/protein kinase A (PKA) pathway and involves increases in intracellular Ca(2+), pH, Cl(-), protein tyrosine phosphorylation, and in mouse and some other mammals a membrane potential hyperpolarization. The cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) channel modulated by cAMP/PKA and ATP, was detected in mammalian sperm and proposed to modulate capacitation. Our whole-cell patch-clamp recordings from testicular mouse sperm now reveal a Cl(-) selective component to membrane current that is ATP-dependent, stimulated by cAMP, cGMP, and genistein (a CFTR agonist, at low concentrations), and inhibited by DPC and CFTR(inh) -172, two well-known CFTR antagonists. Furthermore, the Cl(-) current component activated by cAMP and inhibited by CFTR(inh) -172 is absent in recordings on testicular sperm from mice possessing the CFTR ΔF508 loss-of-function mutation, indicating that CFTR is responsible for this component. A Cl(-) selective like current component displaying CFTR characteristics was also found in wild type epididymal sperm bearing the cytoplasmatic droplet. Capacitated sperm treated with CFTR(inh) -172 undergo a shape change, suggesting that CFTR is involved in cell volume regulation. These findings indicate that functional CFTR channels are present in mouse sperm and their biophysical properties are consistent with their proposed participation in capacitation.
Collapse
Affiliation(s)
- Dulce Figueiras-Fierro
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct 2013; 4:200-12. [PMID: 23160185 PMCID: PMC3678366 DOI: 10.1039/c2fo30199g] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes is a result of chronic insulin resistance and loss of functional pancreatic β-cell mass. Strategies to preserve β-cell mass and a greater understanding of the mechanisms underlying β-cell turnover are needed to prevent and treat this devastating disease. Genistein, a naturally occurring soy isoflavone, is reported to have numerous health benefits attributed to multiple biological functions. Over the past 10 years, numerous studies have demonstrated that genistein has anti-diabetic effects, in particular, direct effects on β-cell proliferation, glucose-stimulated insulin secretion and protection against apoptosis, independent of its functions as an estrogen receptor agonist, antioxidant, or tyrosine kinase inhibitor. Effects are structure-specific and not common to all flavonoids. While there are limited data on the effects of genistein consumption in humans with diabetes, there are a plethora of animal and cell-culture studies that demonstrate a direct effect of genistein on β-cells at physiologically relevant concentrations (<10 μM). The effects appear to involve cAMP/PKA signaling and there are some studies that suggest an effect on epigenetic regulation of gene expression. This review focuses on the anti-diabetic effects of genistein in both in vitro and in vivo models and potential mechanisms underlying its direct effects on β-cells.
Collapse
Affiliation(s)
- Elizabeth. R. Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
25
|
Abstract
Soybeans are rich in immuno-modulatory isoflavones such as genistein, daidzein, and glycitein. These isoflavones are well-known antioxidants, chemopreventive and anti-inflammatory agents. Several epidemiological studies suggest that consumption of traditional soy food containing isoflavones is associated with reduced prevalence of chronic health disorders. Isoflavones are considered to be phytoestrogens because of their ability to bind to estrogen receptors. The literature is extensive on the chemistry, bio-availability, and bio-activity of isoflavones. However, their effects on immune response are yet to be fully understood, but are beginning to be appreciated. We review the role of isoflavones in regulation of the immune response and their potential clinical applications in immune-dysfunction. Special emphasis will be made regarding in vivo studies including humans and animal model systems.
Collapse
Affiliation(s)
- Madhan Masilamani
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Anbg 17-40G, Mount Sinai School of Medicine, The Jaffe Food Allergy Institute, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Anderson SL, Liu B, Qiu J, Sturm AJ, Schwartz JA, Peters AJ, Sullivan KA, Rubin BY. Nutraceutical-mediated restoration of wild-type levels of IKBKAP-encoded IKAP protein in familial dysautonomia-derived cells. Mol Nutr Food Res 2012; 56:570-9. [PMID: 22495984 DOI: 10.1002/mnfr.201100670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SCOPE The reported ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD)-causing mutation in the IKBKAP gene prompted an evaluation of the impact of commonly consumed nutraceuticals on the splicing of this transcript. METHODS AND RESULTS Screening efforts revealed the ability of the isoflavones, genistein, and daidzein, to impact splicing and increase the production of the wild-type, exon-20-containing, transcript, and the full-length IKBKAP-encoded IΚB kinase complex associated protein(IKAP) in FD-derived cells. Genistein was also found to impact splicing in neuronal cells, a cell type profoundly impacted by FD. The simultaneous exposure of FD-derived cells to genistein and epigallocatechin gallate (EGCG) resulted in the almost exclusive production of the exon-20-containing transcript and the production of wild-type amounts of IKAP protein. CONCLUSION This study represents the first demonstration that the isoflavones, genistein and daidzein, possess splice-altering capabilities and that simultaneous treatment with genistein and EGCG reverses the splice-altering impact of the FD-causing mutation. These findings support the clinical evaluation of the therapeutic impact of the combined administration of these two commonly consumed nutraceuticals on this patient population and suggest a broader evaluation of the impact of these nutraceuticals on the in vivo RNA splicing process.
Collapse
Affiliation(s)
- Sylvia L Anderson
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY10458, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Roomans GM. Pharmacological Approaches to Correcting the Ion Transport Defect in Cystic Fibrosis. ACTA ACUST UNITED AC 2012; 2:413-31. [PMID: 14719993 DOI: 10.1007/bf03256668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cystic fibrosis (CF) is a lethal genetic disease caused by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), which mainly (but not exclusively) functions as a chloride channel. The main clinical symptoms are chronic obstructive lung disease, which is responsible for most of the morbidity and mortality associated with CF, and pancreatic insufficiency. About 1000 mutations of the gene coding for CFTR are currently known; the most common of these, present in the great majority of the patients (Delta508) results in the deletion of a phenylalanine at position 508. In this mutation, the aberrant CFTR is not transported to the membrane but degraded in the ubiquitin-proteasome pathway. The aim of this review is to give an overview of the pharmacologic strategies currently used in attempts to overcome the ion transport defect in CF. One strategy to develop pharmacologic treatment for CF is to inhibit the breakdown of DeltaF508-CFTR by interfering with the chaperones involved in the folding of CFTR. At least in in vitro systems, this can be accomplished by sodium phenylbutyrate, or S-nitrosoglutathione (GSNO), and also by genistein or benzo[c]quinolizinium compounds. It is also possible to stimulate CFTR or its mutated forms, when present in the plasma membrane, using xanthines, genistein, and various other compounds, such as benzamidizoles and benzoxazoles, benzo[c]quinolizinium compounds or phenantrolines. Experimental results are not always unambiguous, and adverse effects have been incompletely tested. Some clinical tests have been done on sodium phenyl butyrate, GSNO and genistein, mostly in respect to other diseases, and the results demonstrate that these drugs are reasonably well tolerated. Their efficiency in the treatment of CF has not yet been demonstrated, however. An alternative strategy is to compensate for the defective chloride transport by CFTR by stimulation of other chloride channels. This can be done via purinergic receptors. A phase I study using a stable uridine triphosphate analog has recently been completed. A second alternative strategy is to attempt to maintain hydration of the airway mucus by inhibiting Na(+) uptake by the epithelial Na(+) channel using amiloride or stable analogs of amiloride. Clinical tests so far have been inconclusive. A number of other suggestions are currently being explored. The minority of patients with CF who have a stop mutation may benefit from treatment with gentamicin. The difficulties in finding a pharmacologic treatment for CF may be due to the fact that CFTR has additional functions besides chloride transport, and interfering with CFTR biosynthesis or activation implies interference with central cellular processes, which may have undesirable adverse effects.
Collapse
Affiliation(s)
- Godfried M Roomans
- Department of Medical Cell Biology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
29
|
Park TE, Kang B, Kim YK, Zhang Q, Lee WS, Islam MA, Kang SK, Cho MH, Choi YJ, Cho CS. Selective stimulation of caveolae-mediated endocytosis by an osmotic polymannitol-based gene transporter. Biomaterials 2012; 33:7272-81. [PMID: 22818984 DOI: 10.1016/j.biomaterials.2012.06.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/22/2012] [Indexed: 11/17/2022]
Abstract
Controlling the cellular uptake mechanism and consequent intracellular route of polyplexes is important to improve the transfection efficiency of the non-viral gene delivery. Here, we report a new non-viral vector, polymannitol-based gene transporter (PMT), generated by crosslinking low molecular weight polyethylenimine with mannitol diacrylate, which has low cytotoxicity and good transfection efficiency. Interestingly, the uptake pathway of PMT/DNA complexes was shifted into caveolae-mediated endocytosis, avoiding lysosomal degradation. The mechanism of increased caveolae-mediated endocytosis of PMT/DNA complexes was found to be correlated with mechanosensing signal transduction by the hyperosmotic polymannitol part. Our results suggested that PMT, polymannitol-based gene transporter, is a safe and efficient gene delivery system with a well-modulated uptake pathway and intracellular route for gene therapy.
Collapse
Affiliation(s)
- Tae-Eun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Messing E, Gee JR, Saltzstein DR, Kim K, diSant'Agnese A, Kolesar J, Harris L, Faerber A, Havighurst T, Young JM, Efros M, Getzenberg RH, Wheeler MA, Tangrea J, Parnes H, House M, Busby JE, Hohl R, Bailey H. A phase 2 cancer chemoprevention biomarker trial of isoflavone G-2535 (genistein) in presurgical bladder cancer patients. Cancer Prev Res (Phila) 2012; 5:621-30. [PMID: 22293631 PMCID: PMC3324663 DOI: 10.1158/1940-6207.capr-11-0455] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The soy compound genistein has been observed preclinically to inhibit bladder cancer growth with one potential mechanism being the inhibition of epidermal growth factor receptor phosphorylation (p-EGFR). A phase 2 randomized, placebo-controlled trial investigated whether daily, oral genistein (300 or 600 mg/d as the purified soy extract G-2535) for 14 to 21 days before surgery alters molecular pathways in bladder epithelial tissue in 59 subjects diagnosed with urothelial bladder cancer (median age, 71 years). G-2535 treatment was well tolerated; observed toxicities were primarily mild to moderate gastrointestinal or metabolic and usually not attributed to study drug. Genistein was detected in plasma and urine of subjects receiving G-2535 at concentrations greater than placebo subjects' but were not dose-dependent. Reduction in bladder cancer tissue p-EGFR staining between the placebo arm and the combined genistein arms was significant at the protocol-specified significance level of 0.10 (P = 0.07). This difference was most prominent when comparing the 300-mg group with placebo (P = 0.015), but there was no significant reduction in p-EGFR staining between the 600-mg group and placebo. No difference in normal bladder epithelium p-EGFR staining was observed between treatment groups. No significant differences in tumor tissue staining between treatment groups were observed for COX-2, Ki-67, activated caspase-3, Akt, p-Akt, mitogen-activated protein kinase (MAPK), or p-MAPK. No significant differences in urinary survivin or BLCA-4 levels between treatment groups were observed. Genistein displayed a possible bimodal effect (more effective at the lower dose) on bladder cancer tissue EGFR phosphorylation that should be evaluated further, possibly in combination with other agents.
Collapse
Affiliation(s)
- Edward Messing
- University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
J. Verspohl E, Podlogar J. LPS-Induced Proliferation and Chemokine Secretion from BEAS-2B Cells. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/pp.2012.32024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Zhang YH, Wu W, Sun HY, Deng XL, Cheng LC, Li X, Tse HF, Lau CP, Li GR. Modulation of human cardiac transient outward potassium current by EGFR tyrosine kinase and Src-family kinases. Cardiovasc Res 2011; 93:424-33. [PMID: 22198508 DOI: 10.1093/cvr/cvr347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS The human cardiac transient outward K(+) current I(to) (encoded by Kv4.3 or KCND3) plays an important role in phase 1 rapid repolarization of cardiac action potentials in the heart. However, modulation of I(to) by intracellular signal transduction is not fully understood. The present study was therefore designed to determine whether/how human atrial I(to) and hKv4.3 channels stably expressed in HEK 293 cells are regulated by protein tyrosine kinases (PTKs). METHODS AND RESULTS Whole-cell patch voltage-clamp, immunoprecipitation, western blotting, and site-directed mutagenesis approaches were employed in the present study. We found that human atrial I(to) was inhibited by the broad-spectrum PTK inhibitor genistein, the selective epidermal growth factor receptor (EGFR) kinase inhibitor AG556, and the Src-family kinases inhibitor PP2. The inhibitory effect was countered by the protein tyrosine phosphatase inhibitor orthovanadate. In HEK 293 cells stably expressing human KCND3, genistein, AG556, and PP2 significantly reduced the hKv4.3 current, and the reduction was antagonized by orthovanadate. Interestingly, orthovanadate also reversed the reduced tyrosine phosphorylation level of hKv4.3 channels by genistein, AG556, or PP2. Mutagenesis revealed that the hKv4.3 mutant Y136F lost the inhibitory response to AG556, while Y108F lost response to PP2. The double-mutant Y108F-Y136F hKv4.3 channels showed no response to either AG556 or PP2. CONCLUSION Our results demonstrate that human atrial I(to) and cloned hKv4.3 channels are modulated by EGFR kinase via phosphorylation of the Y136 residue and by Src-family kinases via phosphorylation of the Y108 residue; tyrosine phosphorylation of the channel may be involved in regulating cardiac electrophysiology.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4-59, Laboratory Block, FMB, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Masilamani M, Wei J, Bhatt S, Paul M, Yakir S, Sampson HA. Soybean isoflavones regulate dendritic cell function and suppress allergic sensitization to peanut. J Allergy Clin Immunol 2011; 128:1242-1250.e1. [PMID: 21696815 DOI: 10.1016/j.jaci.2011.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although peanut and soybean proteins share extensive amino acid sequence homology, the incidence and severity of allergic reactions to soy are much less than those to peanut. Soybeans are rich in anti-inflammatory isoflavones and are the most common source of isoflavones in the human food supply. OBJECTIVE We hypothesized that the active isoflavones in the gut milieu are capable of modulating immune responses to dietary antigens by regulating dendritic cell (DC) function. METHODS We tested this hypothesis in a murine model of peanut allergy and in human monocyte-derived dendritic cells (MDDCs). C3H/HeJ mice were fed a diet containing genistein and daidzein. The mice were sensitized and challenged with peanut, and the anaphylactic symptoms were compared with those of mice fed a soy-free diet. Human MDDCs were activated with cholera toxin in the presence of isoflavones. The surface expression of DC activation markers and DC-mediated effector functions were analyzed by means of flow cytometry. RESULTS Dietary isoflavones significantly reduced the anaphylactic symptoms and mast cell degranulation in vivo after peanut challenge. Serum peanut-specific antibodies were markedly reduced in mice fed the isoflavone diet. Isoflavones inhibited cholera toxin-induced DC maturation in the mesenteric lymph nodes and human MDDCs and subsequent DC-mediated CD4(+) T-cell function in vitro. CONCLUSIONS These data suggest that dietary isoflavones suppress allergic sensitization and protect against peanut allergy in vivo. Dietary supplementation of soybean isoflavones could be a novel strategy to prevent the development of allergic reactions to food.
Collapse
Affiliation(s)
- Madhan Masilamani
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Murakami K, Tamada T, Nara M, Muramatsu S, Kikuchi T, Kanehira M, Maruyama Y, Ebina M, Nukiwa T. Toll-Like Receptor 4 Potentiates Ca2+-Dependent Secretion of Electrolytes from Swine Tracheal Glands. Am J Respir Cell Mol Biol 2011; 45:1101-10. [DOI: 10.1165/rcmb.2011-0020oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
Effects of commercially available soy products on PSA in androgen-deprivation-naïve and castration-resistant prostate cancer. South Med J 2011; 104:736-40. [PMID: 22024780 DOI: 10.1097/smj.0b013e3182335151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE No standard therapeutic option exists for men with prostate cancer who have failed local therapy, have no gross metastatic disease, and whose only manifestation of disease is a rising prostate-specific antigen (PSA) level. Soy products are able to affect PSA kinetics in some men with prostate cancer, and this effect has been attributed to the decreased expression of the androgen receptor and other mechanisms. METHODS We treated 10 men with rising PSA levels after radical prostatectomy and salvage radiotherapy with commercially available soy products. Scans revealed no gross metastatic disease. Three men also had been receiving androgen-deprivation therapy (ADT) and had rising PSA levels that were consistent with castration-resistant (CR) disease. We reported the results of this modality on PSA levels, PSA kinetics, and the duration of PSA response. RESULTS Responses occurred in 4 of 7 (57%) patients with ADT-naïve disease and 1 of 3 (33%) patients with CR disease. The median duration of treatment response was 24 months. The overall clinical benefit, therefore, was noted in 5 of 10 (50%) patients. Therapy was well tolerated. CONCLUSIONS Our findings are fairly congruent with what has been described in the literature on the use of this modality in prostate cancer. We used commercially available soy products. We also show that soy can provide benefit in CR prostate cancer. Our clinical experience suggests that soy supplementation using commercially available soy products can have durable beneficial effects on PSA levels and PSA kinetics in some men with prostate cancer.
Collapse
|
36
|
Hsu YC, Liou YM. The anti-cancer effects of (-)-epigallocatechin-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J Cell Physiol 2011; 226:2721-30. [PMID: 21792929 DOI: 10.1002/jcp.22623] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCg) has been implicated in cancer chemo-prevention in studies using many different kinds of cancer cells. The present study measured cell viability, osteopontin (OPN) secretion, fatty acid synthase (FAS) expression, and cytosolic Ca(2+) and verified the anti-cancer activities of EGCg in MCF-7 human breast cancer cells. EGCg-induced apoptosis was evidenced by nuclear condensation, increased protein levels of activated caspase-3, down-regulation of gelsolin and tropomyosin-4 (Tm-4), and up-regulation of tropomyosin-1(Tm-1). By disrupting adherens junction formation, EGCg caused accumulation of extra-nuclear β-catenin aggregates in the cytosol and alterations of the protein content and mRNA expression of E-cadherin and β-catenin, but not N-cadherin, in MCF-7 cells. To identify the putative mechanisms underlying the EGCg signaling pathways, EGFP (enhanced green fluorescence protein) was ectopically expressed in MCF-7 cells. This allowed us to monitor the EGCg-induced fluorescence changes associated with the effects of Triton X-100 (to remove plasma membrane) or the addition of laminin, anti-laminin receptor (LR) antibody, epidermal growth factor (EGF), and genistein on the cells. Our results indicated that EGCg acts via the signaling pathways associated with cell membrane to suppress cell proliferation, provoke apoptosis, and disturb cell-cell adhesion in MCF-7 cells. The altered events include the EGFR, LR, FAS, intracellular Ca(2+) , OPN secretion, caspace-3, gelsolin, Tm-4, Tm-1, and adherens junction proteins, E-cadherin and β-catenin.
Collapse
Affiliation(s)
- Yuan-Chang Hsu
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | | |
Collapse
|
37
|
Dallon JC, Ehrlich HP. Differences in the mechanism of collagen lattice contraction by myofibroblasts and smooth muscle cells. J Cell Biochem 2011; 111:362-9. [PMID: 20506308 DOI: 10.1002/jcb.22706] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Both rat derived vascular smooth muscle cells (SMC) and human myofibroblasts contain α smooth muscle actin (SMA), but they utilize different mechanisms to contract populated collagen lattices (PCLs). The difference is in how the cells generate the force that contracts the lattices. Human dermal fibroblasts transform into myofibroblasts, expressing α-SMA within stress fibers, when cultured in lattices that remain attached to the surface of a tissue culture dish. When attached lattices are populated with rat derived vascular SMC, the cells retain their vascular SMC phenotype. Comparing the contraction of attached PCLs when they are released from the culture dish on day 4 shows that lattices populated with rat vascular SMC contract less than those populated with human myofibroblast. PCL contraction was evaluated in the presence of vanadate and genistein, which modify protein tyrosine phosphorylation, and ML-7 and Y-27632, which modify myosin ATPase activity. Genistein and ML-7 had no affect upon either myofibroblast or vascular SMC-PCL contraction, demonstrating that neither protein tyrosine kinase nor myosin light chain kinase was involved. Vanadate inhibited myofibroblast-PCL contraction, consistent with a role for protein tyrosine phosphatase activity with myofibroblast-generated forces. Y-27632 inhibited both SMC and myofibroblast PCL contraction, consistent with a central role of myosin light chain phosphatase.
Collapse
Affiliation(s)
- J C Dallon
- Department of Mathematics, Brigham Young University, Provo, Utah 84602-6539, USA.
| | | |
Collapse
|
38
|
Kim HJ, Ahn HS, Choi BH, Hahn SJ. Inhibition of Kv4.3 by genistein via a tyrosine phosphorylation-independent mechanism. Am J Physiol Cell Physiol 2010; 300:C567-75. [PMID: 21148405 DOI: 10.1152/ajpcell.00031.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of genistein, a protein tyrosine kinase (PTK) inhibitor, on voltage-dependent K(+) (Kv) 4.3 channel were examined using the whole cell patch-clamp techniques. Genistein inhibited Kv4.3 in a reversible, concentration-dependent manner with an IC(50) of 124.78 μM. Other PTK inhibitors (tyrphostin 23, tyrphostin 25, lavendustin A) had no effect on genistein-induced inhibition of Kv4.3. Orthovanadate, an inhibitor of protein phosphatases, did not reverse the inhibition of Kv4.3 by genistein. We also tested the effects of two inactive structural analogs: genistin and daidzein. Whereas Kv4.3 was unaffected by genistin, daidzein inhibited Kv4.3, albeit with a lower potency. Genistein did not affect the activation and inactivation kinetics of Kv4.3. Genistein-induced inhibition of Kv4.3 was voltage dependent with a steep increase over the channel opening voltage range. In the full-activation voltage range positive to +20 mV, no voltage-dependent inhibition was found. Genistein had no significant effect on steady-state activation, but shifted the voltage dependence of the steady-state inactivation of Kv4.3 in the hyperpolarizing direction in a concentration-dependent manner. The K(i) for the interaction between genistein and the inactivated state of Kv4.3, which was estimated from the concentration-dependent shift in the steady-state inactivation curve, was 1.17 μM. Under control conditions, closed-state inactivation was fitted to a single exponential function, and genistein accelerated closed-state inactivation. Genistein induced a weak use-dependent inhibition. These results suggest that genistein directly inhibits Kv4.3 by interacting with the closed-inactivated state of Kv4.3 channels. This effect is not mediated via inhibition of the PTK activity, because other types of PTK inhibitors could not prevent the inhibitory action of genistein.
Collapse
Affiliation(s)
- Hee Jae Kim
- Dept. of Physiology, College of Medicine, The Catholic Univ. of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | |
Collapse
|
39
|
Genistein stimulates duodenal HCO(3)(-) secretion through PI3K pathway in mice. Eur J Pharmacol 2010; 651:159-67. [PMID: 21093426 DOI: 10.1016/j.ejphar.2010.10.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 10/10/2010] [Accepted: 10/29/2010] [Indexed: 11/20/2022]
Abstract
Genistein has been proposed as a promising pharmacotherapeutic for cystic fibrosis. We recently found that genistein stimulates murine duodenal HCO(3)(-) secretion through cystic fibrosis transmembrane conductance regulator (CFTR). The aim of the present study was to determine the intracellular signal pathways involved in genistein-stimulated duodenal HCO(3)(-) secretion. Murine duodenal mucosal HCO(3)(-) secretion was examined in vitro in Ussing chambers by the pH-stat technique. The results showed that neither cAMP-dependent signal pathway inhibitors MDL-12330A and KT-5720, nor cGMP signal pathway inhibitors NS2028 and KT5823, nor calcium signal pathway inhibitors verapamil and W-13, altered genistein-stimulated duodenal HCO(3)(-) secretion. In calcium-free solution, genistein-stimulated duodenal HCO(3)(-) secretion was not altered either. Vanadate, an inhibitor of protein tyrosine phosphatase, only partially inhibited genistein-stimulated duodenal HCO(3)(-) secretion. However, both wortmannin and LY294002, two structurally and mechanistically distinct phosphatidylinositol 3-kinase (PI3K) inhibitors, markedly inhibited genistein-stimulated duodenal HCO(3)(-) secretion. Genistein increased duodenal mucosal PI3K activity and induced the phosphorylation of Akt, a signaling molecule downstream of PI3K, which was again inhibited by wortmannin. Estrogen receptor antagonist, ICI182,780, also markedly inhibited genistein-stimulated duodenal HCO(3)(-) secretion and genistein-induced PI3K activity increase in duodenal mucosa. These results demonstrate that genistein stimulates duodenal HCO(3)(-) secretion mainly through estrogen receptor and PI3K-dependent pathway. These findings contribute to the understanding of the molecular mechanism of genistein-induced anion secretion and further pharmacotherapeutic development and use of genistein or related substances in the treatment of diseases of epithelial tissues.
Collapse
|
40
|
Han H, Zhong C, Zhang X, Liu R, Pan M, Tan L, Li Y, Wu J, Zhu Y, Huang W. Genistein induces growth inhibition and G2/M arrest in nasopharyngeal carcinoma cells. Nutr Cancer 2010; 62:641-7. [PMID: 20574925 DOI: 10.1080/01635581003605490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an endemic malignant disease of the head and neck region with unique features including striking ethnic and geographic variations as well as multifactorial etiology. Previous studies have demonstrated the anticancer properties of genistein, the major soy isoflavonoid, in several human cancer cells such as breast, prostate, colon, gastric, lung, and hepatoma. However, the action of genistein in NPC cells has not been determined. In this study, we investigated the inhibitory effects of genistein on NPC cells and its possible underlying mechanisms. We found that genistein dose-dependently inhibited the proliferation of human NPC cell line CNE2 cells. DNA flow cytometric analysis revealed that 30 to 120 microM genistein induced dramatic G2/M phase arrest in NPC cells. The mRNA expression levels, as shown by gene expression array and quantitative real-time polymerase chain reaction, and the protein expression levels of the cell cycle regulators p21(Cip1) and ATR (Ataxia telangiectasia and Rad3 related) were elevated following genistein treatment. Interestingly, we also observed concomitant induction of p15(Ink4b) in genistein induced inhibitory effects in NPC cells. Moreover, selective estrogen receptor modulators did not affect genistein induced growth inhibition. These findings provide new insights into the potential intervention of NPC with genistein.
Collapse
Affiliation(s)
- Hongyu Han
- Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Marrero MB, Schieffer B, Bernstein KE, Ling BN. SYMPOSIUM: Experimental Biology 1995 Role of Mesangial Cell Ion Transport in Glomerular Physiology and Disease: ANGIOTENSIN II-INDUCED TYROSINE PHOSPHORYLATION IN MESANGIAL AND VASCULAR SMOOTH MUSCLE CELLS. Clin Exp Pharmacol Physiol 2010. [DOI: 10.1111/j.1440-1681.1996.tb03067.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Huang R, Singh M, Dillon GH. Genistein directly inhibits native and recombinant NMDA receptors. Neuropharmacology 2010; 58:1246-51. [PMID: 20303997 PMCID: PMC2861344 DOI: 10.1016/j.neuropharm.2010.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/22/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
The protein tyrosine kinase (PTK) inhibitor genistein has been widely used to examine potential effects of tyrosine phosphorylation on neurotransmitter function. We report here that genistein inhibits N-methyl-d-aspartate (NMDA) receptors through a direct effect. Whole-cell NMDA-activated current was recorded in native receptors from mouse hippocampal slice culture and rat recombinant NR1aNR2A and NR1aNR2B receptors transiently expressed in HEK293 cells. Extracellular application of genistein and NMDA reversibly inhibited NMDA-activated current. The inhibition of NMDA-activated current by genistein applied externally was not affected when genistein was also pre-equilibrated in the intracellular solution. Daidzein, an analog of genistein that does not block PTK, also inhibited NMDA-activated current. Coapplication of lavendustin A, a specific inhibitor of PTK, had no effect on the NMDA response. Moreover, genistein-induced inhibition of NMDA-activated current displayed concentration- and voltage-dependence. Our results demonstrate that genistein has a direct inhibitory effect on NMDA receptors that is not mediated via inhibition of tyrosine kinase. Thus, other PTK inhibitors may be more suitable for studying involvement of PTKs in NMDA receptor-mediated events.
Collapse
Affiliation(s)
- Renqi Huang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA.
| | | | | |
Collapse
|
43
|
Shieh DB, Li RY, Liao JM, Chen GD, Liou YM. Effects of genistein on beta-catenin signaling and subcellular distribution of actin-binding proteins in human umbilical CD105-positive stromal cells. J Cell Physiol 2010; 223:423-34. [PMID: 20082305 DOI: 10.1002/jcp.22051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was performed to define the roles of actin-binding proteins in the regulation of actin filament assembly associated with cellular signal transduction pathways in stromal cell proliferation. Genistein, a tyrosine protein kinase inhibitor, decreased the intracellular Ca(2+) and attenuated cell proliferation and DNA synthesis through the beta-catenin and cyclin D1 pathway in human umbilical CD105-positive cells. Immunoprecipitation studies using anti-beta-actin antibody revealed that several actin-binding proteins implicated in cells include formin-2 (FMN-2), caldesmon (CaD), tropomyosin (Tm), and profilin. Protein levels of these proteins in whole cell lysates were not significantly changed by genistein. Three Tm isoforms, Tm-1, Tm-2, and Tm-4, were found to be present in cells. Genistein caused a reduction in levels of mRNAs coding for Tm-1 and Tm-4, but had no significant effect on Tm-2 mRNA levels. Immunofluorescence confocal scanning microscopy indicated that changes in the subcellular distribution of Tm and CaD, in which the diffuse cytosolic staining was shifted to show colocalization with actin stress fibers. In contrast, genistein-induced accumulation of FMN-2 and profilin in the peri-nuclear area. Silencing of FMN-2 by small interfering RNA resulted in increases of intracellular Ca(2+) and rendered genistein resistance in decreasing intracellular Ca(2+) in cells. These results provide the novel findings that genistein acts by modulating the cellular distribution of actin-binding proteins in association with alterations of cellular signal transduction pathways in human stromal cell proliferation.
Collapse
Affiliation(s)
- Dar-Bin Shieh
- Institute of Oral Medicine, National Chung Kung University Medical College, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Lioi SA, Rigalli A, Puche RC. Effect of rhGH on the synthesis and secretion of VLDL to lymph and plasma from the intestine of the female rat. Growth Horm IGF Res 2010; 20:141-148. [PMID: 20044290 DOI: 10.1016/j.ghir.2009.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
The intravenous administration of rhGH (recombinant human Growth Hormone) to fasting female rats causes an increase in the rate of synthesis and secretion of VLDL (very low density lipoproteins). This phenomenon has three striking characteristics: (1) the demonstration of an unexpected lipogenic effect of rhGH, (2) its rapid occurrence after intravenous injection of the hormone and (3) the apparent dependence on the levels of circulating estrogens, as deduced by the lack of effect of rhGH on males and castrated females. The target tissue for the lipogenic effect was traced to the intestine by means of perfusion experiments of isolated duodenal loops. Impairment of liver blood supply discarded this tissue as the source of VLDL induced by rhGH. After a single dose of rhGH (T(1/2)=16min), the increase in plasma TAG (triacylglycerides) levels followed a positive exponential course that lasted ca. 3h. The same phenomenon (with no significant differences in kinetic parameters) was observed in three other experimental circumstances: fasting intact virgin female rats with impaired hepatic circulation, perfusion of isolated duodenum and sampling of mesenteric lymph. It is assumed that rhGH stimulates the synthesis of TAG and VLDL by the physiological mechanisms already present in enterocytes. Because increased plasma levels of VLDL and GH have been demonstrated in the last week of rat pregnancy, we believe that the reported phenomenon has physiological implications, hypothetically associated with fetal lung maturation. As an hypothesis, we suggest that the effect of growth hormone (of pituitary or placental origin) on the synthesis and secretion of VLDL by enterocytes uses a nongenomic pathway.
Collapse
Affiliation(s)
- Susana A Lioi
- Laboratorio de Biología Osea, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina.
| | | | | |
Collapse
|
45
|
Gusev GP, Agalakova NI. Regulation of K-Cl cotransport in erythrocytes of frog Rana temporaria by commonly used protein kinase and protein phosphatase inhibitors. J Comp Physiol B 2010; 180:385-91. [PMID: 19936761 DOI: 10.1007/s00360-009-0418-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/07/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Recently (Agalakova and Gusev in J Comp Physiol 179:443-450, 2009), we demonstrated that the activity of K-Cl cotransport (KCC) in frog red blood cells is inhibited under stimulation of protein kinase C (PKC) with phorbol ester PMA (12-myristate-13-acetate). Present work was performed to uncover possible implication of protein kinases and protein phosphatases (PPs) in the regulation of baseline and volume-dependent KCC activity in these cells. K+ influx was estimated as 86Rb uptake by the cells in isotonic or hypotonic media in the presence of ouabain, K+ efflux was determined as the difference between K+ loss by the cells incubated in parallel in isotonic or hypotonic K(+)-free Cl(-)- and NO(3)(-)-media. Swelling of the cells in hypotonic medium was accompanied by approximately 50% activation of Cl-dependent K+ influx and efflux. Protein tyrosine kinase (PTK) inhibitor genistein (0.1 mM) stably and considerably (up to 89%) suppressed both baseline and volume-dependent KCC activity in each direction. Other PTK blockers (tyrphostin 23 and quercetin) had no influence on KCC activity in frog erythrocytes. PKC inhibitor chelerythrine (20 microM) and both PP inhibitors, fluoride (5 mM) and okadaic acid (1 microM), reduced KCC activity by 25-70%. Neither basal nor swelling-activated KCC in frog erythrocytes was affected by PKC inhibitor staurosporine (1 microM). Based on the previous and present results, we can suggest that the main role in the maintenance of basal and volume-dependent KCC activity in frog erythrocytes belongs to PTKs and PPs, whereas PKC is a negative regulator of this ion system.
Collapse
Affiliation(s)
- Gennadii Petrovich Gusev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| | | |
Collapse
|
46
|
Yang X, Yang S, McKimmey C, Liu B, Edgerton SM, Bales W, Archer LT, Thor AD. Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation. Carcinogenesis 2010; 31:695-702. [DOI: 10.1093/carcin/bgq007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Lyn-mediated mitochondrial tyrosine phosphorylation is required to preserve mitochondrial integrity in early liver regeneration. Biochem J 2009; 425:401-12. [PMID: 19832701 DOI: 10.1042/bj20090902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Functional alterations in mitochondria such as overproduction of ROS (reactive oxygen species) and overloading of calcium, with subsequent change in the membrane potential, are traditionally regarded as pro-apoptotic conditions. Although such events occur in the early phases of LR (liver regeneration) after two-thirds PH (partial hepatectomy), hepatocytes do not undergo apoptosis but continue to proliferate until the mass of the liver is restored. The aim of the present study was to establish whether tyrosine phosphorylation, an emerging mechanism of regulation of mitochondrial function, participates in the response to liver injury following PH and is involved in contrasting mitochondrial pro-apoptotic signalling. Mitochondrial tyrosine phosphorylation, negligible in the quiescent liver, was detected in the early phases of LR with a trend similar to the events heralding mitochondrial apoptosis and was attributed to the tyrosine kinase Lyn, a member of the Src family. Lyn was shown to accumulate in an active form in the mitochondrial intermembrane space, where it was found to be associated with a multiprotein complex. Our results highlight a role for tyrosine phosphorylation in accompanying, and ultimately counteracting, mitochondrial events otherwise leading to apoptosis, hence conveying information required to preserve the mitochondrial integrity during LR.
Collapse
|
48
|
Anastasius N, Boston S, Lacey M, Storing N, Whitehead SA. Evidence that low-dose, long-term genistein treatment inhibits oestradiol-stimulated growth in MCF-7 cells by down-regulation of the PI3-kinase/Akt signalling pathway. J Steroid Biochem Mol Biol 2009; 116:50-5. [PMID: 19406242 DOI: 10.1016/j.jsbmb.2009.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 12/13/2022]
Abstract
The reduced incidence of breast cancer in certain Eastern countries has been attributed to high soy diets although this evidence is simply epidemiological. One of the major constituents of soy is genistein, but paradoxically this phytoestrogen binds to oestrogen receptors and stimulates growth at concentrations that would be achieved by a high soy diet, but inhibits growth at high experimental concentrations. To determine the effects of low-dose, long-term genistein exposure we have cultured MCF-7 breast cancer cells in 10 nM genistein for 10-12 weeks and investigated whether or not this long-term genistein treatment (LTGT) altered the expression of oestrogen receptor alpha (ERalpha) and the activity of the PI3-K/Akt signalling pathway. This is known to be pivotal in the signalling of mitogens such as oestradiol (E(2)), insulin-like growth factor-1 (IGF-1) and epidermal growth factor (EGF). LTGT significantly reduced the growth promoting effects of E(2) and increased the dose-dependent growth-inhibitory effect of the PI3-K inhibitor, LY 294002, compared to untreated control MCF-7 cells. This was associated with a significant decreased protein expression of total Akt and phosphorylated Akt but not ERalpha. Rapamycin, an inhibitor of one of the down-stream targets of Akt, mammalian target of rapamycin (mTOR), also dose-dependently inhibited growth but the response to this drug was similar in LTGT and control MCF-7 cells. The protein expression of liver receptor homologue-1 (LRH1), an orphan nuclear receptor implicated in tumourigenesis was not affected by LTGT. The results show that LTGT results in a down-regulation of the PI3-K/Akt signalling pathway and may be a mechanism through which genistein could offer protection against breast cancer.
Collapse
Affiliation(s)
- Nitharnie Anastasius
- Division of Basic Medical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Harada H, Sugimoto R, Watanabe A, Taketani S, Okada K, Warabi E, Siow R, Itoh K, Yamamoto M, Harada H, Sugimoto R, Watanabe A, Taketani S, Okada K, Warabi E, Siow R, Itoh K, Yamamoto M, Ishii T. Differential roles for Nrf2 and AP-1 in upregulation of HO-1 expression by arsenite in murine embryonic fibroblasts. Free Radic Res 2009; 42:297-304. [DOI: 10.1080/10715760801975735] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Abstract
There has been considerable investigation of the potential for soy foods to reduce risk of breast cancer. Initial enthusiasm for this research was partially based on the historically low incidence rates of breast cancer and high soy food intake in Japan. There are several putative soybean chemopreventive agents, but most cancer research has focused on isoflavones. Isoflavones possess both hormonal and nonhormonal properties relevant to carcinogenesis. Recent epidemiologic analyses indicate that among Asians high soy intake is associated with an approximate one-third reduction in the risk of both pre- and postmenopausal breast cancer. However, several lines of evidence suggest that to derive maximum protection against breast cancer, soy must be consumed early in life. This evidence is consistent with the lack of significant effects noted in clinical studies that have evaluated the effects of isoflavone-containing products on breast cancer risk markers. Isoflavones may exert their putative protective effects by stimulating breast cell differentiation in a manner similar to that which is thought to occur during early pregnancy. Finally, the ability of the isoflavone genistein to stimulate the growth of mammary tumors in ovariectomized athymic nude mice implanted with estrogen-sensitive breast cancer cells has raised concern that soy foods, and especially isoflavone supplements, are contraindicated for patients with breast cancer and women at high risk of breast cancer. However, findings from clinical studies, in which breast biopsies have been taken or breast tissue density measured after isoflavone exposure, are reassuring and contrast with the proliferative effects of conventional combined hormone therapy, although understanding of the effect of soy and isoflavones on breast tissues remains imprecise.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, School of Public, Health, Loma Linda University, Loma Linda, CA, USA.
| | | |
Collapse
|