1
|
Wu Q, Wang Y, Liu J, Guan X, Chang X, Liu Z, Liu R. Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies. Int J Biochem Cell Biol 2024; 175:106650. [PMID: 39237031 DOI: 10.1016/j.biocel.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microtubules, complex cytoskeletal structures composed of tubulin proteins in eukaryotic cells, have garnered recent attention in cardiovascular research. Investigations have focused on the post-translational modifications of tubulin, including acetylation and detyrosination. Perturbations in microtubule homeostasis have been implicated in various pathological processes associated with cardiovascular diseases such as heart failure, ischemic heart disease, and arrhythmias. Thus, elucidating the intricate interplay between microtubule dynamics and cardiovascular pathophysiology is imperative for advancing preventive and therapeutic strategies. Several natural compounds have been identified to potentially modulate microtubules, thereby exerting regulatory effects on cardiovascular diseases. This review synthesizes current literature to delineate the roles of microtubules in cardiovascular diseases and assesses the potential of natural compounds in microtubule-targeted therapies.
Collapse
Affiliation(s)
- Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Singh MK, Kenney LJ. Visualizing the invisible: novel approaches to visualizing bacterial proteins and host-pathogen interactions. Front Bioeng Biotechnol 2024; 12:1334503. [PMID: 38415188 PMCID: PMC10898356 DOI: 10.3389/fbioe.2024.1334503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Host-pathogen interactions play a critical role in infectious diseases, and understanding the underlying mechanisms is vital for developing effective therapeutic strategies. The visualization and characterization of bacterial proteins within host cells is key to unraveling the dynamics of these interactions. Various protein labeling strategies have emerged as powerful tools for studying host-pathogen interactions, enabling the tracking, localization, and functional analysis of bacterial proteins in real-time. However, the labeling and localization of Salmonella secreted type III secretion system (T3SS) effectors in host cells poses technical challenges. Conventional methods disrupt effector stoichiometry and often result in non-specific staining. Bulky fluorescent protein fusions interfere with effector secretion, while other tagging systems such as 4Cys-FLaSH/Split-GFP suffer from low labeling specificity and a poor signal-to-noise ratio. Recent advances in state-of-the-art techniques have augmented the existing toolkit for monitoring the translocation and dynamics of bacterial effectors. This comprehensive review delves into the bacterial protein labeling strategies and their application in imaging host-pathogen interactions. Lastly, we explore the obstacles faced and potential pathways forward in the realm of protein labeling strategies for visualizing interactions between hosts and pathogens.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Zhang W, Zhang Z, Xiang Y, Gu DD, Chen J, Chen Y, Zhai S, Liu Y, Jiang T, Liu C, He B, Yan M, Wang Z, Xu J, Cao YL, Deng B, Zeng D, Lei J, Zhuo J, Lei X, Long Z, Jin B, Chen T, Li D, Shen Y, Hu J, Gao S, Liu Q. Aurora kinase A-mediated phosphorylation triggers structural alteration of Rab1A to enhance ER complexity during mitosis. Nat Struct Mol Biol 2024; 31:219-231. [PMID: 38177680 DOI: 10.1038/s41594-023-01165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/26/2023] [Indexed: 01/06/2024]
Abstract
Morphological rearrangement of the endoplasmic reticulum (ER) is critical for metazoan mitosis. Yet, how the ER is remodeled by the mitotic signaling remains unclear. Here, we report that mitotic Aurora kinase A (AURKA) employs a small GTPase, Rab1A, to direct ER remodeling. During mitosis, AURKA phosphorylates Rab1A at Thr75. Structural analysis demonstrates that Thr75 phosphorylation renders Rab1A in a constantly active state by preventing interaction with GDP-dissociation inhibitor (GDI). Activated Rab1A is retained on the ER and induces the oligomerization of ER-shaping protein RTNs and REEPs, eventually triggering an increase of ER complexity. In various models, from Caenorhabditis elegans and Drosophila to mammals, inhibition of Rab1AThr75 phosphorylation by genetic modifications disrupts ER remodeling. Thus, our study reveals an evolutionarily conserved mechanism explaining how mitotic kinase controls ER remodeling and uncovers a critical function of Rab GTPases in metaphase.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zijian Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yun Xiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Dong Gu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jinna Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yifan Chen
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shixian Zhai
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yong Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chong Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Min Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jie Xu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yu-Lu Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Bing Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Deshun Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jie Lei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Junxiao Zhuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xinxing Lei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zijie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Bilian Jin
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yidong Shen
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Song Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
- Institute of Hematology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Lipowsky R, Pramanik S, Benk AS, Tarnawski M, Spatz JP, Dimova R. Elucidating the Morphology of the Endoplasmic Reticulum: Puzzles and Perspectives. ACS NANO 2023. [PMID: 37377213 DOI: 10.1021/acsnano.3c01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Artificial or synthetic organelles are a key challenge for bottom-up synthetic biology. So far, synthetic organelles have typically been based on spherical membrane compartments, used to spatially confine selected chemical reactions. In vivo, these compartments are often far from being spherical and can exhibit rather complex architectures. A particularly fascinating example is provided by the endoplasmic reticulum (ER), which extends throughout the whole cell by forming a continuous network of membrane nanotubes connected by three-way junctions. The nanotubes have a typical diameter of between 50 and 100 nm. In spite of much experimental progress, several fundamental aspects of the ER morphology remain elusive. A long-standing puzzle is the straight appearance of the tubules in the light microscope, which form irregular polygons with contact angles close to 120°. Another puzzling aspect is the nanoscopic shapes of the tubules and junctions, for which very different images have been obtained by electron microcopy and structured illumination microscopy. Furthermore, both the formation and maintenance of the reticular networks require GTP and GTP-hydrolyzing membrane proteins. In fact, the networks are destroyed by the fragmentation of nanotubes when the supply of GTP is interrupted. Here, it is argued that all of these puzzling observations are intimately related to each other and to the dimerization of two membrane proteins anchored to the same membrane. So far, the functional significance of this dimerization process remained elusive and, thus, seemed to waste a lot of GTP. However, this process can generate an effective membrane tension that stabilizes the irregular polygonal geometry of the reticular networks and prevents the fragmentation of their tubules, thereby maintaining the integrity of the ER. By incorporating the GTP-hydrolyzing membrane proteins into giant unilamellar vesicles, the effective membrane tension will become accessible to systematic experimental studies.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Amelie S Benk
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | | | - Joachim P Spatz
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
5
|
Zucker B, Golani G, Kozlov MM. Model for ring closure in ER tubular network dynamics. Biophys J 2022:S0006-3495(22)00825-6. [DOI: 10.1016/j.bpj.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
|
6
|
Sami AB, Gatlin JC. Dynein-dependent collection of membranes defines the architecture and position of microtubule asters in isolated, geometrically confined volumes of cell-free extracts. Mol Biol Cell 2022; 33:br20. [PMID: 35976715 DOI: 10.1091/mbc.e22-03-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
It is well established that changes in the underlying architecture of the cell's microtubule network can affect organelle organization within the cytoplasm, but it remains unclear whether the spatial arrangement of organelles reciprocally influences the microtubule network. Here we use a combination of cell-free extracts and hydrogel microenclosures to characterize the relationship between membranes and microtubules during microtubule aster centration. We found that initially disperse ER membranes are collected by the aster and compacted near its nucleating center, all while the whole ensemble moves toward the geometric center of its confining enclosure. Once there, aster microtubules adopt a bullseye pattern with a high density annular ring of microtubules surrounding the compacted membrane core of lower microtubule density. Formation of this pattern was inhibited when dynein-dependent transport was perturbed or when membranes were depleted from the extracts. Asters in membrane-depleted extracts were able to move away from the most proximal wall but failed to center in cylindrical enclosures with diameters greater than or equal to 150 µm. Taken as whole, our data suggest that the dynein-dependent transport of membranes buttresses microtubules near the aster center and that this plays an important role in modulating aster architecture and position. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.,Cell Division & Organization Group, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
7
|
A role for endoplasmic reticulum dynamics in the cellular distribution of microtubules. Proc Natl Acad Sci U S A 2022; 119:e2104309119. [PMID: 35377783 PMCID: PMC9169640 DOI: 10.1073/pnas.2104309119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) and the microtubule (MT) cytoskeleton form a coextensive, dynamic system that pervades eukaryotic cells. The shape of the ER is generated by a set of evolutionarily conserved membrane proteins that are able to control ER morphology and dynamics independently of MTs. Here we uncover that the molecular machinery that determines ER network dynamics can influence the subcellular distribution of MTs. We show that active control of local ER tubule junction density by ER tethering and fusion is important for the spatial organization of the combined ER–MT system. Our work suggests that cells might alter ER junction dynamics to drive formation of MT bundles, which are important structures, e.g., in migrating cells or in neuronal axons. The dynamic distribution of the microtubule (MT) cytoskeleton is crucial for the shape, motility, and internal organization of eukaryotic cells. However, the basic principles that control the subcellular position of MTs in mammalian interphase cells remain largely unknown. Here we show by a combination of microscopy and computational modeling that the dynamics of the endoplasmic reticulum (ER) plays an important role in distributing MTs in the cell. Specifically, our physics-based model of the ER–MT system reveals that spatial inhomogeneity in the density of ER tubule junctions results in an overall contractile force that acts on MTs and influences their distribution. At steady state, cells rapidly compensate for local variability of ER junction density by dynamic formation, release, and movement of ER junctions across the ER. Perturbation of ER junction tethering and fusion by depleting the ER fusogens called atlastins disrupts the dynamics of junction equilibration, rendering the ER–MT system unstable and causing the formation of MT bundles. Our study points to a mechanical role of ER dynamics in cellular organization and suggests a mechanism by which cells might dynamically regulate MT distribution in, e.g., motile cells or in the formation and maintenance of neuronal axons.
Collapse
|
8
|
ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia. Cells 2021; 10:cells10112870. [PMID: 34831093 PMCID: PMC8616106 DOI: 10.3390/cells10112870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is the most abundant and widespread organelle in cells. Its peculiar membrane architecture, formed by an intricate network of tubules and cisternae, is critical to its multifaceted function. Regulation of ER morphology is coordinated by a few ER-specific membrane proteins and is thought to be particularly important in neurons, where organized ER membranes are found even in the most distant neurite terminals. Mutation of ER-shaping proteins has been implicated in the neurodegenerative disease hereditary spastic paraplegia (HSP). In this review we discuss the involvement of these proteins in the pathogenesis of HSP, focusing on the experimental evidence linking their molecular function to disease onset. Although the precise biochemical activity of some ER-related HSP proteins has been elucidated, the pathological mechanism underlying ER-linked HSP is still undetermined and needs to be further investigated.
Collapse
|
9
|
Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases. Cells 2021; 10:cells10092341. [PMID: 34571990 PMCID: PMC8472773 DOI: 10.3390/cells10092341] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle that is responsible for many essential subcellular processes. Interconnected narrow tubules at the periphery and thicker sheet-like regions in the perinuclear region are linked to the nuclear envelope. It is becoming apparent that the complex morphology and dynamics of the ER are linked to its function. Mutations in the proteins involved in regulating ER structure and movement are implicated in many diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS). The ER is also hijacked by pathogens to promote their replication. Bacteria such as Legionella pneumophila and Chlamydia trachomatis, as well as the Zika virus, bind to ER morphology and dynamics-regulating proteins to exploit the functions of the ER to their advantage. This review covers our understanding of ER morphology, including the functional subdomains and membrane contact sites that the organelle forms. We also focus on ER dynamics and the current efforts to quantify ER motion and discuss the diseases related to ER morphology and dynamics.
Collapse
|
10
|
Singh MK, Kenney LJ. Super-resolution imaging of bacterial pathogens and visualization of their secreted effectors. FEMS Microbiol Rev 2021; 45:5911101. [PMID: 32970796 DOI: 10.1093/femsre/fuaa050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in super-resolution imaging techniques, together with new fluorescent probes have enhanced our understanding of bacterial pathogenesis and their interplay within the host. In this review, we provide an overview of what these techniques have taught us about the bacterial lifestyle, the nucleoid organization, its complex protein secretion systems, as well as the secreted virulence factors.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Linda J Kenney
- Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
11
|
Dymek AM, Pecio A, Piprek RP. Diversity of Balbiani body formation in internally and externally fertilizing representatives of Osteoglossiformes (Teleostei: Osteoglossomorpha). J Morphol 2021; 282:1313-1329. [PMID: 34145919 DOI: 10.1002/jmor.21387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 01/30/2023]
Abstract
During the early stages of oogenesis, the Balbiani body is formed in the primary oocytes. It consists of the Golgi apparatus, endoplasmic reticulum (ER), and numerous mitochondria aggregated with germ plasm, but its form may differ among animals. Hypothetically, during oogenesis oocytes become adapted to future development in two different environments depending on internal or external fertilization. We aimed to investigate, using light and transmission electron microscopy, the development of the Balbiani body during oogenesis in representatives of Osteoglossiformes, one of the most basal Teleostei groups. We analyzed the structure of oogonia and primary oocytes in the internally fertilizing butterflyfish Pantodon buchholzi and the externally fertilizing Osteoglossum bicirrhosum and Arapaima gigas to compare formation of the Balbiani body in relation to modes of fertilization. We demonstrated that the presence of the germ plasm as well as the fusion and fission of mitochondria are the conserved features of the Bb. However, each species exhibited also some peculiar features, including the presence of three types of ooplasm with different electron density and mitochondria-associated membranes in P. buchholzi; annulate lamellae, complexes of the Golgi apparatus, ER network, and lysosome-like bodies in O. bicirrhosum; as well as karmellae and whorls formed by the lamellae of the ER in A. gigas. Moreover, the form of the germ plasm observed in close contact with mitochondria differed between osteoglossiforms, with a "net-like" structure in P. buchholzi, the presence of numerous strings in O. bicirrhosum, and irregular accumulations in A. gigas. These unique features indicate that the extreme diversity of gamete structure observed so far only in the spermatozoa of osteoglossiforms is also characteristic for oocyte development in these basal teleosts. Possible reason of this variability is a period of about 150 million years of independent evolution of the lineages.
Collapse
Affiliation(s)
- Anna M Dymek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| | - Anna Pecio
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| | - Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
12
|
Singh MK, Zangoui P, Yamanaka Y, Kenney LJ. Genetic code expansion enables visualization of Salmonella type three secretion system components and secreted effectors. eLife 2021; 10:67789. [PMID: 34061032 PMCID: PMC8192122 DOI: 10.7554/elife.67789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Type three secretion systems enable bacterial pathogens to inject effectors into the cytosol of eukaryotic hosts to reprogram cellular functions. It is technically challenging to label effectors and the secretion machinery without disrupting their structure/function. Herein, we present a new approach for labeling and visualization of previously intractable targets. Using genetic code expansion, we site-specifically labeled SsaP, the substrate specificity switch, and SifA, a here-to-fore unlabeled secreted effector. SsaP was secreted at later infection times; SsaP labeling demonstrated the stochasticity of injectisome and effector expression. SifA was labeled after secretion into host cells via fluorescent unnatural amino acids or non-fluorescent labels and a subsequent click reaction. We demonstrate the superiority of imaging after genetic code expansion compared to small molecule tags. It provides an alternative for labeling proteins that do not tolerate N- or C-terminal tags or fluorophores and thus is widely applicable to other secreted effectors and small proteins.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Parisa Zangoui
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Yuki Yamanaka
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| |
Collapse
|
13
|
TSUBOI M, HIRABAYASHI Y. New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:559-572. [PMID: 34897182 PMCID: PMC8687855 DOI: 10.2183/pjab.97.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Mammalian neurons are highly compartmentalized yet very large cells. To provide each compartment with its distinct properties, metabolic homeostasis and molecular composition need to be precisely coordinated in a compartment-specific manner. Despite the importance of the endoplasmic reticulum (ER) as a platform for various biochemical reactions, such as protein synthesis, protein trafficking, and intracellular calcium control, the contribution of the ER to neuronal compartment-specific functions and plasticity remains elusive. Recent advances in the development of live imaging and serial scanning electron microscopy (sSEM) analysis have revealed that the neuronal ER is a highly dynamic organelle with compartment-specific structures. sSEM studies also revealed that the ER forms contacts with other membranes, such as the mitochondria and plasma membrane, although little is known about the functions of these ER-membrane contacts. In this review, we discuss the mechanisms and physiological roles of the ER structure and ER-mitochondria contacts in synaptic transmission and plasticity, thereby highlighting a potential link between organelle ultrastructure and neuronal functions.
Collapse
Affiliation(s)
- Masafumi TSUBOI
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
14
|
Vajente N, Norante R, Redolfi N, Daga A, Pizzo P, Pendin D. Microtubules Stabilization by Mutant Spastin Affects ER Morphology and Ca 2+ Handling. Front Physiol 2019; 10:1544. [PMID: 31920731 PMCID: PMC6933510 DOI: 10.3389/fphys.2019.01544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) extends as a network of interconnected tubules and sheet-like structures in eukaryotic cells. ER tubules dynamically change their morphology and position within the cells in response to physiological stimuli and these network rearrangements depend on the microtubule (MT) cytoskeleton. Store-operated calcium entry (SOCE) relies on the repositioning of ER tubules to form specific ER-plasma membrane junctions. Indeed, the tips of polymerizing MTs are supposed to provide the anchor for ER tubules to move toward the plasma membrane, however the precise role of the cytoskeleton during SOCE has not been conclusively clarified. Here we exploit an in vivo approach involving the manipulation of MT dynamics in Drosophila melanogaster by neuronal expression of a dominant-negative variant of the MT-severing protein spastin to induce MT hyper-stabilization. We show that MT stabilization alters ER morphology, favoring an enrichment in ER sheets at the expense of tubules. Stabilizing MTs has a negative impact on the process of SOCE and results in a reduced ER Ca2+ content, affecting the flight ability of the flies. Restoring proper MT organization by administering the MT-destabilizing drug vinblastine, chronically or acutely, rescues ER morphology, SOCE and flight ability, indicating that MT dynamics impairment is responsible for all the phenotypes observed.
Collapse
Affiliation(s)
- Nicola Vajente
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rosa Norante
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Andrea Daga
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Lecco, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute-Italian National Research Council (CNR), Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute-Italian National Research Council (CNR), Padua, Italy
| |
Collapse
|
15
|
CAND1 regulates lunapark for the proper tubular network of the endoplasmic reticulum. Sci Rep 2019; 9:13152. [PMID: 31511573 PMCID: PMC6739345 DOI: 10.1038/s41598-019-49542-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) tubules connect each other by three-way junctions, resulting in a tubular ER network. Oligomerization of three-way junction protein lunapark (Lnp) is important for its localization and the three-way junction stability. On the other hand, Lnp has an N-terminal ubiquitin ligase activity domain, which is also important for the three-way junction localization. To understand the mode of action of Lnp, we isolated Cullin-associated and neddylation-dissociated 1 (CAND1), a regulator of Skp1-Cul1-F-box (SCF) ubiquitin ligase, as a Lnp-binding protein by affinity chromatography. CAND1 and Lnp form a higher-molecular-weight complex in vitro, while they do not co-localize at the three-way junctions. CAND1 reduces the auto-ubiquitination activity of Lnp. CAND1 knockdown enhances proteasomal degradation of Lnp and reduces the tubular ER network in mammalian cells. These results suggest that CAND1 has the potency to promote the formation of the higher-molecular-weight complex with Lnp and reduce the auto-ubiquitination activity of Lnp, thereby regulating the three-way junction stability of the tubular ER network.
Collapse
|
16
|
Ji T, Han Y, Yang W, Xu B, Sun M, Jiang S, Yu Y, Jin Z, Ma Z, Yang Y, Hu W. Endoplasmic reticulum stress and NLRP3 inflammasome: Crosstalk in cardiovascular and metabolic disorders. J Cell Physiol 2019; 234:14773-14782. [PMID: 30746697 DOI: 10.1002/jcp.28275] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
When endoplasmic reticulum (ER) homeostasis is disrupted, known as ER stress (ERS), the ER generates an adaptive signaling pathway called the unfolded protein response to maintain the homeostasis of this organelle. However, if homeostasis is not restored, the ER initiates death signaling pathways, which contribute to the pathogenesis of various disorders. The activation of inflammatory mechanisms is also emerging as a crucial component of cardiovascular and metabolic disorders. Furthermore, the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has attracted more attention than others and is the best-characterized member of the NLR family of inflammasomes to date. ERS intersects with many different inflammatory pathways, particularly the NLRP3 inflammasome. In this review, we focus on the interactions between ERS and the NLRP3 inflammasome. The pharmacologic and nonpharmaceutical manipulation of these two processes may offer novel opportunities for the treatment of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yuan Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wei Hu
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Single-molecule in vitro reconstitution assay for kinesin-1-driven membrane dynamics. Biophys Rev 2019; 11:319-325. [PMID: 31055762 DOI: 10.1007/s12551-019-00531-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/25/2019] [Indexed: 12/09/2022] Open
Abstract
Intracellular membrane dynamics, especially the nano-tube formation, plays important roles in vesicle transportation and organelle biogenesis. Regarding the regulation mechanisms, it is well known that during the nano-tube formation, motor proteins act as the driven force moving along the cytoskeleton, lipid composition and its associated proteins serve as the linkers and key mediators, and the vesicle sizes play as one of the important regulators. In this review, we summarized the in vitro reconstitution assay method, which has been applied to reconstitute the nano-tube dynamics during autophagic lysosomal regeneration (ALR) and the morphology dynamics during mitochondria network formation (MNF) in a mimic and pure in vitro system. Combined with the single-molecule microscopy, the advantage of the in vitro reconstitution system is to study the key questions at a single-molecule or single-vesicle level with precisely tuned parameters and conditions, such as the motor mutation, ion concentration, lipid component, ATP/GTP concentration, and even in vitro protein knockout, which cannot easily be achieved by in vivo or intracellular studies.
Collapse
|
18
|
Schroeder LK, Barentine AES, Merta H, Schweighofer S, Zhang Y, Baddeley D, Bewersdorf J, Bahmanyar S. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J Cell Biol 2019; 218:83-96. [PMID: 30442642 PMCID: PMC6314542 DOI: 10.1083/jcb.201809107] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) is composed of interconnected membrane sheets and tubules. Superresolution microscopy recently revealed densely packed, rapidly moving ER tubules mistaken for sheets by conventional light microscopy, highlighting the importance of revisiting classical views of ER structure with high spatiotemporal resolution in living cells. In this study, we use live-cell stimulated emission depletion (STED) microscopy to survey the architecture of the ER at 50-nm resolution. We determine the nanoscale dimensions of ER tubules and sheets for the first time in living cells. We demonstrate that ER sheets contain highly dynamic, subdiffraction-sized holes, which we call nanoholes, that coexist with uniform sheet regions. Reticulon family members localize to curved edges of holes within sheets and are required for their formation. The luminal tether Climp63 and microtubule cytoskeleton modulate their nanoscale dynamics and organization. Thus, by providing the first quantitative analysis of ER membrane structure and dynamics at the nanoscale, our work reveals that the ER in living cells is not limited to uniform sheets and tubules; instead, we suggest the ER contains a continuum of membrane structures that includes dynamic nanoholes in sheets as well as clustered tubules.
Collapse
Affiliation(s)
- Lena K Schroeder
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT
| | - Andrew E S Barentine
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT.,Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Holly Merta
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT
| | - Sarah Schweighofer
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT
| | - Yongdeng Zhang
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT
| | - David Baddeley
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT.,Nanobiology Institute, Yale University, West Haven, CT.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT .,Department of Biomedical Engineering, Yale University, New Haven, CT.,Nanobiology Institute, Yale University, West Haven, CT
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT
| |
Collapse
|
19
|
Yan Z, Li S, Luo Z, Xu Y, Yue T. Membrane nanotube pearling restricted by confined polymers. SOFT MATTER 2018; 14:9383-9392. [PMID: 30418454 DOI: 10.1039/c8sm01711e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Increasing evidence showed that membrane nanotubes readily undergo pearling in response to external stimuli, while long tubular membrane structures have been observed connecting cells and functioning as channels for intercellular transport, raising a fundamental question of how the stability of membrane nanotubes is maintained in the cellular environment. Here, combining dissipative particle dynamics simulations, free energy calculations, and a force analysis, we propose and demonstrate that nanotube pearling can be restricted by confined polymers, which can be DNA and protein chains transported through the nanotubes, or actin filaments participating in tube formation and elongation. Thermodynamically, nanotube pearling releases the membrane surface energy, but costs bending energies of both the membrane and the confined polymers. Following the mechanism, the pearling of nanotubes confining longer and stiffer polymers is more difficult as it costs larger polymer bending energies. In dynamics, nanotube pearling occurs by repelling polymers from the region of nanotube shrinking to that of swelling. Shorter polymers can be readily repelled owing to the unbalanced force exerted by the shrinking tube region, whereas longer polymers tend to be trapped at the shrinking region to retard the nanotube pearling. Besides the low surface tension maintained by lipid reservoirs kept in living cells, our results supplement the explanation for the stability of membrane nanotubes, and open up a new avenue to manipulate the shape deformation of tubular membrane structures for study of many biological processes.
Collapse
Affiliation(s)
- Zengshuai Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | | | | | | | | |
Collapse
|
20
|
Gao Y, Spahn C, Heilemann M, Kenney LJ. The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection. mBio 2018; 9:e01083-18. [PMID: 29921673 PMCID: PMC6016247 DOI: 10.1128/mbio.01083-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/13/2023] Open
Abstract
Bacterial pathogens exploit eukaryotic pathways for their own end. Upon ingestion, Salmonella enterica serovar Typhimurium passes through the stomach and then catalyzes its uptake across the intestinal epithelium. It survives and replicates in an acidic vacuole through the action of virulence factors secreted by a type three secretion system located on Salmonella pathogenicity island 2 (SPI-2). Two secreted effectors, SifA and SseJ, are sufficient for endosomal tubule formation, which modifies the vacuole and enables Salmonella to replicate within it. Two-color, superresolution imaging of the secreted virulence factor SseJ and tubulin revealed that SseJ formed clusters of conserved size at regular, periodic intervals in the host cytoplasm. Analysis of SseJ clustering indicated the presence of a pearling effect, which is a force-driven, osmotically sensitive process. The pearling transition is an instability driven by membranes under tension; it is induced by hypotonic or hypertonic buffer exchange and leads to the formation of beadlike structures of similar size and regular spacing. Reducing the osmolality of the fixation conditions using glutaraldehyde enabled visualization of continuous and intact tubules. Correlation analysis revealed that SseJ was colocalized with the motor protein kinesin. Tubulation of the endoplasmic reticulum is driven by microtubule motors, and in the present work, we describe how Salmonella has coopted the microtubule motor kinesin to drive the force-dependent process of endosomal tubulation. Thus, endosomal tubule formation is a force-driven process catalyzed by Salmonella virulence factors secreted into the host cytoplasm during infection.IMPORTANCE This study represents the first example of using two-color, superresolution imaging to analyze the secretion of Salmonella virulence factors as they are secreted from the SPI-2 type three secretion system. Previous studies imaged effectors that were overexpressed in the host cytoplasm. The present work reveals an unusual force-driven process, the pearling transition, which indicates that Salmonella-induced filaments are under force through the interactions of effector molecules with the motor protein kinesin. This work provides a caution by highlighting how fixation conditions can influence the images observed.
Collapse
Affiliation(s)
- Yunfeng Gao
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Christoph Spahn
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Linda J Kenney
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois-Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Du W, Su QP, Chen Y, Zhu Y, Jiang D, Rong Y, Zhang S, Zhang Y, Ren H, Zhang C, Wang X, Gao N, Wang Y, Sun L, Sun Y, Yu L. Kinesin 1 Drives Autolysosome Tubulation. Dev Cell 2017; 37:326-336. [PMID: 27219061 DOI: 10.1016/j.devcel.2016.04.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/14/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
Abstract
Autophagic lysosome reformation (ALR) plays an important role in maintaining lysosome homeostasis. During ALR, lysosomes are reformed by recycling lysosomal components from autolysosomes. The most noticeable step of ALR is autolysosome tubulation, but it is currently unknown how the process is regulated. Here, using an approach combining in vivo studies and in vitro reconstitution, we found that the kinesin motor protein KIF5B is required for autolysosome tubulation and that KIF5B drives autolysosome tubulation by pulling on the autolysosomal membrane. Furthermore, we show that KIF5B directly interacts with PtdIns(4,5)P2. Kinesin motors are recruited and clustered on autolysosomes via interaction with PtdIns(4,5)P2 in a clathrin-dependent manner. Finally, we demonstrate that clathrin promotes formation of PtdIns(4,5)P2-enriched microdomains, which are required for clustering of KIF5B. Our study reveals a mechanism by which autolysosome tubulation was generated.
Collapse
Affiliation(s)
- Wanqing Du
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Peter Su
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Chen
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yueyao Zhu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Jiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yueguang Rong
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Senyan Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixiao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - He Ren
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xinquan Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanfeng Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lingfei Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China.
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Lim SK, Wong ASW, de Hoog HPM, Rangamani P, Parikh AN, Nallani M, Sandin S, Liedberg B. Spontaneous formation of nanometer scale tubular vesicles in aqueous mixtures of lipid and block copolymer amphiphiles. SOFT MATTER 2017; 13:1107-1115. [PMID: 28058411 DOI: 10.1039/c6sm01753c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many common amphiphiles self-assemble in water to produce heterogeneous populations of discrete and symmetric but polydisperse and multilamellar vesicles isolating the encapsulated aqueous core from the surrounding bulk. But when mixtures of amphiphiles of vastly different elastic properties co-assemble, their non-uniform molecular organization can stabilize lower symmetries and produce novel shapes. Here, using high resolution electron cryomicroscopy and tomography, we identify the spontaneous formation of a membrane morphology consisting of unilamellar tubular vesicles in dilute aqueous solutions of binary mixtures of two different amphiphiles of vastly different origins. Our results show that aqueous phase mixtures of a fluid-phase phospholipid and an amphiphilic block copolymer spontaneously assume a bimodal polymorphic character in a composition dependent manner: over a broad range of compositions (15-85 mol% polymer component), a tubular morphology co-exists with spherical vesicles. Strikingly, in the vicinity of equimolar compositions, an exclusively tubular morphology (Lt; diameter, ∼15 nm; length, >1 μm; core, ∼2.0 nm; wall, ∼5-6 nm) emerges in an apparent steady state. Theory suggests that the spontaneous stabilization of cylindrical vesicles, unaided by extraneous forces, requires a significant spontaneous bilayer curvature, which in turn necessitates a strongly asymmetric membrane composition. We confirm that such dramatic compositional asymmetry is indeed produced spontaneously in aqueous mixtures of a lipid and polymer through two independent biochemical assays - (1) reduction in the quenching of fluorophore-labeled lipids and (2) inhibition in the activity of externally added lipid-hydrolyzing phospholipase A2, resulting in a significant enrichment of the polymer component in the outer leaflet. Taken together, these results illustrate the coupling of the membrane shape with local composition through spontaneous curvature generation under conditions of asymmetric distribution of mixtures of disparate amphiphiles.
Collapse
Affiliation(s)
- Seng Koon Lim
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore 637553.
| | - Andrew S W Wong
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798
| | - Hans-Peter M de Hoog
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore 637553.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Atul N Parikh
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore 637553. and Departments of Biomedical Engineering and Materials Science & Engineering, University of California, Davis, California 95616, USA.
| | - Madhavan Nallani
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore 637553.
| | - Sara Sandin
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798 and School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore 637553.
| |
Collapse
|
23
|
Shaping the endoplasmic reticulum in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2035-2040. [PMID: 27287725 DOI: 10.1016/j.bbamem.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 11/22/2022]
Abstract
Organelles in eukaryotic cells often have complex shapes that deviate significantly from simple spheres. A prime example is the endoplasmic reticulum (ER) that forms an extensive network of membrane tubules in many mammalian cell types and in reconstitution assays in vitro. Despite the successful hunt for molecular determinants of ER shape we are still far from having a comprehensive understanding of ER network morphogenesis. Here, we have studied the hitherto neglected influence of the host substrate when reconstituting ER networks in vitro as compared to ER networks in vivo. In culture cells we observed cytoplasm-spanning ER networks with tubules being connected almost exclusively by three-way junctions and segment lengths being narrowly distributed around a mean length of about 1μm. In contrast, networks reconstituted from purified ER microsomes on flat glass or gel substrates of varying stiffness showed significantly broader length distributions with an up to fourfold larger mean length. Self-assembly of ER microsomes on small oil droplets, however, yielded networks that resembled more closely the native ER network of mammalian cells. We conclude from these observations that the ER microsomes' inherent self-assembly capacity is sufficient to support network formation with a native geometry if the influence of the host substrate's surface chemistry becomes negligible. We hypothesize that under these conditions the networks' preference for three-way junctions follows from creating 'starfish-shaped' vesicles when ER microsomes with a protein-induced spontaneous curvature undergo fusion.
Collapse
|
24
|
Gurel PS, Hatch AL, Higgs HN. Connecting the cytoskeleton to the endoplasmic reticulum and Golgi. Curr Biol 2015; 24:R660-R672. [PMID: 25050967 DOI: 10.1016/j.cub.2014.05.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A tendency in cell biology is to divide and conquer. For example, decades of painstaking work have led to an understanding of endoplasmic reticulum (ER) and Golgi structure, dynamics, and transport. In parallel, cytoskeletal researchers have revealed a fantastic diversity of structure and cellular function in both actin and microtubules. Increasingly, these areas overlap, necessitating an understanding of both organelle and cytoskeletal biology. This review addresses connections between the actin/microtubule cytoskeletons and organelles in animal cells, focusing on three key areas: ER structure and function; ER-to-Golgi transport; and Golgi structure and function. Making these connections has been challenging for several reasons: the small sizes and dynamic characteristics of some components; the fact that organelle-specific cytoskeletal elements can easily be obscured by more abundant cytoskeletal structures; and the difficulties in imaging membranes and cytoskeleton simultaneously, especially at the ultrastructural level. One major concept is that the cytoskeleton is frequently used to generate force for membrane movement, with two potential consequences: translocation of the organelle, or deformation of the organelle membrane. While initially discussing issues common to metazoan cells in general, we subsequently highlight specific features of neurons, since these highly polarized cells present unique challenges for organellar distribution and dynamics.
Collapse
Affiliation(s)
- Pinar S Gurel
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Anna L Hatch
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA.
| |
Collapse
|
25
|
Abstract
Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.
Collapse
|
26
|
Yamada A, Mamane A, Lee-Tin-Wah J, Di Cicco A, Prévost C, Lévy D, Joanny JF, Coudrier E, Bassereau P. Catch-bond behaviour facilitates membrane tubulation by non-processive myosin 1b. Nat Commun 2014; 5:3624. [PMID: 24709651 DOI: 10.1038/ncomms4624] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/12/2014] [Indexed: 01/08/2023] Open
Abstract
Myosin 1b is a single-headed membrane-associated motor that binds to actin filaments with a catch-bond behaviour in response to load. In vivo, myosin 1b is required to form membrane tubules at both endosomes and the trans-Golgi network. To establish the link between these two fundamental properties, here we investigate the capacity of myosin 1b to extract membrane tubes along bundled actin filaments in a minimal reconstituted system. We show that single-headed non-processive myosin 1b can extract membrane tubes at a biologically relevant low density. In contrast to kinesins we do not observe motor accumulation at the tip, suggesting that the underlying mechanism for tube formation is different. In our theoretical model, myosin 1b catch-bond properties facilitate tube extraction under conditions of increasing membrane tension by reducing the density of myo1b required to pull tubes.
Collapse
Affiliation(s)
- Ayako Yamada
- 1] Institut Curie, Centre de Recherche, Paris F-75248, France [2] CNRS, UMR 168, PhysicoChimie Curie, Paris F-75248, France [3] CNRS, UMR144, Compartimentation et dynamique cellulaires, Paris F-75248, France [4] Université Pierre et Marie Curie, Paris F-75252, France [5] Labex CelTisPhyBio and Paris Sciences et Lettres, Paris F-75005, France [6]
| | - Alexandre Mamane
- 1] Institut Curie, Centre de Recherche, Paris F-75248, France [2] CNRS, UMR 168, PhysicoChimie Curie, Paris F-75248, France [3] Université Pierre et Marie Curie, Paris F-75252, France [4] Labex CelTisPhyBio and Paris Sciences et Lettres, Paris F-75005, France [5]
| | - Jonathan Lee-Tin-Wah
- 1] Institut Curie, Centre de Recherche, Paris F-75248, France [2] CNRS, UMR 168, PhysicoChimie Curie, Paris F-75248, France [3] Université Pierre et Marie Curie, Paris F-75252, France [4] Labex CelTisPhyBio and Paris Sciences et Lettres, Paris F-75005, France
| | - Aurélie Di Cicco
- 1] Institut Curie, Centre de Recherche, Paris F-75248, France [2] CNRS, UMR 168, PhysicoChimie Curie, Paris F-75248, France [3] Université Pierre et Marie Curie, Paris F-75252, France [4] Labex CelTisPhyBio and Paris Sciences et Lettres, Paris F-75005, France
| | - Coline Prévost
- 1] Institut Curie, Centre de Recherche, Paris F-75248, France [2] CNRS, UMR 168, PhysicoChimie Curie, Paris F-75248, France [3] Université Pierre et Marie Curie, Paris F-75252, France [4] Labex CelTisPhyBio and Paris Sciences et Lettres, Paris F-75005, France
| | - Daniel Lévy
- 1] Institut Curie, Centre de Recherche, Paris F-75248, France [2] CNRS, UMR 168, PhysicoChimie Curie, Paris F-75248, France [3] Université Pierre et Marie Curie, Paris F-75252, France [4] Labex CelTisPhyBio and Paris Sciences et Lettres, Paris F-75005, France [5] Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, Paris F-75248, France
| | - Jean-François Joanny
- 1] Institut Curie, Centre de Recherche, Paris F-75248, France [2] CNRS, UMR 168, PhysicoChimie Curie, Paris F-75248, France [3] Université Pierre et Marie Curie, Paris F-75252, France [4] Labex CelTisPhyBio and Paris Sciences et Lettres, Paris F-75005, France
| | - Evelyne Coudrier
- 1] Institut Curie, Centre de Recherche, Paris F-75248, France [2] CNRS, UMR144, Compartimentation et dynamique cellulaires, Paris F-75248, France [3] Labex CelTisPhyBio and Paris Sciences et Lettres, Paris F-75005, France [4]
| | - Patricia Bassereau
- 1] Institut Curie, Centre de Recherche, Paris F-75248, France [2] CNRS, UMR 168, PhysicoChimie Curie, Paris F-75248, France [3] Université Pierre et Marie Curie, Paris F-75252, France [4] Labex CelTisPhyBio and Paris Sciences et Lettres, Paris F-75005, France [5]
| |
Collapse
|
27
|
Miyazaki K, Wakana Y, Noda C, Arasaki K, Furuno A, Tagaya M. Contribution of the long form of syntaxin 5 to the organization of the endoplasmic reticulum. J Cell Sci 2012; 125:5658-66. [PMID: 23077182 DOI: 10.1242/jcs.105304] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The SNARE protein syntaxin 5 exists as long (42 kDa) and short (35 kDa) isoforms. The short form is principally localized in the Golgi complex, whereas the long form resides not only in the Golgi but also in the endoplasmic reticulum (ER). Although the Golgi-localized short form has been extensively investigated, little is known about the long form. In the present study, we demonstrate that the long form of syntaxin 5 functions to shape the ER. We found that overexpression of the long form of syntaxin 5 induces rearrangement and co-alignment of the ER membrane with microtubules, the pattern of which is quite similar to that observed in cells overexpressing CLIMP-63, a linker between the ER membrane and microtubules. The ability of syntaxin 5 to induce ER-microtubule rearrangement is not related to its SNARE function, but correlates with its binding affinities for CLIMP-63, and CLIMP-63 is essential for the induction of this rearrangement. Microtubule co-sedimentation assays demonstrated that the long form of syntaxin 5 has a substantial microtubule-binding activity. These results suggest that the long form of syntaxin 5 contributes to the regulation of ER structure by interacting with both CLIMP-63 and microtubules. Indeed, depletion of syntaxin 5 caused the spreading of the ER to the cell periphery, similar to the phenotype observed in cells treated with the microtubule-depolymerizing reagent nocodazole. Our results disclose a previously undescribed function of the long form of syntaxin 5 that is not related to its function as a SNARE.
Collapse
Affiliation(s)
- Kaori Miyazaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Singh P, Mahata P, Baumgart T, Das SL. Curvature sorting of proteins on a cylindrical lipid membrane tether connected to a reservoir. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:051906. [PMID: 23004787 PMCID: PMC3679408 DOI: 10.1103/physreve.85.051906] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/16/2012] [Indexed: 05/08/2023]
Abstract
Membrane curvature of a biological cell is actively involved in various fundamental cell biological functions. It has been discovered that membrane curvature and binding of peripheral membrane proteins follow a symbiotic relationship. The exact mechanism behind this interplay of protein binding and membrane curvature has not yet been properly understood. To improve understanding of the mechanism, we study curvature sorting of proteins in a model system consisting of a tether pulled from a giant unilamellar vesicle using mechanical-thermodynamic models. The concentration of proteins bound to the membrane changes significantly due to curvature. This has also been observed in experiments by other researchers. We also find that there is a phase transition based on protein concentration and we discuss the coexistence of phases and stability of solutions. Furthermore, when sorting is favorable, the increase in protein concentration stabilizes the tether in the sense that less pulling force is required to maintain the tether. A similar mechanism may be in place, when motor proteins pull tethers from donor membranes.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Paritosh Mahata
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
29
|
Muresan V, Muresan Z. Unconventional functions of microtubule motors. Arch Biochem Biophys 2012; 520:17-29. [PMID: 22306515 PMCID: PMC3307959 DOI: 10.1016/j.abb.2011.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
With the functional characterization of proteins advancing at fast pace, the notion that one protein performs different functions - often with no relation to each other - emerges as a novel principle of how cells work. Molecular motors are no exception to this new development. Here, we provide an account on recent findings revealing that microtubule motors are multifunctional proteins that regulate many cellular processes, in addition to their main function in transport. Some of these functions rely on their motor activity, but others are independent of it. Of the first category, we focus on the role of microtubule motors in organelle biogenesis, and in the remodeling of the cytoskeleton, especially through the regulation of microtubule dynamics. Of the second category, we discuss the function of microtubule motors as static anchors of the cargo at the destination, and their participation in regulating signaling cascades by modulating interactions between signaling proteins, including transcription factors. We also review atypical forms of transport, such as the cytoplasmic streaming in the oocyte, and the movement of cargo by microtubule fluctuations. Our goal is to provide an overview of these unexpected functions of microtubule motors, and to incite future research in this expanding field.
Collapse
Affiliation(s)
- Virgil Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| | - Zoia Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| |
Collapse
|
30
|
Lavoie C, Roy L, Lanoix J, Taheri M, Young R, Thibault G, Farah CA, Leclerc N, Paiement J. Taking organelles apart, putting them back together and creating new ones: lessons from the endoplasmic reticulum. ACTA ACUST UNITED AC 2011; 46:1-48. [PMID: 21536318 DOI: 10.1016/j.proghi.2011.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2011] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a highly dynamic organelle. It is composed of four subcompartments including nuclear envelope (NE), rough ER (rER), smooth ER (sER) and transitional ER (tER). The subcompartments are interconnected, can fragment and dissociate and are able to reassemble again. They coordinate with cell function by way of protein regulators in the surrounding cytosol. The activity of the many associated molecular machines of the ER as well as the fluid nature of the limiting membrane of the ER contribute extensively to the dynamics of the ER. This review examines the properties of the ER that permit its isolation and purification and the physiological conditions that permit reconstitution both in vitro and in vivo in normal and in disease conditions.
Collapse
Affiliation(s)
- Christine Lavoie
- Département de pharmacologie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fujimoto M, Hayashi T. New Insights into the Role of Mitochondria-Associated Endoplasmic Reticulum Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:73-117. [DOI: 10.1016/b978-0-12-386033-0.00002-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Verma P, Ostermeyer-Fay AG, Brown DA. Caveolin-1 induces formation of membrane tubules that sense actomyosin tension and are inhibited by polymerase I and transcript release factor/cavin-1. Mol Biol Cell 2010; 21:2226-40. [PMID: 20427576 PMCID: PMC2893987 DOI: 10.1091/mbc.e09-05-0417] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We found that PTRF/cavin-1 is lost coordinately with caveolin-1 in some cancer cells. When reexpressed in these cells, caveolin-1 formed membrane tubules that were under actomyosin-induced tension and recruited Rab8 and EHD proteins. PTRF/cavin-1 inhibited tubule formation by caveolin-1, showing a new function for the protein. Caveolin-1 and caveolae are often lost in cancer. We found that levels of caveolin-1 and polymerase I and transcript release factor (PTRF)/cavin-1 correlated closely in a panel of cancer and normal cells. Caveolin-1 reexpression in cancer cells lacking both proteins induced formation of long membrane tubules rarely seen in normal cells. PTRF/cavin-1 inhibited tubule formation when coexpressed with caveolin-1 in these cells, whereas suppression of PTRF/cavin-1 expression in cells that normally expressed both genes stimulated tubule formation by endogenous caveolin-1. Caveolin-1 tubules shared several features with previously described Rab8 tubules. Coexpressed Rab8 and caveolin-1 labeled the same tubules (as did EHD proteins), and synergized to promote tubule formation, whereas a dominant-interfering Rab8 mutant inhibited caveolin-1 tubule formation. Both overexpression and inhibition of dynamin-2 reduced the abundance of caveolin-1 tubules. Caveolin-1 reexpression in SK-BR-3 breast cancer cells also induced formation of short membrane tubules close to cortical actin filaments, which required actin filaments but not microtubules. Actomyosin-induced tension destabilized both long and short tubules; they often snapped and resolved to small vesicles. Actin filament depolymerization or myosin II inhibition reduced tension and stabilized tubules. These data demonstrate a new function for PTRF/cavin-1, a new functional interaction between caveolin-1 and Rab8 and that actomyosin interactions can induce tension on caveolin-1-containing membranes.
Collapse
Affiliation(s)
- Prakhar Verma
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
33
|
Leduc C, Campàs O, Joanny JF, Prost J, Bassereau P. Mechanism of membrane nanotube formation by molecular motors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:1418-26. [PMID: 19948146 DOI: 10.1016/j.bbamem.2009.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/12/2009] [Accepted: 11/20/2009] [Indexed: 02/07/2023]
Abstract
Membrane nanotubes are ubiquitous in eukaryotic cells due to their involvement in the communication between many different membrane compartments. They are very dynamical structures, which are generally extended along the microtubule network. One possible mechanism of tube formation involves the action of molecular motors, which can generate the necessary force to pull the tubes along the cytoskeleton tracks. However, it has not been possible so far to image in living organisms simultaneously both tube formation and the molecular motors involved in the process. The reasons for this are mainly technological. To overcome these limitations and to elucidate in detail the mechanism of tube formation, many experiments have been developed over the last years in cell-free environments. In the present review, we present the results, which have been obtained in vitro either in cell extracts or with purified and artificial components. In particular, we will focus on a biomimetic system, which involves Giant Unilamellar Vesicles, kinesin-1 motors and microtubules in the presence of ATP. We present both theoretical and experimental results based on fluorescence microscopy that elucidate the dynamics of membrane tube formation, growth and stalling.
Collapse
Affiliation(s)
- Cécile Leduc
- Centre de Physique Moléculaire Optique et Hertzienne, Université Bordeaux 1, France
| | | | | | | | | |
Collapse
|
34
|
Nakano RT, Matsushima R, Ueda H, Tamura K, Shimada T, Li L, Hayashi Y, Kondo M, Nishimura M, Hara-Nishimura I. GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 are required for maintenance of endoplasmic reticulum morphology in Arabidopsis thaliana. THE PLANT CELL 2009; 21:3672-85. [PMID: 19933201 PMCID: PMC2798326 DOI: 10.1105/tpc.109.068270] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 10/09/2009] [Accepted: 10/17/2009] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is composed of tubules, sheets, and three-way junctions, resulting in a highly conserved polygonal network in all eukaryotes. The molecular mechanisms responsible for the organization of these structures are obscure. To identify novel factors responsible for ER morphology, we employed a forward genetic approach using a transgenic Arabidopsis thaliana plant (GFP-h) with fluorescently labeled ER. We isolated two mutants with defects in ER morphology and designated them endoplasmic reticulum morphology1 (ermo1) and ermo2. The cells of both mutants developed a number of ER-derived spherical bodies, approximately 1 microm in diameter, in addition to the typical polygonal network of ER. The spherical bodies were distributed throughout the ermo1 cells, while they formed a large aggregate in ermo2 cells. We identified the responsible gene for ermo1 to be GNOM-LIKE1 (GNL1) and the gene for ermo2 to be SEC24a. Homologs of both GNL1 and SEC24a are involved in membrane trafficking between the ER and Golgi in yeast and animal cells. Our findings, however, suggest that GNL1/ERMO1 and SEC24a/ERMO2 have a novel function in ER morphology in higher plants.
Collapse
Affiliation(s)
- Ryohei Thomas Nakano
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ryo Matsushima
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Lixin Li
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuko Hayashi
- Department of Environmental Science, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
35
|
|
36
|
Woźniak MJ, Bola B, Brownhill K, Yang YC, Levakova V, Allan VJ. Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells. J Cell Sci 2009; 122:1979-89. [PMID: 19454478 DOI: 10.1242/jcs.041962] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Generating the extended endoplasmic reticulum (ER) network depends on microtubules, which act as tracks for motor-driven ER tubule movement, generate the force to extend ER tubules by means of attachment to growing microtubule plus-ends and provide static attachment points. We have analysed ER dynamics in living VERO cells and find that most ER tubule extension is driven by microtubule motors. Surprisingly, we observe that approximately 50% of rapid ER tubule movements occur in the direction of the centre of the cell, driven by cytoplasmic dynein. Inhibition of this movement leads to an accumulation of lamellar ER in the cell periphery. By expressing dominant-negative kinesin-1 constructs, we show that kinesin-1 drives ER tubule extension towards the cell periphery and that this motility is dependent on the KLC1B kinesin light chain splice form but not on KLC1D. Inhibition of kinesin-1 promotes a shift from tubular to lamellar morphology and slows down the recovery of the ER network after microtubule depolymerisation and regrowth. These observations reconcile previous conflicting studies of kinesin-1 function in ER motility in vivo. Furthermore, our data reveal that cytoplasmic dynein plays a role in ER motility in a mammalian cultured cell, demonstrating that ER motility is more complex than previously thought.
Collapse
Affiliation(s)
- Marcin J Woźniak
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, UK M13 9PT
| | | | | | | | | | | |
Collapse
|
37
|
Shnyrova A, Frolov VA, Zimmerberg J. ER biogenesis: self-assembly of tubular topology by protein hairpins. Curr Biol 2008; 18:R474-6. [PMID: 18522819 DOI: 10.1016/j.cub.2008.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The structure of the endoplasmic reticulum (ER) depends on members of the reticulon and DP1/Yop1p families. Two of these proteins are sufficient to form tubular membrane networks from pure phospholipid vesicles, thus revealing a new paradigm of ER morphogenesis.
Collapse
Affiliation(s)
- Anna Shnyrova
- Program on Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1855, USA
| | | | | |
Collapse
|
38
|
Rafelski SM, Marshall WF. Building the cell: design principles of cellular architecture. Nat Rev Mol Cell Biol 2008; 9:593-602. [PMID: 18648373 DOI: 10.1038/nrm2460] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The astounding structural complexity of a cell arises from the action of a relatively small number of genes, raising the question of how this complexity is achieved. Self-organizing processes combined with simple physical constraints seem to have key roles in controlling organelle size, number, shape and position, and these factors then combine to produce the overall cell architecture. By examining how these parameters are controlled in specific cell biological examples we can identify a handful of simple design principles that seem to underlie cellular architecture and assembly.
Collapse
Affiliation(s)
- Susanne M Rafelski
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA.
| | | |
Collapse
|
39
|
Nucleoside diphosphate kinase B (NDKB) scaffolds endoplasmic reticulum membranes in vitro. Exp Cell Res 2008; 314:2702-14. [PMID: 18601920 DOI: 10.1016/j.yexcr.2008.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/03/2008] [Accepted: 06/05/2008] [Indexed: 12/29/2022]
Abstract
The mechanisms that structure the mammalian endoplasmic reticulum (ER) network are not fully understood. Here we show that salt extraction of semi-intact normal rat kidney (NRK) fibroblasts and subsequent incubation of the extracted cells with ATP resulted in dramatic ER network retraction. Under these conditions, addition of a single protein, Nucleoside Diphosphate Kinase B (NDKB), was sufficient to reverse the retraction and to promote ER network extension. The underlying mechanism of membrane extension involved direct lipid binding, as NDKB bound phosphatidylinositol (PtdIns)(4)P, PtdIns(4,5)P(2) and phosphatidic acid (PA); binding to these anionic lipids required clusters of basic residues on the surface of the NDKB hexamer; and amino acid changes in NDKB that blocked lipid binding also blocked ER network extension. Remarkably, purified NDKB transformed a uniform population of synthetic lipid vesicles into extensive membrane networks, and this also required its phospholipid-binding activity. Altogether these results identify a protein sufficient to scaffold extended membrane networks, and suggest a possible role for NDKB-like proteins, as well as phosphoinositides and/or acidic phospholipids, in modulating ER network morphogenesis.
Collapse
|
40
|
Bidirectional membrane tube dynamics driven by nonprocessive motors. Proc Natl Acad Sci U S A 2008; 105:7993-7. [PMID: 18332438 DOI: 10.1073/pnas.0709677105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cells, membrane tubes are extracted by molecular motors. Although individual motors cannot provide enough force to pull a tube, clusters of such motors can. Here, we investigate, using a minimal in vitro model system, how the tube pulling process depends on fundamental properties of the motor species involved. Previously, it has been shown that processive motors can pull tubes by dynamic association at the tube tip. We demonstrate that, remarkably, nonprocessive motors can also cooperatively extract tubes. Moreover, the tubes pulled by nonprocessive motors exhibit rich dynamics as compared to those pulled by their processive counterparts. We report distinct phases of persistent growth, retraction, and an intermediate regime characterized by highly dynamic switching between the two. We interpret the different phases in the context of a single-species model. The model assumes only a simple motor clustering mechanism along the length of the entire tube and the presence of a length-dependent tube tension. The resulting dynamic distribution of motor clusters acts as both a velocity and distance regulator for the tube. We show the switching phase to be an attractor of the dynamics of this model, suggesting that the switching observed experimentally is a robust characteristic of nonprocessive motors. A similar system could regulate in vivo biological membrane networks.
Collapse
|
41
|
Abstract
This unit describes an in vitro assay that uses video-enhanced differential interference contrast (VE-DIC) microscopy to examine the motile interactions between isolated organelle fractions and microtubules (MTs). The method can be used to dissect the molecular requirements for organelle movement and membrane trafficking. A field of axoneme-nucleated MTs, growing and shortening as they would in a living cell (dynamic MTs), is generated in a simple microscope perfusion chamber. Various combinations of isolated endoplasmic reticulum (ER) and Golgi apparatus organelles, cytosol containing motor proteins and other soluble factors, nucleotides, and specific pharmacological reagents are then added to the dynamic MT, and the motile interactions between the organelles and MTs are observed by VE-DIC microscopy.
Collapse
|
42
|
Fay FS, Gilbert SH, Brundage RA. Calcium signalling during chemotaxis. CIBA FOUNDATION SYMPOSIUM 2007; 188:121-35; discussion 136-40. [PMID: 7587614 DOI: 10.1002/9780470514696.ch8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of Ca2+ in chemotaxis of eosinophils from the newt Taricha granulosa was investigated using fluorescent indicators and digital imaging microscopy. In response to serum chemoattractant, cytoplasmic Ca2+ concentration ([Ca2+]i) rises prior to polarization. In polarized locomoting cells [Ca2+]i gradients (tail-high-front-low) are always seen, and when cells turn [Ca2+]i rises transiently and falls fastest and furthest in the new direction of cell motion. These Ca2+ signals, which are required for polarization and locomotion, arise from Ca2+ derived from internal stores released in response to inositol 1,4,5-trisphosphate (InsP3) (because microinjected heparin fully blocks them). 1,2-Diacyl-sn-glycerol (DAG), which is co-produced with InsP3, has an inhibitory effect on Ca2+ signals, an effect apparently mediated by protein kinase C. Studies with caged InsP3 reveal that InsP3-responsive stores appear to be concentrated in the nuclear and microtubule-organizing centre regions and that InsP3 moves so rapidly within the cell that it is effectively a global secondary messenger. Thus, stable [Ca2+] gradients observed during unidirectional migration appear to result from the concentration of InsP3-responsive Ca2+ stores in the rear of the cell. By contrast, we propose that reorientation of the [Ca2+] gradient prior to a change in direction of motion results from the joint actions of InsP3 and DAG, with InsP3 acting as a global secondary messenger stimulating Ca2+ release and DAG, through protein kinase C, acting as a spatially restricted secondary messenger inhibiting [Ca2+] increases locally near the site of chemotactic stimulation.
Collapse
Affiliation(s)
- F S Fay
- Department of Physiology, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | |
Collapse
|
43
|
Thomas AP, Renard-Rooney DC, Hajnóczky G, Robb-Gaspers LD, Lin C, Rooney TA. Subcellular organization of calcium signalling in hepatocytes and the intact liver. CIBA FOUNDATION SYMPOSIUM 2007; 188:18-35; discussion 35-49. [PMID: 7587617 DOI: 10.1002/9780470514696.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hepatocytes respond to inositol 1,4,5-trisphosphate (InsP3)-linked agonists with frequency-modulated oscillations in the intracellular free calcium concentration ([Ca2+]i), that occur as waves propagating from a specific origin within each cell. The subcellular distribution and functional organization of InsP3-sensitive Ca2+ pools has been investigated, in both intact and permeabilized cells, by fluorescence imaging of dyes which can be used to monitor luminal Ca2+ content and InsP3-activated ion permeability in a spatially resolved manner. The Ca2+ stores behave as a luminally continuous system distributed throughout the cytoplasm. The structure of the stores, an important determinant of their function, is controlled by the cytoskeleton and can be modulated in a guanine nucleotide-dependent manner. The nuclear matrix is devoid of Ca2+ stores, but Ca2+ waves in the intact cell propagate through this compartment. The organization of [Ca2+]i signals has also been investigated in the perfused liver. Frequency-modulated [Ca2+]i oscillations are still observed at the single cell level, with similar properties to those in the isolated hepatocyte. The [Ca2+]i oscillations propagate between cells in the intact liver, leading to the synchronization of [Ca2+]i signals across part or all of each hepatic lobule.
Collapse
Affiliation(s)
- A P Thomas
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
44
|
Lowe M, Barr FA. Inheritance and biogenesis of organelles in the secretory pathway. Nat Rev Mol Cell Biol 2007; 8:429-39. [PMID: 17505521 DOI: 10.1038/nrm2179] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In eukaryotic cells, cellular functions are compartmentalized into membrane-bound organelles. This has many advantages, as shown by the success of the eukaryotic lineage, but creates many problems for cells, such as the need to build and partition these organelles during cell growth and division. Diverse mechanisms for biogenesis of the endoplasmic reticulum and Golgi apparatus have evolved, ranging from de novo synthesis to the copying of a template organelle. The different mechanisms by which organelles are inherited in yeasts, protozoa and metazoans probably reflect the differences in the structure and copy number of these organelles.
Collapse
Affiliation(s)
- Martin Lowe
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
45
|
Nikonov AV, Hauri HP, Lauring B, Kreibich G. Climp-63-mediated binding of microtubules to the ER affects the lateral mobility of translocon complexes. J Cell Sci 2007; 120:2248-58. [PMID: 17567679 DOI: 10.1242/jcs.008979] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microtubules are frequently seen in close proximity to membranes of the endoplasmic reticulum (ER), and the membrane protein CLIMP-63 is thought to mediate specific interaction between these two structures. It was, therefore, of interest to investigate whether these microtubules are in fact responsible for the highly restricted lateral mobility of the translocon complexes in M3/18 cells as described before. As determined by fluorescence recovery after photobleaching, the breakdown of microtubules caused by drug treatment or by overexpression of the microtubule-severing protein spastin, resulted in an increased lateral mobility of the translocons that are assembled into polysomes. Also, the expression of a CLIMP-63 mutant lacking the microtubule-binding domain resulted in a significant increase of the lateral mobility of the translocon complexes. The most striking increase in the diffusion rate of the translocon complexes was observed in M3/18 cells transfected with a siRNA that effectively knocked down the expression of the endogenous CLIMP-63. It appears, therefore, that interaction of microtubules with the ER results in the immobilization of translocon complexes that are part of membrane-bound polysomes, and may play a role in the mechanism that segregates the rough and smooth domains of the ER.
Collapse
Affiliation(s)
- Andrei V Nikonov
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The endoplasmic reticulum (ER) of higher eukaryotic cells is a dynamic network of interconnected membrane tubules that pervades almost the entire cytoplasm. On the basis of the morphological changes induced by the disruption of the cytoskeleton or molecular motor proteins, the commonly accepted model has emerged that microtubules and conventional kinesin (kinesin-1) are essential determinants in establishing and maintaining the structure of the ER by active membrane expansion. Surprisingly, very similar ER phenotypes have now been observed when the cytoskeleton-linking ER membrane protein of 63 kDa (CLIMP-63) is mutated, revealing stable attachment of ER membranes to the microtubular cytoskeleton as a novel requirement for ER maintenance. Additional recent findings suggest that ER maintenance also requires ongoing homotypic membrane fusion, possibly controlled by the p97/p47/VICP135 protein complex. Work on other proteins proposed to regulate ER structure, including huntingtin, the EF-hand Ca(2+)-binding protein p22, the vesicle-associated membrane protein-associated protein B and kinectin isoforms further contribute to the new emerging concept that ER shape is not only determined by motor driven processes but by a variety of different mechanisms.
Collapse
Affiliation(s)
- Cécile Vedrenne
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
47
|
Sprocati T, Ronchi P, Raimondi A, Francolini M, Borgese N. Dynamic and reversible restructuring of the ER induced by PDMP in cultured cells. J Cell Sci 2006; 119:3249-60. [PMID: 16847050 DOI: 10.1242/jcs.03058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In many cells, the endoplasmic reticulum (ER) contains segregated smooth and rough domains, but the mechanism of this segregation is unclear. Here, we used a HeLa cell line, inducibly expressing a GFP fusion protein [GFP-b(5)tail] anchored to the ER membrane, as a tool to investigate factors influencing ER organisation. Induction of GFP-b(5)tail expression caused proliferation of the ER, but its normal branching polygonal meshwork architecture was maintained. Experiments designed to test the effects of drugs that alter ceramide levels revealed that treatment of these cells with Phenyl-2-decanoyl-amino-3-morpholino-1-propanol-hydrocholride (PDMP) generated patches of segregated smooth ER, organised as a random tubular network, which rapidly dispersed after removal of the drug. The effect of PDMP was independent of its activity as sphingolipid synthesis inhibitor, but could be partially reversed by a membrane-permeant Ca(2+) chelator. Although the smooth ER patches maintained connectivity with the remaining ER, they appeared to represent distinct domains differing in protein and lipid composition from the remaining ER. PDMP did not cause detachment of membrane-bound ribosomes, indicating that smooth ER patch generation was due to a reorganisation of pre-existing ribosome-free areas. Our results demonstrate a dynamic relationship between smooth and rough ER and have implications for the mechanisms regulating ER architecture.
Collapse
Affiliation(s)
- Teresa Sprocati
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Medical Pharmacology, via Vanvitelli 32, University of Milano, 20129 Milano, Italy
| | | | | | | | | |
Collapse
|
48
|
Borgese N, Francolini M, Snapp E. Endoplasmic reticulum architecture: structures in flux. Curr Opin Cell Biol 2006; 18:358-64. [PMID: 16806883 PMCID: PMC4264046 DOI: 10.1016/j.ceb.2006.06.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Accepted: 06/07/2006] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is a dynamic pleiomorphic organelle containing continuous but distinct subdomains. The diversity of ER structures parallels its many functions, including secretory protein biogenesis, lipid synthesis, drug metabolism and Ca2+ signaling. Recent studies are revealing how elaborate ER structures arise in response to subtle changes in protein levels, dynamics, and interactions as well as in response to alterations in cytosolic ion concentrations. Subdomain formation appears to be governed by principles of self-organization. Once formed, ER subdomains remain malleable and can be rapidly transformed into alternative structures in response to altered conditions. The mechanisms that modulate ER structure are likely to be important for the generation of the characteristic shapes of other organelles.
Collapse
Affiliation(s)
- Nica Borgese
- National Research Council Institute for Neuroscience and Department of Medical Pharmacology, University of Milan, via Vanvitelli 32, 20129 Milano, Italy.
| | | | | |
Collapse
|
49
|
Kano F, Kondo H, Yamamoto A, Kaneko Y, Uchiyama K, Hosokawa N, Nagata K, Murata M. NSF/SNAPs and p97/p47/VCIP135 are sequentially required for cell cycle-dependent reformation of the ER network. Genes Cells 2006; 10:989-99. [PMID: 16164599 DOI: 10.1111/j.1365-2443.2005.00894.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The endoplasmic reticulum (ER) has a characteristic polygonal structure with hallmark three-way junctions. In a previous paper, we reconstituted the disruption of the pre-existing ER network using mitotic cytosol from HeLa cells in streptolysin O (SLO)-permeabilized CHO-HSP cells (stably expressing GFP-HSP47). In addition, we found that interphase cytosol induced reformation of the disrupted ER network into a continuous network structure. Here, we show that the reformation of the ER network is accomplished through two sequential fusion reactions. The first process is mediated by NSF/alpha and gamma-SNAPs, and involves the generation of typical membranous intermediate structures that connect the disrupted ER tubules. A subsequent fusion is mediated by p97/p47/VCIP135, which has been shown to be required for homotypic fusion events in Golgi cisternae regrowth after mitosis. In addition, we also found that both fusion processes involve the t-SNARE, syntaxin 18.
Collapse
Affiliation(s)
- Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|