1
|
He Z, Run Y, Feng Y, Yang Y, Tavakoli M, Ahmed A, Ariel F, Zhang W. Global identification and functional characterization of Z-DNA in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1277-1290. [PMID: 39968963 PMCID: PMC11933839 DOI: 10.1111/pbi.14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025]
Abstract
Z-DNA is a left-handed double helix form of DNA that is believed to be involved in various DNA transactions. However, comprehensive investigations aimed at global profiling of Z-DNA landscapes are still missing in both humans and plants. We here report the development of two techniques: anti-Z-DNA antibody-based immunoprecipitation followed by sequencing (ZIP-seq), and cleavage under targets and tagmentation (CUT&TAG) for characterizing Z-DNA in nipponbare rice (Oryza sativa L., Japonica). We found that Z-DNA-IP+ (Z-DNA recognized by the antibody) exhibits distinct genomic features as compared to Z-DNA-IP- (Z-DNA not recognized by the antibody). The concomitant presence of G-quadruplexes (G4s) and i-motifs (iMs) may promote Z-DNA formation. DNA modifications such as DNA-6mA/-4acC generally disfavours Z-DNA formation, while modifications like DNA-5mC (CHH) and 8-oxodG promote it, highlighting the distinct roles of DNA base modifications in modulating Z-DNA formation. Importantly, Z-DNA located at transcription start sites (TSSs) enhances gene expression, whereas Z-DNA in genic regions represses it, underscoring its dual roles in regulating the expression of genes involved in fundamental biological functions and responses to salt stress. Furthermore, Z-DNA may play a role in transcriptional initiation and termination rather than in transcriptional elongation. Finally, the presence of Z-DNA in promoters is correlated with the coevolution of overlapping genes, thereby regulating gene domestication. Consequently, our study represents as a pivotal point and a solid foundation for reliably launching genome-wide investigations of Z-DNA, thereby advancing the understanding of Z-DNA biology in both plants and non-plant systems.
Collapse
Affiliation(s)
- Zexue He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
- Key Lab of Agricultural Biotechnology of Ningxia, Ningxia Academy of Agriculture and Forestry SciencesYinChuanChina
| | - Yonghang Run
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yilong Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Ying Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Mahmoud Tavakoli
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Asgar Ahmed
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
- Bangladesh Wheat and Maize Research Institute (BWMRI)DinajpurBangladesh
| | - Federico Ariel
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and CONICET‐UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)Buenos AiresArgentina
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
2
|
Abstract
The B-DNA to Z-DNA transition is a remarkable conformational change in DNA, which was originally observed in poly-GC DNA in the presence of high salt concentration. This eventually prompted the observation of the crystal structure of Z-DNA, a left-handed double-helical DNA, at atomic resolution. Despite advances in Z-DNA research, the application of circular dichroism (CD) spectroscopy as the fundamental technique to characterize this unique DNA conformation has remained constant. In this chapter, we describe a CD spectroscopic method for characterizing the B-DNA to Z-DNA transition of a CG-repeat double-stranded DNA fragment formed from a protein or chemical inducer.
Collapse
Affiliation(s)
- Vinod Kumar Subramani
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
3
|
Non-growth inhibitory doses of dimethyl sulfoxide alter gene expression and epigenetic pattern of bacteria. Appl Microbiol Biotechnol 2022; 107:299-312. [DOI: 10.1007/s00253-022-12296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
|
4
|
Shi X, Teng H, Sun Z. An updated overview of experimental and computational approaches to identify non-canonical DNA/RNA structures with emphasis on G-quadruplexes and R-loops. Brief Bioinform 2022; 23:bbac441. [PMID: 36208174 PMCID: PMC9677470 DOI: 10.1093/bib/bbac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple types of non-canonical nucleic acid structures play essential roles in DNA recombination and replication, transcription, and genomic instability and have been associated with several human diseases. Thus, an increasing number of experimental and bioinformatics methods have been developed to identify these structures. To date, most reviews have focused on the features of non-canonical DNA/RNA structure formation, experimental approaches to mapping these structures, and the association of these structures with diseases. In addition, two reviews of computational algorithms for the prediction of non-canonical nucleic acid structures have been published. One of these reviews focused only on computational approaches for G4 detection until 2020. The other mainly summarized the computational tools for predicting cruciform, H-DNA and Z-DNA, in which the algorithms discussed were published before 2012. Since then, several experimental and computational methods have been developed. However, a systematic review including the conformation, sequencing mapping methods and computational prediction strategies for these structures has not yet been published. The purpose of this review is to provide an updated overview of conformation, current sequencing technologies and computational identification methods for non-canonical nucleic acid structures, as well as their strengths and weaknesses. We expect that this review will aid in understanding how these structures are characterised and how they contribute to related biological processes and diseases.
Collapse
Affiliation(s)
- Xiaohui Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Ouhai District, Wenzhou 325000, China
| | - Zhongsheng Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Center for Excellence in Biotic Interactions and State Key Laboratory of Integrated Management of Pest Insects and Rodents, University of Chinese Academy of Sciences; Institute of Genomic Medicine, Wenzhou Medical University; IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
5
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
6
|
Kim SH, Lim SH, Lee AR, Kwon DH, Song HK, Lee JH, Cho M, Johner A, Lee NK, Hong SC. Unveiling the pathway to Z-DNA in the protein-induced B-Z transition. Nucleic Acids Res 2019; 46:4129-4137. [PMID: 29584891 PMCID: PMC5934635 DOI: 10.1093/nar/gky200] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Left-handed Z-DNA is an extraordinary conformation of DNA, which can form by special sequences under specific biological, chemical or physical conditions. Human ADAR1, prototypic Z-DNA binding protein (ZBP), binds to Z-DNA with high affinity. Utilizing single-molecule FRET assays for Z-DNA forming sequences embedded in a long inactive DNA, we measure thermodynamic populations of ADAR1-bound DNA conformations in both GC and TG repeat sequences. Based on a statistical physics model, we determined quantitatively the affinities of ADAR1 to both Z-form and B-form of these sequences. We also reported what pathways it takes to induce the B–Z transition in those sequences. Due to the high junction energy, an intermediate B* state has to accumulate prior to the B–Z transition. Our study showing the stable B* state supports the active picture for the protein-induced B–Z transition that occurs under a physiological setting.
Collapse
Affiliation(s)
- Sook Ho Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Physics, Korea University, Seoul 02841, South Korea
| | - So-Hee Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju 52828, South Korea
| | - Do Hoon Kwon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Hyun Kyu Song
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju 52828, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Albert Johner
- Institute Charles Sadron, CNRS 23 rue du Loess 67034, Strasbourg cedex 2, France.,Department of Physics, Sejong University, Seoul 05006, South Korea
| | - Nam-Kyung Lee
- Institute Charles Sadron, CNRS 23 rue du Loess 67034, Strasbourg cedex 2, France.,Department of Physics, Sejong University, Seoul 05006, South Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Physics, Korea University, Seoul 02841, South Korea
| |
Collapse
|
7
|
Martis B S, Forquet R, Reverchon S, Nasser W, Meyer S. DNA Supercoiling: an Ancestral Regulator of Gene Expression in Pathogenic Bacteria? Comput Struct Biotechnol J 2019; 17:1047-1055. [PMID: 31452857 PMCID: PMC6700405 DOI: 10.1016/j.csbj.2019.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species.
Collapse
Affiliation(s)
- Shiny Martis B
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sam Meyer
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
8
|
Ravichandran S, Subramani VK, Kim KK. Z-DNA in the genome: from structure to disease. Biophys Rev 2019; 11:383-387. [PMID: 31119604 DOI: 10.1007/s12551-019-00534-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
The scope of studies investigating the architecture of genomic DNA has progressed steadily since the elucidation of the structure of B-DNA. In recent years, several non-canonical DNA structures including Z-DNA, G-quadruplexes, H-DNA, cruciform DNA, and i-motifs have been reported to form in genomic DNA and are closely related to the evolution and development of disease. The ability of these structures to form in genomic DNA indicates that they might have important cellular roles and are therefore retained during evolution. Understanding the impact of the formation of these secondary structures on cellular processes can enable identification of new targets for therapeutics. In this review, we report the state of understanding of Z-DNA structure and formation and their implication in disease. Finally, we state our perspective on the potential of Z-DNA as a therapeutic target.
Collapse
Affiliation(s)
- Subramaniyam Ravichandran
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Vinod Kumar Subramani
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| |
Collapse
|
9
|
Shevchenko G, Morris KV. All I's on the RADAR: role of ADAR in gene regulation. FEBS Lett 2018; 592:2860-2873. [PMID: 29770436 DOI: 10.1002/1873-3468.13093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
Adenosine to inosine (A-to-I) editing is the most abundant form of RNA modification in mammalian cells, which is catalyzed by adenosine deaminase acting on the double-stranded RNA (ADAR) protein family. A-to-I editing is currently known to be involved in the regulation of the immune system, RNA splicing, protein recoding, microRNA biogenesis, and formation of heterochromatin. Editing occurs within regions of double-stranded RNA, particularly within inverted Alu repeats, and is associated with many diseases including cancer, neurological disorders, and metabolic syndromes. However, the significance of RNA editing in a large portion of the transcriptome remains unknown. Here, we review the current knowledge about the prevalence and function of A-to-I editing by the ADAR protein family, focusing on its role in the regulation of gene expression. Furthermore, RNA editing-independent regulation of cellular processes by ADAR and the putative role(s) of this process in gene regulation will be discussed.
Collapse
Affiliation(s)
- Galina Shevchenko
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Kevin V Morris
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
10
|
Ahmed W, Menon S, Karthik PVDNB, Nagaraja V. Autoregulation of topoisomerase I expression by supercoiling sensitive transcription. Nucleic Acids Res 2015; 44:1541-52. [PMID: 26496944 PMCID: PMC4770202 DOI: 10.1093/nar/gkv1088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/08/2015] [Indexed: 11/13/2022] Open
Abstract
The opposing catalytic activities of topoisomerase I (TopoI/relaxase) and DNA gyrase (supercoiling enzyme) ensure homeostatic maintenance of bacterial chromosome supercoiling. Earlier studies in Escherichia coli suggested that the alteration in DNA supercoiling affects the DNA gyrase and TopoI expression. Although, the role of DNA elements around the promoters were proposed in regulation of gyrase, the molecular mechanism of supercoiling mediated control of TopoI expression is not yet understood. Here, we describe the regulation of TopoI expression from Mycobacterium tuberculosis and Mycobacterium smegmatis by a mechanism termed Supercoiling Sensitive Transcription (SST). In both the organisms, topoI promoter(s) exhibited reduced activity in response to chromosome relaxation suggesting that SST is intrinsic to topoI promoter(s). We elucidate the role of promoter architecture and high transcriptional activity of upstream genes in topoI regulation. Analysis of the promoter(s) revealed the presence of sub-optimal spacing between the -35 and -10 elements, rendering them supercoiling sensitive. Accordingly, upon chromosome relaxation, RNA polymerase occupancy was decreased on the topoI promoter region implicating the role of DNA topology in SST of topoI. We propose that negative supercoiling induced DNA twisting/writhing align the -35 and -10 elements to facilitate the optimal transcription of topoI.
Collapse
Affiliation(s)
- Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Shruti Menon
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
11
|
Sawaya S, Boocock J, Black MA, Gemmell NJ. Exploring possible DNA structures in real-time polymerase kinetics using Pacific Biosciences sequencer data. BMC Bioinformatics 2015; 16:21. [PMID: 25626999 PMCID: PMC4384361 DOI: 10.1186/s12859-014-0449-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/30/2014] [Indexed: 12/01/2022] Open
Abstract
Background Pausing of DNA polymerase can indicate the presence of a DNA structure that differs from the canonical double-helix. Here we detail a method to investigate how polymerase pausing in the Pacific Biosciences sequencer reads can be related to DNA sequences. The Pacific Biosciences sequencer uses optics to view a polymerase and its interaction with a single DNA molecule in real-time, offering a unique way to detect potential alternative DNA structures. Results We have developed a new way to examine polymerase kinetics data and relate it to the DNA sequence by using a wavelet transform of read information from the sequencer. We use this method to examine how polymerase kinetics are related to nucleotide base composition. We then examine tandem repeat sequences known for their ability to form different DNA structures: (CGG)n and (CG)n repeats which can, respectively, form G-quadruplex DNA and Z-DNA. We find pausing around the (CGG)n repeat that may indicate the presence of G-quadruplexes in some of the sequencer reads. The (CG)n repeat does not appear to cause polymerase pausing, but its kinetics signature nevertheless suggests the possibility that alternative nucleotide conformations may sometimes be present. Conclusion We discuss the implications of using our method to discover DNA sequences capable of forming alternative structures. The analyses presented here can be reproduced on any Pacific Biosciences kinetics data for any DNA pattern of interest using an R package that we have made publicly available.
Collapse
Affiliation(s)
- Sterling Sawaya
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA. .,Department of Anatomy, and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand.
| | - James Boocock
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Neil J Gemmell
- Department of Anatomy, and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
12
|
Belotserkovskii BP, Mirkin SM, Hanawalt PC. DNA sequences that interfere with transcription: implications for genome function and stability. Chem Rev 2013; 113:8620-37. [PMID: 23972098 DOI: 10.1021/cr400078y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Association of intronic repetition of SLC26A4 gene with Hashimoto thyroiditis disease. Genet Res (Camb) 2013; 95:38-44. [PMID: 23452581 DOI: 10.1017/s0016672313000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Intronic microsatellites repeats were implicated in the pathogenic mechanisms of several diseases. SLC26A4 gene, involved in the genetic susceptibility of autoimmune thyroid disease (AITD), harbours large non-coding introns. Using the tandem repeat finder (TRF) Software, two new polymorphic microsatellite markers, rs59736472 and rs57250751, located at introns 10 and 20, respectively, were identified. A case-control design including 308 patients affected with AITD (146 GD, 90 HT and 72 PIM) and 212 unmatched healthy controls were performed for each marker (rs59736472, D7S2459 and rs57250751). Furthermore, we used PHASE 2.0 version to reconstruct haplotypes, Kolmogorov-Smirnov (KS) and the Clump analysis program for multivariate analysis. The fluorescent genotyping revealed three alleles (106,112 and 115 bp) for rs57250751 and 12 alleles for both D7S2459 and rs59736472 ranging from 134 to 156 bp and from 144 to 168 bp, respectively. The case-control analysis confirmed the positive association of D7S2459 with Hashimoto thyroiditis (HT) disease previously reported. Moreover, a significant association was found only with rs59736472 and HT disease. Haplotype-specific analysis showed that the 140-148-115 haplotype may increase the risk of HT (χ2=9.8, 1 df, P=0.0017, OR=2.07, IC [1.27-3.36]). Consequently, considering the number of repetitions of both D7S2459 and rs59736472, we found 15 alleles ranging from 45 to 59 repetitions. The case-control analysis showed a significant association of the 55 repetition with HT disease (χ2=6.32, 1 df, p c=0.012, OR=1.74, IC [1.1-2.76]). In conclusion, we suggest the association of longer alleles of intron 10 of SLC26A4 gene with HT disease.
Collapse
|
14
|
Promoter microsatellites as modulators of human gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:41-54. [PMID: 23560304 DOI: 10.1007/978-1-4614-5434-2_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microsatellites in and around genes have been shown to modulate levels of gene expression in multiple organisms, ranging from bacteria to humans. Here we will discuss promoter microsatellites known to modulate gene expression, with a few key examples related to the human brain. Many of the microsatellites we discuss are highly conserved in mammals, indicating that selection may favor their retention as "tuning knobs" of gene expression. We will also discuss the mechanisms by which microsatellites in promoters can alter gene expression as they expand and contract, with particular attention to secondary structures like Z-DNA and H-DNA. We suggest that promoter microsatellites, especially those that are highly conserved, may be an important source of human phenotypic variation.
Collapse
|
15
|
Evolution of coordinated mutagenesis and somatic hypermutation in VH5. Mol Immunol 2011; 49:537-48. [PMID: 22056943 DOI: 10.1016/j.molimm.2011.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/06/2011] [Indexed: 12/20/2022]
Abstract
The VH5 human antibody gene was analyzed using a computer program (mfg) which simulates transcription, to better understand transcription-driven mutagenesis events that occur during "phase 1" of somatic hypermutation. Results show that the great majority of mutations in the non-transcribed strand occur within loops of two predicted high-stability stem-loop structures, termed SLSs 14.9 and 13.9. In fact, 89% of the 2505 mutations reported are within the encoded complementarity-determining region (CDR) and occur in loops of these high-stability structures. In vitro studies were also done and verified the existence of SLS 14.9. Following the formation of SLSs 14.9 and 13.9, a sustained period of transcriptional activity occurs within a window size of 60-70 nucleotides. During this period, the stability of these two SLSs does not change, and may provide the substrate for base exchanges and mutagenesis. The data suggest that many mutable bases are exposed simultaneously at pause sites, allowing for coordinated mutagenesis.
Collapse
|
16
|
Huang CC, Chiribau CB, Majumder M, Chiang CM, Wek RC, Kelm RJ, Khalili K, Snider MD, Hatzoglou M. A bifunctional intronic element regulates the expression of the arginine/lysine transporter Cat-1 via mechanisms involving the purine-rich element binding protein A (Pur alpha). J Biol Chem 2009; 284:32312-20. [PMID: 19720825 DOI: 10.1074/jbc.m109.024471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the arginine/lysine transporter Cat-1 is highly induced in proliferating and stressed cells via mechanisms that include transcriptional activation. A bifunctional INE (intronic element) within the first intron of the Cat-1 gene was identified and characterized in this study. The INE had high sequence homology to an amino acid response element and was shown to act as a transcriptional enhancer in unstressed cells by binding the transcription factor, purine-rich element binding protein A (Pur alpha). During endoplasmic reticulum stress, binding of Pur alpha to the INE decreased; the element acted as a positive regulator in early stress by binding of the transcription factor ATF4 and as a negative regulator in prolonged stress by binding the stress-induced C/EBP family member, CHOP. We conclude that transcriptional control of the Cat-1 gene is tightly controlled by multiple cis-DNA elements, contributing to regulation of cationic amino acid transport for cell growth and proliferation. In addition, we propose that genes may use stress-response elements such as the INE to support basal expression in the absence of stress.
Collapse
Affiliation(s)
- Charlie C Huang
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4954, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang W, He L, Liu W, Sun C, Ratain MJ. Exploring the relationship between polymorphic (TG/CA)n repeats in intron 1 regions and gene expression. Hum Genomics 2009; 3:236-45. [PMID: 19403458 PMCID: PMC2735212 DOI: 10.1186/1479-7364-3-3-236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The putative role of (TG/CA)n repeats in the regulation of transcription has recently been reported for several cancer- and disease-related genes, including the genes encoding the epidermal growth factor receptor (EGFR), hydroxysteroid (11-beta) dehydrogenase 2 (HSD11B2) and interferon-gamma (IFNG). These studies indicated a correlation between gene expression levels and the presence or length of (TG/CA)n repeats in their intron 1 regions. A genome-wide search for genes with similar features may provide evidence of whether these dinucleotide repeats represent a class of universal regulators of gene expression, which has recently begun to be investigated as a quantitative complex phenotype. Using a public database of simple repeats, we identified 330 genes containing potentially polymorphic long (TG/CA)n repeats (n >or= 12) in their intron 1 regions. One known physiological pathway, the calcium signalling pathway, was found to be enriched among the genes containing long repeats. In addition, certain biological processes, such as cation transport, signal transduction and ion transport, were found to be enriched in these genes. Genotyping of the long repeats showed that the majority of these dinucleotide repeats were polymorphic in the HapMap CEU (Caucasians from Utah, USA) samples of northern and western European ancestry. Evidence for a significant association between these repeats and gene expression was not observed in the genes selected based on their expression profiles in the HapMap CEU samples. Our current findings, therefore, do not support a role for these repeats as a class of universal gene expression regulators. A more comprehensive evaluation of the relationship between these repeats and gene expression, potentially in other tissues, may be necessary to illustrate their roles in gene regulation in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
18
|
Belotserkovskii BP, Liu R, Hanawalt PC. Peptide nucleic acid (PNA) binding and its effect on in vitro transcription in friedreich's ataxia triplet repeats. Mol Carcinog 2009; 48:299-308. [PMID: 19306309 DOI: 10.1002/mc.20486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide nucleic acids (PNAs) are DNA mimics in which peptide-like linkages are substituted for the phosphodiester backbone. Homopyrimidine PNAs can invade double-stranded DNA containing the homologous sequence by displacing the homopyrimidine strand from the DNA duplex and forming a PNA/DNA/PNA triplex with the complementary homopurine strand. Among biologically interesting targets for triplex-forming PNA are (GAA/CTT)(n) repeats. Expansion of these repeats results in partial inhibition of transcription in the frataxin gene, causing Friedreich's ataxia. We have studied PNA binding and its effect on T7 RNA polymerase transcription in vitro for short repeats (n = 3) and for long repeats (n = 39), placed in both possible orientations relative to the T7 promoter such that either the GAA-strand, or the CTT-strand serves as the template for transcription. In all cases PNA bound specifically and efficiently to its target sequence. For the short insert, PNA binding to the template strand caused partial transcription blockage with well-defined sites of RNA product truncation in the region of the PNA-binding sequence, whereas binding to the nontemplate strand did not block transcription. However, PNA binding to long repeats, whether in the template or the nontemplate strand, resulted in a dramatic reduction of the amount of full-length transcription product, although in the case of the nontemplate strand there were no predominant truncation sites. Biological implications of these results are discussed.
Collapse
|
19
|
|
20
|
Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9:958-70. [PMID: 19023283 DOI: 10.1038/nrm2549] [Citation(s) in RCA: 797] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.
Collapse
|
21
|
Wright BE, Schmidt KH, Minnick MF, Davis N. I. VH gene transcription creates stabilized secondary structures for coordinated mutagenesis during somatic hypermutation. Mol Immunol 2008; 45:3589-99. [PMID: 18585784 DOI: 10.1016/j.molimm.2008.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 02/29/2008] [Indexed: 02/01/2023]
Abstract
During the adaptive immune response, antigen challenge triggers a million-fold increase in mutation rates in the variable-region antibody genes. The frequency of mutation is causally and directly linked to transcription, which provides ssDNA and drives supercoiling that stabilizes secondary structures containing unpaired, intrinsically mutable bases. Simulation analysis of transcription in VH5 reveals a dominant 65nt secondary structure in the non-transcribed strand containing six sites of mutable ssDNA that have also been identified independently in human B cell lines and in primary mouse B cells. This dominant structure inter-converts briefly with less stable structures and is formed repeatedly during transcription, due to periodic pauses and backtracking. In effect, this creates a stable yet dynamic "mutability platform" consisting of ever-changing patterns of unpaired bases that are simultaneously exposed and therefore able to coordinate mutagenesis. Such a complex of secondary structures may be the source of ssDNA for enzyme-based diversification, which ultimately results in high affinity antibodies.
Collapse
Affiliation(s)
- Barbara E Wright
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | | | | | |
Collapse
|
22
|
Ditlevson JV, Tornaletti S, Belotserkovskii BP, Teijeiro V, Wang G, Vasquez KM, Hanawalt PC. Inhibitory effect of a short Z-DNA forming sequence on transcription elongation by T7 RNA polymerase. Nucleic Acids Res 2008; 36:3163-70. [PMID: 18400779 PMCID: PMC2425487 DOI: 10.1093/nar/gkn136] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
DNA sequences capable of forming unusual secondary structures can be a source of genomic instability. In some cases that instability might be affected by transcription, as recently shown for the Z-DNA forming sequence (CG)14, which causes genomic instability both in mammalian cells and in bacteria, and this effect increases with its transcription. We have investigated the effect of this (CG)14 sequence on transcription with T7 RNA polymerase in vitro. We detected partial transcription blockage within the sequence; the blockage increased with negative supercoiling of the template DNA. This effect was not observed in a control self-complementary sequence of identical length and base composition as the (CG)14 sequence, when the purine–pyrimidine alternation required for Z-DNA formation was disrupted. These findings suggest that the inhibitory effect on T7 transcription results from Z-DNA formation in the (CG)14 sequence rather than from an effect of the sequence composition or from hairpin formation in either the DNA or the RNA product.
Collapse
Affiliation(s)
- Jennifer V Ditlevson
- Department of Biological Sciences, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lopez FJ, Blanco A, Garcia F, Cano C, Marin A. Fuzzy association rules for biological data analysis: a case study on yeast. BMC Bioinformatics 2008; 9:107. [PMID: 18284669 PMCID: PMC2277399 DOI: 10.1186/1471-2105-9-107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 02/19/2008] [Indexed: 11/24/2022] Open
Abstract
Background Last years' mapping of diverse genomes has generated huge amounts of biological data which are currently dispersed through many databases. Integration of the information available in the various databases is required to unveil possible associations relating already known data. Biological data are often imprecise and noisy. Fuzzy set theory is specially suitable to model imprecise data while association rules are very appropriate to integrate heterogeneous data. Results In this work we propose a novel fuzzy methodology based on a fuzzy association rule mining method for biological knowledge extraction. We apply this methodology over a yeast genome dataset containing heterogeneous information regarding structural and functional genome features. A number of association rules have been found, many of them agreeing with previous research in the area. In addition, a comparison between crisp and fuzzy results proves the fuzzy associations to be more reliable than crisp ones. Conclusion An integrative approach as the one carried out in this work can unveil significant knowledge which is currently hidden and dispersed through the existing biological databases. It is shown that fuzzy association rules can model this knowledge in an intuitive way by using linguistic labels and few easy-understandable parameters.
Collapse
Affiliation(s)
- Francisco J Lopez
- Department of Computer Science and AI, University of Granada, 18071, Granada, Spain.
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Michel Morange
- Centre Cavailles, Ecole normale superieure, 29 rue d'Ulm, 75230 Paris Cedex 05, France.
| |
Collapse
|
25
|
Sharma VK, Kumar N, Brahmachari SK, Ramachandran S. Abundance of dinucleotide repeats and gene expression are inversely correlated: a role for gene function in addition to intron length. Physiol Genomics 2007; 31:96-103. [PMID: 17550993 DOI: 10.1152/physiolgenomics.00183.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High and broad transcription of eukaryotic genes is facilitated by cost minimization, clustered localization in the genome, elevated G+C content, and low nucleosome formation potential. In this scenario, illumination of correlation between abundance of (TG/CA)(n>or=12) repeats, which are negative cis modulators of transcription, and transcriptional levels and other commonly occurring dinucleotide repeats, is required. Three independent microarray datasets were used to examine the correlation of (TG/CA)(n>or=12) and other dinucleotide repeats with gene expression. Compared with the expected equi-distribution pattern under neutral model, highly transcribed genes were poor in repeats, and conversely, weakly transcribed genes were rich in repeats. Furthermore, the inverse correlation between repeat abundance and transcriptional levels appears to be a global phenomenon encompassing all genes regardless of their breadth of transcription. This selective pattern of exclusion of (TG/CA)(n>or=12) and (AT)(n>or=12) repeats in highly transcribed genes is an additional factor along with cost minimization and elevated GC, and therefore, multiple factors govern high transcription of genes. We observed that even after controlling for the effects of GC and average intron lengths, the effect of repeats albeit somewhat weaker was persistent and definite. In the ribosomal protein coding genes, sequence analysis of orthologs suggests that negative selection for repeats perhaps occurred early in evolution. These observations suggest that negative selection of (TG/CA)(n>or=12) microsatellites in the evolution of the highly expressed genes was also controlled by gene function in addition to intron length.
Collapse
Affiliation(s)
- Vineet K Sharma
- G. N. Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | |
Collapse
|
26
|
Sharma VK, Sharma A, Kumar N, Khandelwal M, Mandapati KK, Horn-Saban S, Strichman-Almashanu L, Lancet D, Brahmachari SK, Ramachandran S. Expoldb: expression linked polymorphism database with inbuilt tools for analysis of expression and simple repeats. BMC Genomics 2006; 7:258. [PMID: 17038195 PMCID: PMC1618849 DOI: 10.1186/1471-2164-7-258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 10/13/2006] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Quantitative variation in gene expression has been proposed to underlie phenotypic variation among human individuals. A facilitating step towards understanding the basis for gene expression variability is associating genome wide transcription patterns with potential cis modifiers of gene expression. DESCRIPTION EXPOLDB, a novel Database, is a new effort addressing this need by providing information on gene expression levels variability across individuals, as well as the presence and features of potentially polymorphic (TG/CA)n repeats. EXPOLDB thus enables associating transcription levels with the presence and length of (TG/CA)n repeats. One of the unique features of this database is the display of expression data for 5 pairs of monozygotic twins, which allows identification of genes whose variability in expression, are influenced by non-genetic factors including environment. In addition to queries by gene name, EXPOLDB allows for queries by a pathway name. Users can also upload their list of HGNC (HUGO (The Human Genome Organisation) Gene Nomenclature Committee) symbols for interrogating expression patterns. The online application 'SimRep' can be used to find simple repeats in a given nucleotide sequence. To help illustrate primary applications, case examples of Housekeeping genes and the RUNX gene family, as well as one example of glycolytic pathway genes are provided. CONCLUSION The uniqueness of EXPOLDB is in facilitating the association of genome wide transcription variations with the presence and type of polymorphic repeats while offering the feature for identifying genes whose expression variability are influenced by non genetic factors including environment. In addition, the database allows comprehensive querying including functional information on biochemical pathways of the human genes. EXPOLDB can be accessed at http://expoldb.igib.res.in/expol.
Collapse
Affiliation(s)
- Vineet K Sharma
- G.N. Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | - Anu Sharma
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | - Naveen Kumar
- G.N. Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | - Mamta Khandelwal
- G.N. Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | - Kiran Kumar Mandapati
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | - Shirley Horn-Saban
- Microarray facility, Department of Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liora Strichman-Almashanu
- Department of Molecular Genetics and Crown Human Genome Center, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Doron Lancet
- Department of Molecular Genetics and Crown Human Genome Center, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Samir K Brahmachari
- G.N. Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | - Srinivasan Ramachandran
- G.N. Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| |
Collapse
|
27
|
Abstract
Repetitive DNA sequences are abundant in eukaryotic genomes, and many of these sequences have the potential to adopt non-B DNA conformations. Genes harboring non-B DNA structure-forming sequences increase the risk of genetic instability and thus are associated with human diseases. In this review, we discuss putative mechanisms responsible for genetic instability events occurring at these non-B DNA structures, with a focus on hairpins, left-handed Z-DNA, and intramolecular triplexes or H-DNA. Slippage and misalignment are the most common events leading to DNA structure-induced mutagenesis. However, a number of other mechanisms of genetic instability have been proposed based on the finding that these structures not only induce expansions and deletions, but can also induce DNA strand breaks and rearrangements. The available data implicate a variety of proteins, such as mismatch repair proteins, nucleotide excision repair proteins, topoisomerases, and structure specific-nucleases in the processing of these mutagenic DNA structures. The potential mechanisms of genetic instability induced by these structures and their contribution to human diseases are discussed.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, 78957, USA
| | | |
Collapse
|
28
|
Roche D, Almouzni G, Quivy JP. Chromatin assembly of DNA templates microinjected into Xenopus oocytes. Methods Mol Biol 2006; 322:139-47. [PMID: 16739721 DOI: 10.1007/978-1-59745-000-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The packaging of deoxyribonucleic acid (DNA) into chromatin within the eukaryotic nucleus can affect processes such as DNA replication, transcription, recombination, and repair. Therefore, studies aimed at understanding at the molecular level how these processes are operating have to take into account the chromatin context. We present a method to assemble DNA into chromatin by nuclear microinjection into Xenopus oocytes. This method allows in vivo chromatin formation in a nuclear environment. We provide the experimental procedures for oocyte preparation, DNA injection, and analysis of the assembled chromatin.
Collapse
Affiliation(s)
- Danièle Roche
- Research Section, Institute Curie, UMR218 du Centre National de la Recherche Scientifique, Paris, France
| | | | | |
Collapse
|
29
|
Svoboda P. Long dsRNA and silent genes strike back:RNAi in mouse oocytes and early embryos. Cytogenet Genome Res 2005; 105:422-34. [PMID: 15237230 DOI: 10.1159/000078215] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 11/14/2003] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) refers to the selective degradation of mRNA induced by double-stranded RNA (dsRNA), first discovered in Caenorhabditis elegans. Homology-dependent silencing phenomena related to RNAi have been observed in many species from all eukaryotic kingdoms. RNAi and related mechanisms share several conserved components. The hallmark of these phenomena is the presence of short dsRNA molecules (21-25 bp long), termed short interfering RNA (siRNA), which are generated from dsRNA by the activity of Dicer, a specific type III RNAse. These molecules serve as a template for the recognition and cleavage of the cognate mRNA. As it is beyond the scope of a single review to cover all aspects of RNAi, this review will focus on certain steps of the pathway relevant to mammals and on the use of long dsRNA to specifically silence genes in mammalian cells permissive to this technique, such as oocytes and early embryos.
Collapse
Affiliation(s)
- P Svoboda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Shaw CJ, Withers MA, Lupski JR. Uncommon deletions of the Smith-Magenis syndrome region can be recurrent when alternate low-copy repeats act as homologous recombination substrates. Am J Hum Genet 2004; 75:75-81. [PMID: 15148657 PMCID: PMC1182010 DOI: 10.1086/422016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 04/07/2004] [Indexed: 11/03/2022] Open
Abstract
Several homologous recombination "hotspots," or sites of positional preference for strand exchanges, associated with recurrent deletions and duplications have been reported within large low-copy repeats (LCRs). Recently, such a hotspot was identified in patients with the Smith-Magenis syndrome (SMS) common deletion of approximately 4 Mb or a reciprocal duplication within the KER gene cluster of the SMS-REP LCRs, in which 50% of analyzed strand exchanges resulting in deletion and 23% of those resulting in duplication occurred. Here, we report an additional recombination hotspot within LCR17pA and LCR17pD, which serve as alternative substrates for nonallelic homologous recombination that results in large (approximately 5 Mb) deletions of 17p11.2, which include the SMS region. Using polymerase-chain-reaction mapping of somatic cell hybrid lines, we refined the breakpoints of six deletions within these LCRs. Sequence analysis of the recombinant junctions revealed that all six strand exchanges occurred within a 524-bp interval, and four of them occurred within an AluSq/x element. This interval represents only 0.5% of the 124-kb stretch of 98.6% sequence identity between LCR17pA and LCR17pD. A search for potentially stimulating sequence motifs revealed short AT-rich segments flanking the recombination hotspot. Our findings indicate that alternative LCRs can mediate rearrangements, resulting in haploinsufficiency of the SMS critical region, and reimplicate homologous recombination as a major mechanism for genomic disorders.
Collapse
Affiliation(s)
- Christine J. Shaw
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Marjorie A. Withers
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| |
Collapse
|
31
|
Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN. Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Hum Mutat 2003; 22:229-44. [PMID: 12938088 DOI: 10.1002/humu.10254] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Translocations and gross deletions are important causes of both cancer and inherited disease. Such gene rearrangements are nonrandomly distributed in the human genome as a consequence of selection for growth advantage and/or the inherent potential of some DNA sequences to be frequently involved in breakage and recombination. Using the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] (containing 397 germ-line and somatic DNA breakpoint junction sequences derived from 219 different rearrangements underlying human inherited disease and cancer), we have analyzed the sequence context of translocation and deletion breakpoints in a search for general characteristics that might have rendered these sequences prone to rearrangement. The oligonucleotide composition of breakpoint junctions and a set of reference sequences, matched for length and genomic location, were compared with respect to their nucleotide composition. Deletion breakpoints were found to be AT-rich whereas by comparison, translocation breakpoints were GC-rich. Alternating purine-pyrimidine sequences were found to be significantly over-represented in the vicinity of deletion breakpoints while polypyrimidine tracts were over-represented at translocation breakpoints. A number of recombination-associated motifs were found to be over-represented at translocation breakpoints (including DNA polymerase pause sites/frameshift hotspots, immunoglobulin heavy chain class switch sites, heptamer/nonamer V(D)J recombination signal sequences, translin binding sites, and the chi element) but, with the exception of the translin-binding site and immunoglobulin heavy chain class switch sites, none of these motifs were over-represented at deletion breakpoints. Alu sequences were found to span both breakpoints in seven cases of gross deletion that may thus be inferred to have arisen by homologous recombination. Our results are therefore consistent with a role for homologous unequal recombination in deletion mutagenesis and a role for nonhomologous recombination in the generation of translocations.
Collapse
Affiliation(s)
- Shaun S Abeysinghe
- Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | |
Collapse
|
32
|
Marín A, Gallardo M, Kato Y, Shirahige K, Gutiérrez G, Ohta K, Aguilera A. Relationship between G+C content, ORF-length and mRNA concentration in Saccharomyces cerevisiae. Yeast 2003; 20:703-11. [PMID: 12794931 DOI: 10.1002/yea.992] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RNA biogenesis is a tightly-regulated process. The levels and timing of expression of a gene depends on its particular function. However, gene expression levels may also depend on structural features. Here we describe the analysis of gene expression of 4977 ORFs using DNA microarrays covering the whole genome of three different S. cerevisiae strains, wild-type and tho2 and thp1 mutants with a general effect on mRNA biogenesis. We show that transcripts from G+C-rich ORFs accumulate at higher concentrations than those from G+C-poor ones, in different ORF-length categories in all strains tested. In addition, we found a negative correlation between ORF length and G+C content. Our results indicate that length and G+C content of a gene have a clear effect on its levels of expression. We discuss the biological relevance of these results, as well as different ways that these structural features could modulate mRNA biogenesis.
Collapse
Affiliation(s)
- Antonio Marín
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions. DNA Cell Biol 2003; 22:141-69. [PMID: 12804114 DOI: 10.1089/104454903321655783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The selection of DNA fragments containing simple d(GT)(n) and composite d(GT)(m). d(GA)(n) microsatellites during affinity binding of mouse genomic DNA to type III cytoplasmic intermediate filaments (cIFs) in vitro, and the detection of such repeats, often as parts of nuclear matrix attachment region (MAR)-like DNA, in SDS-stable DNA-vimentin crosslinkage products isolated from intact fibroblasts, prompted a detailed study of the interaction of type III cIF proteins with left-handed Z-DNA formed from d(GT)(17) and d(CG)(17) repeats under the topological tension of negatively supercoiled plasmids. Although d(GT)(n) tracts possess a distinctly lower Z-DNA-forming potential than d(CG)(n) tracts, the filament proteins produced a stronger electrophoretic mobility shift with a plasmid carrying a d(GT)(17) insert than with plasmids containing different d(CG)(n) inserts, consistent with the facts that the B-Z transition of d(GT)(n) repeats requires a higher negative superhelical density than that of d(CG)(n) repeats and the affinity of cIF proteins for plasmid DNA increases with its superhelical tension. That both types of dinucleotide repeat had indeed undergone B-Z transition was confirmed by S1 nuclease and chemical footprinting analysis of the plasmids, which also demonstrated efficient protection by cIF proteins from nucleolytic and chemical attack of the Z-DNA helices as such, as well as of the flanking B-Z junctions. The analysis also revealed sensibilization of nucleotides in the center of one of the two strands of a perfect d(CG)(17) insert toward S1 nuclease, indicating cIF protein-induced bending of the repeat. In all these assays, vimentin and glial fibrillary acidic protein (GFAP) showed comparable activities, versus desmin, which was almost inactive. In addition, vimentin and GFAP exhibited much higher affinities for the Z-DNA conformation of brominated, linear d(CG)(25) repeats than for the B-DNA configuration of the unmodified oligonucleotides. While double-stranded DNA was incapable of chasing the Z-DNA from its protein complexes, and Holliday junction and single-stranded (ss)DNA were distinguished by reasonable competitiveness, phosphatidylinositol (PI) and, particularly, phosphatidylinositol 4,5-diphosphate (PIP(2)) turned out to be extremely potent competitors. Because PIP(2) is an important member of the nuclear PI signal transduction cascade, it might exert a regulatory influence on the binding of cIF proteins to Z- and other DNA conformations. From this interaction of cIF proteins with Z- and bent DNA and their previously detected affinities for MAR-like, ss, triple helical, and four-way junction DNA, it may be concluded that the filament proteins play a general role in such nuclear matrix-associated processes as DNA replication, recombination, repair, and transcription.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | |
Collapse
|
34
|
Do Carmo S, Séguin D, Milne R, Rassart E. Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. J Biol Chem 2002; 277:5514-23. [PMID: 11711530 DOI: 10.1074/jbc.m105057200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein D (apoD) and apolipoprotein E (apoE) are co-expressed in many tissues, and, in certain neuropathological situations, their expression appears to be under coordinate regulation. We have previously shown that apoD gene expression in cultured human fibroblasts is up-regulated when the cells undergo growth arrest. Here, we demonstrate that, starting around day 2 of growth arrest, both apoD and apoE mRNA levels increase between 1.5- and 27-fold in other cell types, including mouse primary fibroblasts and fibroblast-like and human astrocytoma cell lines. To understand the regulatory mechanisms of apoD expression, we have used apoD promoter-luciferase reporter constructs to compare gene expression in growing cells and in cells that have undergone growth arrest. Analysis of gene expression in cells transfected with constructs with deletions and mutations in the apoD promoter and constructs with artificial promoters demonstrated that the region between nucleotides -174 and -4 is fully responsible for the basal gene expression, whereas the region from -558 to -179 is implicated in the induction of apoD expression following growth arrest. Within this region, an alternating purine-pyrimidine stretch and a pair of serum-responsive elements (SRE) were found to be major determinants of growth arrest-induced apoD gene expression. Evidence is also presented that SREs in the apoE promoter may contribute to the up-regulation of apoE gene expression following growth arrest.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal H3C 3P8, Québec, Canada
| | | | | | | |
Collapse
|
35
|
Chávez S, García-Rubio M, Prado F, Aguilera A. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:7054-64. [PMID: 11564888 PMCID: PMC99881 DOI: 10.1128/mcb.21.20.7054-7064.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hpr1 forms, together with Tho2, Mft1, and Thp2, the THO complex, which controls transcription elongation and genome stability in Saccharomyces cerevisiae. Mutations in genes encoding the THO complex confer strong transcription-impairment and hyperrecombination phenotypes in the bacterial lacZ gene. In this work we demonstrate that Hpr1 is a factor required for transcription of long as well as G+C-rich DNA sequences. Using different lacZ segments fused to the GAL1 promoter, we show that the negative effect of lacZ sequences on transcription depends on their distance from the promoter. In parallel, we show that transcription of either a long LYS2 fragment or the S. cerevisiae YAT1 G+C-rich open reading frame fused to the GAL1 promoter is severely impaired in hpr1 mutants, whereas transcription of LAC4, the Kluyveromyces lactis ortholog of lacZ but with a lower G+C content, is only slightly affected. The hyperrecombination behavior of the DNA sequences studied is consistent with the transcriptional defects observed in hpr1 cells. These results indicate that both length and G+C content are important elements influencing transcription in vivo. We discuss their relevance for the understanding of the functional role of Hpr1 and, by extension, the THO complex.
Collapse
Affiliation(s)
- S Chávez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | | | | | | |
Collapse
|
36
|
Grabczyk E, Usdin K. The GAA*TTC triplet repeat expanded in Friedreich's ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner. Nucleic Acids Res 2000; 28:2815-22. [PMID: 10908340 PMCID: PMC102661 DOI: 10.1093/nar/28.14.2815] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Revised: 05/20/2000] [Accepted: 05/20/2000] [Indexed: 11/14/2022] Open
Abstract
Large expansions of the trinucleotide repeat GAA*TTC within the first intron of the X25 (frataxin) gene cause Friedreich's ataxia, the most common inherited ataxia. Expansion leads to reduced levels of frataxin mRNA in affected individuals. Here we show that GAA*TTC tracts, in the absence of any other frataxin gene sequences, can reduce the amount of GAA-containing transcript produced in a defined in vitro transcription system. This effect is due to an impediment to elongation that forms in the GAA*TTC tract during transcription, a phenomenon that is exacerbated by both superhelical stress and increased tract length. On supercoiled templates the major truncations of the GAA-containing transcripts occur in the distal (3') end of the GAA repeat. To account for these observations we present a model in which an RNA polymerase advancing within a long GAA*TTC tract initiates the transient formation of an R*R*Y intramolecular DNA triplex. The non-template (GAA) strand folds back creating a loop in the template strand, and the polymerase is paused at the distal triplex-duplex junction.
Collapse
Affiliation(s)
- E Grabczyk
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | | |
Collapse
|
37
|
Simple repetitive sequences and gene expression. Mol Biol 2000. [DOI: 10.1007/bf02759656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|
39
|
Kim JM, DasSarma S. Isolation and chromosomal distribution of natural Z-DNA-forming sequences in Halobacterium halobium. J Biol Chem 1996; 271:19724-31. [PMID: 8702677 DOI: 10.1074/jbc.271.33.19724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conditions favoring left-handed Z-DNA such as high salinity (> 4 ), high negative DNA supercoiling, and GC-rich DNA [statistically favoring d(CG)n repeat sequences], are all found in the extremely halophilic archaeum (archaebacterium) Halobacterium halobium. In order to identify and study Z-DNA regions of the H. halobium genome, an affinity chromatography method with high Z-DNA selection efficiency was developed. Supercoiled plasmids were incubated with a Z-DNA-specific antibody (Z22) and passed over a protein A-agarose column, and the bound plasmids were eluted using an ethidium bromide gradient. In control experiments using mixtures of pUC12 (Z-negative) and a d(CG)5-containing (Z-positive) pUC12 derivative, up to 4,000-fold enrichment of the Z-DNA-containing plasmid was demonstrated per cycle of the Z-DNA selection procedure. The selection efficiency was determined by transformation of Escherichia coli DH5alpha with eluted plasmids and blue-white screening on X-gal plates. Twenty recombinant plasmids containing Z-DNA-forming sequences of H. halobium were isolated from a genomic library using affinity chromatography. Z-DNA-forming sequences in selected plasmids were identified by bandshift and antibody footprinting assays using Z22 monoclonal antibody. Alternating purine-pyrimidine sequences ranging from 8 base pairs (bp) to 13 bp with at least a 6-bp alternating d(GC) stretch were found in the Z22 antibody binding regions of isolated plasmids. The distribution of Z-DNA-forming sequences in the Halobacterium salinarum GRB chromosome was analyzed by dot-blot hybridization of an ordered cosmid library using the cloned H. halobium Z-DNA segments as probe. Among the 11 Z-DNA segments tested, five were found to be clustered in a 100-kilobase pair region of the genome, whereas six others were distributed throughout the rest of the genome.
Collapse
Affiliation(s)
- J m Kim
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
40
|
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
41
|
Wölfl S, Martinez C, Rich A, Majzoub JA. Transcription of the human corticotropin-releasing hormone gene in NPLC cells is correlated with Z-DNA formation. Proc Natl Acad Sci U S A 1996; 93:3664-8. [PMID: 8622993 PMCID: PMC39668 DOI: 10.1073/pnas.93.8.3664] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intron of the corticotropin-releasing hormone (corticoliberin; CRH) gene contains a sequence of over 100 bp of alternating purine/pyrimidine residues. We have used binding of a Z-DNA-specific antibody in metabolically active, permeabilized nuclei to study the formation of Z-DNA in this sequence at various levels of transcription. In the NPLC human primary liver carcinoma cell line, activation of cAMP-dependent pathways increased the level of transcription, while adding glucocorticoids inhibited transcription of the CRH gene. These cells respond in a manner similar to hypothalamic cells. Z-DNA formation in this sequence was detected at the basal level of transcription, as well as after stimulation with forskolin. Inhibition of transcription by dexamethasone abolished Z-DNA formation. Z-DNA formation in the WC gene (c-myc) was affected differently in the same experiment. Thus, changes in Z-DNA formation in the CRH gene are gene specific and are linked to the transcription of the gene.
Collapse
Affiliation(s)
- S Wölfl
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | |
Collapse
|
42
|
Wang X, Tolstonog G, Shoeman RL, Traub P. Selective binding of specific mouse genomic DNA fragments by mouse vimentin filaments in vitro. DNA Cell Biol 1996; 15:209-25. [PMID: 8634150 DOI: 10.1089/dna.1996.15.209] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mouse vimentin intermediate filaments (IFs) reconstituted in vitro were analyzed for their capacity to select certain DNA sequences from a mixture of about 500-bp-long fragments of total mouse genomic DNA. The fragments preferentially bound by the IFs and enriched by several cycles of affinity binding and polymerase chain reaction (PCR) amplification were cloned and sequenced. In general, they were G-rich and highly repetitive in that they often contained Gn, (GT)n, and (GA)n repeat elements. Other, more complex repeat sequences were identified as well. Apart from the capacity to adopt a Z-DNA and triple helix configuration under superhelical tension, many fragments were potentially able to form cruciform structures and contained consensus binding sites for various transcription factors. All of these sequence elements are known to occur in introns and 5'/3'-flanking regions of genes and to play roles in DNA transcription, recombination and replication. A FASTA search of the EMBL data bank indeed revealed that sequences homologous to the mouse repetitive DNA fragments are commonly associated with gene-regulatory elements. Unexpectedly, vimentin IFs also bound a large number of apparently overlapping, AT-rich DNA fragments that could be aligned into a composite sequence highly homologous to the 234-bp consensus centromere repeat sequence of gamma-satellite DNA. Previous experiments have shown a high affinity of vimentin for G-rich, repetitive telomere DNA sequences, superhelical DNA, and core histones. Taken together, these data support the hypothesis that, after penetration of the double nuclear membrane via an as yet unidentified mechanism, vimentin IFs cooperatively fix repetitive DNA sequence elements in a differentiation-specific manner in the nuclear periphery subjacent to the nuclear lamina and thus participate in the organization of chromatin and in the control of transcription, replication, and recombination processes. This includes aspects of global regulation of gene expression such as the position effects associated with translocation of genes to heterochromatic centromere and telomere regions of the chromosomes.
Collapse
Affiliation(s)
- X Wang
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany
| | | | | | | |
Collapse
|
43
|
Lahiri A, Majumdar R. Ligand binding isotherm for DNA in the presence of supercoil-induced non-B form: a theoretical analysis. Biophys Chem 1996; 58:239-43. [PMID: 17023357 DOI: 10.1016/0301-4622(95)00101-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/1995] [Revised: 06/06/1995] [Accepted: 06/20/1995] [Indexed: 11/17/2022]
Abstract
A binding isotherm in the form of a modified McGhee-Von Hippel equation is proposed, on the basis of thermodynamical considerations, to include the non-cooperative binding of extended ligands to supercoiled DNA, where a stretch of non-B form may be present under superhelical stress. It is then studied, on the basis of a non-linear Scatchard plot, how the presence of an intercalating ligand can relax the supercoiled molecule and thus destabilise the non-B stretch, which may be recognised by the existence of a significant kink in the Scatchard plot.
Collapse
Affiliation(s)
- A Lahiri
- Biophysics Division, Saha Institute of Nuclear Physics, 37 Belgachia Road, Calcutta 700037, India
| | | |
Collapse
|
44
|
Mitchell JE, Newbury SF, McClellan JA. Compact structures of d(CNG)n oligonucleotides in solution and their possible relevance to fragile X and related human genetic diseases. Nucleic Acids Res 1995; 23:1876-81. [PMID: 7596812 PMCID: PMC306957 DOI: 10.1093/nar/23.11.1876] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We show that oligonucleotides of CNG tracts readily adopt compact DNA structures that move unusually fast on gels. Base composition does not explain this, and non-CNG triplets (including GNC) do not form such structures. Chemical probing and melting experiments suggest that the structures probably are not hairpins. Although both long and short tracts can adopt compact structures, the structure formed by longer tracts is more compact than that formed by shorter ones. We note the possibility that such structures may form in vivo, and be instrumental in normal and/or abnormal function of human genes.
Collapse
Affiliation(s)
- J E Mitchell
- Biophysics Laboratories, University of Portsmouth, UK
| | | | | |
Collapse
|
45
|
Lukomski S, Wells RD. Left-handed Z-DNA and in vivo supercoil density in the Escherichia coli chromosome. Proc Natl Acad Sci U S A 1994; 91:9980-4. [PMID: 7937930 PMCID: PMC44941 DOI: 10.1073/pnas.91.21.9980] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A system for studying Z-DNA formation in the Escherichia coli chromosome was developed. Prior investigations in recombinant plasmids showed that alternating (Pur-Pyr) sequences can adopt a left-handed Z-DNA conformation both in vitro and in vivo. We constructed mobile, transposon-based cassettes carrying cloned (Pur-Pyr) sequences containing an EcoRI site in the center. These cassettes were subsequently inserted into different locations in the E. coli chromosome in a random fashion. A number of stable insertions were characterized by Southern analysis and pulsed-field gel electrophoresis mapping. A cloned temperature-sensitive MEcoRI methylase was expressed in trans as the probe to study Z-DNA formation in vivo. In this system, the control EcoRI sites were quickly methylated when cells were placed at the permissive temperature. Strong inhibition of the methylation was observed, however, only for the EcoRI sites embedded in a 56-bp run of (C-G). In contrast, the shorter sequence of 32 bp did not show this behavior. Prior in vitro determinations revealed that the longer tract required less energy to stabilize the Z-helix than the shorter block. We conclude that the observed inhibition of methylation is due to Z-DNA formation in the E. coli chromosome. In vitro, these sequences undergo the B- to Z-DNA transition at a supercoil density of -0.026 for the 56-bp insert and -0.032 for the 32-bp block. Since only the longer (C-G) tract but not the shorter run adopted the left-handed conformation in the chromosome, we propose that these densities establish the boundaries in the different chromosomal loci investigated; these boundaries are in good agreement with the extremes found in plasmids.
Collapse
Affiliation(s)
- S Lukomski
- Center for Genome Research, Texas A&M University, Texas Medical Center, Houston 77030
| | | |
Collapse
|
46
|
Affiliation(s)
- A Rich
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
47
|
Kladde MP, Kohwi Y, Kohwi-Shigematsu T, Gorski J. The non-B-DNA structure of d(CA/TG)n differs from that of Z-DNA. Proc Natl Acad Sci U S A 1994; 91:1898-902. [PMID: 8127902 PMCID: PMC43271 DOI: 10.1073/pnas.91.5.1898] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chemical probing of two predominantly alternating purine-pyrimidine d(CA/TG)n repeats led us to propose previously that in supercoiled plasmids these elements adopt a non-B-DNA structure distinct from that of Z-DNA formed by d(CG)n sequences. Here, we present further evidence supporting this contention. Reactivity with the conformation-sensitive reagent chloroacetaldehyde, which reacts with unpaired adenines and cytosines, was confined strictly to adenines in the d(CA/TG)n repeat. In contrast, only bases outside the d(CG)n repeat exhibited chloroacetaldehyde reactivity. Two-dimensional gel analysis of topoisomers containing d(CA/TG)n tracts with bases out of strict purine-pyrimidine alteration revealed multiple superhelical-dependent transitions to an alternative left-handed structure. Within individual plasmid molecules, these multiple transitions resulted from the stepwise conversion of contiguous segments of alternating purine-pyrimidine sequence, which are delimited by bases out of alternation, to the full-length alternative conformation. When the left-handed helices increased in length to include more bases out of alternation, the average helical pitch changed substantially to produce a less tightly wound left-handed helix. Overall, these data indicate that d(CA/TG)n tracts adopt a left-handed conformation significantly different from that of the canonical Z-DNA structure of d(CG)n sequences.
Collapse
Affiliation(s)
- M P Kladde
- Department of Biochemistry, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
48
|
Arndt-Jovin DJ, Udvardy A, Garner MM, Ritter S, Jovin TM. Z-DNA binding and inhibition by GTP of Drosophila topoisomerase II. Biochemistry 1993; 32:4862-72. [PMID: 8387819 DOI: 10.1021/bi00069a023] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A Z-DNA binding protein has been isolated and characterized by biochemical means from Drosophila melanogaster tissue culture cells and embryos. This protein shares the following properties with the known, cloned Drosophila topoisomerase II: (1) expression of an ATP-dependent relaxation activity on supercoiled DNA; (2) a monomer mass of 165 kDa in SDS denaturing gels; (3) a sedimentation coefficient, S20,w, of approximately 10 S for the active enzyme; (4) cross-reactivity for the respective monoclonal and polyclonal antibodies; (5) generation of covalent enzyme-DNA intermediates at preferred cutting sites in the Drosophila HSP70 intergenic spacer region; (6) inhibition of DNA relaxation activity by antitumor drugs, e.g., the etoposide VM26, and by monospecific antibodies raised against the protein; and (7) in vitro phosphorylation by a casein kinase activity. However, we have identified new properties for our topoisomerase II preparation not previously reported for the conventionally isolated enzyme: (1) The enzyme binds to Z-DNA with an affinity 2 orders of magnitude greater than that for B-DNA. (2) The binding to Z-DNA is increased 5-10-fold by GTP or GTP-gamma-S. (3) GTP and GTP-gamma-S inhibit the catalytic activity of topoisomerase II through a proposed allosteric mechanism. (4) Z-DNA inhibits the relaxation of closed circular supercoiled DNA. (5) The preparation consists of a single polypeptide chain of 165 kDa on denaturing SDS gels with no evidence of proteolytic degradation. We postulate that the Z-DNA binding activity of undegraded topoisomerase II may be important in targeting the enzyme both to structural motifs required for chromatin organization and to sites of local supercoiling. Some of these features arise during processes such as replication and gene expression and may be more frequent during embryogenesis and early development.
Collapse
Affiliation(s)
- D J Arndt-Jovin
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
49
|
Sarkar PS, Brahmachari SK. Intramolecular triplex potential sequence within a gene down regulates its expression in vivo. Nucleic Acids Res 1992; 20:5713-8. [PMID: 1454535 PMCID: PMC334407 DOI: 10.1093/nar/20.21.5713] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polypurine/polypyrimidine sequences have been shown to adopt intramolecular triple helix structures under torsional stress and/or at low pH. Such sequences have been observed within the the regulatory as well as the coding regions of several genes and the involvement of triple helical structure adopted by these sequences in transcriptional control has been speculated. Taking advantage of codon degeneracy we have engineered a 38 bp long intramolecular triple helix potential polypurine/polypyrimidine sequence motif between the 37th and 50th codons of beta-galactosidase gene in the plasmid pBluescriptIISK+ to investigate whether in vivo E.coli RNA polymerase would transcribe sequence motifs adopting triple helix structure, when present within the coding region of the gene. E.coli JM109 cells transformed with this construct pSBT1, exhibited 80% inhibition of beta-galactosidase expression compared to another construct pSBmT12 made using less preferred codons for identical amino acid sequence, but lacking the polypurine/polypyrimidine sequence motif. Truncated beta-galactosidase transcripts were observed for pSBT1 but not for pSBmT12. Here we report that a putative triple helix potential sequence within a gene can down regulate its expression by partially blocking the transcription elongation in vivo.
Collapse
Affiliation(s)
- P S Sarkar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | |
Collapse
|
50
|
Soong BW, Lu FM, Chak KF. Characterization of the cea gene of the ColE7 plasmid. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:177-83. [PMID: 1603061 DOI: 10.1007/bf00587577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The complete nucleotide sequence (1731 nucleotides) of the gene encoding colicin E7 (cea) of plasmid ColE7-K317 was determined. This sequence encoded a deduced polypeptide of 576 amino acids of molecular weight 61349 Da. Comparison of the nucleotide and amino acid sequences of cea E7 with those of other E-group colicins revealed that colicin E7 was closely related to colicin E2, both in gene sequence and in predicted secondary structure of the deduced protein. Judging from the results of cross-immunity tests, we postulated that ColE7 is probably a proximate ancestor of ColE2 and ColE8. Based on results from colicin production tests on cells harboring a 5' end deleted form of the cea E7 gene, we propose that a previously unknown, non-inducible promoter may be involved in regulation of the constitutive expression of the cea E7 gene.
Collapse
Affiliation(s)
- B W Soong
- Institute of Clinical Medicine, National Yang-Ming Medical College, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|