1
|
Singh A, van den Burgh M, Boopathy V, van Nierop Y Sanchez P, Bageritz J, Lohmann I, Domsch K. Autonomous function of Antennapedia in adult muscle precursors directly connects Hox genes to adult muscle development. Development 2025; 152:DEV204341. [PMID: 39918891 DOI: 10.1242/dev.204341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
The evolutionarily conserved Hox genes define segment identities along the anterior-posterior axis and are expressed in most cell types within each segment, performing specific functions tailored to cellular needs. It has been suggested previously that Drosophila adult flight muscles in the second thoracic segment (T2) develop without direct Hox gene input, relying instead on ectodermal signals to shape their identity. However, our research, leveraging single-cell transcriptomics of Drosophila wing discs and Hox perturbation experiments using CRISPR technology and gain-of-function assays, unveiled a more intricate regulatory landscape. We found that the Hox protein Antennapedia (Antp) is essential for adult flight muscle development, acting in two crucial ways: by regulating the cell cycle rate of adult muscle precursors (AMPs) through repression of proliferation genes, and by guiding flight muscle fate via regulation of Hedgehog (Hh) signalling during cell fate establishment. Antp, along with its co-factor Apterous (Ap), directly interacts with the patched (ptc) locus to control its expression in AMPs. These findings challenge the notion of T2 as a 'Hox-free' zone, highlighting the indispensable role of low-level Antp expression in adult muscle development.
Collapse
Affiliation(s)
- Aakriti Singh
- COS, Developmental Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Meike van den Burgh
- COS, Developmental Biology, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | - Josephine Bageritz
- COS, Stem Cell Niche Heterogeneity, Heidelberg University, 69120 Heidelberg, Germany
| | - Ingrid Lohmann
- COS, Developmental Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Katrin Domsch
- COS, Developmental Biology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Yang Q, Lo TW, Brejc K, Schartner C, Ralston EJ, Lapidus DM, Meyer BJ. X-chromosome target specificity diverged between dosage compensation mechanisms of two closely related Caenorhabditis species. eLife 2023; 12:e85413. [PMID: 36951246 PMCID: PMC10076027 DOI: 10.7554/elife.85413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species Caenorhabditis briggsae (Cbr) and Caenorhabditis elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13 bp MEX and 30 bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with the conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.
Collapse
Affiliation(s)
- Qiming Yang
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Te-Wen Lo
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katjuša Brejc
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Caitlin Schartner
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Edward J Ralston
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Denise M Lapidus
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Barbara J Meyer
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
3
|
Singh NP, Krumlauf R. Diversification and Functional Evolution of HOX Proteins. Front Cell Dev Biol 2022; 10:798812. [PMID: 35646905 PMCID: PMC9136108 DOI: 10.3389/fcell.2022.798812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Gene duplication and divergence is a major contributor to the generation of morphological diversity and the emergence of novel features in vertebrates during evolution. The availability of sequenced genomes has facilitated our understanding of the evolution of genes and regulatory elements. However, progress in understanding conservation and divergence in the function of proteins has been slow and mainly assessed by comparing protein sequences in combination with in vitro analyses. These approaches help to classify proteins into different families and sub-families, such as distinct types of transcription factors, but how protein function varies within a gene family is less well understood. Some studies have explored the functional evolution of closely related proteins and important insights have begun to emerge. In this review, we will provide a general overview of gene duplication and functional divergence and then focus on the functional evolution of HOX proteins to illustrate evolutionary changes underlying diversification and their role in animal evolution.
Collapse
Affiliation(s)
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, United States
- *Correspondence: Robb Krumlauf,
| |
Collapse
|
4
|
In vivo Hox binding specificity revealed by systematic changes to a single cis regulatory module. Nat Commun 2019; 10:3597. [PMID: 31399572 PMCID: PMC6689074 DOI: 10.1038/s41467-019-11416-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/09/2019] [Indexed: 11/08/2022] Open
Abstract
Hox proteins belong to a family of transcription factors with similar DNA binding specificities that control animal differentiation along the antero-posterior body axis. Hox proteins are expressed in partially overlapping regions where each one is responsible for the formation of particular organs and structures through the regulation of specific direct downstream targets. Thus, explaining how each Hox protein can selectively control its direct targets from those of another Hox protein is fundamental to understand animal development. Here we analyse a cis regulatory module directly regulated by seven different Drosophila Hox proteins and uncover how different Hox class proteins differentially control its expression. We find that regulation by one or another Hox protein depends on the combination of three modes: Hox-cofactor dependent DNA-binding specificity; Hox-monomer binding sites; and interaction with positive and negative Hox-collaborator proteins. Additionally, we find that similar regulation can be achieved by Amphioxus orthologs, suggesting these three mechanisms are conserved from insects to chordates. Hox proteins are expressed in partially overlapping regions to inform development along the embryo’s head-tail axis. Here the authors analyse a cis regulatory module directly regulated by seven different Drosophila Hox proteins to uncover how different Hox class proteins differentially control its expression.
Collapse
|
5
|
Phenotypic Nonspecificity as the Result of Limited Specificity of Transcription Factor Function. GENETICS RESEARCH INTERNATIONAL 2018; 2018:7089109. [PMID: 30510805 PMCID: PMC6230420 DOI: 10.1155/2018/7089109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022]
Abstract
Drosophila transcription factor (TF) function is phenotypically nonspecific. Phenotypic nonspecificity is defined as one phenotype being induced or rescued by multiple TFs. To explain this unexpected result, a hypothetical world of limited specificity is explored where all TFs have unique random distributions along the genome due to low information content of DNA sequence recognition and somewhat promiscuous cooperative interactions with other TFs. Transcription is an emergent property of these two conditions. From this model, explicit predictions are made. First, many more cases of TF nonspecificity are expected when examined. Second, the genetic analysis of regulatory sequences should uncover cis-element bypass and, third, genetic analysis of TF function should generally uncover differential pleiotropy. In addition, limited specificity provides evolutionary opportunity and explains the inefficiency of expression analysis in identifying genes required for biological processes.
Collapse
|
6
|
Humanized Flies and Resources for Cross-Species Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:277-288. [DOI: 10.1007/978-981-13-0529-0_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Percival-Smith A. Non-specificity of transcription factor function in Drosophila melanogaster. Dev Genes Evol 2017; 227:25-39. [PMID: 27848019 DOI: 10.1007/s00427-016-0566-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
A major problem in developmental genetics is how HOX transcription factors, like Proboscipedia (PB) and Ultrabithorax (UBX), regulate distinct programs of gene expression to result in a proboscis versus a haltere, respectively, when the DNA-binding homeodomain (HD) of HOX transcription factors recognizes similar DNA-binding sequences. Indeed, the lack of DNA-binding specificity is a problem for all transcription factors (TFs), as the DNA-binding domains generally recognize small targets of five to six bases in length. Although not the initial intent of the study, I found extensive non-specificity of TF function. Multiple TFs including HOX and HD-containing and non-HD-containing TFs induced both wingless and eyeless phenotypes. The TFs Labial (LAB), Deformed (DFD), Fushi tarazu (FTZ), and Squeeze (SQZ) induced ectopic larval thoracic (T) 1 beard formation in T2 and T3. The TF Doublesex male (DSXM) rescued the reduced maxillary palp pb phenotype. These examples of non-specificity of TF function across classes of TFs, combined with previous observations, compromise the implicit, initial assumption often made that an intrinsic mechanism of TF specificity is important for function. Interestingly, the functional complementation of the pb phenotype may suggest a larger role for regulation of expression of TFs in restriction of function as opposed to an intrinsic specificity of TF function. These observations have major ramifications for analysis of functional conservation in evolution and development.
Collapse
|
8
|
Pick L. Hox genes, evo-devo, and the case of the ftz gene. Chromosoma 2015; 125:535-51. [PMID: 26596987 DOI: 10.1007/s00412-015-0553-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/29/2022]
Abstract
The discovery of the broad conservation of embryonic regulatory genes across animal phyla, launched by the cloning of homeotic genes in the 1980s, was a founding event in the field of evolutionary developmental biology (evo-devo). While it had long been known that fundamental cellular processes, commonly referred to as housekeeping functions, are shared by animals and plants across the planet-processes such as the storage of information in genomic DNA, transcription, translation and the machinery for these processes, universal codon usage, and metabolic enzymes-Hox genes were different: mutations in these genes caused "bizarre" homeotic transformations of insect body parts that were certainly interesting but were expected to be idiosyncratic. The isolation of the genes responsible for these bizarre phenotypes turned out to be highly conserved Hox genes that play roles in embryonic patterning throughout Metazoa. How Hox genes have changed to promote the development of diverse body plans remains a central issue of the field of evo-devo today. For this Memorial article series, I review events around the discovery of the broad evolutionary conservation of Hox genes and the impact of this discovery on the field of developmental biology. I highlight studies carried out in Walter Gehring's lab and by former lab members that have continued to push the field forward, raising new questions and forging new approaches to understand the evolution of developmental mechanisms.
Collapse
Affiliation(s)
- Leslie Pick
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
9
|
Abstract
Apoptosis is a cellular suicide program, which is on the one hand used to remove superfluous cells thereby promoting tissue or organ morphogenesis. On the other hand, the programmed killing of cells is also critical when potentially harmful cells emerge in a developing or adult organism thereby endangering survival. Due to its critical role apoptosis is tightly controlled, however so far, its regulation on the transcriptional level is less studied and understood. Hox genes, a highly conserved gene family encoding homeodomain transcription factors, have crucial roles in development. One of their prominent functions is to shape animal body plans by eliciting different developmental programs along the anterior-posterior axis. To this end, Hox proteins transcriptionally regulate numerous processes in a coordinated manner, including cell-type specification, differentiation, motility, proliferation as well as apoptosis. In this review, we will focus on how Hox proteins control organismal morphology and function by regulating the apoptotic machinery. We will first focus on well-established paradigms of Hox-apoptosis interactions and summarize how Hox transcription factors control morphological outputs and differentially shape tissues along the anterior-posterior axis by fine-tuning apoptosis in a healthy organism. We will then discuss the consequences when this interaction is disturbed and will conclude with some ideas and concepts emerging from these studies.
Collapse
|
10
|
Saadaoui M, Litim-Mecheri I, Macchi M, Graba Y, Maurel-Zaffran C. A survey of conservation of sea spider and Drosophila Hox protein activities. Mech Dev 2015; 138 Pt 2:73-86. [PMID: 26238019 DOI: 10.1016/j.mod.2015.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 01/29/2023]
Abstract
Hox proteins have well-established functions in development and evolution, controlling the final morphology of bilaterian animals. The common phylogenetic origin of Hox proteins and the associated evolutionary diversification of protein sequences provide a unique framework to explore the relationship between changes in protein sequence and function. In this study, we aimed at questioning how sequence variation within arthropod Hox proteins influences function. This was achieved by exploring the functional impact of sequence conservation/divergence of the Hox genes, labial, Sex comb reduced, Deformed, Ultrabithorax and abdominalA from two distant arthropods, the sea spider and the well-studied Drosophila. Results highlight a correlation between sequence conservation within the homeodomain and the degree of functional conservation, and identify a novel functional domain in the Labial protein.
Collapse
Affiliation(s)
- Mehdi Saadaoui
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France; Institut de Biologie de l'ENS, 46, rue d'Ulm, 75005 Paris, France
| | - Isma Litim-Mecheri
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France; IGBMC, INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Meiggie Macchi
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France
| | - Corinne Maurel-Zaffran
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France
| |
Collapse
|
11
|
Rebeiz M, Patel NH, Hinman VF. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annu Rev Genomics Hum Genet 2015; 16:103-31. [PMID: 26079281 DOI: 10.1146/annurev-genom-091212-153423] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | | | |
Collapse
|
12
|
Hueber SD, Rauch J, Djordjevic MA, Gunter H, Weiller GF, Frickey T. Analysis of central Hox protein types across bilaterian clades: On the diversification of central Hox proteins from an Antennapedia/Hox7-like protein. Dev Biol 2013; 383:175-85. [DOI: 10.1016/j.ydbio.2013.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 11/30/2022]
|
13
|
Adipietro KA, Mainland JD, Matsunami H. Functional evolution of mammalian odorant receptors. PLoS Genet 2012; 8:e1002821. [PMID: 22807691 PMCID: PMC3395614 DOI: 10.1371/journal.pgen.1002821] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 05/23/2012] [Indexed: 12/23/2022] Open
Abstract
The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.
Collapse
Affiliation(s)
- Kaylin A. Adipietro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joel D. Mainland
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
14
|
Pick L, Heffer A. Hoxgene evolution: multiple mechanisms contributing to evolutionary novelties. Ann N Y Acad Sci 2012; 1256:15-32. [DOI: 10.1111/j.1749-6632.2011.06385.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Heffer A, Löhr U, Pick L. ftz Evolution: Findings, hypotheses and speculations (response to DOI 10.1002/bies.201100019). Bioessays 2011; 33:910-8. [DOI: 10.1002/bies.201100112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Abstract
The development of an organism depends on individual cells receiving and executing their specific fates, although how this process is regulated remains largely unknown. Here, we identify a mechanism by which a specific cell fate, apoptosis, is determined through the cooperative efforts of Hox and E2F proteins. E2F transcription factors are critical, conserved regulators of the cell cycle and apoptosis. However, little is known about the two most recently discovered mammalian E2Fs-E2F7 and E2F8. In the nematode Caenorhabditis elegans, we identify a novel E2F7/8 homolog, EFL-3, and show that EFL-3 functions cooperatively with LIN-39, providing the first example in which these two major developmental pathways-E2F and Hox-are able to directly regulate the same target gene. Our studies demonstrate that LIN-39 and EFL-3 function in a cell type-specific context to regulate transcription of the egl-1 BH3-only cell death gene and to determine cell fate during development.
Collapse
|
17
|
Abstract
The evolution of phenotype is often based on changes in gene expression rather than changes in protein-coding sequence. Gene expression is controlled by complex networks of interacting regulators that act through a variety of biochemical mechanisms. Perturbation of these networks can have profound effects on the fitness of organisms. This highlights an important challenge: the investigation of whether the mechanisms and network architectures we observe in Nature evolved in response to selective pressure--and, if so, what that pressure might have been--or whether the architectures are a result of non-adaptive forces. Synthetic biologists aim to construct artificial genetic and biological systems to increase our understanding of Nature as well as for a number of biotechnological applications. In this review, I will highlight how engineering 'synthetic' control of gene expression provides a way to test evolutionary hypotheses. Synthetic biology might allow us to investigate experimentally the evolutionary paths not taken by extant organisms.
Collapse
Affiliation(s)
- Travis S Bayer
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK.
| |
Collapse
|
18
|
|
19
|
Hueber SD, Weiller GF, Djordjevic MA, Frickey T. Improving Hox protein classification across the major model organisms. PLoS One 2010; 5:e10820. [PMID: 20520839 PMCID: PMC2876039 DOI: 10.1371/journal.pone.0010820] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022] Open
Abstract
The family of Hox-proteins has been a major focus of research for over 30 years. Hox-proteins are crucial to the correct development of bilateral organisms, however, some uncertainty remains as to which Hox-proteins are functionally equivalent across different species. Initial classification of Hox-proteins was based on phylogenetic analysis of the 60 amino acid homeodomain. This approach was successful in classifying Hox-proteins with differing homeodomains, but the relationships of Hox-proteins with nearly identical homeodomains, yet distinct biological functions, could not be resolved. Correspondingly, these ‘problematic’ proteins were classified into one large unresolved group. Other classifications used the relative location of the Hox-protein coding genes on the chromosome (synteny) to further resolve this group. Although widely used, this synteny-based classification is inconsistent with experimental evidence from functional equivalence studies. These inconsistencies led us to re-examine and derive a new classification for the Hox-protein family using all Hox-protein sequences available in the GenBank non-redundant protein database (NCBI-nr). We compare the use of the homeodomain, the homeodomain with conserved flanking regions (the YPWM and linker region), and full length Hox-protein sequences as a basis for classification of Hox-proteins. In contrast to previous attempts, our approach is able to resolve the relationships for the ‘problematic’ as well as ABD-B-like Hox-proteins. We highlight differences to previous classifications and clarify the relationships of Hox-proteins across the five major model organisms, Caenorhabditis elegans, Drosophila melanogaster, Branchiostoma floridae, Mus musculus and Danio rerio. Comparative and functional analysis of Hox-proteins, two fields crucial to understanding the development of bilateral organisms, have been hampered by difficulties in predicting functionally equivalent Hox-proteins across species. Our classification scheme offers a higher-resolution classification that is in accordance with phylogenetic as well as experimental data and, thereby, provides a novel basis for experiments, such as comparative and functional analyses of Hox-proteins.
Collapse
Affiliation(s)
- Stefanie D. Hueber
- Genomic Interactions Group, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Georg F. Weiller
- Genomic Interactions Group, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| | - Michael A. Djordjevic
- Genomic Interactions Group, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tancred Frickey
- Genomic Interactions Group, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
20
|
Cis-regulatory characterization of sequence conservation surrounding the Hox4 genes. Dev Biol 2010; 340:269-82. [PMID: 20144609 DOI: 10.1016/j.ydbio.2010.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/17/2010] [Accepted: 01/30/2010] [Indexed: 01/30/2023]
Abstract
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.
Collapse
|
21
|
Abstract
In this chapter, we consider the question of how the ordered clusters of Hox genes arose during evolution. Since ordered Hox clusters are found in all major superphyla, we have to assume that the Hox clusters arose before the Cambrian "explosion" giving rise to all of these taxa. Based on his studies of the bithorax complex (BX-C) in Drosophila Lewis considered the ground state to be the mesothoracic segment (T2) since the deletion of all of the genes of the BX-C leads to a transformation of all segments from T3 to A8/9 (the last abdominal segment) into T2 segments. We define the developmental ground state genetically, by assuming that loss-of-function mutants lead to transformations toward the ground state, whereas gain-of-function mutants lead to homeotic transformations away from the ground state. By this definition, T2 also represents the developmental ground state, if one includes the anterior genes, that is, those of the Antennapedia complex. We have reconstructed the evolution of the Hox cluster on the basis of known genetic mechanisms which involve unequal crossover and lead from an urhox gene, first to an anterior and a posterior gene and subsequently to intermediate genes which are progressively inserted, between the anterior and posterior genes. These intermediate genes are recombinant due to unequal crossover, whereas the anterior and posterior genes are not affected and therefore had the longest time to diverge from the urhox gene. The molecular phylogenetic analysis strongly supports this model. We consider the ground state to be both developmental and evolutionary and to represent the prototypic body segment. It corresponds to T2 and is specified by Antennapedia or Hox6, respectively. Experiments in the mouse also suggest that the ground state is a thoracic segment. Evolution leads from the prototypic segment to segmental divergence in both the anterior and posterior direction. The most anterior head and tail segments are specified by homeobox genes localized outside of the cluster.
Collapse
|
22
|
Abstract
Despite decades of research, morphogenesis along the various body axes remains one of the major mysteries in developmental biology. A milestone in the field was the realisation that a set of closely related regulators, called Hox genes, specifies the identity of body segments along the anterior-posterior (AP) axis in most animals. Hox genes have been highly conserved throughout metazoan evolution and code for homeodomain-containing transcription factors. Thus, they exert their function mainly through activation or repression of downstream genes. However, while much is known about Hox gene structure and molecular function, only a few target genes have been identified and studied in detail. Our knowledge of Hox downstream genes is therefore far from complete and consequently Hox-controlled morphogenesis is still poorly understood. Genome-wide approaches have facilitated the identification of large numbers of Hox downstream genes both in Drosophila and vertebrates, and represent a crucial step towards a comprehensive understanding of how Hox proteins drive morphological diversification. In this review, we focus on the role of Hox genes in shaping segmental morphologies along the AP axis in Drosophila, discuss some of the conclusions drawn from analyses of large target gene sets and highlight methods that could be used to gain a more thorough understanding of Hox molecular function. In addition, the mechanisms of Hox target gene regulation are considered with special emphasis on recent findings and their implications for Hox protein specificity in the context of the whole organism.
Collapse
Affiliation(s)
- Stefanie D Hueber
- Department of Molecular Biology, AG I. Lohmann, MPI for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
23
|
Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 2008; 134:25-36. [PMID: 18614008 DOI: 10.1016/j.cell.2008.06.030] [Citation(s) in RCA: 1299] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biologists have long sought to understand which genes and what kinds of changes in their sequences are responsible for the evolution of morphological diversity. Here, I outline eight principles derived from molecular and evolutionary developmental biology and review recent studies of species divergence that have led to a genetic theory of morphological evolution, which states that (1) form evolves largely by altering the expression of functionally conserved proteins, and (2) such changes largely occur through mutations in the cis-regulatory sequences of pleiotropic developmental regulatory loci and of the target genes within the vast networks they control.
Collapse
Affiliation(s)
- Sean B Carroll
- Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
24
|
Svingen T, Tonissen KF. Hox transcription factors and their elusive mammalian gene targets. Heredity (Edinb) 2006; 97:88-96. [PMID: 16721389 DOI: 10.1038/sj.hdy.6800847] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hox family of homeodomain transcription factors regulate numerous pathways during developmental and normal cellular processes. All Hox proteins recognise similar sequences in vitro yet display functional diversity in an in vivo environment. This review focuses on the transcriptional and functional specificity elicited by Hox proteins, giving an overview of homeodomain-DNA interactions and the gain of binding specificity through cooperative binding with cofactors. Furthermore, currently identified mammalian Hox target genes are presented, of which the most striking feature is that very few direct Hox targets have been identified. The direct targets participate in an array of cellular functions including organogenesis and cellular differentiation, cell adhesion and migration and cell cycle and apoptotic pathways. A further assessment of identified mammalian promoter targets and the contribution of bases outside the canonical recognition motif is given, highlighting roles they may play in either trans-activation or repression by Hox proteins.
Collapse
Affiliation(s)
- T Svingen
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland 4111, Australia
| | | |
Collapse
|
25
|
Weiss KM. A tooth, a toe, and a vertebra: The genetic dimensions of complex morphological traits. Evol Anthropol 2005. [DOI: 10.1002/evan.1360020407] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Shen W, Chrobak D, Krishnan K, Lawrence HJ, Largman C. HOXB6 protein is bound to CREB-binding protein and represses globin expression in a DNA binding-dependent, PBX interaction-independent process. J Biol Chem 2004; 279:39895-904. [PMID: 15269212 DOI: 10.1074/jbc.m404132200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although HOXB6 and other HOX genes have previously been associated with hematopoiesis and leukemias, the precise mechanism of action of their protein products remains unclear. Here we use a biological model in which HOXB6 represses alpha- and gamma-globin mRNA levels to perform a structure/function analysis for this homeodomain protein. HOXB6 protein represses globin transcript levels in stably transfected K562 cells in a DNA-binding dependent fashion. However, the capacity to form cooperative DNA-binding complexes with the PBX co-factor protein is not required for HOXB6 biological activity. Neither the conserved extreme N-terminal region, a polyglutamic acid region at the protein C terminus, nor the Ser(214) CKII phosphorylation site was required for DNA binding or activity in this model. We have previously reported that HOX proteins can inhibit CREB-binding protein (CBP)-histone acetyltransferase-mediated potentiation of reporter gene transcription. We now show that endogenous CBP is co-precipitated with exogenous HOXB6 from nuclear and cytoplasmic compartments of transfected K562 cells. Furthermore, endogenous CBP co-precipitates with endogenous HOXB6 in day 14.5 murine fetal liver cells during active globin gene expression in this tissue. The CBP interaction motif was localized to the homeodomain but does not require the highly conserved helix 3. Our data suggest that the homeodomain contains most or all of the important structures required for HOXB6 activity in blood cells.
Collapse
Affiliation(s)
- Weifang Shen
- Department of Medicine, University of California Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | | | |
Collapse
|
27
|
Lessard J, Sauvageau G. Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp Hematol 2003; 31:567-85. [PMID: 12842702 DOI: 10.1016/s0301-472x(03)00081-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epigenetic modification of chromatin structure underlies the differentiation of pluripotent hemopoietic stem cells (HSCs) into their committed/differentiated progeny. Compelling evidence indicates that Polycomb group (PcG) genes play a key role in normal and leukemic hemopoiesis through epigenetic regulation of HSC self-renewal/proliferation and commitment. The PcG proteins are constituents of evolutionary highly conserved molecular pathways regulating cell fate in several other tissues through diverse mechanisms, including 1) regulation of self-renewal/proliferation, 2) regulation of senescence/immortalization, 3) interaction with the initiation transcription machinery, 4) interaction with chromatin-condensation proteins, 5) modification of histones, 6) inactivation of paternal X chromosome, and 7) regulation of cell death. It is therefore not surprising that PcG genes lead to pleiotropic phenotypes when mutated and have been associated with malignancies in several systems in both mice and humans. Although much remains to be learned regarding the PcG mechanism(s) of action, advances in identifying the functional domains and enzymatic activities of these multimeric protein complexes have provided insights into how PcG proteins accomplish such processes. Some of the new insights into a role for the PcG cellular memory system in regulating normal and leukemic hemopoiesis are reviewed here, with special emphasis on their potential involvement in epigenetic regulation of gene expression through modification of chromatin structure.
Collapse
Affiliation(s)
- Julie Lessard
- Laboratory of Molecular Genetics of Hemopoietic Stem Cells, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
28
|
Abstract
Functional assays in Drosophila melanogaster with orthologous transcription factors from other species suggest that changes in the protein-coding sequence may play a larger role in the evolution of transcription factor pathways than was previously believed. Interestingly, recent studies provide evidence that changes in transcription factor protein sequence can affect the regulation of only a subset of target genes, even in the same cells of a developing animal.
Collapse
Affiliation(s)
- Cheryl C Hsia
- Section of Cell & Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
29
|
Troy PJ, Daftary GS, Bagot CN, Taylor HS. Transcriptional repression of peri-implantation EMX2 expression in mammalian reproduction by HOXA10. Mol Cell Biol 2003; 23:1-13. [PMID: 12482956 PMCID: PMC140663 DOI: 10.1128/mcb.23.1.1-13.2003] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 08/05/2002] [Accepted: 10/04/2002] [Indexed: 11/20/2022] Open
Abstract
HOXA10 is necessary for mammalian reproduction; however, its transcriptional targets are not completely defined. EMX2, a divergent homeobox gene, is necessary for urogenital tract development. In these studies we identify and characterize the regulation of EMX2 by HOXA10. By using Northern analysis and in situ hybridization, we found that EMX2 is expressed in the adult urogenital tract in an inverse temporal pattern from HOXA10, suggestive of a negative regulatory relationship. Constitutive expression of HOXA10 diminished EMX2 mRNA, whereas blocking HOXA10 through the use of antisense resulted in high EMX2 mRNA expression. Deletional analysis of the EMX2 5' regulatory region revealed that a 150-bp element mediated transcriptional repression when cotransfected with pcDNA3.1/HOXA10 in transient-transfection assays. Binding of HOXA10 protein to this element was demonstrated by electrophoretic mobility shift assay and further localized to a consensus HOXA10 binding site within this element by DNase I footprinting. Site-directed mutagenesis abolished binding, as well as the negative transcriptional regulation. Transcriptional activation of empty spiracles, the Drosophila ortholog of EMX2, by Abdominal-B (HOXA10 ortholog) has been previously demonstrated. These findings demonstrate conservation of the transcription factor-target gene relationship, although the direction of regulation is reversed with possible evolutionary implications.
Collapse
Affiliation(s)
- Patrick J Troy
- Division of Reproductive Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA
| | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Hox gene activity is essential for proper organization or pattern of the vertebrate body plan and is necessary for organogenesis. Sequence conservation within this family of genes is high yet they are involved in very diverse developmental processes. How this family functions in these processes is a challenging question, but is important for the understanding of renal organogenesis. Multiple Hox genes are expressed in the kidney and mutation in at least one group of paralogous genes results in severe renal defects. RECENT FINDINGS Recent studies in mice with targeted Hox gene mutations and in kidney cell lines demonstrate that these genes have evolved to control tissue specific functions through their ability to regulate the expression of renal morphogens. The studies also demonstrate that Hox gene activity is not only restricted by the domain of expression but also by the specificity of the DNA binding homeodomain. Interestingly, these conserved homeodomains are not wholly interchangeable for normal renal organogenesis while they do appear to be interchangeable for axial skeleton development. SUMMARY It is clear that Hox genes regulate important interactions between the ureteric bud and metanephric mesenchyme. Nevertheless, much work remains to define the expression patterns of multiple Hox genes during kidney development, to better determine the functional relationships of the encoded proteins, and to identify additional Hox downstream targets.
Collapse
Affiliation(s)
- Larry T Patterson
- Division of Nephrology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
31
|
Wang VY, Hassan BA, Bellen HJ, Zoghbi HY. Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts. Curr Biol 2002; 12:1611-6. [PMID: 12372255 DOI: 10.1016/s0960-9822(02)01144-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many genes share sequence similarity between species, but their properties often change significantly during evolution. For example, the Drosophila genes engrailed and orthodenticle and the onychophoran gene Ultrabithorax only partially substitute for their mouse or Drosophila homologs. We have been analyzing the relationship between atonal (ato) in the fruit fly and its mouse homolog, Math1. In flies, ato acts as a proneural gene that governs the development of chordotonal organs (CHOs), which serve as stretch receptors in the body wall and joints and as auditory organs in the antennae. In the fly CNS, ato is important not for specification but for axonal arborization. Math1, in contrast, is required for the specification of cells in both the CNS and the PNS. Furthermore, Math1 serves a role in the development of secretory lineage cells in the gut, a function that does not parallel any known to be served by ato. We wondered whether ato and Math1 might be more functionally homologous than they appear, so we expressed Math1 in ato mutant flies and ato in Math1 null mice. To our surprise, the two proteins are functionally interchangeable.
Collapse
Affiliation(s)
- Vincent Y Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
32
|
Abstract
It is presumed that the evolution of morphological diversity in animals and plants is driven by changes in the developmental processes that govern morphology, hence basically by changes in the function and/or expression of a defined set of genes that control these processes. A large body of evidence has suggested that changes in developmental gene regulation are the predominant mechanisms that sustain morphological evolution, being much more important than the evolution of the primary sequences and functions of proteins. Recent reports challenge this idea by highlighting functional evolution of Hox proteins during the evolutionary history of arthropods.
Collapse
Affiliation(s)
- Michel Vervoort
- Evolution et Developpement des protostomiens, Centre de Genetique Moleculaire, UPR 2167 CNRS. 1, av. de la terrasse; 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
33
|
Abstract
Comparative studies suggest that gene duplication, changes in cis-regulatory elements and changes in protein sequence all contribute to the evolution of Hox gene functions, but the evolutionary dynamics of these changes are probably different. It seems likely that gene duplications arise as neutral changes and acquire an adaptive significance later on. By contrast, some changes in regulatory and protein-coding sequences can have immediate consequences in morphological evolution.
Collapse
Affiliation(s)
- Michalis Averof
- Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Vassilika Vouton, 711 10 Iraklio, Crete, Greece.
| |
Collapse
|
34
|
Abstract
BACKGROUND Hox genes specify cell fate and regional identity during animal development. These genes are present in evolutionarily conserved clusters thought to have arisen by gene duplication and divergence. Most members of the Drosophila Hox complex (HOM-C) have homeotic functions. However, a small number of HOM-C genes, such as the segmentation gene fushi tarazu (ftz), have nonhomeotic functions. If these genes arose from a homeotic ancestor, their functional properties must have changed significantly during the evolution of modern Drosophila. RESULTS Here, we have asked how Drosophila ftz evolved from an ancestral homeotic gene to obtain a novel function in segmentation. We expressed Ftz proteins at various developmental stages to assess their potential to regulate segmentation and to generate homeotic transformations. Drosophila Ftz protein has lost the inherent ability to mediate homeosis and functions exclusively in segmentation pathways. In contrast, Ftz from the primitive insect Tribolium (Tc-Ftz) has retained homeotic potential, generating homeotic transformations in larvae and adults and retaining the ability to repress homothorax, a hallmark of homeotic genes. Similarly, Schistocerca Ftz (Sg-Ftz) caused homeotic transformations of antenna toward leg. Primitive Ftz orthologs have moderate segmentation potential, reflected by weak interactions with the segmentation-specific cofactor Ftz-F1. Thus, Ftz orthologs represent evolutionary intermediates that have weak segmentation potential but retain the ability to act as homeotic genes. CONCLUSIONS ftz evolved from an ancestral homeotic gene as a result of changes in both regulation of expression and specific alterations in the protein-coding region. Studies of ftz orthologs from primitive insects have provided a "snap-shot" view of the progressive evolution of a Hox protein as it took on segmentation function and lost homeotic potential. We propose that the specialization of Drosophila Ftz for segmentation resulted from loss and gain of specific domains that mediate interactions with distinct cofactors.
Collapse
Affiliation(s)
- U Löhr
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
35
|
Boyl PP, Signore M, Annino A, Barbera JP, Acampora D, Simeone A. Otxgenes in the development and evolution of the vertebrate brain. Int J Dev Neurosci 2001; 19:353-63. [PMID: 11378295 DOI: 10.1016/s0736-5748(01)00003-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Most of the gene candidates for the control of developmental programmes that underlie brain morphogenesis in vertebrates are the orthologues of Drosophila genes coding for signalling molecules or transcription factors. Among these, the orthodenticle group, including the Drosophila orthodenticle (otd) and the vertebrate Otx1 and Otx2 genes, is mostly involved in fundamental processes of anterior neural patterning. In mouse, Drosophila and intermediate species otd/Otx genes have shown a remarkable similarity in expression pattern suggesting that they could be part of a conserved control system operating in the brain and different from that coded by the HOX complexes controlling the hindbrain and spinal cord. In order to verify this hypothesis, a series of mouse models have been generated in which the functions of the murine Otx genes were: (i) fully inactivated, (ii) replaced with each other, and (iii) replaced with the Drosophila otd gene. The data obtained highlight a crucial role for the Otx genes in specification, regionalization and terminal differentiation of rostral central nervous system and lead to hypothesize that modification of their regulatory control may have influenced the morphogenesis and evolution of the brain.
Collapse
Affiliation(s)
- P P Boyl
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, New Hunt's House, SE1 1UL, London, UK
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Most of the gene candidates for the control of developmental programmes that underlie brain morphogenesis in vertebrates are the homologues of Drosophila genes coding for signalling molecules or transcription factors. Among these, the orthodenticle group includes the Drosophila orthodenticle (otd) and the vertebrate Otx1 and Otx2 genes, which are mostly involved in fundamental processes of anterior neural patterning. These genes encode transcription factors that recognise specific target sequences through the DNA binding properties of the homeodomain. In Drosophila, mutations of otd cause the loss of the anteriormost head neuromere where the gene is transcribed, suggesting that it may act as a segmentation "gap" gene. In mouse embryos, the expression patterns of Otx1 and Otx2 have shown a remarkable similarity with the Drosophila counterpart. This suggested that they could be part of a conserved control system operating in the brain and different from that coded by the HOX complexes controlling the hindbrain and spinal cord. To verify this hypothesis a series of mouse models have been generated in which the functions of the murine genes were: (i) fully inactivated, (ii) replaced with each others, (iii) replaced with the Drosophila otd gene. Otx1-/- mutants suffer from epilepsy and are affected by neurological, hormonal, and sense organ defects. Otx2-/- mice are embryonically lethal, they show gastrulation impairments and fail in specifying anterior neural plate. Analysis of the Otx1-/-; Otx2+/- double mutants has shown that a minimal threshold level of the proteins they encode is required for the correct positioning of the midbrain-hindbrain boundary (MHB). In vivo otd/Otx reciprocal gene replacement experiments have provided evidence of a general functional equivalence among otd, Otx1 and Otx2 in fly and mouse. Altogether these data highlight a crucial role for the Otx genes in specification, regionalization and terminal differentiation of rostral central nervous system (CNS) and lead to hypothesize that modification of their regulatory control may have influenced morphogenesis and evolution of the brain.
Collapse
Affiliation(s)
- D Acampora
- International Institute of Genetics and Biophysics, CNR, Via G. Marconi 12, 80125 Naples, Italy
| | | | | | | |
Collapse
|
37
|
Mann RS, Morata G. The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu Rev Cell Dev Biol 2001; 16:243-71. [PMID: 11031237 DOI: 10.1146/annurev.cellbio.16.1.243] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the past decade, much progress has been made in understanding how the adult fly is built. Some old concepts such as those of compartments and selector genes have been revitalized. In addition, recent work suggests the existence of genes involved in the regionalization of the adult that do not have all the features of selector genes. Nevertheless, they generate morphological distinctions within the body plan. Here we re-examine some of the defining criteria of selector genes and suggest that these newly characterized genes fulfill many, but not all, of these criteria. Further, we propose that these genes can be classified according to the domains in which they function. Finally, we discuss experiments that address the molecular mechanisms by which selector and selector-like gene products function in the fly.
Collapse
Affiliation(s)
- R S Mann
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, 701 West 168th Street, New York 10032, USA.
| | | |
Collapse
|
38
|
Powers TP, Hogan J, Ke Z, Dymbrowski K, Wang X, Collins FH, Kaufman TC. Characterization of the Hox cluster from the mosquito Anopheles gambiae (Diptera: Culicidae). Evol Dev 2000; 2:311-25. [PMID: 11256376 DOI: 10.1046/j.1525-142x.2000.00072.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hox genes have been found to encode transcription factors, which specify the morphological identity of structures along the anteroposterior axis of animals ranging from worms to mice. The canonical set of nine genes is organized in a cluster in the genome of several protostomes and deuterostomes. However, within insects, whereas the Hox genes are organized in a single cluster in the beetle Tribolium castaneum, they are split into two separate groups in the flies Drosophila melanogaster and Drosophila virilis. The significance of a split Hox cluster is unknown and has been observed in only one organism outside the Drosophila lineage: the nematode Caenorhabditis elegans. We have cloned a majority of the Hox genes from the mosquito Anopheles gambiae (Diptera: Culicidae) and compared their genomic organization with that of Tribolium and Drosophila to determine if a split Hox cluster is found in dipterans aside from the Drosophilidae. We find that the Hox genes in Anopheles, as in Tribolium, are organized in a single cluster that spans a genomic region of at least 700 kb. This finding suggests that, within the insect genome, the partition of the Hox cluster may have evolved exclusively within the Drosophila lineage. The genomic structures of the resident genes, however, appear to be largely conserved between A. gambiae and D. melanogaster.
Collapse
Affiliation(s)
- T P Powers
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The murine HOXA-2 protein shares amino acid sequence similarity with Drosophila Proboscipedia (PB). In this paper, we test whether HOXA-2 and PB are functionally equivalent in Drosophila. In Drosophila, PB inhibits SCR activity required for larval T1 beard formation and adult tarsus formation and is required for maxillary palp and proboscis formation. HOXA-2 expressed from a heat-shock promoter weakly suppressed SCR activity required for T1 beard formation. But interestingly neither PB nor HOXA-2 expressed from a heat-shock promoter suppressed murine HOXA-5 activity, the murine SCR homologue, from inducing ectopic T1 beards in T2 and T3, indicating that HOXA-5 does not interact with PB. HOXA-2 activity expressed from the Tubulin alpha 1 promoter modified the pb null phenotype resulting in a proboscis-to-arista transformation, indicating that HOXA-2 was able to suppress SCR activity required for tarsus formation. However, HOXA-2 expressed from a Tubulin alpha 1 promoter was unable to direct maxillary palp determination when either ectopically expressed in the antenna or in the maxillary palp primordia of a pb null mutant. HOXA-2 was also unable to rescue pseudotrachea formation in a pb null mutant. These results indicate that the only activity that PB and HOXA-2 weakly share is the inhibition of SCR activity, and that murine HOXA-5 and Drosophila SCR do not share inhibition by PB activity.
Collapse
Affiliation(s)
- A Percival-Smith
- Department of Zoology, University of Western Ontario, London, Canada.
| | | |
Collapse
|
40
|
Lan Y, Fujioka M, Polsgrove R, Miskiewicz P, Morrissey D, Goto T, Weir M. Plasticity of Drosophila paired function. DEVELOPMENTAL GENETICS 2000; 23:45-55. [PMID: 9706693 DOI: 10.1002/(sici)1520-6408(1998)23:1<45::aid-dvg5>3.0.co;2-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Drosophila Paired (Prd) transcription factor has homeodomain (HD) and paired domain (PD) DNA-binding activities required for in vivo function. Correspondingly, Prd activation of late even-skipped (eve) expression occurs through a conserved target sequence (PTE) with HD and PD half sites, both of which are required for activation. To investigate the relationship between the HD and PD, and their roles in conferring specificity to Prd function, we tested altered versions of the Prd protein and of the PTE target site using in vivo assays in embryos. We found that function through PTE was constrained by the targeting specifications of both the HD and PD as well as the spatial relationship between these two domains. PTE function was also constrained by the spacing between the target half sites for the PD and HD, although surprisingly, late eve activation was retained when PTE was replaced by in vitro optimized binding sites for either the PD alone or for an HD dimer. In contrast to late eve regulation, other Prd targets tolerated more changes in the Prd protein, suggesting that their target sequences may be qualitatively different from PTE.
Collapse
Affiliation(s)
- Y Lan
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The Hox genes have been implicated as central to the evolution of animal body plan diversity. Regulatory changes both in Hox expression domains and in Hox-regulated gene networks have arisen during the evolution of related taxa, but there is little knowledge of whether functional changes in Hox proteins have also contributed to morphological evolution. For example, the evolution of greater numbers of differentiated segments and body parts in insects, compared with the simpler body plans of arthropod ancestors, may have involved an increase in the spectrum of biochemical interactions of individual Hox proteins. Here, we compare the in vivo functions of orthologous Ultrabithorax (Ubx) proteins from the insect Drosophila melanogaster and from an onychophoran, a member of a sister phylum with a more primitive and homonomous body plan. These Ubx proteins, which have been diverging in sequence for over 540 million years, can generate many of the same gain-of-function tissue transformations and can activate and repress many of the same target genes when expressed during Drosophila development. However, the onychophora Ubx (OUbx) protein does not transform the segmental identity of the embryonic ectoderm or repress the Distal-less target gene. This functional divergence is due to sequence changes outside the conserved homeodomain region. The inability of OUbx to function like Drosophila Ubx (DUbx) in the embryonic ectoderm indicates that the Ubx protein may have acquired new cofactors or activity modifiers since the divergence of the onychophoran and insect lineages.
Collapse
Affiliation(s)
- J K Grenier
- Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
Wang J, Tie F, Jane E, Schumacher A, Harte PJ, Magnuson T. Mouse homolog of theDrosophila Pc-G geneesc exerts a dominant negative effect inDrosophila. Genesis 2000. [DOI: 10.1002/(sici)1526-968x(200001)26:1<67::aid-gene9>3.0.co;2-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Ryoo HD, Marty T, Casares F, Affolter M, Mann RS. Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. Development 1999; 126:5137-48. [PMID: 10529430 DOI: 10.1242/dev.126.22.5137] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To regulate their target genes, the Hox proteins of Drosophila often bind to DNA as heterodimers with the homeodomain protein Extradenticle (EXD). For EXD to bind DNA, it must be in the nucleus, and its nuclear localization requires a third homeodomain protein, Homothorax (HTH). Here we show that a conserved N-terminal domain of HTH directly binds to EXD in vitro, and is sufficient to induce the nuclear localization of EXD in vivo. However, mutating a key DNA binding residue in the HTH homeodomain abolishes many of its in vivo functions. HTH binds to DNA as part of a HTH/Hox/EXD trimeric complex, and we show that this complex is essential for the activation of a natural Hox target enhancer. Using a dominant negative form of HTH we provide evidence that similar complexes are important for several Hox- and exd-mediated functions in vivo. These data suggest that Hox proteins often function as part of a multiprotein complex, composed of HTH, Hox, and EXD proteins, bound to DNA.
Collapse
Affiliation(s)
- H D Ryoo
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, New York, NY, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Homeotic mutations in Drosophila can result in dramatic phenotypes that suggest the possibility for rapid morphological evolution, but dissection of the genetic pathway downstream of Ultrabithorax is beginning to reveal how wing morphology may have evolved by more gradual transformations.
Collapse
Affiliation(s)
- G Gibson
- Department of Genetics, North Carolina State University, Raleigh 27695-7614, USA.
| |
Collapse
|
45
|
Hanks MC, Loomis CA, Harris E, Tong CX, Anson-Cartwright L, Auerbach A, Joyner A. Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development. Development 1998; 125:4521-30. [PMID: 9778510 DOI: 10.1242/dev.125.22.4521] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Engrailed-1 gene, En1, a murine homologue of the Drosophila homeobox gene engrailed (en), is required for midbrain and cerebellum development and dorsal/ventral patterning of the limbs. In Drosophila, en is involved in regulating a number of key patterning processes including segmentation of the epidermis. An important question is whether, during evolution, the biochemical properties of En proteins have been conserved, revealing a common underlying molecular mechanism to their diverse developmental activities. To address this question, we have replaced the coding sequences of En1 with Drosophila en. Mice expressing Drosophila en in place of En1 have a near complete rescue of the lethal En1 mutant brain defect and most skeletal abnormalities. In contrast, expression of Drosophila en in the embryonic limbs of En1 mutants does not lead to repression of Wnt7a in the embryonic ventral ectoderm or full rescue of the embryonic dorsal/ventral patterning defects. Furthermore, neither En2 nor en rescue the postnatal limb abnormalities that develop in rare En1 null mutants that survive. These studies demonstrate that the biochemical activity utilized in mouse to mediate brain development has been retained by Engrailed proteins across the phyla, and indicate that during evolution vertebrate En proteins have acquired two unique functions during embryonic and postnatal limb development and that only En1 can function postnatally.
Collapse
Affiliation(s)
- M C Hanks
- Developmental Genetics Program and Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine and Departments of Cell Biology and Physiology and Neuroscience, NYU Medical Center, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Viganò MA, Di Rocco G, Zappavigna V, Mavilio F. Definition of the transcriptional activation domains of three human HOX proteins depends on the DNA-binding context. Mol Cell Biol 1998; 18:6201-12. [PMID: 9774637 PMCID: PMC109207 DOI: 10.1128/mcb.18.11.6201] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hox proteins control developmental patterns and cell differentiation in vertebrates by acting as positive or negative regulators of still unidentified downstream target genes. The homeodomain and other small accessory sequences encode the DNA-protein and protein-protein interaction functions which ultimately dictate target recognition and functional specificity in vivo. The effector domains responsible for either positive or negative interactions with the cell transcriptional machinery are unknown for most Hox proteins, largely due to a lack of physiological targets on which to carry out functional analysis. We report the identification of the transcriptional activation domains of three human Hox proteins, HOXB1, HOXB3, and HOXD9, which interact in vivo with the autoregulatory and cross-regulatory enhancers of the murine Hoxb-1 and human HOXD9 genes. Activation domains have been defined both in a homologous context, i.e., within a HOX protein binding as a monomer or as a HOX-PBX heterodimer to the specific target, and in a heterologous context, after translocation to the yeast Gal4 DNA-binding domain. Transfection analysis indicates that activation domains can be identified in different regions of the three HOX proteins depending on the context in which they interact with the DNA target. These results suggest that Hox proteins may be multifunctional transcriptional regulators, interacting with different cofactors and/or components of the transcriptional machinery depending on the structure of their target regulatory elements.
Collapse
Affiliation(s)
- M A Viganò
- TIGET, Istituto Scientifico H.S. Raffaele, 20132 Milan, Italy
| | | | | | | |
Collapse
|
47
|
Kim J, Jones BW, Zock C, Chen Z, Wang H, Goodman CS, Anderson DJ. Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc Natl Acad Sci U S A 1998; 95:12364-9. [PMID: 9770492 PMCID: PMC22837 DOI: 10.1073/pnas.95.21.12364] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glial cells missing (gcm) gene in Drosophila encodes a transcription factor that determines the choice between glial and neuronal fates. We report here the isolation of two mammalian gcm homologs, Gcm1 and Gcm2, and the characterization of their expression patterns during embryonic development. Although Gcm2 is expressed in neural tissues at a low level, the major sites of expression for both of the mammalian genes are nonneural, suggesting that the functions of the mammalian homologs have diverged and diversified. However, when expressed ectopically, Gcm1 can substitute functionally for Drosophila gcm by transforming presumptive neurons into glia. Thus, certain biochemical properties, although not the specificity of the tissue in which the gene is expressed, have been conserved through the evolution of the Gcm gene family.
Collapse
Affiliation(s)
- J Kim
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Ranganayakulu G, Elliott DA, Harvey RP, Olson EN. Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 1998; 125:3037-48. [PMID: 9671578 DOI: 10.1242/dev.125.16.3037] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent evidence suggests that cardiogenesis in organisms as diverse as insects and vertebrates is controlled by an ancient and evolutionarily conserved transcriptional pathway. In Drosophila, the NK-2 class homeobox gene tinman (tin) is expressed in cardiac and visceral mesodermal progenitors and is essential for their specification. In vertebrates, the tin homologue Nkx2-5/Csx and related genes are expressed in early cardiac and visceral mesodermal progenitors. To test for an early cardiogenic function for Nkx2-5 and to examine whether cardiogenic mechanisms are conserved, we introduced the mouse Nkx2-5 gene and various mutant and chimeric derivatives into the Drosophila germline, and tested for their ability to rescue the tin mutant phenotype. While tin itself strongly rescued both heart and visceral mesoderm, Nkx2-5 rescued only visceral mesoderm. Other vertebrate ‘non-cardiac’ NK-2 genes rescued neither. We mapped the cardiogenic domain of tin to a unique region at its N terminus and, when transferred to Nkx2-5, this region conferred a strong ability to rescue heart. Thus, the cardiac and visceral mesodermal functions of NK-2 homeogenes are separable in the Drosophila assay. The results suggest that, while tin and Nkx2-5 show close functional kinship, their mode of deployment in cardiogenesis has diverged possibly because of differences in their interactions with accessory factors. The distinct cardiogenic programs in vertebrates and flies may be built upon a common and perhaps more ancient program for specification of visceral muscle.
Collapse
Affiliation(s)
- G Ranganayakulu
- Department of Molecular Biology and Oncology, The University of Texas Southwestern Medical Center, Dallas, Tx 75235-9148, USA
| | | | | | | |
Collapse
|
49
|
Duncan DM, Burgess EA, Duncan I. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev 1998; 12:1290-303. [PMID: 9573046 PMCID: PMC316766 DOI: 10.1101/gad.12.9.1290] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the molecular characterization of the spineless (ss) gene of Drosophila, and present evidence that it plays a central role in defining the distal regions of both the antenna and leg. ss encodes the closest known homolog of the mammalian dioxin receptor, a transcription factor of the bHLH-PAS family. Loss-of-function alleles of ss cause three major phenotypes: transformation of distal antenna to leg, deletion of distal leg (tarsal) structures, and reduction in size of most bristles. Consistent with these phenotypes, ss is expressed in the distal portion of the antennal imaginal disc, the tarsal region of each leg disc, and in bristle precursor cells. Ectopic expression of ss causes transformation of the maxillary palp and distal leg to distal antenna, and induces formation of an ectopic antenna in the rostral membrane. These effects indicate that ss plays a primary role in specifying distal antennal identity. In the tarsus, ss is expressed only early, and is required for later expression of the tarsal gene bric à brac (bab). Ectopic expression causes the deletion of medial leg structures, suggesting that ss plays an instructive role in the establishment of the tarsal primordium. In both the antenna and leg, ss expression is shown to depend on Distal-less (Dll), a master regulator of ventral appendage formation. The antennal transformation and tarsal deletions caused by ss loss-of-function mutations are probably atavistic, suggesting that ss played a central role in the evolution of distal structures in arthropod limbs.
Collapse
Affiliation(s)
- D M Duncan
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
50
|
Leuzinger S, Hirth F, Gerlich D, Acampora D, Simeone A, Gehring WJ, Finkelstein R, Furukubo-Tokunaga K, Reichert H. Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development 1998; 125:1703-10. [PMID: 9521908 DOI: 10.1242/dev.125.9.1703] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the orthodenticle gene family are essential for embryonic brain development in animals as diverse as insects and mammals. In Drosophila, mutational inactivation of the orthodenticle gene results in deletions in anterior parts of the embryonic brain and in defects in the ventral nerve cord. In the mouse, targeted elimination of the homologous Otx2 or Otx1 genes causes defects in forebrain and/or midbrain development. To determine the morphogenetic properties and the extent of evolutionary conservation of the orthodenticle gene family in embryonic brain development, genetic rescue experiments were carried out in Drosophila. Ubiquitous overexpression of the orthodenticle gene rescues both the brain defects and the ventral nerve cord defects in orthodenticle mutant embryos; morphology and nervous system-specific gene expression are restored. Two different time windows exist for the rescue of the brain versus the ventral nerve cord. Ubiquitous overexpression of the human OTX1 or OTX2 genes also rescues the brain and ventral nerve cord phenotypes in orthodenticle mutant embryos; in the brain, the efficiency of morphological rescue is lower than that obtained with overexpression of orthodenticle. Overexpression of either orthodenticle or the human OTX gene homologs in the wild-type embryo results in ectopic neural structures. The rescue of highly complex brain structures in Drosophila by either fly or human orthodenticle gene homologs indicates that these genes are interchangeable between vertebrates and invertebrates and provides further evidence for an evolutionarily conserved role of the orthodenticle gene family in brain development.
Collapse
Affiliation(s)
- S Leuzinger
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|