1
|
Zhang Y, Li H, Wang Y, Nie M, Zhang K, Pan J, Zhang Y, Ye Z, Zufall RA, Lynch M, Long H. Mitogenomic architecture and evolution of the soil ciliates Colpoda. mSystems 2024; 9:e0116123. [PMID: 38259100 PMCID: PMC10878089 DOI: 10.1128/msystems.01161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Colpoda are cosmopolitan unicellular eukaryotes primarily inhabiting soil and benefiting plant growth, but they remain one of the least understood taxa in genetics and genomics within the realm of ciliated protozoa. Here, we investigate the architecture of de novo assembled mitogenomes of six Colpoda species, using long-read sequencing and involving 36 newly isolated natural strains in total. The mitogenome sizes span from 43 to 63 kbp and typically contain 28-33 protein-coding genes. They possess a linear structure with variable telomeres and central repeats, with one Colpoda elliotti strain isolated from Tibet harboring the longest telomeres among all studied ciliates. Phylogenomic analyses reveal that Colpoda species started to diverge more than 326 million years ago, eventually evolving into two distinct groups. Collinearity analyses also reveal significant genomic divergences and a lack of long collinear blocks. One of the most notable features is the exceptionally high level of gene rearrangements between mitochondrial genomes of different Colpoda species, dominated by gene loss events. Population-level mitogenomic analysis on natural strains also demonstrates high sequence divergence, regardless of geographic distance, but the gene order remains highly conserved within species, offering a new species identification criterion for Colpoda species. Furthermore, we identified underlying heteroplasmic sites in the majority of strains of three Colpoda species, albeit without a discernible recombination signal to account for this heteroplasmy. This comprehensive study systematically unveils the mitogenomic structure and evolution of these ancient and ecologically significant Colpoda ciliates, thus laying the groundwork for a deeper understanding of the evolution of unicellular eukaryotes.IMPORTANCEColpoda, one of the most widespread ciliated protozoa in soil, are poorly understood in regard to their genetics and evolution. Our research revealed extreme mitochondrial gene rearrangements dominated by gene loss events, potentially leading to the streamlining of Colpoda mitogenomes. Surprisingly, while interspecific rearrangements abound, our population-level mitogenomic study revealed a conserved gene order within species, offering a potential new identification criterion. Phylogenomic analysis traced their lineage over 326 million years, revealing two distinct groups. Substantial genomic divergence might be associated with the lack of extended collinear blocks and relaxed purifying selection. This study systematically reveals Colpoda ciliate mitogenome structures and evolution, providing insights into the survival and evolution of these vital soil microorganisms.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| | - Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Mu Nie
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Kexin Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Mitochondrial Genomic Landscape: A Portrait of the Mitochondrial Genome 40 Years after the First Complete Sequence. Life (Basel) 2021; 11:life11070663. [PMID: 34357035 PMCID: PMC8303319 DOI: 10.3390/life11070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Notwithstanding the initial claims of general conservation, mitochondrial genomes are a largely heterogeneous set of organellar chromosomes which displays a bewildering diversity in terms of structure, architecture, gene content, and functionality. The mitochondrial genome is typically described as a single chromosome, yet many examples of multipartite genomes have been found (for example, among sponges and diplonemeans); the mitochondrial genome is typically depicted as circular, yet many linear genomes are known (for example, among jellyfish, alveolates, and apicomplexans); the chromosome is normally said to be “small”, yet there is a huge variation between the smallest and the largest known genomes (found, for example, in ctenophores and vascular plants, respectively); even the gene content is highly unconserved, ranging from the 13 oxidative phosphorylation-related enzymatic subunits encoded by animal mitochondria to the wider set of mitochondrial genes found in jakobids. In the present paper, we compile and describe a large database of 27,873 mitochondrial genomes currently available in GenBank, encompassing the whole eukaryotic domain. We discuss the major features of mitochondrial molecular diversity, with special reference to nucleotide composition and compositional biases; moreover, the database is made publicly available for future analyses on the MoZoo Lab GitHub page.
Collapse
|
3
|
Zhang T, Li C, Zhang X, Wang C, Roger AJ, Gao F. Characterization and Comparative Analyses of Mitochondrial Genomes in Single-Celled Eukaryotes to Shed Light on the Diversity and Evolution of Linear Molecular Architecture. Int J Mol Sci 2021; 22:ijms22052546. [PMID: 33802618 PMCID: PMC7961746 DOI: 10.3390/ijms22052546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Determination and comparisons of complete mitochondrial genomes (mitogenomes) are important to understand the origin and evolution of mitochondria. Mitogenomes of unicellular protists are particularly informative in this regard because they are gene-rich and display high structural diversity. Ciliates are a highly diverse assemblage of protists and their mitogenomes (linear structure with high A+T content in general) were amongst the first from protists to be characterized and have provided important insights into mitogenome evolution. Here, we report novel mitogenome sequences from three representatives (Strombidium sp., Strombidium cf. sulcatum, and Halteria grandinella) in two dominant ciliate lineages. Comparative and phylogenetic analyses of newly sequenced and previously published ciliate mitogenomes were performed and revealed a number of important insights. We found that the mitogenomes of these three species are linear molecules capped with telomeric repeats that differ greatly among known species. The genomes studied here are highly syntenic, but larger in size and more gene-rich than those of other groups. They also all share an AT-rich tandem repeat region which may serve as the replication origin and modulate initiation of bidirectional transcription. More generally we identified a split version of ccmf, a cytochrome c maturation-related gene that might be a derived character uniting taxa in the subclasses Hypotrichia and Euplotia. Finally, our mitogenome comparisons and phylogenetic analyses support to reclassify Halteria grandinella from the subclass Oligotrichia to the subclass Hypotrichia. These results add to the growing literature on the unique features of ciliate mitogenomes, shedding light on the diversity and evolution of their linear molecular architecture.
Collapse
Affiliation(s)
- Tengteng Zhang
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
- Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Chao Li
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
| | - Xue Zhang
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
| | - Chundi Wang
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
| | - Andrew J. Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
- Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266033, China
- Correspondence:
| |
Collapse
|
4
|
Serra V, Gammuto L, Nitla V, Castelli M, Lanzoni O, Sassera D, Bandi C, Sandeep BV, Verni F, Modeo L, Petroni G. Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont "Candidatus Pinguicoccus supinus" sp. nov. Sci Rep 2020; 10:20311. [PMID: 33219271 PMCID: PMC7679464 DOI: 10.1038/s41598-020-76348-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023] Open
Abstract
Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as "holobionts". We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont "Candidatus Pinguicoccus supinus" gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Leandro Gammuto
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Venkatamahesh Nitla
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Michele Castelli
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Olivia Lanzoni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Claudio Bandi
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
| | | | - Franco Verni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| |
Collapse
|
5
|
Lewis WH, Lind AE, Sendra KM, Onsbring H, Williams TA, Esteban GF, Hirt RP, Ettema TJG, Embley TM. Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss. Mol Biol Evol 2020; 37:524-539. [PMID: 31647561 PMCID: PMC6993867 DOI: 10.1093/molbev/msz239] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hydrogenosomes are H2-producing mitochondrial homologs found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition, we generated genomic and transcriptomic data sets from anaerobic ciliates representing three distinct lineages. Our data demonstrate that hydrogenosomes have evolved from ancestral mitochondria in each case and reveal different degrees of independent mitochondrial genome and proteome reductive evolution, including the first example of complete mitochondrial genome loss in ciliates. Intriguingly, the FeFe-hydrogenase used for generating H2 has a unique domain structure among eukaryotes and appears to have been present, potentially through a single lateral gene transfer from an unknown donor, in the common aerobic ancestor of all three lineages. The early acquisition and retention of FeFe-hydrogenase helps to explain the facility whereby mitochondrial function can be so radically modified within this diverse and ecologically important group of microbial eukaryotes.
Collapse
Affiliation(s)
- William H Lewis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Anders E Lind
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kacper M Sendra
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Henning Onsbring
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Genoveva F Esteban
- Department of Life and Environmental Sciences, Bournemouth University, Poole, United Kingdom
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| |
Collapse
|
6
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
7
|
Ma L, Huang DW, Cuomo CA, Sykes S, Fantoni G, Das B, Sherman BT, Yang J, Huber C, Xia Y, Davey E, Kutty G, Bishop L, Sassi M, Lempicki RA, Kovacs JA. Sequencing and characterization of the complete mitochondrial genomes of three Pneumocystis species provide new insights into divergence between human and rodent Pneumocystis. FASEB J 2013; 27:1962-72. [PMID: 23392351 DOI: 10.1096/fj.12-224444] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pneumocystis jirovecii is an important opportunistic pathogen associated with AIDS and other immunodeficient conditions. Currently, very little is known about its nuclear and mitochondrial genomes. In this study, we sequenced the complete mitochondrial genome (mtDNA) of this organism and its closely related species Pneumocystis carinii and Pneumocystis murina by a combination of sequencing technologies. Our study shows that P. carinii and P. murina mtDNA share a nearly identical number and order of genes in a linear configuration, whereas P. jirovecii has a circular mtDNA containing nearly the same set of genes but in a different order. Detailed studies of the mtDNA terminal structures of P. murina and P. carinii suggest a unique replication mechanism for linear mtDNA. Phylogenetic analysis supports a close association of Pneumocystis species with Taphrina, Saitoella, and Schizosaccharomyces, and divergence within Pneumocystis species, with P. murina and P. carinii being more closely related to each other than either is to P. jirovecii. Comparative analysis of four complete P. jirovecii mtDNA sequences in this study and previously reported mtDNA sequences for diagnosing and genotyping suggests that the current diagnostic and typing methods can be improved using the complete mtDNA data. The availability of the complete P. jirovecii mtDNA also opens the possibility of identifying new therapeutic targets.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, 10 Center Dr., Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xu J, McEachern MJ. Maintenance of very long telomeres by recombination in the Kluyveromyces lactis stn1-M1 mutant involves extreme telomeric turnover, telomeric circles, and concerted telomeric amplification. Mol Cell Biol 2012; 32:2992-3008. [PMID: 22645309 PMCID: PMC3434524 DOI: 10.1128/mcb.00430-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/09/2012] [Indexed: 01/26/2023] Open
Abstract
Some cancers utilize the recombination-dependent process of alternative lengthening of telomeres (ALT) to maintain long heterogeneous telomeres. Here, we studied the recombinational telomere elongation (RTE) of the Kluyveromyces lactis stn1-M1 mutant. We found that the total amount of the abundant telomeric DNA in stn1-M1 cells is subject to rapid variation and that it is likely to be primarily extrachromosomal. Rad50 and Rad51, known to be required for different RTE pathways in Saccharomyces cerevisiae, were not essential for the production of either long telomeres or telomeric circles in stn1-M1 cells. Circles of DNA containing telomeric repeats (t-circles) either present at the point of establishment of long telomeres or introduced later into stn1-M1 cells each led to the formation of long tandem arrays of the t-circle's sequence, which were incorporated at multiple telomeres. These tandem arrays were extraordinarily unstable and showed evidence of repeated rounds of concerted amplification. Our results suggest that the maintenance of telomeres in the stn1-M1 mutant involves extreme turnover of telomeric sequences from processes including both large deletions and the copying of t-circles.
Collapse
Affiliation(s)
- Jianing Xu
- Department of Genetics, Fred Davison Life Science Complex, University of Georgia, Athens, Georgia
| | | |
Collapse
|
9
|
Wloga D, Frankel J. From Molecules to Morphology: Cellular Organization of Tetrahymena thermophila. Methods Cell Biol 2012; 109:83-140. [DOI: 10.1016/b978-0-12-385967-9.00005-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Swart EC, Nowacki M, Shum J, Stiles H, Higgins BP, Doak TG, Schotanus K, Magrini VJ, Minx P, Mardis ER, Landweber LF. The Oxytricha trifallax mitochondrial genome. Genome Biol Evol 2011; 4:136-54. [PMID: 22179582 PMCID: PMC3318907 DOI: 10.1093/gbe/evr136] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Oxytricha trifallax mitochondrial genome contains the largest sequenced ciliate mitochondrial chromosome (~70 kb) plus a ~5-kb linear plasmid bearing mitochondrial telomeres. We identify two new ciliate split genes (rps3 and nad2) as well as four new mitochondrial genes (ribosomal small subunit protein genes: rps- 2, 7, 8, 10), previously undetected in ciliates due to their extreme divergence. The increased size of the Oxytricha mitochondrial genome relative to other ciliates is primarily a consequence of terminal expansions, rather than the retention of ancestral mitochondrial genes. Successive segmental duplications, visible in one of the two Oxytricha mitochondrial subterminal regions, appear to have contributed to the genome expansion. Consistent with pseudogene formation and decay, the subtermini possess shorter, more loosely packed open reading frames than the remainder of the genome. The mitochondrial plasmid shares a 251-bp region with 82% identity to the mitochondrial chromosome, suggesting that it most likely integrated into the chromosome at least once. This region on the chromosome is also close to the end of the most terminal member of a series of duplications, hinting at a possible association between the plasmid and the duplications. The presence of mitochondrial telomeres on the mitochondrial plasmid suggests that such plasmids may be a vehicle for lateral transfer of telomeric sequences between mitochondrial genomes. We conjecture that the extreme divergence observed in ciliate mitochondrial genomes may be due, in part, to repeated invasions by relatively error-prone DNA polymerase-bearing mobile elements.
Collapse
Affiliation(s)
- Estienne C Swart
- Department of Ecology and Evolutionary Biology, Princeton University, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Telomeres are essential structures at the ends of eukaryotic chromosomes. Work on their structure and function began almost 70 years ago in plants and flies, continued through the Nobel Prize winning work on yeast and ciliates, and goes on today in many model and non-model organisms. The basic molecular mechanisms of telomeres are highly conserved throughout evolution, and our current understanding of how telomeres function is a conglomeration of insights gained from many different species. This review will compare the current knowledge of telomeres in plants with other organisms, with special focus on the functional length of telomeric DNA, the search for TRF homologs, the family of POT1 proteins, and the recent discovery of members of the CST complex.
Collapse
Affiliation(s)
- J Matthew Watson
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
12
|
Abstract
In most eukaryotes, telomeres are composed of simple repetitive sequences renewable by telomerase. By contrast, Drosophila telomeres comprise arrays of non-LTR retrotransposons HeT-A, TART, and TAHRE belonging to three different families. However, closer inspection reveals that the two quite different telomere systems share quite a few components and regulatory circuits. Here we present the current knowledge on Drosophila telomeres and discuss the possible mechanisms of telomere length control.
Collapse
Affiliation(s)
- Larisa Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | |
Collapse
|
13
|
Gagos S, Irminger-Finger I. Chromosome instability in neoplasia: chaotic roots to continuous growth. Int J Biochem Cell Biol 2005; 37:1014-33. [PMID: 15743675 DOI: 10.1016/j.biocel.2005.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 01/06/2005] [Accepted: 01/07/2005] [Indexed: 12/31/2022]
Abstract
Multiple rearrangements of chromosome number and structure are common manifestations of genomic instability encountered in mammalian tumors. In neoplasia, in continuous immortalized growth in vitro, and in animal models, the accumulation of various defects on DNA repair and telomere maintenance machineries, mitotic spindle abnormalities, and breakage-fusion-bridge cycles, deteriorate the precise mitotic distribution of the genomic content, thus producing various types of chromosomal anomalies. These lesions generate tremendous genomic imbalances, which are evolutionary selected, since they force the function of the whole genome towards continuous growth. For more than a century chromosomal rearrangements and aneuploidy in neoplasia have been discussed and a vast number of genes and pathways, directly or indirectly implicated, have been described. In this review, we focus on the biological mechanisms that generate numerical or structural deviations of the normal diploid chromosomal constitution in epithelial neoplasia. There is growing evidence that chromosomal instability is both an epiphenomenon and a leading cause of cancer. We will discuss the roles of genes, chromosome structure, and telomere dysfunction in the initiation of chromosomal instability. We will explore research strategies that can be applied to identify rates of chromosomal instability in a specimen, and the putative biological consequences of karyotypic heterogeneity. Finally, we will re-examine the longstanding hypothesis of the generation of aneuploidy in the context of telomere dysfunction and restoration.
Collapse
Affiliation(s)
- Sarantis Gagos
- Laboratory of Genetics, Foundation for Biomedical Research of the Academy of Athens Greece, Soranou Efessiou 4, Athens 11527, Greece.
| | | |
Collapse
|
14
|
SULTANA S, MANNEN H. Polymorphism and evolutionary profile of mitochondrial DNA control region inferred from the sequences of Pakistani goats. Anim Sci J 2004. [DOI: 10.1111/j.1740-0929.2004.00190.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Tomaska L, McEachern MJ, Nosek J. Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 2004; 567:142-6. [PMID: 15165907 DOI: 10.1016/j.febslet.2004.04.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 04/15/2004] [Accepted: 04/19/2004] [Indexed: 11/16/2022]
Abstract
Recombination is often capable of lengthening telomeres in situations where telomerase is absent. This recombinational telomere maintenance is often accompanied by telomeric instability including the accumulation of extrachromosomal telomeric circles (t-circles). Recent results of in vivo and in vitro experiments have suggested that t-circles can lead to the production of extended stretches of telomeric DNA by serving as templates for rolling-circle synthesis. This implies that t-circles can provide an efficient means of telomere elongation. The existence of t-circles in both nuclear and mitochondrial compartments of distantly related species suggests that they may be important contributors to an evolutionary conserved telomerase-independent mechanism of maintenance of telomeric tandem arrays.
Collapse
Affiliation(s)
- Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-1, 84215 Bratislava, Slovakia.
| | | | | |
Collapse
|
16
|
Affiliation(s)
- Titia de Lange
- Laboratory for Cell Biology and Genetics, Box 159, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
17
|
Kobayashi T, Endoh H. Unusual distribution of mitochondrial large subunit rRNA in the cytosol during conjugation in Tetrahymena thermophila. Genes Genet Syst 2004; 79:255-62. [PMID: 15599055 DOI: 10.1266/ggs.79.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The distribution of mitochondria during conjugation of the ciliated protozoan Tetrahymena thermophila was surveyed using a mitochondrial stain and fluorescence in situ hybridization (FISH). When the mitochondria-specific stain, Mito-Tracker, was used, the majority of mitochondria were detected in the cortex; their distribution was not changed during conjugation. On the other hand, FISH using mitochondrial large subunit (LSU) rRNA as a probe showed an unusual distribution of signals during conjugation. Unexpectedly, the signals were detected throughout the cytoplasm of conjugating cells. These signals were not observed in pre-mating cells and in exconjugants. The cytosolic localization of mitochondrial rRNA was supported by northern blot analysis using post-mitochondrial RNA fraction at the later stages of conjugation. These observations suggest selective mitochondrial breakdown or transport of LSU rRNA into cytosol. The biological significance of the conjugation-specific appearance of the cytosolic mitochondrial rRNA is discussed.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Biology, Faculty of Science, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | | |
Collapse
|
18
|
Nosek J, Tomáska L. Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 2003; 44:73-84. [PMID: 12898180 DOI: 10.1007/s00294-003-0426-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 06/25/2003] [Accepted: 06/26/2003] [Indexed: 11/28/2022]
Abstract
Mitochondrial genomes in organisms from diverse phylogenetic groups vary in both size and molecular form. Although the types of mitochondrial genome appear very dissimilar, several lines of evidence argue that they do not differ radically. This would imply that interconversion between different types of mitochondrial genome might have occurred via relatively simple mechanisms. We exemplify this scenario on patterns accompanying evolution of mitochondrial telomeres. We propose that mitochondrial telomeres are derived from mobile elements (transposons or plasmids) that invaded mitochondria, integrated into circular or polydisperse linear mitochondrial DNAs (mtDNAs) and subsequently enabled precise resolution of the linear genophore. Simply, the selfish elements generated a problem - how to maintain the ends of a linear DNA - and, at the same time, made themselves essential by providing its solution. This scenario implies that insertion or deletion of such resolution elements may represent relatively simple routes for interconversion between different forms of the mitochondrial genome.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15, Bratislava, Slovakia.
| | | |
Collapse
|
19
|
Brunk CF, Lee LC, Tran AB, Li J. Complete sequence of the mitochondrial genome of Tetrahymena thermophila and comparative methods for identifying highly divergent genes. Nucleic Acids Res 2003; 31:1673-82. [PMID: 12626709 PMCID: PMC152872 DOI: 10.1093/nar/gkg270] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2002] [Revised: 01/16/2003] [Accepted: 01/16/2003] [Indexed: 11/13/2022] Open
Abstract
The complete sequence of the mitochondrial genome of Tetrahymena thermophila has been determined and compared with the mitochondrial genome of Tetrahymena pyriformis. The sequence similarity clearly indicates homology of the entire T.thermophila and T.pyriformis mitochondrial genomes. The T.thermophila genome is very compact, most of the intergenic regions are short (only three are longer than 63 bp) and comprise only 3.8% of the genome. The nad9 gene is tandemly duplicated in T.thermophila. Long terminal inverted repeats and the nad9 genes are undergoing concerted evolution. There are 55 putative genes: three ribosomal RNA genes, eight transfer RNA genes, 22 proteins with putatively assigned functions and 22 additional open reading frames of unknown function. In order to extend indications of homology beyond amino acid sequence similarity we have examined a number of physico-chemical properties of the mitochondrial proteins, including theoretical pI, molecular weight and particularly the predicted transmembrane spanning regions. This approach has allowed us to identify homologs to ymf58 (nad4L), ymf62 (nad6) and ymf60 (rpl6).
Collapse
Affiliation(s)
- Clifford F Brunk
- Department of Organismic Biology, Ecology and Evolution, University of California-Los Angeles, Los Angeles, CA 90095-1606, USA.
| | | | | | | |
Collapse
|
20
|
Deneke J, Ziegelin G, Lurz R, Lanka E. Phage N15 telomere resolution. Target requirements for recognition and processing by the protelomerase. J Biol Chem 2002; 277:10410-9. [PMID: 11788606 DOI: 10.1074/jbc.m111769200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Escherichia coli prophage N15 exists as a linear DNA molecule with covalently closed ends. Purified N15 protelomerase TelN is the only protein required to convert circular DNA substrates to the linear form with hairpin termini. Within the center of the telomerase occupancy site tos, the target for TelN is the 56-bp telRL consisting of the central 22-bp palindrome telO and two 14-bp flanking inverted sequence repetitions. DNase I footprinting of TelN-telRL complexes shows a segment of approximately 50 bp protected by TelN. Surface plasmon resonance studies demonstrate that this extended footprint is caused by two TelN molecules bound to telRL. Stable TelN-target DNA complexes are achieved with telRL; however, the additional sequences of tos stabilize the TelN-target complexes. TelO alone is not sufficient for specific stable complex formation. However, processing can occur, i.e. generation of the linear covalently closed DNA. Within the context of telRL, sequences of telO are involved in specific TelN-telRL complex formation, in processing itself, and/or in recognition of the processing site. The sequence of the central (CG)(3) within telO that is part of a 14-bp stretch proposed to have Z-DNA conformation is essential for processing but not for formation of specific TelN-telRL complexes. The concerted action of both TelN molecules at the target site is the basis for telomere resolution. Capturing of reaction intermediates demonstrates that TelN binds covalently to the 3'-phosphoryl of the cleaved strands.
Collapse
Affiliation(s)
- Jan Deneke
- Max-Planck-Institut für Molekulare Genetik, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Martinez JL, Sanchez-Elsner T, Morcillo G, Diez JL. Heat shock regulatory elements are present in telomeric repeats of Chironomus thummi. Nucleic Acids Res 2001; 29:4760-6. [PMID: 11713327 PMCID: PMC92508 DOI: 10.1093/nar/29.22.4760] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As in other Diptera, the telomeres of Chironomus thummi lack canonical short telomerase-specified repeats and instead contain complex sequences. They react to heat shock and other stress treatments by forming giant puffs at some chromosome termini, which are visible in polytene cells. All telomeres, except the telocentric end of chromosome four (4L), consist of large blocks of repeats, 176 bp in length. Three subfamilies of telomeric sequences have been found to show different distribution patterns between chromosome ends. TsA and TsC are characteristic of telomeres 3R and 4R, respectively, whereas TsB is present in the other non-telocentric telomeres. Heat shock transcription regulatory elements have been identified in the telomeric sequences, appearing differentially represented in the three subfamilies, but otherwise rather similar in size and sequence. Interestingly, TsA and TsB repeats share the well-conserved heat shock element (HSE) and GAGA motif, while the TATA box is only present in the former. Neither a HSE nor a TATA box appear in TsC repeats. Moreover, experimental data indicate that the HSE is functionally active in binding heat shock transcription factor (HSF). These results provide, for the first time, a molecular basis for the effect of heat shock on C.thummi telomeres and might also explain the different behaviour they show. A positive correlation between the presence of HSE and telomeric puffing and transcription under heat shock was demonstrated. This was also confirmed in the sibling species Chironomus piger. The significance of heat shock activation of telomeric repeats in relation to telomeric function is unknown at present, but it might be compared to the behaviour of other non-heat shock protein coding sequences, such as SINE-like and LINE-like retroelements, which have been reported to be activated by stress.
Collapse
Affiliation(s)
- J L Martinez
- Departamento de Biología Celular y del Desarrollo and Departamento de Inmunología, Centro de Investigaciones Biológicas, CSIC, Velazquez 44, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Ravin V, Ravin N, Casjens S, Ford ME, Hatfull GF, Hendrix RW. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J Mol Biol 2000; 299:53-73. [PMID: 10860722 DOI: 10.1006/jmbi.2000.3731] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N15 is a temperate bacteriophage that forms stable lysogens in Escherichia coli. While its virion is morphologically very similar to phage lambda and its close relatives, it is unusual in that the prophage form replicates autonomously as a linear DNA molecule with closed hairpin telomeres. Here, we describe the genomic architecture of N15, and its global pattern of gene expression, which reveal that N15 contains several plasmid-derived genes that are expressed in N15 lysogens. The tel site, at which processing occurs to form the prophage ends is close to the center of the genome in a similar location to that occupied by the attachment site, attP, in lambda and its relatives and defines the boundary between the left and right arms. The left arm contains a long cluster of structural genes that are closely related to those of the lambda-like phages, but also includes homologs of umuD', which encodes a DNA polymerase accessory protein, and the plasmid partition genes, sopA and sopB. The right arm likewise contains a mixture of apparently phage- and plasmid-derived genes including genes encoding plasmid replication functions, a phage repressor, a transcription antitermination system, as well as phage host cell lysis genes and two putative DNA methylases. The unique structure of the N15 genome suggests that the large global population of bacteriophages may exhibit a much greater diversity of genomic architectures than was previously recognized.
Collapse
MESH Headings
- Bacteriolysis
- Bacteriophage lambda/genetics
- Bacteriophages/enzymology
- Bacteriophages/genetics
- Bacteriophages/ultrastructure
- Base Composition
- Base Sequence
- Escherichia coli/physiology
- Escherichia coli/virology
- Gene Expression Regulation, Bacterial
- Genes, Viral/genetics
- Genome, Viral
- Lysogeny/genetics
- Microscopy, Electron
- Plasmids/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Response Elements/genetics
- Sequence Analysis, DNA
- Terminator Regions, Genetic/genetics
- Transcription, Genetic/genetics
- Viral Proteins/genetics
Collapse
Affiliation(s)
- V Ravin
- Center for Bioengineering, Russian Academy of Science, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- J Frankel
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
24
|
Nosek J, Tomáska L, Fukuhara H, Suyama Y, Kovác L. Linear mitochondrial genomes: 30 years down the line. Trends Genet 1998; 14:184-8. [PMID: 9613202 DOI: 10.1016/s0168-9525(98)01443-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At variance with the earlier belief that mitochondrial genomes are represented by circular DNA molecules, a large number of organisms have been found to carry linear mitochondrial DNA. Studies of linear mitochondrial genomes might provide a novel view on the evolutionary history of organelle genomes and contribute to delineating mechanisms of maintenance and functioning of telomeres. Because linear mitochondrial DNA is present in a number of human pathogens, its replication mechanisms might become a target for drugs that would not interfere with replication of human circular mitochondrial DNA.
Collapse
Affiliation(s)
- J Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
25
|
Biessmann H, Walter MF, Mason JM. Drosophila telomere elongation. CIBA FOUNDATION SYMPOSIUM 1998; 211:53-67; discussion 67-70. [PMID: 9524751 DOI: 10.1002/9780470515433.ch5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drosophila melanogaster has an unusual telomere elongation mechanism. Instead of short repeats that are synthesized by telomerase, long retrotransposons, HeT-A and TART, transpose to the ends of chromosomes. This mechanism generates tandem arrays of these elements at the chromosome ends, in which all elements are oriented with their oligo(A) tails towards the centromere. Structural features of HeT-A and TART elements may provide clues as to their transposition mechanism. Drosophila telomere length polymorphism is mainly due to terminal retrotransposon arrays that differ between chromosome tips and that change with time. In addition, stable terminal chromosome deletions can be generated that do not contain terminal HeT-A and TART arrays, suggesting that, unlike the equivalent terminal repeats in yeast and humans, the presence and length of terminal arrays in Drosophila may not be critical for cell cycle progression.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
26
|
Abstract
Telomeres of most investigated species terminate with short repeats and are elongated by telomerase. Short repeats have never been detected in dipteran species which have found other solutions to end a chromosome. Whereas in Drosophila melanogaster retroelements are added onto the termini, chironomids have long complex repeats at their chromosome ends. We review evidence that these units are terminal and probably have evolved from short telomeric repeats. In Chironomus pallidivittatus the units have been shown to belong to different subfamilies which have specific inter- and intrachromosomal distribution, the most terminal subfamily of repeats being characterized by pronounced secondary structures for the single strand. The complex repeats are efficiently homogenized both within and between different chromosome ends. Gene conversion is probably an important component in the coordinate evolution of the repeats but it is not known whether it is used for net synthesis of DNA. RNA is used as an intermediate in telomere elongation both by organisms having chromosomes terminating with short repeats and by D. melanogaster. It is therefore interesting that the terminal repeats in chironomids are transcribed.
Collapse
Affiliation(s)
- I Kamnert
- Department of Genetics, University of Lund, Sweden
| | | | | | | |
Collapse
|
27
|
Tomáska L, Nosek J, Fukuhara H. Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem 1997; 272:3049-56. [PMID: 9006955 DOI: 10.1074/jbc.272.5.3049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Terminal segments (telomeres) of linear mitochondrial DNA (mtDNA) molecules of the yeast Candida parapsilosis consist of large sequence units repeated in tandem. The extreme ends of mtDNA terminate with a 5' single-stranded overhang of about 110 nucleotides. We identified and purified a mitochondrial telomere-binding protein (mtTBP) that specifically recognizes a synthetic oligonucleotide derived from the extreme end of this linear mtDNA. MtTBP is highly resistant to protease and heat treatments, and it protects the telomeric probe from degradation by various DNA-modifying enzymes. Resistance of the complex to bacterial alkaline phosphatase suggests that mtTBP binds the very end of the molecule. We purified mtTBP to near homogeneity using DNA affinity chromatography based on the telomeric oligonucleotide covalently bound to Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified fractions revealed the presence of a protein with an apparent molecular mass of approximately 15 kDa. UV cross-linking and gel filtration chromatography experiments suggested that native mtTBP is probably a homo-oligomer. MtTBP of C. parapsilosis is the first identified protein that specifically binds to telomeres of linear mitochondrial DNA.
Collapse
Affiliation(s)
- L Tomáska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | | | | |
Collapse
|
28
|
The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rstb.1988.0039] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mitochondrial genomes of higher plants are among the largest and most complex organelle genomes described. They are generally multicircular or partly linear; in some species, extrachromosomal plasmids are present. It is proposed that inter- and intramolecular homologous recombination can account for the diversity of the observed genome organizations. The ability of mitochondria to fuse establishes a panmictic mitochondrial DNA population which is in recombinational equilibrium. It is suggested that this suppresses the base mutation rate, and unequal partitioning of the cytoplasm during cell division can lead to the rapid evolution of mitochondrial genome structure. This contrasts with the observed rates of base-sequence and genome evolution in chloroplasts. This difference can be accounted for solely by the inability of chloroplasts to fuse, thereby preventing chloroplast genome panmixis.
Collapse
|
29
|
Abstract
Local bending propensity and curvature of DNA can be characterized using a vector description of DNA bendability, based on a set of parameters derived from deoxyribonuclease I (DNase I) cleavage experiments. Two characteristics-arithmetic and vector averages of bendability-were successfully used to predict experimentally known bendable, rigid and curved segments in DNA. A characteristic distribution of bendability is conserved in evolutionarily related kinetoplast sequences. An analysis of the M. genitalium and H. influenzae genomes as well as fragments of human and yeast genomes shows, on the other hand, that highly curved segments--similar to artificially designed curved oligonucleotides--are extremely rare in natural DNA.
Collapse
Affiliation(s)
- A Gabrielian
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | | |
Collapse
|
30
|
Löpez CC, Nielsen L, Edström JE. Terminal long tandem repeats in chromosomes form Chironomus pallidivittatus. Mol Cell Biol 1996; 16:3285-90. [PMID: 8668143 PMCID: PMC231322 DOI: 10.1128/mcb.16.7.3285] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We provide evidence that a chromosome end in the dipteran Chironomus pallidivittatus contains 340-bp tandem repeats reaching the extreme terminus of the chromosome. After adding synthetic oligonucleotide tails to DNA extracted from the microdissected right end of the fourth chromosome, we could demonstrate that the blocks of repeats were tailed at only one end, the chromosome terminus, the interior of the arrays being unavailable for tailing. Using PCR, we furthermore showed that the added tails were connected to 340-bp repeat DNA directly, i.e., without intervening DNA of any other kind. The tailed repeats belong to a subfamily previously known to be the most peripheral one of the different types of 340-bp units. Using plasmid controls, we could also make certain that we did not amplify rare or nonrepresentative DNA termini.
Collapse
Affiliation(s)
- C C Löpez
- Department of Genetics, Lund University, Sweden
| | | | | |
Collapse
|
31
|
Gilson P, Waller R, McFadden G. Preliminary characterisation of chlorarachniophyte mitochondrial DNA. J Eukaryot Microbiol 1995; 42:696-701. [PMID: 8520584 DOI: 10.1111/j.1550-7408.1995.tb01618.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The division Chlorarachniophyte comprises amoeboflagellate protists with complex chloroplasts derived from the endosymbiosis of a eukaryotic alga. Analysis of chlorarachniophyte chromosomal DNAs by pulsed-field gel electrophoresis revealed an apparently linear 36-kb chromosome that could not be ascribed to either the host or endosymbiont nuclei. A single eubacterial-like small subunit ribosomal RNA gene is encoded on this chromosome and phylogenetic analyses places this gene within a clade of mitochondrial genes from other eukaryotes. High resolution in situ hybridization demonstrates that transcripts of the small subunit ribosomal RNA gene encoded by the 36-kb chromosome are exclusively located in the mitochondria. The 36-kb chromosome thus likely represents a linear mitochondrial genome. Small amounts of an apparently dimeric (72 kb) form are also detectable in pulsed-field gel electrophoresis.
Collapse
Affiliation(s)
- P Gilson
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
32
|
Nosek J, Dinouël N, Kovac L, Fukuhara H. Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:61-72. [PMID: 7715605 DOI: 10.1007/bf00425822] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The terminal structure of the linear mitochondrial DNA (mtDNA) from the yeast Candida parapsilosis was investigated. This mtDNA, 30 kb long, has symmetrical ends forming inverted terminal repeats. These repeats are made up of a variable number of tandemly repeating units of 738 bp each; the terminal nucleotide corresponds to a precise position within the last repeat unit sequence. The ends had an open structure accessible to enzymes, with a 5' single-stranded extension of about 110 nucleotides. No circular forms were detected in the DNA preparations. Two other unrelated species, Pichia philodendra and Candida salmanticensis also appear to have a linear mtDNA of similar organization. These linear DNAs (which we name Type 2 linear mtDNAs) are distinct from the previously described linear mtDNAs of yeasts whose termini are formed by a closed hairpin loop (Type 1 linear mtDNA). The terminal structure of C. parapsilosis mtDNA is reminiscent of the linear mitochondrial genomes of the ciliate Tetrahymena although, in the latter, the telomeric tandem repeat unit is considerably shorter.
Collapse
Affiliation(s)
- J Nosek
- Institut Curie, Section de Biologie, Centre universitaire Paris XI, Orsay, France
| | | | | | | |
Collapse
|
33
|
Kawano S, Takano H, Kuroiwa T. Sexuality of mitochondria: fusion, recombination, and plasmids. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 161:49-110. [PMID: 7558693 DOI: 10.1016/s0074-7696(08)62496-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondrial fusion, recombination, and mobile genetic elements, which are essential for mitochondrial sexuality, are well established in various organisms. The recombination of mitochondrial DNA (mtDNA) depends upon fusion between parental mitochondria, and between their mtDNA-containing areas (mt-nuclei), to allow pairing between the parental mtDNAs. Such mitochondrial fusion followed by recombination may be called "mitochondrial sex." We have identified a novel mitochondrial plasmid named mF. This plasmid is apparently responsible for promoting mitochondrial fusion and crosses over with mtDNA in successive sexual crosses with mF- strains. Only in mF+ strains carrying the mF plasmid did small spherical mitochondria fuse which subsequently underwent fusion between the mt-nuclei that contained the mtDNA derived from individual mitochondria. Several successive mitochondrial divisions followed, accompanied by mt-nuclear divisions. The resulting mitochondria contained recombinant mtDNA with the mF plasmid. Such features remind us also of the bacterial conjugative plasmids such as F plasmid. Therefore, in the final part of this chapter, we discuss the origin of sex and its relationship to the sexuality of mitochondria.
Collapse
Affiliation(s)
- S Kawano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
34
|
Abstract
A family of 340-bp tandem telomere-associated DNA repeats is present in 50- to 200-kb blocks in seven of the eight paired chromosome ends in Chironomus pallidivittatus. It consists of four main subfamilies, differing from each other by small clusters of mutations. This differentiation may reflect different functional roles for the repeats. Here we find that one subfamily, D3, is consistently localized most peripherally and extends close to the ends of the chromosomes, as shown by its sensitivity to the exonuclease Bal 31. The amounts of D3 are highly variable between individuals. The repeat characteristic for D3 forms a segment with pronounced dyad symmetry, which in single-strand form would give rise to a hairpin. Evidence from an interspecies comparison suggests that a similar structure is the result of selective forces. Another subfamily, M1, is present more proximally in a subgroup of telomeres characterized by a special kind of repeat variability. Thus, a complex block with three kinds of subfamilies may occupy different M1 telomeres depending on the stock of animals. We conclude that subfamilies are differentially distributed between and within telomeres and are likely to serve different functions.
Collapse
|
35
|
Zhang YJ, Kamnert I, López CC, Cohn M, Edström JE. A family of complex tandem DNA repeats in the telomeres of Chironomus pallidivittatus. Mol Cell Biol 1994; 14:8028-36. [PMID: 7969141 PMCID: PMC359341 DOI: 10.1128/mcb.14.12.8028-8036.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A family of 340-bp tandem telomere-associated DNA repeats is present in 50- to 200-kb blocks in seven of the eight paired chromosome ends in Chironomus pallidivittatus. It consists of four main subfamilies, differing from each other by small clusters of mutations. This differentiation may reflect different functional roles for the repeats. Here we find that one subfamily, D3, is consistently localized most peripherally and extends close to the ends of the chromosomes, as shown by its sensitivity to the exonuclease Bal 31. The amounts of D3 are highly variable between individuals. The repeat characteristic for D3 forms a segment with pronounced dyad symmetry, which in single-strand form would give rise to a hairpin. Evidence from an interspecies comparison suggests that a similar structure is the result of selective forces. Another subfamily, M1, is present more proximally in a subgroup of telomeres characterized by a special kind of repeat variability. Thus, a complex block with three kinds of subfamilies may occupy different M1 telomeres depending on the stock of animals. We conclude that subfamilies are differentially distributed between and within telomeres and are likely to serve different functions.
Collapse
Affiliation(s)
- Y J Zhang
- Department of Molecular Genetics, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
36
|
Takano H, Kawano S, Kuroiwa T. Complex terminal structure of a linear mitochondrial plasmid from Physarum polycephalum: three terminal inverted repeats and an ORF encoding DNA polymerase. Curr Genet 1994; 25:252-7. [PMID: 7923412 DOI: 10.1007/bf00357170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mitochondria of Physarum polycephalum have a linear plasmid (mF) which promotes mitochondrial fusion. To determine the terminal structure of the mF plasmid, restriction fragments derived from its ends were cloned and sequenced. The sequences showed that the mF plasmid has three kinds of terminal inverted repeats (TIRs). The most characteristic feature is a 144-bp repeating unit which exists between a 205-bp TIR at the extreme ends of the plasmid and another 591-bp TIR. All of the clones showed at least one of these 144-bp repeating units. The GC content of the 205-bp TIR (49%) was higher than those of the other TIRs and of another sequenced region (23%). This TIR can form three thermodynamically-stable hairpin structures based on complex internal palindromic components. Moreover, in the right terminal region of the mF plasmid, there is an open reading frame (ORF) which covers the entire 591-bp TIR and most of one of the 144-bp repeating units. This ORF encodes a 547-amino-acid polypeptide, ORF-547, and shows extensive homology with the polymerization domain of the putative DNA polymerases of linear mitochondrial plasmids from other sources.
Collapse
Affiliation(s)
- H Takano
- Department of Biology, Faculty of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
37
|
Vahrenholz C, Riemen G, Pratje E, Dujon B, Michaelis G. Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Curr Genet 1993; 24:241-7. [PMID: 8221933 DOI: 10.1007/bf00351798] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mitochondrial genome of Chlamydomonas reinhardtii is a linear double-stranded DNA of 15.8 kb. With the exception of the termini its DNA sequence has been published. Here we describe the unique structure of the two termini determined from cloned fragments or, for the very terminal sequences, by the Maxam and Gilbert method after 5' labeling of uncloned terminal fragments. The 15.8-kb DNA is characterized by terminal inverted repeats of 531 or 532 bp in length including long 3' extensions. The 3' single-stranded extensions of the left and right ends are non-complementary, identical in sequence, and comprise 39 to 41 nucleotides. Remarkably, the linear genome possesses in addition an internal 86-bp repeat of the two outermost sequences. The unusual structure of the 15.8-kb DNA termini is compared with those of other linear mitochondrial DNAs. Possible mechanisms of 15.8-kb DNA replication are discussed.
Collapse
Affiliation(s)
- C Vahrenholz
- Botanisches Institut der Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
38
|
Linear mitochondrial DNAs of yeasts: closed-loop structure of the termini and possible linear-circular conversion mechanisms. Mol Cell Biol 1993. [PMID: 8455613 DOI: 10.1128/mcb.13.4.2315] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terminal structure of the linear mitochondrial DNA (mtDNA) from three yeast species has been examined. By enzymatic digestion, alkali denaturation, and sequencing of cloned termini, it was shown that in Pichia pijperi and P. jadinii, both termini of the linear mtDNA were made of a single-stranded loop covalently joining the two strands, as in the case of vaccinia virus DNA. The left and right loop sequences were in either of two orientations, suggesting the existence of a flip-flop inversion mechanism. Contiguous to the terminal loops, inverted terminal repeats were present. The mtDNA from Williopsis mrakii seems to have an analogous structure, although terminal loops could not be directly demonstrated. Electron microscopy revealed the presence, among linear molecules, of a small number of circular DNAs, mostly of monomer length. Linear and circular models of replication are considered, and possible conversion mechanisms between linear and circular forms are discussed. A flip-flop inversion mechanism between the inverted repeat sequences within a circular intermediate may be involved in the generation of the linear form of mtDNA.
Collapse
|
39
|
Dinouël N, Drissi R, Miyakawa I, Sor F, Rousset S, Fukuhara H. Linear mitochondrial DNAs of yeasts: closed-loop structure of the termini and possible linear-circular conversion mechanisms. Mol Cell Biol 1993; 13:2315-23. [PMID: 8455613 PMCID: PMC359552 DOI: 10.1128/mcb.13.4.2315-2323.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The terminal structure of the linear mitochondrial DNA (mtDNA) from three yeast species has been examined. By enzymatic digestion, alkali denaturation, and sequencing of cloned termini, it was shown that in Pichia pijperi and P. jadinii, both termini of the linear mtDNA were made of a single-stranded loop covalently joining the two strands, as in the case of vaccinia virus DNA. The left and right loop sequences were in either of two orientations, suggesting the existence of a flip-flop inversion mechanism. Contiguous to the terminal loops, inverted terminal repeats were present. The mtDNA from Williopsis mrakii seems to have an analogous structure, although terminal loops could not be directly demonstrated. Electron microscopy revealed the presence, among linear molecules, of a small number of circular DNAs, mostly of monomer length. Linear and circular models of replication are considered, and possible conversion mechanisms between linear and circular forms are discussed. A flip-flop inversion mechanism between the inverted repeat sequences within a circular intermediate may be involved in the generation of the linear form of mtDNA.
Collapse
Affiliation(s)
- N Dinouël
- Section de Biologie, Institut Curie, Centre Universitaire Paris XI, Orsay, France
| | | | | | | | | | | |
Collapse
|
40
|
Michels CA, Read E, Nat K, Charron MJ. The telomere-associated MAL3 locus of Saccharomyces is a tandem array of repeated genes. Yeast 1992; 8:655-65. [PMID: 1441745 DOI: 10.1002/yea.320080809] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Saccharomyces strains capable of fermenting maltose contain any one of five telomere-associated MAL loci. Each MAL locus is a complex of three genes encoding the three functions required to ferment maltose: maltose permease (GENE 1), maltase (GENE 2) and the MAL trans-activator (GENE 3). All five loci have been cloned and all are highly sequence homologous over at least a 9.0 kbp region containing these GENEs (Charron et al., Genetics 122, 307-331, 1989). Our initial studies of strains carrying the MAL3 locus indicated the presence of linked, repeated MAL-homologous sequences (Michels and Needleman, Mol. Gen. Genet. 191, 225-230, 1983). Here we report our analysis of the centromere-proximal MAL3-linked sequences and show that the complete MAL3 locus spans approximately 40 kbp and consists of tandemly arrayed, partial repeats of the three GENE sequences described above. In addition, the structure of the MAL3 locus is compared to that of three partially functional alleles of MAL3. These alleles were shown to contain only MAL31 and MAL32 and their structure suggests that they resulted from MAL3 deletions removing the sequences centromere-proximal to MAL31. The amplification and rearrangement of the telomere-linked MAL3 sequences are discussed in the context of studies on other telemere-associated sequences from yeast and other species.
Collapse
Affiliation(s)
- C A Michels
- Department of Biology, Queens College, Flushing, New York
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | |
Collapse
|
42
|
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| |
Collapse
|
43
|
|
44
|
Saccone C, Pesole G, Sbisá E. The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol 1991; 33:83-91. [PMID: 1909377 DOI: 10.1007/bf02100199] [Citation(s) in RCA: 201] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The evolution of the main regulatory region (D-loop) of the mammalian mitochondrial genome was analyzed by comparing the sequences of eight mammalian species: human, common chimpanzee, pygmy chimpanzee, dolphin, cow, rat, mouse, and rabbit. The best alignment of the sequences was obtained by optimization of the sequence similarities common to all these species. The two peripheral left and right D-loop domains, which contain the main regulatory elements so far discovered, evolved rapidly in a species-specific manner generating heterogeneity in both length and base composition. They are prone to the insertion and deletion of elements and to the generation of short repeats by replication slippage. However, the preservation of some sequence blocks and similar cloverleaf-like structures in these regions, indicates a basic similarity in the regulatory mechanisms of the mitochondrial genome in all mammalian species. We found, particularly in the right domain, significant similarities to the telomeric sequences of the mitochondrial (mt) and nuclear DNA of Tetrahymena thermophila. These sequences may be interpreted as relics of telomeres present in ancestral linear forms of mtDNA or may simply represent efficient templates of RNA primase-like enzymes. Due to their peculiar evolution, the two peripheral domains cannot be used to estimate in a quantitative way the genetic distances between mammalian species. On the other hand the central domain, highly conserved during evolution, behaves as a good molecular clock. Reliable estimates of the times of divergence between closely and distantly related species were obtained from the central domain using a Markov model and assuming nonhomogeneous evolution of nucleotide sites.
Collapse
Affiliation(s)
- C Saccone
- Dipartimento di Biochimica e Biologia Molecolare, Universitá di Bari, Italy
| | | | | |
Collapse
|
45
|
Biessmann H, Mason JM, Ferry K, d'Hulst M, Valgeirsdottir K, Traverse KL, Pardue ML. Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila. Cell 1990; 61:663-73. [PMID: 2111731 DOI: 10.1016/0092-8674(90)90478-w] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stocks of D. melanogaster X chromosomes carrying terminal deletions (RT chromosomes) have been maintained for several years. Some of the chromosomes are slowly losing DNA from the broken ends (as expected if replication is incomplete) and show no telomere-associated DNA added to the receding ends. Two stocks carry chromosomes that have become "healed" and are no longer losing DNA. In both stocks the broken chromosome end has acquired a segment of HeT DNA, a family of complex repeats found only at telomeres and in pericentric heterochromatin. Although the HeT family is complex, the HeT sequence joined to the broken chromosome end is the same in both stocks. In contrast, the two chromosomes are broken in different places and have no detectable sequence similarity at the junction with the new DNA. Sequence analysis suggests that the new telomere sequences have been added by a specific mechanism that does not involve homologous recombination.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- A M DeLange
- Department of Human Genetics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
47
|
Zakian VA, Runge K, Wang SS. How does the end begin? Formation and maintenance of telomeres in ciliates and yeast. Trends Genet 1990; 6:12-6. [PMID: 2183413 DOI: 10.1016/0168-9525(90)90043-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current models of telomere formation and replication involve either telomerase, a novel ribonucleoprotein, or recombination between the ends of DNA molecules. However, present models will have to be modified to explain recent data on telomere formation in yeast. An understanding of the mechanisms of telomere maintenance in yeast may reveal how other organisms with heterogeneous telomeric repeats replicate their chromosomal termini.
Collapse
Affiliation(s)
- V A Zakian
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | |
Collapse
|
48
|
Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A 1989; 86:7049-53. [PMID: 2780561 PMCID: PMC297991 DOI: 10.1073/pnas.86.18.7049] [Citation(s) in RCA: 548] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To determine the evolutionary origin of the human telomere sequence (TTAGGG)n, biotinylated oligodeoxynucleotides of this sequence were hybridized to metaphase spreads from 91 different species, including representative orders of bony fish, reptiles, amphibians, birds, and mammals. Under stringent hybridization conditions, fluorescent signals were detected at the telomeres of all chromosomes, in all 91 species. The conservation of the (TTAGGG)n sequence and its telomeric location, in species thought to share a common ancestor over 400 million years ago, strongly suggest that this sequence is the functional vertebrate telomere.
Collapse
Affiliation(s)
- J Meyne
- Genetics Group, LS-3, Los Alamos National Laboratory, NM 87545
| | | | | |
Collapse
|
49
|
Abstract
We describe a general assay designed to detect mutants of yeast that are defective for any of several aspects of telomere function. Using this assay, we have isolated a mutant that displays a progressive decrease in telomere length as well as an increased frequency of chromosome loss. This mutation defines a new gene, designated EST1 (for ever shorter telomeres). Null alleles of EST1 are not immediately inviable; instead, they have a senescence phenotype, due to the gradual loss of sequences essential for telomere function, leading to a progressive decrease in chromosomal stability and subsequent cell death.
Collapse
Affiliation(s)
- V Lundblad
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
50
|
|