1
|
Liu Y, Zhang S, Tan Y. Honokiol induces apoptosis and autophagy in dexamethasone-resistant T-acute lymphoblastic leukemia CEM-C1 cells. Hematology 2024; 29:2337307. [PMID: 38573223 DOI: 10.1080/16078454.2024.2337307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Objective: To study whether and, if so, how honokiol overcome dexamethasone resistance in DEX-resistant CEM-C1 cells. Methods: We investigated the effect of honokiol (0-20 µM) on cell proliferation, cell cycle, cell apoptosis and autophagy in DEX-resistant CEM-C1 cells and DEX-sensitive CEM-C7 cells. We also determined the role of c-Myc protein and mRNA in the occurrence of T-ALL associated dexamethasone resistance western blot and reverse transcription-qPCR (RT-qPCR) analysis. Results: Cell Counting Kit (CCK)-8 assay shows that DEX-resistant CEM-C1 cell lines were highly resistant to dexamethasone with IC50 of 364.1 ± 29.5 µM for 48 h treatment. However, upon treatment with dexamethasone in combination with 1.5 µM of honokiol for 48 h, the IC50 of CEM-C1 cells significantly decreased to 126.2 ± 12.3 µM, and the reversal fold was 2.88. Conversely, the IC50 of CEM-C7 cells was not changed combination of dexamethasone and honokiol as compared to that of CEM-C7 cells treated with dexamethasone alone. It has been shown that honokiol induced T-ALL cell growth inhibition by apoptosis and autophagy via downregulating cell cycle-regulated proteins (Cyclin E, CDK4, and Cyclin D1) and anti-apoptotic proteins BCL-2 and upregulating pro-apoptotic proteins Bax and led to PARP cleavage. Honokiol may overcome dexamethasone resistance in DEX-resistant CEM-C1 cell lines via the suppression of c-Myc mRNA expression. Conclusion: The combination of honokiol and DEX were better than DEX alone in DEX-resistant CEM-C1 cell lines. Honokiol may regulate T-ALL-related dexamethasone resistance by affecting c-Myc.
Collapse
Affiliation(s)
- Yang Liu
- Pediatric Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, People's Republic of China
| | - Suqian Zhang
- Pediatric Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, People's Republic of China
| | - Yajuan Tan
- Pediatric Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, People's Republic of China
| |
Collapse
|
2
|
Yang J, Sun W, Cui G. Roles of the NR2F Family in the Development, Disease, and Cancer of the Lung. J Dev Biol 2024; 12:24. [PMID: 39311119 PMCID: PMC11417824 DOI: 10.3390/jdb12030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
The NR2F family, including NR2F1, NR2F2, and NR2F6, belongs to the nuclear receptor superfamily. NR2F family members function as transcription factors and play essential roles in the development of multiple organs or tissues in mammals, including the central nervous system, veins and arteries, kidneys, uterus, and vasculature. In the central nervous system, NR2F1/2 coordinate with each other to regulate the development of specific brain subregions or cell types. In addition, NR2F family members are associated with various cancers, such as prostate cancer, breast cancer, and esophageal cancer. Nonetheless, the roles of the NR2F family in the development and diseases of the lung have not been systematically summarized. In this review, we mainly focus on the lung, including recent findings regarding the roles of the NR2F family in development, physiological function, and cancer.
Collapse
Affiliation(s)
- Jiaxin Yang
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou 510005, China;
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| | - Wenjing Sun
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| | - Guizhong Cui
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou 510005, China;
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| |
Collapse
|
3
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Dodonova SA, Zhidkova EM, Kryukov AA, Valiev TT, Kirsanov KI, Kulikov EP, Budunova IV, Yakubovskaya MG, Lesovaya EA. Synephrine and Its Derivative Compound A: Common and Specific Biological Effects. Int J Mol Sci 2023; 24:17537. [PMID: 38139366 PMCID: PMC10744207 DOI: 10.3390/ijms242417537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.
Collapse
Affiliation(s)
- Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Timur T. Valiev
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Evgeny P. Kulikov
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA;
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| |
Collapse
|
5
|
Lai W, Chen J, Wang T, Liu Q. Crosstalk between ferroptosis and steroid hormone signaling in gynecologic cancers. Front Mol Biosci 2023; 10:1223493. [PMID: 37469703 PMCID: PMC10352791 DOI: 10.3389/fmolb.2023.1223493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Ferroptosis is a novel types of regulated cell death and is widely studied in cancers and many other diseases in recent years. It is characterized by iron accumulation and intense lipid peroxidation that ultimately inducing oxidative damage. So far, signaling pathways related to ferroptosis are involved in all aspects of determining cell fate, including oxidative phosphorylation, metal-ion transport, energy metabolism and cholesterol synthesis progress, et al. Recently, accumulated studies have demonstrated that ferroptosis is associated with gynecological oncology related to steroid hormone signaling. This review trends to summarize the mechanisms and applications of ferroptosis in cancers related to estrogen and progesterone, which is expected to provide a theoretical basis for the prevention and treatment of gynecologic cancers.
Collapse
Affiliation(s)
- Wen Lai
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Tianming Wang
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Qiaoling Liu
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Check JH, Check DL. The role of progesterone and the progesterone receptor in cancer: progress in the last 5 years. Expert Rev Endocrinol Metab 2023; 18:5-18. [PMID: 36647582 DOI: 10.1080/17446651.2023.2166487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Patients with various advanced cancers devoid of nuclear progesterone receptors (nPR) have demonstrated increased quality and length of life when treated with the PR modulator mifepristone, which likely works by interacting with membrane PRs (mPR). AREAS COVERED Two immunomodulatory proteins are discussed that seem to play a role in cancers that proliferate whether the malignant tumor is positive or negative for the nPR. These two proteins are the progesterone receptor membrane component-1 (PGRMC-1) and the progesterone-induced blocking factor (PIBF). Both PGRMC-1 and the parent form of PIBF foster increased tumor aggressiveness, whereas splice variants of the 90 kDa form of PIBF inhibit immune response against cancer cells. EXPERT OPINION The marked clinical improvement following 200-300 mg of mifepristone is likely related to blocking PIBF. In the low dosage used, mifepristone likely acts as an agonist for PGRMC-1 protein. Mifepristone may be less effective for cancers positive for the nPR because the nPR may be protective and blocking it may have detrimental effects. Based on this hypothetical model, the development of other potential treatment options to provide even greater efficacy for treating cancer are discussed.
Collapse
Affiliation(s)
- Jerome H Check
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cooper Medical School of Rowan University, Camden, New Jersey, USA
- Cooper Institute for Reproductive Hormonal Disorders P.C, Mt. Laurel, New Jersey, USA
| | - Diane L Check
- Cooper Institute for Reproductive Hormonal Disorders P.C, Mt. Laurel, New Jersey, USA
| |
Collapse
|
7
|
Khan SH, Braet SM, Koehler SJ, Elacqua E, Anand GS, Okafor CD. Ligand-induced shifts in conformational ensembles that describe transcriptional activation. eLife 2022; 11:e80140. [PMID: 36222302 PMCID: PMC9555869 DOI: 10.7554/elife.80140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
Nuclear receptors function as ligand-regulated transcription factors whose ability to regulate diverse physiological processes is closely linked with conformational changes induced upon ligand binding. Understanding how conformational populations of nuclear receptors are shifted by various ligands could illuminate strategies for the design of synthetic modulators to regulate specific transcriptional programs. Here, we investigate ligand-induced conformational changes using a reconstructed, ancestral nuclear receptor. By making substitutions at a key position, we engineer receptor variants with altered ligand specificities. We combine cellular and biophysical experiments to characterize transcriptional activity, as well as elucidate mechanisms underlying altered transcription in receptor variants. We then use atomistic molecular dynamics (MD) simulations with enhanced sampling to generate ensembles of wildtype and engineered receptors in combination with multiple ligands, followed by conformational analysis and correlation of MD-based predictions with functional ligand profiles. We determine that conformational ensembles accurately describe ligand responses based on observed population shifts. These studies provide a platform which will allow structural characterization of physiologically-relevant conformational ensembles, as well as provide the ability to design and predict transcriptional responses in novel ligands.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
| | - Sean M Braet
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - Elizabeth Elacqua
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| |
Collapse
|
8
|
Targeting Nuclear Receptors in Lung Cancer—Novel Therapeutic Prospects. Pharmaceuticals (Basel) 2022; 15:ph15050624. [PMID: 35631448 PMCID: PMC9145966 DOI: 10.3390/ph15050624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer, the second most commonly diagnosed cancer, is the major cause of fatalities worldwide for both men and women, with an estimated 2.2 million new incidences and 1.8 million deaths, according to GLOBOCAN 2020. Although various risk factors for lung cancer pathogenesis have been reported, controlling smoking alone has a significant value as a preventive measure. In spite of decades of extensive research, mechanistic cues and targets need to be profoundly explored to develop potential diagnostics, treatments, and reliable therapies for this disease. Nuclear receptors (NRs) function as transcription factors that control diverse biological processes such as cell growth, differentiation, development, and metabolism. The aberrant expression of NRs has been involved in a variety of disorders, including cancer. Deregulation of distinct NRs in lung cancer has been associated with numerous events, including mutations, epigenetic modifications, and different signaling cascades. Substantial efforts have been made to develop several small molecules as agonists or antagonists directed to target specific NRs for inhibiting tumor cell growth, migration, and invasion and inducing apoptosis in lung cancer, which makes NRs promising candidates for reliable lung cancer therapeutics. The current work focuses on the importance of various NRs in the development and progression of lung cancer and highlights the different small molecules (e.g., agonist or antagonist) that influence NR expression, with the goal of establishing them as viable therapeutics to combat lung cancer.
Collapse
|
9
|
Ferdousy RN, Kadokawa H. Specific locations and amounts of denatured collagen and collagen-specific chaperone HSP47 in the oviducts and uteri of old cows as compared with those of heifers. Reprod Fertil Dev 2022; 34:619-632. [PMID: 35296375 DOI: 10.1071/rd21130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022] Open
Abstract
Collagen, the most abundant extra-cellular matrix in oviducts and uteri, performs critical roles in pregnancies. We hypothesised that the locations and amounts of both denatured collagen and the collagen-specific molecular chaperone 47-kDa heat shock protein (HSP47) in the oviducts and uteri of old cows are different compared with those of young heifers because of repeated pregnancies. Since detecting damaged collagen in tissues is challenging, we developed a new method that uses a denatured collagen detection reagent. Then, we compared damaged collagen in the oviducts and uteri between post-pubertal growing nulliparous heifers (22.1±1.0months old) and old multiparous cows (143.1±15.6months old). Further, we evaluated the relationship between denatured collagen and HSP47 by combining this method with fluorescence immunohistochemistry. Picro-sirius red staining showed collagen in almost all parts of the oviducts and uteri. Expectedly, damaged collagen was increased in the oviducts and uteri of old cows. However, damaged collagen and HSP47 were not located in the same area in old cows. The number of fibroblasts increased, suggesting the presence of fibrosis in the oviducts and uteri of old cows. These organs of old cows showed higher HSP47 protein amounts than those of heifers. However, the uteri, but not oviducts, of old cows had lower HSP47 mRNA amounts than those of heifers. These findings revealed the specific location and amounts of denatured collagen and HSP47 in the oviducts and uteri of old cows compared with those of heifers.
Collapse
Affiliation(s)
- Raihana Nasrin Ferdousy
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| |
Collapse
|
10
|
Datta RR, Rister J. The power of the (imperfect) palindrome: Sequence-specific roles of palindromic motifs in gene regulation. Bioessays 2022; 44:e2100191. [PMID: 35195290 PMCID: PMC8957550 DOI: 10.1002/bies.202100191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/22/2022]
Abstract
In human languages, a palindrome reads the same forward as backward (e.g., 'madam'). In regulatory DNA, a palindrome is an inverted sequence repeat that allows a transcription factor to bind as a homodimer or as a heterodimer with another type of transcription factor. Regulatory palindromes are typically imperfect, that is, the repeated sequences differ in at least one base pair, but the functional significance of this asymmetry remains poorly understood. Here, we review the use of imperfect palindromes in Drosophila photoreceptor differentiation and mammalian steroid receptor signaling. Moreover, we discuss mechanistic explanations for the predominance of imperfect palindromes over perfect palindromes in these two gene regulatory contexts. Lastly, we propose to elucidate whether specific imperfectly palindromic variants have specific regulatory functions in steroid receptor signaling and whether such variants can help predict transcriptional outcomes as well as the response of individual patients to drug treatments.
Collapse
Affiliation(s)
- Rhea R Datta
- Department of Biology, Hamilton College, Clinton, New York, USA
| | - Jens Rister
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Grossmann C, Almeida-Prieto B, Nolze A, Alvarez de la Rosa D. Structural and molecular determinants of mineralocorticoid receptor signalling. Br J Pharmacol 2021; 179:3103-3118. [PMID: 34811739 DOI: 10.1111/bph.15746] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
During the past decades, the mineralocorticoid receptor (MR) has evolved from a much-overlooked member of the steroid hormone receptor family to an important player, not only in volume and electrolyte homeostasis but also in pathological changes occurring in an increasing number of tissues, especially the renal and cardiovascular systems. Simultaneously, a wealth of information about the structure, interaction partners and chromatin requirements for genomic signalling of steroid hormone receptors became available. However, much of the information for the MR has been deduced from studies of other family members and there is still a lack of knowledge about MR-specific features in ligand binding, chromatin remodelling, co-factor interactions and general MR specificity-conferring mechanisms that can completely explain the differences in pathophysiological function between MR and its closest relative, the glucocorticoid receptor. This review aims to give an overview of the current knowledge of MR structure, signalling and co-factors modulating its activity.
Collapse
Affiliation(s)
- Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Brian Almeida-Prieto
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Alexander Nolze
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
12
|
Zgheib NK, El-Khoury H, Maamari D, Basbous M, Saab R, Muwakkit SA. A GRIN3A polymorphism may be associated with glucocorticoid-induced symptomatic osteonecrosis in children with acute lymphoblastic leukemia. Per Med 2021; 18:431-439. [PMID: 34406079 DOI: 10.2217/pme-2020-0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To evaluate the association between candidate genetic polymorphisms and glucocorticoid-induced osteonecrosis in Arab children treated for acute lymphoblastic leukemia. Methods: A total of 189 children treated for acute lymphoblastic leukemia were genotyped for four SNPs with allele discrimination assays. The incidence and timing of radiologically confirmed symptomatic grade 4 osteonecrosis were classified based on the Ponte di Legno toxicity working group consensus definition. Results: Thirteen children developed grade 4 osteonecrosis (6.8%), of whom 12 received the intermediate/high-risk treatment protocol. GRIN3A variant allele carriers had to stop dexamethasone therapy earlier resulting in significantly shorter duration of dexamethasone treatment (mean [95% CI]: 75.17 [64.28-86.06] vs 85.90 [81.22-90.58] weeks; p = 0.054) and lower cumulative dose (mean [95% CI]: 1118.11 [954.94-1281.29] vs 1341.14 [1264.17-1418.11] mg/m2; p = 0.011). Conclusion: This is the first pharmacogenomics evaluation of the association between GRIN3A variants and glucocorticoid-induced osteonecrosis in Arab children.
Collapse
Affiliation(s)
- Nathalie K Zgheib
- Department of Pharmacology & Toxicology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Habib El-Khoury
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Dimitri Maamari
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya Basbous
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center & Children's Cancer Center of Lebanon, Beirut, Lebanon
| | - Raya Saab
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center & Children's Cancer Center of Lebanon, Beirut, Lebanon
| | - Samar A Muwakkit
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center & Children's Cancer Center of Lebanon, Beirut, Lebanon
| |
Collapse
|
13
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
14
|
Gadasheva Y, Nolze A, Grossmann C. Posttranslational Modifications of the Mineralocorticoid Receptor and Cardiovascular Aging. Front Mol Biosci 2021; 8:667990. [PMID: 34124152 PMCID: PMC8193679 DOI: 10.3389/fmolb.2021.667990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
During aging, the cardiovascular system is especially prone to a decline in function and to life-expectancy limiting diseases. Cardiovascular aging is associated with increased arterial stiffness and vasoconstriction as well as left ventricular hypertrophy and reduced diastolic function. Pathological changes include endothelial dysfunction, atherosclerosis, fibrosis, hypertrophy, inflammation, and changes in micromilieu with increased production of reactive oxygen and nitrogen species. The renin-angiotensin-aldosterone-system is an important mediator of electrolyte and blood pressure homeostasis and a key contributor to pathological remodeling processes of the cardiovascular system. Its effects are partially conveyed by the mineralocorticoid receptor (MR), a ligand-dependent transcription factor, whose activity increases during aging and cardiovascular diseases without correlating changes of its ligand aldosterone. There is growing evidence that the MR can be enzymatically and non-enzymatically modified and that these modifications contribute to ligand-independent modulation of MR activity. Modifications reported so far include phosphorylation, acetylation, ubiquitination, sumoylation and changes induced by nitrosative and oxidative stress. This review focuses on the different posttranslational modifications of the MR, their impact on MR function and degradation and the possible implications for cardiovascular aging and diseases.
Collapse
Affiliation(s)
- Yekatarina Gadasheva
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Nolze
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
15
|
Panigrahi A, O'Malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol 2021; 22:108. [PMID: 33858480 PMCID: PMC8051032 DOI: 10.1186/s13059-021-02322-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Differential gene expression mechanisms ensure cellular differentiation and plasticity to shape ontogenetic and phylogenetic diversity of cell types. A key regulator of differential gene expression programs are the enhancers, the gene-distal cis-regulatory sequences that govern spatiotemporal and quantitative expression dynamics of target genes. Enhancers are widely believed to physically contact the target promoters to effect transcriptional activation. However, our understanding of the full complement of regulatory proteins and the definitive mechanics of enhancer action is incomplete. Here, we review recent findings to present some emerging concepts on enhancer action and also outline a set of outstanding questions.
Collapse
Affiliation(s)
- Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Cheng X, D'Orsogna MR, Chou T. Mathematical modeling of depressive disorders: Circadian driving, bistability and dynamical transitions. Comput Struct Biotechnol J 2020; 19:664-690. [PMID: 33510869 PMCID: PMC7815682 DOI: 10.1016/j.csbj.2020.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is a key neuroendocrine system implicated in stress response, major depression disorder, and post-traumatic stress disorder. We present a new, compact dynamical systems model for the response of the HPA axis to external stimuli, representing stressors or therapeutic intervention, in the presence of a circadian input. Our work builds upon previous HPA axis models where hormonal dynamics are separated into slow and fast components. Several simplifications allow us to derive an effective model of two equations, similar to a multiplicative-input FitzHugh-Nagumo system, where two stable states, a healthy and a diseased one, arise. We analyze the effective model in the context of state transitions driven by external shocks to the hypothalamus, but also modulated by circadian rhythms. Our analyses provide mechanistic insight into the effects of the circadian cycle on input driven transitions of the HPA axis and suggest a circadian influence on exposure or cognitive behavioral therapy in depression, or post-traumatic stress disorder treatment.
Collapse
Affiliation(s)
- Xiaoou Cheng
- School of Mathematical Sciences, Peking University, Haidian District, Beijing 100871, China
| | - Maria R D'Orsogna
- Dept. of Mathematics, California State University, Northridge, CA 91330, United States
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095, United States
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095, United States
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095, United States
| |
Collapse
|
17
|
Escoter-Torres L, Caratti G, Mechtidou A, Tuckermann J, Uhlenhaut NH, Vettorazzi S. Fighting the Fire: Mechanisms of Inflammatory Gene Regulation by the Glucocorticoid Receptor. Front Immunol 2019; 10:1859. [PMID: 31440248 PMCID: PMC6693390 DOI: 10.3389/fimmu.2019.01859] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
For many decades, glucocorticoids have been widely used as the gold standard treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both positively, and negatively regulates gene expression. Extensive research during the past several years has uncovered novel mechanisms by which the GR activates and represses its target genes. Genome-wide studies and mouse models have provided valuable insight into the molecular mechanisms of inflammatory gene regulation by GR. This review focusses on newly identified target genes and GR co-regulators that are important for its anti-inflammatory effects in innate immune cells, as well as mutations within the GR itself that shed light on its transcriptional activity. This research progress will hopefully serve as the basis for the development of safer immune suppressants with reduced side effect profiles.
Collapse
Affiliation(s)
- Laura Escoter-Torres
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Giorgio Caratti
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Aikaterini Mechtidou
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Jan Tuckermann
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Sabine Vettorazzi
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| |
Collapse
|
18
|
Louw A. GR Dimerization and the Impact of GR Dimerization on GR Protein Stability and Half-Life. Front Immunol 2019; 10:1693. [PMID: 31379877 PMCID: PMC6653659 DOI: 10.3389/fimmu.2019.01693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid receptor (GR), are a most effective therapy for inflammatory diseases despite the fact that chronic use causes side-effects and acquired GC resistance. The design of drugs with fewer side-effects and less potential for the development of resistance is therefore considered crucial for improved therapy. Dimerization of the GR is an integral step in glucocorticoid signaling and has been identified as a possible molecular site to target for drug development of anti-inflammatory drugs with an improved therapeutic index. Most of the current understanding regarding the role of GR dimerization in GC signaling derives for dimerization deficient mutants, although the role of ligands biased toward monomerization has also been described. Even though designing for loss of dimerization has mostly been applied for reduction of side-effect profile, designing for loss of dimerization may also be a fruitful strategy for the development of GC drugs with less potential to develop GC resistance. GC-induced resistance affects up to 30% of users and is due to a reduction in the GR functional pool. Several molecular mechanisms of GC-mediated reductions in GR pool have been described, one of which is the autologous down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR dimerization prevents autologous down-regulation of the receptor through modulation of interactions with components of the UPS and post-translational modifications (PTMs), such as phosphorylation, which prime the GR for degradation. Rational design of conformationally biased ligands that select for a monomeric GR conformation, which increases GC sensitivity through improving GR protein stability and increasing half-life, may be a productive avenue to explore. However, potential drawbacks to this approach should be considered as well as the advantages and disadvantages in chronic vs. acute treatment regimes.
Collapse
Affiliation(s)
- Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
19
|
Oasa S, Mikuni S, Yamamoto J, Kurosaki T, Yamashita D, Kinjo M. Relationship Between Homodimeric Glucocorticoid Receptor and Transcriptional Regulation Assessed via an In Vitro Fluorescence Correlation Spectroscopy-Microwell System. Sci Rep 2018; 8:7488. [PMID: 29748590 PMCID: PMC5945783 DOI: 10.1038/s41598-018-25393-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/19/2018] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoid receptor (GR) is a hormone-activated transcription regulatory protein involved in metabolism as well as adrenocortical responses to psychosocial stress. Ligand-activated GR localizes to the nucleus, where GR homodimers regulate gene transcription via direct binding to glucocorticoid response elements (GREs). The role of GR homodimers in transcriptional activation has not yet been elucidated. In this study, we determined the concentration of GR homodimer, and its dissociation constant (Kd), at the single-cell level, by using fluorescence correlation spectroscopy (FCS) combined with a microwell system. Results from dissociation constant analysis and diffusion analysis suggested that GR forms complexes with other proteins as well as homodimers. We determined the relationship between the concentration of GR homodimer and transcriptional activity using a triple-color FCS-microwell system-based fluorescent reporter assay. The binding affinity of GR to GREs was analyzed via fluorescence cross-correlation spectroscopy (FCCS). Our findings indicate that the GR homodimer is essential for activating target gene transcription.
Collapse
Affiliation(s)
- Sho Oasa
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Shintaro Mikuni
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Johtaro Yamamoto
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Tsumugi Kurosaki
- Laboratory of Molecular Cell Dynamics, Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Daisuke Yamashita
- Laboratory of Molecular Cell Dynamics, Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
20
|
Savoldi G, Ferrari F, Ruggeri G, Sobek L, Albertini A, Di Lorenzo D. Progesterone agonists and antagonists induce down– and up–regulation of estrogen receptors and estrogen inducible genes in human breast cancer cell lines. Int J Biol Markers 2018; 10:47-54. [PMID: 7629427 DOI: 10.1177/172460089501000109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of the synthetic progestin R5020 and the antiprogestin RU486 on the cellular content of estrogen receptors (ER) and on cell responsiveness to estrogens, have been investigated in the sex hormone-sensitive human breast cancer cell lines MCF-7 and T47D. When T47D cells were treated with R5020 (Promegestone) (10–8 M), ER was down-regulated to about 50% of the control level in a time-dependent manner. Maximum down-regulation was observed after 24 hours and remained at this level for the next 24 hours. Dihydrotestosterone (DHT) or dexamethasone (DEX) had no effect on ER sites. R5020 also down-regulated, although to a lesser extent, ER in the MCF-7 cells which contain fewer progesterone receptor (PR) sites. When MCF-7 cells were transfected with a progesterone receptor expression vector (tMCF-7) to increase the number of PR sites, R5020 down-regulated the ER to a level similar to that reached in T47D cells. In both cell lines ER down-regulation was completely inhibited by a 10-fold molar excess of the antiprogestin RU486 (Mifepristone) (10–7 M). Surprisingly, when incubated with RU486 alone, T47D cells responded by up-regulating ER 2-4 fold. The functional relevance of inhibition and up-regulation of ER for the estrogen responsiveness of hormone-sensitive human breast cancer cells was tested by assaying the synthesis of an estrogen-regulated product, the PS2 protein. Estrogen induction of this protein was inhibited by at least 70% in T47D cells exposed to R5020 for 24 hours before estrogen administration and by about 25% in MCF-7 cells under the same conditions. A 55% inhibition was observed in tMCF-7 cells. Up-regulation of ER by RU486 in T47D cells led to an increase in the estrogen induction of PS2 by about 18-20% compared to RU486 untreated cells. These results indicate that the progestin and antiprogestin regulation of ER is functionally important for the estrogen responsiveness of breast cancer cells.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- DNA, Neoplasm/analysis
- Dexamethasone/pharmacology
- Dihydrotestosterone/pharmacology
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Estrogens/genetics
- Estrogens/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Genetic Vectors/genetics
- Humans
- Mifepristone/pharmacology
- Neoplasm Proteins/biosynthesis
- Promegestone/antagonists & inhibitors
- Promegestone/pharmacology
- Proteins
- Receptors, Estrogen/biosynthesis
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/genetics
- Receptors, Progesterone/biosynthesis
- Receptors, Progesterone/drug effects
- Receptors, Progesterone/genetics
- Transfection
- Trefoil Factor-1
- Tumor Cells, Cultured
- Tumor Suppressor Proteins
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- G Savoldi
- Institute of Chemistry, School of Medicine, University of Brescia, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Cloning and functional characterization of human Pak1 promoter by steroid hormones. Gene 2017; 646:120-128. [PMID: 29274909 DOI: 10.1016/j.gene.2017.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
P21-activated kinase 1 (Pak1) is known to be involved in a plethora of functions including cell growth, survival and can lead to cell transformation and tumor progression especially in breast tissue. Multiple studies have shown Pak1 dysregulation as a change in DNA copy number as well as gene expression levels, suggesting many regulatory mechanisms at transcriptional and translational level. However, very little is known about the transcriptional regulation of the human Pak1 promoter. Here, we focus on Pak1 promoter regulation by steroid hormones along with their respective receptors that are also crucial players in breast tissue function and tumorigenesis. Our results show high Pak1 expression in breast cancer cell lines and in breast tumor tissue. It also suggests that Pak1 is hormone responsive, whose expression can be modulated by steroid hormones namely, estrogen in the form of 17β-estradiol (E2) and progesterone (P4). Sequence analysis of a 3.2kb Pak1 proximal promoter region shows the presence of PRE (progesterone response element) and ERE (estrogen response element) half sites, that were further cloned and characterized. Results from promoter analysis showed that Pak1 promoter activity is mediated by PR via its binding to PRE present on the Pak1 promoter that was further reaffirmed in vitro by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Our results together suggest that it is the PR isoform B regulates Pak1 promoter. To our knowledge, this is the first study to report the detailed characterization and transcriptional regulation of the human Pak1 promoter by steroid hormones.
Collapse
|
22
|
Pandey K, Kereilwe O, Kadokawa H. Heifers express G-protein coupled receptor 153 in anterior pituitary gonadotrophs in stage-dependent manner. Anim Sci J 2017; 89:60-71. [PMID: 28960688 DOI: 10.1111/asj.12920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
We recently found that orphan G-protein-coupled receptor (GPR)153 is expressed in the anterior pituitary (AP) of heifers, leading us to speculate that GPR153 colocalizes with gonadotropin-releasing hormone receptor (GnRHR) in the plasma membrane of gonadotrophs and is expressed at specific times of the reproductive cycle. To test this hypothesis, we examined the coexpression of GnRHR, GPR153, and either luteinizing hormone or follicle-stimulating hormone in AP tissue and cultured AP cells by immunofluorescence microscopy. GPR153 was detected in the gonadotrophs, and was colocalized with GnRHR in the plasma membrane. GPR153 was also detected in the cytoplasm of cultured gonadotrophs. Real-time PCR and western blot analyses found that expression was lower (P < 0.05) in AP tissues during early luteal phase as compared to pre-ovulation or late luteal phases. The 5'-flanking region of the GPR153 gene contained a consensus response element sequence for estrogen, but not for progesterone. These data suggest that some, but not all GPR153 colocalizes with GnRHR in the plasma membrane of gonadotrophs, and its expression changes stage-dependently in the bovine AP.
Collapse
Affiliation(s)
- Kiran Pandey
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Onalenna Kereilwe
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
23
|
Tiwari M, Oasa S, Yamamoto J, Mikuni S, Kinjo M. A Quantitative Study of Internal and External Interactions of Homodimeric Glucocorticoid Receptor Using Fluorescence Cross-Correlation Spectroscopy in a Live Cell. Sci Rep 2017; 7:4336. [PMID: 28659593 PMCID: PMC5489515 DOI: 10.1038/s41598-017-04499-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/18/2017] [Indexed: 01/16/2023] Open
Abstract
Glucocorticoid receptor (GRα) is a well-known ligand-dependent transcription-regulatory protein. The classic view is that unliganded GRα resides in the cytoplasm, relocates to the nucleus after ligand binding, and then associates with a specific DNA sequence, namely a glucocorticoid response element (GRE), to activate a specific gene as a homodimer. It is still a puzzle, however, whether GRα forms the homodimer in the cytoplasm or in the nucleus before DNA binding or after that. To quantify the homodimerization of GRα, we constructed the spectrally different fluorescent protein tagged hGRα and applied fluorescence cross-correlation spectroscopy. First, the dissociation constant (Kd) of mCherry2-fused hGRα or EGFP-fused hGRα was determined in vitro. Then, Kd of wild-type hGRα was found to be 3.00 μM in the nucleus, which was higher than that in vitro. Kd of a DNA-binding-deficient mutant was 3.51 μM in the nucleus. This similarity indicated that GRα homodimerization was not necessary for DNA binding but could take place on GRE by means of GRE as a scaffold. Moreover, cytoplasmic homodimerization was also observed using GRα mutated in the nuclear localization signal. These findings support the existence of a dynamic monomer pathway and regulation of GRα function both in the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Manisha Tiwari
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Sho Oasa
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Johtaro Yamamoto
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Shintaro Mikuni
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
24
|
Pandey K, Kereilwe O, Borromeo V, Kadokawa H. Heifers express G-protein coupled receptor 61 in anterior pituitary gonadotrophs in stage-dependent manner. Anim Reprod Sci 2017; 181:93-102. [DOI: 10.1016/j.anireprosci.2017.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
25
|
Abstract
There is an abundance of accumulating data strongly suggesting there is a key role for the progesterone receptor in the molecular events effecting the growth or containment of a variety of cancers. This knowledge should lead to novel new strategies to combat various cancers, including drugs classified as progesterone receptor modulators or monoclonal antibodies against some of the key proteins needed for cancer proliferation by suppressing immune surveillance. Areas covered: The role of the classic nuclear receptor and molecular events needed for proliferation are reviewed including cancers of the breast, endometrium, prostate, thyroid, and leiomyomas and leiomyosarcoma. The potential role of non-genomic membrane progesterone receptors is reviewed. The prognostic role of the presence of progesterone receptors is also discussed. Over 1000 research publications were read after conducting a PubMed search. Expert commentary: Discussion is made about a unique immunomodulatory protein called the progesterone induced blocking factor (PIBF). The role of this protein, that is unique to rapidly growing cells, may hold a key to how the cancer cells escape immune surveillance. Thus, techniques to suppress the intracytoplasmic isoforms of PIBF may play a significant role in the fight against all cancers, not just the ones with the classic nuclear progesterone receptors.
Collapse
Affiliation(s)
- Jerome H Check
- a Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility , Cooper Medical School of Rowan University , Camden , New Jersey , United States
| |
Collapse
|
26
|
Bigley RB, Payumo AY, Alexander JM, Huang GN. Insights into nuclear dynamics using live-cell imaging approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:10.1002/wsbm.1372. [PMID: 28078793 PMCID: PMC5315593 DOI: 10.1002/wsbm.1372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/11/2022]
Abstract
The nucleus contains the genetic blueprint of the cell and myriad interactions within this subcellular structure are required for gene regulation. In the current scientific era, characterization of these gene regulatory networks through biochemical techniques coupled with systems-wide 'omic' approaches has become commonplace. However, these strategies are limited because they represent a mere snapshot of the cellular state. To obtain a holistic understanding of nuclear dynamics, relevant molecules must be studied in their native contexts in living systems. Live-cell imaging approaches are capable of providing quantitative assessment of the dynamics of gene regulatory interactions within the nucleus. We survey recent insights into what live-cell imaging approaches have provided the field of nuclear dynamics. In this review, we focus on interactions of DNA with other DNA loci, proteins, RNA, and the nuclear envelope. WIREs Syst Biol Med 2017, 9:e1372. doi: 10.1002/wsbm.1372 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rachel B. Bigley
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| | - Alexander Y. Payumo
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| | - Jeffrey M. Alexander
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| | - Guo N. Huang
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| |
Collapse
|
27
|
Conneely OM, Lydon JP, De Mayo F, O'Malley BW. Reproductive Functions of the Progesterone Receptor. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/1071557600007001s09] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Orla M. Conneely
- Department of Cell Biology, Baylor College of Medicine, Debakey Bldg., M-513A, Houston, TX 77030
| | | | | | - Bert W. O'Malley
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Presman DM, Hager GL. More than meets the dimer: What is the quaternary structure of the glucocorticoid receptor? Transcription 2016; 8:32-39. [PMID: 27764575 PMCID: PMC5279712 DOI: 10.1080/21541264.2016.1249045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is widely accepted that the glucocorticoid receptor (GR), a ligand-regulated transcription factor that triggers anti-inflammatory responses, binds specific response elements as a homodimer. Here, we will discuss the original primary data that established this model and contrast it with a recent report characterizing the GR-DNA complex as a tetramer.
Collapse
Affiliation(s)
- Diego M Presman
- a Laboratory of Receptor Biology and Gene Expression , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Gordon L Hager
- a Laboratory of Receptor Biology and Gene Expression , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
29
|
DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc Natl Acad Sci U S A 2016; 113:8236-41. [PMID: 27382178 DOI: 10.1073/pnas.1606774113] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR's oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors.
Collapse
|
30
|
Abdoul-Azize S, Buquet C, Vannier JP, Dubus I. Pyr3, a TRPC3 channel blocker, potentiates dexamethasone sensitivity and apoptosis in acute lymphoblastic leukemia cells by disturbing Ca(2+) signaling, mitochondrial membrane potential changes and reactive oxygen species production. Eur J Pharmacol 2016; 784:90-8. [PMID: 27179991 DOI: 10.1016/j.ejphar.2016.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/02/2023]
Abstract
Dexamethasone (Dex) is used as a chemotherapeutic drug in the treatment of acute lymphoblastic leukemia (ALL) because of its capacity to induce apoptosis. However, some ALL patients acquire resistance to glucocorticoids (GC). Thus, it is important to explore new agents to overcome GC resistance. The aim of the present work was to assess the ability of Pyr3, a selective inhibitor of transient receptor potential canonical 3 (TRPC3), to sensitize human ALL cells to Dex. We show here, for the first time, that Pyr3 enhances Dex sensitivity through the distraction of Dex-mediated Ca(2+) signaling in ALL cells (in vitro) and primary blasts (ex vivo) associated with mitochondrial-mediated reactive oxygen species production in ALL cells. Pyr3 alone induced Ca(2+) signaling via only endoplasmic reticulum-released Ca(2+) and exerted inhibitory effect on store-operated Ca(2+) entry in dose-dependent manner in ALL cell lines. Pre-incubation of cells with Pyr3 significantly curtailed the thapsigargin- and Dex-evoked Ca(2+) signaling in ALL cell lines. Pyr3 synergistically potentiated Dex lethality, as shown by the induction of cell mortality, G2/M cell cycle arrest and apoptosis in ALL cell lines. Moreover, Pyr3 disrupted Dex-mediated Ca(2+) signaling and increased the sensitivity of Dex-induced cell death in primary blasts from ALL patients. Additional analysis showed that co-treatment with Dex and Pyr3 results in mitochondrial membrane potential depolarization and reactive oxygen species production in ALL cells. Together, Pyr3 exhibited potential therapeutic benefit in combination with Dex to inverse glucocorticoid resistance in human ALL and probably in other lymphoid malignancies.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.
| | - Catherine Buquet
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France
| | - Jean-Pierre Vannier
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France; Service Immuno-Hémato-Oncologie Pédiatrique, CHU Charles Nicolle, 76031 Rouen Cedex, France
| | - Isabelle Dubus
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France
| |
Collapse
|
31
|
Kim LU, D'Orsogna MR, Chou T. Onset, timing, and exposure therapy of stress disorders: mechanistic insight from a mathematical model of oscillating neuroendocrine dynamics. Biol Direct 2016; 11:13. [PMID: 27013324 PMCID: PMC4807591 DOI: 10.1186/s13062-016-0117-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates numerous physiological processes. Disruptions in the activity of the HPA axis are correlated with stress-related diseases such as post-traumatic stress disorder (PTSD) and major depressive disorder. In this paper, we characterize "normal" and "diseased" states of the HPA axis as basins of attraction of a dynamical system describing the inhibition of peptide hormones such as corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) by circulating glucocorticoids such as cortisol (CORT). RESULTS In addition to including key physiological features such as ultradian oscillations in cortisol levels and self-upregulation of CRH neuron activity, our model distinguishes the relatively slow process of cortisol-mediated CRH biosynthesis from rapid trans-synaptic effects that regulate the CRH secretion process. We show that the slow component of the negative feedback allows external stress-induced reversible transitions between "normal" and "diseased" states in novel intensity-, duration-, and timing-dependent ways. CONCLUSION Our two-step negative feedback model suggests a mechanism whereby exposure therapy of stress disorders such as PTSD may act to normalize downstream dysregulation of the HPA axis. Our analysis provides a causative rationale for improving treatments and guiding the design of new protocols.
Collapse
Affiliation(s)
- Lae U Kim
- Department of Biomathematics, Univ of California, Los Angeles, 5109 Life Sciences 621 Charles E. Young Dr. South, Los Angeles, USA
| | - Maria R D'Orsogna
- Department of Mathematics, CalState-Northridge, 18111 Nordhoff St., Los Angeles, USA
| | - Tom Chou
- Department of Biomathematics and Department of Mathematics, University of California, Los Angeles, 5209 Life Sciences 621 Charles E. Young Dr. South, Los Angeles, USA.
| |
Collapse
|
32
|
Jones CL, Gearheart CM, Fosmire S, Delgado-Martin C, Evensen NA, Bride K, Waanders AJ, Pais F, Wang J, Bhatla T, Bitterman DS, de Rijk SR, Bourgeois W, Dandekar S, Park E, Burleson TM, Madhusoodhan PP, Teachey DT, Raetz EA, Hermiston ML, Müschen M, Loh ML, Hunger SP, Zhang J, Garabedian MJ, Porter CC, Carroll WL. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood 2015; 126:2202-12. [PMID: 26324703 PMCID: PMC4635116 DOI: 10.1182/blood-2015-04-639138] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease.
Collapse
Affiliation(s)
- Courtney L Jones
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Christy M Gearheart
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Susan Fosmire
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - Nikki A Evensen
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Karen Bride
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Angela J Waanders
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Faye Pais
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | - Jinhua Wang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY; Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY
| | - Teena Bhatla
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Danielle S Bitterman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Simone R de Rijk
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Wallace Bourgeois
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Smita Dandekar
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Eugene Park
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Tamara M Burleson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - David T Teachey
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth A Raetz
- Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT
| | - Michelle L Hermiston
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Mignon L Loh
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | - Stephen P Hunger
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN; and
| | - Michael J Garabedian
- Department of Microbiology, New York University Langone Medical Center, New York, NY
| | | | - William L Carroll
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| |
Collapse
|
33
|
Kiilerich P, Triqueneaux G, Christensen NM, Trayer V, Terrien X, Lombès M, Prunet P. Interaction between the trout mineralocorticoid and glucocorticoid receptors in vitro. J Mol Endocrinol 2015; 55:55-68. [PMID: 26108487 DOI: 10.1530/jme-15-0002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 11/08/2022]
Abstract
The salmonid corticosteroid receptors (CRs), glucocorticoid receptors 1 and 2 (GR1 and GR2) and the mineralocorticoid receptor (MR) share a high degree of homology with regard to structure, ligand- and DNA response element-binding, and cellular co-localization. Typically, these nuclear hormone receptors homodimerize to confer transcriptional activation of target genes, but a few studies using mammalian receptors suggest some degree of heterodimerization. We observed that the trout MR confers a several fold lower transcriptional activity compared to the trout GRs. This made us question the functional relevance of the MR when this receptor is located in the same cells as the GRs and activated by cortisol. A series of co-transfection experiments using different glucocorticoid response elements (GREs) containing promoter-reporter constructs were carried out to investigate any possible interaction between the piscine CRs. Co-transfection of the GRs with the MR significantly reduced the total transcriptional activity even at low MR levels, suggesting interaction between these receptors. Co-transfection of GR1 or GR2 with the MR did not affect the subcellular localization of the GRs, and the MR-mediated inhibition seemed to be independent of specific activation or inhibition of the MR. Site-directed mutagenesis of the DNA-binding domain and dimerization interface of the MR showed that the inhibition was dependent on DNA binding but not necessarily on dimerization ability. Thus, we suggest that the interaction between MR and the GRs may regulate the cortisol response in cell types where the receptors co-localize and propose a dominant-negative role for the MR in cortisol-mediated transcriptional activity.
Collapse
Affiliation(s)
- Pia Kiilerich
- INRAUR1037 Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, FranceCNRS UMR5239Université de Lyon 1, ENS de Lyon, 69364 Lyon Cedex, FranceDepartment of BiologyCenter for Advanced Bioimaging (CAB), University of Copenhagen, Copenhagen, DenmarkInsermU1185, Faculté de Médecine Paris-Sud, Université de Paris-Sud, 94276 Le Kremlin-Bicêtre, France
| | - Gérard Triqueneaux
- INRAUR1037 Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, FranceCNRS UMR5239Université de Lyon 1, ENS de Lyon, 69364 Lyon Cedex, FranceDepartment of BiologyCenter for Advanced Bioimaging (CAB), University of Copenhagen, Copenhagen, DenmarkInsermU1185, Faculté de Médecine Paris-Sud, Université de Paris-Sud, 94276 Le Kremlin-Bicêtre, France
| | - Nynne Meyn Christensen
- INRAUR1037 Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, FranceCNRS UMR5239Université de Lyon 1, ENS de Lyon, 69364 Lyon Cedex, FranceDepartment of BiologyCenter for Advanced Bioimaging (CAB), University of Copenhagen, Copenhagen, DenmarkInsermU1185, Faculté de Médecine Paris-Sud, Université de Paris-Sud, 94276 Le Kremlin-Bicêtre, France
| | - Vincent Trayer
- INRAUR1037 Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, FranceCNRS UMR5239Université de Lyon 1, ENS de Lyon, 69364 Lyon Cedex, FranceDepartment of BiologyCenter for Advanced Bioimaging (CAB), University of Copenhagen, Copenhagen, DenmarkInsermU1185, Faculté de Médecine Paris-Sud, Université de Paris-Sud, 94276 Le Kremlin-Bicêtre, France
| | - Xavier Terrien
- INRAUR1037 Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, FranceCNRS UMR5239Université de Lyon 1, ENS de Lyon, 69364 Lyon Cedex, FranceDepartment of BiologyCenter for Advanced Bioimaging (CAB), University of Copenhagen, Copenhagen, DenmarkInsermU1185, Faculté de Médecine Paris-Sud, Université de Paris-Sud, 94276 Le Kremlin-Bicêtre, France
| | - Marc Lombès
- INRAUR1037 Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, FranceCNRS UMR5239Université de Lyon 1, ENS de Lyon, 69364 Lyon Cedex, FranceDepartment of BiologyCenter for Advanced Bioimaging (CAB), University of Copenhagen, Copenhagen, DenmarkInsermU1185, Faculté de Médecine Paris-Sud, Université de Paris-Sud, 94276 Le Kremlin-Bicêtre, France
| | - Patrick Prunet
- INRAUR1037 Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, FranceCNRS UMR5239Université de Lyon 1, ENS de Lyon, 69364 Lyon Cedex, FranceDepartment of BiologyCenter for Advanced Bioimaging (CAB), University of Copenhagen, Copenhagen, DenmarkInsermU1185, Faculté de Médecine Paris-Sud, Université de Paris-Sud, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
34
|
Chen Z, Lan X, Thomas-Ahner JM, Wu D, Liu X, Ye Z, Wang L, Sunkel B, Grenade C, Chen J, Zynger DL, Yan PS, Huang J, Nephew KP, Huang THM, Lin S, Clinton SK, Li W, Jin VX, Wang Q. Agonist and antagonist switch DNA motifs recognized by human androgen receptor in prostate cancer. EMBO J 2014; 34:502-16. [PMID: 25535248 DOI: 10.15252/embj.201490306] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human transcription factors recognize specific DNA sequence motifs to regulate transcription. It is unknown whether a single transcription factor is able to bind to distinctly different motifs on chromatin, and if so, what determines the usage of specific motifs. By using a motif-resolution chromatin immunoprecipitation-exonuclease (ChIP-exo) approach, we find that agonist-liganded human androgen receptor (AR) and antagonist-liganded AR bind to two distinctly different motifs, leading to distinct transcriptional outcomes in prostate cancer cells. Further analysis on clinical prostate tissues reveals that the binding of AR to these two distinct motifs is involved in prostate carcinogenesis. Together, these results suggest that unique ligands may switch DNA motifs recognized by ligand-dependent transcription factors in vivo. Our findings also provide a broad mechanistic foundation for understanding ligand-specific induction of gene expression profiles.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Molecular Virology, Immunology and Medical Genetics and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Xun Lan
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jennifer M Thomas-Ahner
- Division of Medical Oncology, Department of Internal Medicine and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dayong Wu
- Department of Molecular Virology, Immunology and Medical Genetics and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Xiangtao Liu
- Department of Molecular Virology, Immunology and Medical Genetics and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Zhenqing Ye
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA Department of Molecular Medicine, Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Liguo Wang
- Division of Biostatistics, Dan L. Duncan Cancer Center Baylor College of Medicine, Houston, TX, USA Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Sunkel
- Department of Molecular Virology, Immunology and Medical Genetics and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Cassandra Grenade
- Department of Molecular Virology, Immunology and Medical Genetics and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Junsheng Chen
- Division of Biostatistics, Dan L. Duncan Cancer Center Baylor College of Medicine, Houston, TX, USA Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Debra L Zynger
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Pearlly S Yan
- Department of Molecular Virology, Immunology and Medical Genetics and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jiaoti Huang
- Departments of Pathology and Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kenneth P Nephew
- Medical Sciences Program, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Shili Lin
- Department of Statistics, The Ohio State University, Columbus, OH, USA
| | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center Baylor College of Medicine, Houston, TX, USA Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Victor X Jin
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA Department of Molecular Medicine, Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Qianben Wang
- Department of Molecular Virology, Immunology and Medical Genetics and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
35
|
Mazaira GI, Lagadari M, Erlejman AG, Galigniana MD. The Emerging Role of TPR-Domain Immunophilins in the Mechanism of Action of Steroid Receptors. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- G. I. Mazaira
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Lagadari
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - A. G. Erlejman
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. D. Galigniana
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
36
|
Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor. PLoS Biol 2014; 12:e1001813. [PMID: 24642507 PMCID: PMC3958349 DOI: 10.1371/journal.pbio.1001813] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/06/2014] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid receptor's oligomerization state is revealed to not correlate with its activity; this challenges the current prevailing view that this state defines its transcriptional activity. Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR) transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation within the GR DNA-binding domain (GRdim mutant) has been reported as crucial for receptor dimerization and DNA binding, this assumption has recently been challenged. Here we have analyzed the GR oligomerization state in vivo using the number and brightness assay. Our results suggest a complete, reversible, and DNA-independent ligand-induced model for GR dimerization. We demonstrate that the GRdim forms dimers in vivo whereas adding another mutation in the ligand-binding domain (I634A) severely compromises homodimer formation. Contrary to dogma, no correlation between the GR monomeric/dimeric state and transcriptional activity was observed. Finally, the state of dimerization affected DNA binding only to a subset of GR binding sites. These results have major implications on future searches for therapeutic glucocorticoids with reduced side effects. The powerful anti-inflammatory and immunosuppressive action of glucocorticoids have made them one of the most prescribed drugs worldwide. Unfortunately, acute or chronic treatment may have severe side-effects. Glucocorticoids bind to the glucocorticoid receptor (GR), a ligand-dependent transcription factor. GR regulates gene expression directly by binding to DNA or indirectly by modulating the activity of other transcription factors. It is currently accepted that the direct pathway is mostly responsible for glucocorticoids side-effects and that the oligomerization state of the GR (whether it is a dimer or a monomer) determines which pathway (direct or indirect) will prevail. Hence, scientists have tried to develop “dissociated ligands” able to specifically activate the GR indirect pathway. In the present work, we employed a novel microscopy method named the number and brightness assay, which measures GR oligomerization state inside the living cell. Our results suggest that—contrary to the established view—there is no clear correlation between the oligomerization state of GR and the mechanistic pathway the receptor will follow upon ligand binding. This discovery presents supporting evidence towards the increasing view of the inherent complexity of glucocorticoid action and might impact future approaches towards the design of safer synthetic glucocorticoids.
Collapse
|
37
|
Grossmann C, Ruhs S, Langenbruch L, Mildenberger S, Strätz N, Schumann K, Gekle M. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling. ACTA ACUST UNITED AC 2014; 19:742-51. [PMID: 22726688 DOI: 10.1016/j.chembiol.2012.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 04/22/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
The mineralocorticoid receptor (MR), a member of the steroid receptor superfamily, regulates water-electrolyte balance and mediates pathophysiological effects in the renocardiovascular system. Previously, it was assumed that after binding aldosterone, the MR dissociates from HSP90, forms homodimers, and then translocates into the nucleus where it acts as a transcription factor (Guiochon-Mantel et al., 1989; Robertson et al., 1993; Savory et al., 2001). We found that, during aldosterone-induced nuclear translocation, MR is bound to HSP90 both in the cytosol and the nucleus. Homodimerization measured by eBRET and FRET takes place when the MR is already predominantly nuclear. In vitro binding of MR to DNA was independent of ligand but could be partially inhibited by geldanamycin. Overall, here we provide insights into classical MR signaling necessary for elucidating the mechanisms of pathophysiological MR effects and MR specificity.
Collapse
Affiliation(s)
- Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, University Halle-Wittenberg, Halle/Saale 06112, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Filchenkov GN, Popoff EH, Naumov AD. The low dose gamma ionising radiation impact upon cooperativity of androgen-specific proteins. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 127:182-190. [PMID: 23465891 DOI: 10.1016/j.jenvrad.2013.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/23/2013] [Accepted: 02/10/2013] [Indexed: 06/01/2023]
Abstract
The paper deals with effects of the ionising radiation (γ-IR, 0.5 Gy) upon serum testosterone (T), characteristics of testosterone-binding globulin (TeBG) and androgen receptor (AR) in parallel with observation of androgen (A) responsive enzyme activity - hexokinase (HK). The interdependence or relationships of T-levels with parameters of the proteins that provide androgenic regulation are consequently analyzed in post-IR dynamics. The IR-stress adjustment data reveal expediency of TeBG- and AR-cooperativity measurements for more precise assessments of endocrine A-control at appropriate emergencies.
Collapse
Affiliation(s)
- Gennady N Filchenkov
- Lab. of Biochemistry, Institute of Radiobiology, National Academy of Sciences of Belarus, Feduninskogo 4, Gomel 246007, Belarus
| | | | | |
Collapse
|
39
|
Zarzer CA, Puchinger MG, Köhler G, Kügler P. Differentiation between genomic and non-genomic feedback controls yields an HPA axis model featuring hypercortisolism as an irreversible bistable switch. Theor Biol Med Model 2013; 10:65. [PMID: 24209391 PMCID: PMC3879227 DOI: 10.1186/1742-4682-10-65] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/29/2013] [Indexed: 01/30/2023] Open
Abstract
Background The hypothalamic-pituitary-adrenal axis (HPA axis) is a major part of the neuroendocrine system responsible for the regulation of the response to physical or mental stress and for the control of the synthesis of the stress hormone cortisol. Dysfunctions of the HPA axis characterized by either low (hypocortisolism) or increased (hypercortisolism) cortisol levels are implicated in various pathological conditions. Their understanding and therapeutic correction may be supported by mathematical modeling and simulation of the HPA axis. Methods Mass action and Michaelis Menten enzyme kinetics were used to provide a mechanistic description of the feedback mechanisms within the pituitary gland cells by which cortisol inhibits its own production. A separation of the nucleus from the cytoplasm by compartments enabled a differentiation between slow genomic and fast non-genomic processes. The model in parts was trained against time resolved ACTH stress response data from an in vitro cell culture of murine AtT-20 pituitary tumor cells and analyzed by bifurcation discovery tools. Results A recently found pituitary gland cell membrane receptor that mediates rapid non-genomic actions of glucocorticoids has been incorporated into our model of the HPA axis. As a consequence of the distinction between genomic and non-genomic feedback processes our model possesses an extended dynamic repertoire in comparison to existing HPA models. In particular, our model exhibits limit cycle oscillations and bistable behavior associated to hypocortisolism but also features a (second) bistable switch which captures irreversible transitions in hypercortisolism to elevated cortisol levels. Conclusions Model predictive control and inverse bifurcation analysis have been previously applied in the simulation-based design of therapeutic strategies for the correction of hypocortisolism. Given the HPA model extension presented in this paper, these techniques may also be used in the study of hypercortisolism. As an example, we show how sparsity enforcing penalization may suggest network interventions that allow the return from elevated cortisol levels back to nominal ones.
Collapse
Affiliation(s)
| | | | | | - Philipp Kügler
- Institute for Applied Mathematics and Statistics, University of Hohenheim, Schloss, 70599 Stuttgart, Germany.
| |
Collapse
|
40
|
Cunha S, Gano L, Morais GR, Thiemann T, Oliveira MC. Progesterone receptor targeting with radiolabelled steroids: an approach in predicting breast cancer response to therapy. J Steroid Biochem Mol Biol 2013; 137:223-41. [PMID: 23669457 DOI: 10.1016/j.jsbmb.2013.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022]
Abstract
Steroid receptors have demonstrated to be potentially useful biological targets for the diagnosis and therapy follow-up of hormonally responsive cancers. The over-expression of these proteins in human cancer cells as well as their binding characteristics provides a favourable mechanism for the localization of malignant tumours. The need for newer and more selective probes to non-invasively assess steroid receptor expression in hormone-responsive tumours has encouraged the synthesis and the biological evaluation of several steroidal derivatives labelled with positron and gamma emitters. The physiological effects of the steroid hormone progesterone are mediated by the progesterone receptor (PR). Since PR expression is stimulated by the oestrogen receptor (ER), PR status has been considered as a biomarker of ER activity and its value for predicting and monitoring therapeutic efficacy of hormonal therapy has been studied. Imaging of PR-expressing breast cancer patients under hormonal therapy may be advantageous, since the response to therapy can be more accurately predicted after quantification of both ER and PR status. Thus, ligands for PR targeting, although much less explored than ER ligands, have gained some importance lately as potential PET and SPECT tumour imaging agents. In this review, we present a brief survey of explored approaches for progesterone targeting using radiolabelled progestins as potential clinical probes to predict responsiveness to breast cancer therapy. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Susana Cunha
- Unidade de Ciências Químicas e Radiofarmacêuticas, IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | | | | | | | | |
Collapse
|
41
|
Grafer CM, Halvorson LM. Androgen receptor drives transcription of rat PACAP in gonadotrope cells. Mol Endocrinol 2013; 27:1343-56. [PMID: 23798575 DOI: 10.1210/me.2012-1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gonadotropin expression is precisely regulated within the hypothalamic-pituitary-gonadal axis through the complex interaction of neuropeptides, gonadal steroids. and both gonadal- and pituitary-derived peptides. In the anterior pituitary gland, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) modulates gonadotropin biosynthesis and secretion, acting both alone and in conjunction with GnRH. Steroid hormone feedback also influences gonadotropin expression via both direct and indirect mechanisms. Evidence from nonpituitary tissues suggests that PACAP may be a target for gonadal steroid regulation. In the present study, we show that androgen markedly stimulates rat (r) PACAP promoter-reporter activity in the LβT2 mature mouse gonadotrope cell line. 5'-Serial deletion analysis of reporter constructs identifies 2 regions of androgen responsiveness located at (-915 to -818) and (-308 to -242) of the rPACAP promoter. Androgen receptor (AR) binds directly to DNA cis-elements in each of these regions in vitro. Site-directed mutagenesis of 3 conserved hormone response element half-sites straddling the (-308 to -242) region dramatically blunts androgen-dependent PACAP promoter activity and prevents AR binding at the mutated promoter element. Chromatin immunoprecipitation demonstrates that endogenous AR binds the homologous region on mouse chromatin in LβT2 cells in both the presence and absence of androgen. These data demonstrate that androgen stimulates PACAP gene expression in the pituitary gonadotrope via direct binding of AR to a specific cluster of evolutionarily conserved hormone response elements in the proximal rPACAP gene promoter. Thus, androgen regulation of pituitary PACAP expression may provide an additional layer of control over gonadotropin expression within the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Constance M Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | | |
Collapse
|
42
|
Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 2013; 10:421-6. [PMID: 23524394 PMCID: PMC3664538 DOI: 10.1038/nmeth.2411] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/26/2013] [Indexed: 02/07/2023]
Abstract
Imaging single fluorescent proteins in living mammalian cells is challenged by out-of-focus fluorescence excitation. To reduce out-of-focus fluorescence we developed reflected light-sheet microscopy (RLSM), a fluorescence microscopy method allowing selective plane illumination throughout the nuclei of living mammalian cells. A thin light sheet parallel to the imaging plane and close to the sample surface is generated by reflecting an elliptical laser beam incident from the top by 90° with a small mirror. The thin light sheet allows for an increased signal-to-background ratio superior to that in previous illumination schemes and enables imaging of single fluorescent proteins with up to 100-Hz time resolution. We demonstrated the single-molecule sensitivity of RLSM by measuring the DNA-bound fraction of glucocorticoid receptor (GR) and determining the residence times on DNA of various oligomerization states and mutants of GR and estrogen receptor-α (ER), which permitted us to resolve different modes of DNA binding of GR. We demonstrated two-color single-molecule imaging by observing the spatiotemporal colocalization of two different protein pairs. Our single-molecule measurements and statistical analysis revealed dynamic properties of transcription factors.
Collapse
|
43
|
Nixon M, Andrew R, Chapman KE. It takes two to tango: dimerisation of glucocorticoid receptor and its anti-inflammatory functions. Steroids 2013; 78:59-68. [PMID: 23127816 DOI: 10.1016/j.steroids.2012.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/28/2012] [Accepted: 09/07/2012] [Indexed: 01/30/2023]
Abstract
For a number of years, there has been a widespread view that the adverse side-effects of prolonged glucocorticoid (GC) treatment are a result of glucocorticoid receptor (GR)-mediated gene activation, whilst the beneficial anti-inflammatory effects result from GR-mediated 'transrepression'. Since the introduction of the dimerisation-deficient GR mutant, GR(dim), was apparently unable to activate gene transcription, yet still able to repress pro-inflammatory gene transcription, the search for novel GR modulators has centred on the separation of gene activation from repression by prevention of GR dimerisation. However, recent work has questioned the conclusions drawn from these early GR(dim) studies, with evidence that GR(dim) mutants not only activate gene transcription, but that, in direct contradiction to the initial GR(dim) work, are also capable of forming dimers. This review of the current literature highlights the versatility of the GR in forming homodimer interactions, as well as the ability to bind to alternate nuclear receptors, and investigates the potential implications such varying GR dimer conformations may have for the design of GR ligands with a safer side effect profile.
Collapse
Affiliation(s)
- Mark Nixon
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | |
Collapse
|
44
|
Puzianowska-Kuznicka M, Pawlik-Pachucka E, Owczarz M, Budzińska M, Polosak J. Small-molecule hormones: molecular mechanisms of action. Int J Endocrinol 2013; 2013:601246. [PMID: 23533406 PMCID: PMC3603355 DOI: 10.1155/2013/601246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/30/2012] [Accepted: 01/17/2013] [Indexed: 01/01/2023] Open
Abstract
Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30-60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.
Collapse
Affiliation(s)
- Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
- *Monika Puzianowska-Kuznicka:
| | - Eliza Pawlik-Pachucka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Magdalena Owczarz
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Monika Budzińska
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
45
|
The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol 2012; 20:53-8. [PMID: 23222642 PMCID: PMC3539207 DOI: 10.1038/nsmb.2456] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/30/2012] [Indexed: 12/21/2022]
Abstract
A newly discovered negative glucocorticoid response element (nGRE) mediates DNA-dependent transrepression by the glucocorticoid receptor (GR) across the genome and plays a major role in immunosuppressive therapy. The nGRE differs dramatically from activating response elements and the mechanism driving GR binding and transrepression is unknown. To unravel the mechanism of nGRE-mediated transrepression by the glucocorticoid receptor, we characterize the interaction between GR and a nGRE in the thymic stromal lymphopoetin (TSLP) promoter. We show using structural and mechanistic approaches that nGRE binding represents a new mode of sequence recognition by human GR and that nGREs prevent receptor dimerization through a unique GR-binding orientation and strong negative cooperativity, ensuring the presence of monomeric GR at repressive elements.
Collapse
|
46
|
High FLT3 expression and IL10 (G1082A) polymorphism in poor overall survival in calla acute lymphoblastic leukemia. Mol Biol Rep 2012; 40:1609-13. [PMID: 23086275 DOI: 10.1007/s11033-012-2209-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Patients with acute lymphoblastic leukemia presenting the immunophenotypic marker CD10+ (calla), usually has treatment profile good. The FLT3 molecular marker is listed as a prognostic factor, an important leukaemogenic marker in acute leukemias, also the polymorphism (G1082A) of the IL10 interleukin can to present pleiotropic effects in many diseases and could is associated to development of ALL. However, the FLT3 expression is variability among patients with calla-ALL. The aim of this study was to determine the FLT3 expression, to associate with the genotypes and allelic of G1082A (IL10) in 50 patients with calla-ALL and assess the overall survival at 98 months follow-up. The expression was assessed by quantitative real time PCR (RT-PCR), the G1082A polymorphism was identified by allele-specific PCR and for immunophenotypic classification was used specific markers of B lineage-calla. We observed that patients who died showed higher FLT3 expression (p = 0.005), worse survival (p = 0.0137) and the IL10G allele may favor the survival, because the IL10 GG and IL10 GA genotypes showed a low FLT3 expression (p < 0.05).
Collapse
|
47
|
Cialfi S, Palermo R, Manca S, Checquolo S, Bellavia D, Pelullo M, Quaranta R, Dominici C, Gulino A, Screpanti I, Talora C. Glucocorticoid sensitivity of T-cell lymphoblastic leukemia/lymphoma is associated with glucocorticoid receptor-mediated inhibition of Notch1 expression. Leukemia 2012; 27:485-8. [PMID: 22846929 DOI: 10.1038/leu.2012.192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Helsen C, Kerkhofs S, Clinckemalie L, Spans L, Laurent M, Boonen S, Vanderschueren D, Claessens F. Structural basis for nuclear hormone receptor DNA binding. Mol Cell Endocrinol 2012; 348:411-7. [PMID: 21801809 DOI: 10.1016/j.mce.2011.07.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022]
Abstract
The gene family of nuclear receptors is characterized by the presence of a typical, well conserved DNA-binding domain. In general, two zinc coordinating modules are folded such that an α-helix is inserted in the major groove of the DNA-helix displaying a sequence similar to one of two hexameric consensus motifs. Both zinc molecules coordinate four cysteines. Although the DNA-binding domains as well as the hormone response elements are very similar, each nuclear receptor will affect transcription of a specific set of target genes. This is in part due to some important receptor-specific variations on the general theme of DNA interaction. For most nuclear receptors, the DNA-binding domain dimerizes on DNA, which explains why most hormone response elements consist of a repeat of two hexamers. The hexamer dimers can be organized either as direct, inverted or everted repeats with spacers of varying lengths. The DNA can be bound by homodimers, heterodimers and for some orphan receptors, as monomer. Another key element for DNA binding by nuclear receptors is the carboxy-terminal extension of the DNA-binding domain extending into the hinge region. This part not only co-determines sequence specificity, but also affects other functions of the receptors like nuclear translocation, intranuclear mobility and transactivation potential. Moreover, allosteric signals passing through towards other receptor domains, explain why to some extent, the DNA elements can also be considered as controlling ligands.
Collapse
Affiliation(s)
- Christine Helsen
- Molecular Endocrinology Laboratory, Department Molecular Cell Biology, Campus GHB, ON1, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Biddie SC, Conway-Campbell BL, Lightman SL. Dynamic regulation of glucocorticoid signalling in health and disease. Rheumatology (Oxford) 2011; 51:403-12. [PMID: 21891790 PMCID: PMC3281495 DOI: 10.1093/rheumatology/ker215] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activation of the glucocorticoid receptor (GR) by endogenous and synthetic glucocorticoids regulates hundreds of genes to control regulatory networks in development, metabolism, cognition and inflammation. Elucidation of the mechanisms that regulate glucocorticoid action has highlighted the dynamic nature of hormone signalling and provides novel insights into genomic glucocorticoid actions. The major factors that regulate GR function include chromatin structure, epigenetics, genetic variation and the pattern of glucocorticoid hormone secretion. We review our current understanding of the mechanisms that contribute to GR signalling and how these contribute to glucocorticoid sensitivity, resistance and side effects.
Collapse
|
50
|
Martinez-Finley EJ, Goggin SL, Labrecque MT, Allan AM. Reduced expression of MAPK/ERK genes in perinatal arsenic-exposed offspring induced by glucocorticoid receptor deficits. Neurotoxicol Teratol 2011; 33:530-7. [PMID: 21784148 DOI: 10.1016/j.ntt.2011.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 11/17/2022]
Abstract
Changes within the glucocorticoid receptor (GR) cellular signaling pathway were evaluated in adolescent mice exposed to 50 ppb arsenic during gestation. Previously, we reported increased basal plasma corticosterone levels, decreased hippocampal GR levels and deficits in learning and memory performance in perinatal arsenic-exposed mice. The biosynthesis of members of the mitogen-activated protein kinase (MAPK) signaling pathway, known to be involved in learning and memory, is modulated by the binding of GR to glucocorticoid response elements (GREs) in the gene promoters. Two genes of the MAPK pathway, Ras and Raf, contain GREs which are activated upon binding of GRs. We evaluated the activity of GRs at Ras and Raf promoters using chromatin immunoprecipitation and real-time PCR and report decreased binding of the GR at these promoters. An ELISA-based GR binding assay was used to explore whether this decreased binding was restricted to in vivo promoters and revealed no differences in binding of native GR to synthetic GREs. The decreased in vivo GR binding coincides with significantly decreased mRNA levels and slight reductions of protein of both H-Ras and Raf-1 in perinatally arsenic-exposed mice. Nuclear activated extracellular-signal regulated kinase (ERK), a downstream target of Ras and Raf, whose transcriptional targets also play an important role in learning and memory, was decreased in the hippocampus of arsenic-exposed animals when compared to controls. GR-mediated transcriptional deficits in the MAPK/ERK pathway could be an underlying cause of previously reported learning deficits and provide the link to arsenic-induced deficiencies in cognitive development.
Collapse
|