1
|
Zeng R, Chen X, Chen Y, Dong J. FGFR4 inhibition augments paclitaxel-induced cell death in ovarian cancer. Int Immunopharmacol 2025; 155:114626. [PMID: 40245772 DOI: 10.1016/j.intimp.2025.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVES Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, which has a high mortality rate due to frequent tumor recurrence. The development of drug resistance against the first-line chemotherapeutic agent, such as paclitaxel/Taxol®, represents a critical reason. The mechanisms of paclitaxel resistance remain largely unknown, and druggable drivers which can be targeted to prevent or revert paclitaxel resistance also need to be identified. METHODS Phos-tag-based screens in cells treated with paclitaxel were used to identify key regulators involved in paclitaxel resistance, such as fibroblast growth factor receptor 4 (FGFR4). The functional role of FGFR4 in regulating paclitaxel resistance was further identified using apoptosis assays, which included the identification of apoptotic marker levels and activities. The involvement of FGFR4 downstream signaling pathways involved in paclitaxel resistance were identified through western blotting and quantitative PCR. Their roles in regulating paclitaxel resistance were also validated using apoptosis assays. Immunofluorescent staining was performed to identify the synergy of paclitaxel and FGFR4 inhibition. RESULTS Functional in vitro and in vivo studies demonstrate that FGFR4 depletion suppresses ovarian cancer cell proliferation, migration, and tumor growth. Importantly, FGFR4 silencing or specific inhibition can sensitize ovarian cancer cells to paclitaxel, whereas FGFR4 overexpression confers paclitaxel resistance. Mechanistically, FGFR4 regulates paclitaxel sensitivity in EOC cells through modulating the expression of the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-xL) via MEK-ERK-RSK signaling pathway. The inhibition of Bcl-xL or MEK-ERK-RSK signaling can also enhance paclitaxel-stimulated cytotoxicity. CONCLUSION These findings indicate that targeting FGFR4 can be a promising novel strategy to overcome paclitaxel resistance and improve the outcomes of EOC patients.
Collapse
Affiliation(s)
- Renya Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.; Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China..
| | - Xingcheng Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA..
| |
Collapse
|
2
|
Hu Z, Martí J. Atomic-level mechanisms of abnormal activation in NRAS oncogenes from two-dimensional free energy landscapes. NANOSCALE 2025; 17:4047-4057. [PMID: 39775302 DOI: 10.1039/d4nr03372h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The NRAS-mutant subset of melanoma is one of the most aggressive and lethal types associated with poor overall survival. Unfortunately, a low understanding of the NRAS-mutant dynamic behavior has led to the lack of clinically approved therapeutic agents able to directly target NRAS oncogenes. In this work, accurate local structures of NRAS and its mutants have been fully explored through the corresponding free energy surfaces obtained by microsecond scale well-tempered metadynamics simulations. Free energy calculations are crucial to reveal the precise mechanisms of Q61 mutations at the atomic level. Considering specific atom-atom distances d and angles ϕ as appropriate reaction coordinates we have obtained free energy surfaces revealing local and global minima together with their main transition states, unveiling the mechanisms of abnormal NRAS activation from the atomic-level and quantitatively analyzing the corresponding stable states. This will help in advancing our understanding of the basic mechanisms of NRAS mutations, offering new opportunities for the design of potential inhibitors.
Collapse
Affiliation(s)
- Zheyao Hu
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B5-209 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia, Spain.
| | - Jordi Martí
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B5-209 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Rehman A, Alwutayd KM, Alshehri D, Alsudays IM, Azeem F, Rahman S, Abid M, Shah AA. Regulatory role of AGC genes in heat stress adaptation in maize ( Zea mays). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23282. [PMID: 38758970 DOI: 10.1071/fp23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Heat stress represents a significant environmental challenge that restricts maize (Zea mays ) growth and yield on a global scale. Within the plant kingdom, the AGC gene family, encoding a group of protein kinases, has emerged as crucial players in various stress responses. Nevertheless, a comprehensive understanding of AGC genes in Z. mays under heat-stress conditions remains elusive. A genome-wide analysis was done using bioinformatics techniques to identify 39 AGC genes in Z. mays , categorising them into three subfamilies based on their conserved domains. We investigated their phylogenetic relationships, gene structures (including intron-exon configurations), and expression patterns. These genes are likely involved in diverse signalling pathways, fulfilling distinct roles when exposed to heat stress conditions. Notably, most ZmAGC1.5, ZmAGC1.9, ZmNDR3, ZmNDR5 and ZmIRE3 exhibited significant changes in expression levels under heat stress, featuring a high G-box ratio. Furthermore, we pinpointed a subset of AGC genes displaying highly coordinated expression, implying their potential involvement in the heat stress response pathway. Our study offers valuable insights into the contribution of AGC genes to Z. mays 's heat stress response, thus facilitating the development of heat-tolerant Z. mays varieties.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahroz Rahman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Abid
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, Pakistan
| | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Zhang X, Ma H, Gao Y, Liang Y, Du Y, Hao S, Ni T. The Tumor Microenvironment: Signal Transduction. Biomolecules 2024; 14:438. [PMID: 38672455 PMCID: PMC11048169 DOI: 10.3390/biom14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Haijun Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yabing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| |
Collapse
|
5
|
Derwich A, Sykutera M, Bromińska B, Rubiś B, Ruchała M, Sawicka-Gutaj N. The Role of Activation of PI3K/AKT/mTOR and RAF/MEK/ERK Pathways in Aggressive Pituitary Adenomas-New Potential Therapeutic Approach-A Systematic Review. Int J Mol Sci 2023; 24:10952. [PMID: 37446128 PMCID: PMC10341524 DOI: 10.3390/ijms241310952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary tumors (PT) are mostly benign, although occasionally they demonstrate aggressive behavior, invasion of surrounding tissues, rapid growth, resistance to conventional treatments, and multiple recurrences. The pathogenesis of PT is still not fully understood, and the factors responsible for its invasiveness, aggressiveness, and potential for metastasis are unknown. RAF/MEK/ERK and mTOR signaling are significant pathways in the regulation of cell growth, proliferation, and survival, its importance in tumorigenesis has been highlighted. The aim of our review is to determine the role of the activation of PI3K/AKT/mTOR and RAF/MEK/ERK pathways in the pathogenesis of pituitary tumors. Additionally, we evaluate their potential in a new therapeutic approach to provide alternative therapies and improved outcomes for patients with aggressive pituitary tumors that do not respond to standard treatment. We perform a systematic literature search using the PubMed, Embase, and Scopus databases (search date was 2012-2023). Out of the 529 screened studies, 13 met the inclusion criteria, 7 related to the PI3K/AKT/mTOR pathway, and 7 to the RAF/MEK/ERK pathway (one study was used in both analyses). Understanding the specific factors involved in PT tumorigenesis provides opportunities for targeted therapies. We also review the possible new targeted therapies and the use of mTOR inhibitors and TKI in PT management. Although the RAF/MEK/ERK and PI3K/AKT/mTOR pathways play a pivotal role in the complex signaling network along with many interactions, further research is urgently needed to clarify the exact functions and the underlying mechanisms of these signaling pathways in the pathogenesis of pituitary adenomas and their role in its invasiveness and aggressive clinical outcome.
Collapse
Affiliation(s)
- Aleksandra Derwich
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Monika Sykutera
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Barbara Bromińska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| |
Collapse
|
6
|
Discovering and Targeting Dynamic Drugging Pockets of Oncogenic Proteins: The Role of Magnesium in Conformational Changes of the G12D Mutated Kirsten Rat Sarcoma-Guanosine Diphosphate Complex. Int J Mol Sci 2022; 23:ijms232213865. [PMID: 36430338 PMCID: PMC9692486 DOI: 10.3390/ijms232213865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
KRAS-G12D mutations are the one of most frequent oncogenic drivers in human cancers. Unfortunately, no therapeutic agent directly targeting KRAS-G12D has been clinically approved yet, with such mutated species remaining undrugged. Notably, cofactor Mg2+ is closely related to the function of small GTPases, but no investigation has been conducted yet on Mg2+ when associated with KRAS. Herein, through microsecond scale molecular dynamics simulations, we found that Mg2+ plays a crucial role in the conformational changes of the KRAS-GDP complex. We located two brand new druggable dynamic pockets exclusive to KRAS-G12D. Using the structural characteristics of these two dynamic pockets, we designed in silico the inhibitor DBD15-21-22, which can specifically and tightly target the KRAS-G12D-GDP-Mg2+ ternary complex. Overall, we provide two brand new druggable pockets located on KRAS-G12D and suitable strategies for its inhibition.
Collapse
|
7
|
Interactions between EGFR and EphA2 promote tumorigenesis through the action of Ephexin1. Cell Death Dis 2022; 13:528. [PMID: 35668076 PMCID: PMC9170705 DOI: 10.1038/s41419-022-04984-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
The cell signaling factors EGFR, EphA2, and Ephexin1 are associated with lung and colorectal cancer and play an important role in tumorigenesis. Although the respective functional roles of EGFR and EphA2 are well known, interactions between these proteins and a functional role for the complex is not understood. Here, we showed that Ephexin1, EphA2, and EGFR are each expressed at higher levels in lung and colorectal cancer patient tissues, and binding of EGFR to EphA2 was associated with both increased tumor grade and metastatic cases in both cancer types. Treatment with Epidermal Growth Factor (EGF) induced binding of the RR domain of EGFR to the kinase domain of EphA2, and this binding was promoted by Ephexin1. Additionally, the AKT-mediated phosphorylation of EphA2 (at Ser897) promoted interactions with EGFR, pointing to the importance of this pathway. Two mutations in EGFR, L858R and T790M, that are frequently observed in lung cancer patients, promoted binding to EphA2, and this binding was dependent on Ephexin1. Our results indicate that the formation of a complex between EGFR, EphA2, and Ephexin1 plays an important role in lung and colorectal cancers, and that inhibition of this complex may be an effective target for cancer therapy.
Collapse
|
8
|
Brown MA, Ried T. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers (Basel) 2022; 14:784. [PMID: 35159051 PMCID: PMC8834070 DOI: 10.3390/cancers14030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
Colon cancer tumorigenesis occurs incrementally. The process involves the acquisition of mutations which typically follow an established pattern: activation of WNT signaling, activation of RAS signaling, and inhibition of TGF-β signaling. This arrangement recapitulates, to some degree, the stem cell niche of the intestinal epithelium, which maintains WNT and EGF activity while suppressing TGF-β. The resemblance between the intestinal stem cell environment and colon cancer suggests that the concerted activity of these pathways generates and maintains a potent growth-inducing stimulus. However, each pathway has a myriad of downstream targets, making it difficult to identify which aspects of these pathways are drivers. To address this, we utilize the cell cycle, the ultimate regulator of cell proliferation, as a foundation for cross-pathway integration. We attempt to generate an overview of colon cancer signaling patterns by integrating the major colon cancer signaling pathways in the context of cell replication, specifically, the entrance from G1 into S-phase.
Collapse
Affiliation(s)
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
9
|
Conformation-locking antibodies for the discovery and characterization of KRAS inhibitors. Nat Biotechnol 2022; 40:769-778. [PMID: 34992247 DOI: 10.1038/s41587-021-01126-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022]
Abstract
Small molecules that stabilize inactive protein conformations are an underutilized strategy for drugging dynamic or otherwise intractable proteins. To facilitate the discovery and characterization of such inhibitors, we created a screening platform to identify conformation-locking antibodies for molecular probes (CLAMPs) that distinguish and induce rare protein conformational states. Applying the approach to KRAS, we discovered CLAMPs that recognize the open conformation of KRASG12C stabilized by covalent inhibitors. One CLAMP enables the visualization of KRASG12C covalent modification in vivo and can be used to investigate response heterogeneity to KRASG12C inhibitors in patient tumors. A second CLAMP enhances the affinity of weak ligands binding to the KRASG12C switch II region (SWII) by stabilizing a specific conformation of KRASG12C, thereby enabling the discovery of such ligands that could serve as leads for the development of drugs in a high-throughput screen. We show that combining the complementary properties of antibodies and small molecules facilitates the study and drugging of dynamic proteins.
Collapse
|
10
|
Pal AS, Bains M, Agredo A, Kasinski AL. Identification of microRNAs that promote erlotinib resistance in non-small cell lung cancer. Biochem Pharmacol 2021; 189:114154. [PMID: 32681833 PMCID: PMC7854807 DOI: 10.1016/j.bcp.2020.114154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths, demanding improvement in current treatment modalities to reduce the mortality rates. Lung cancer is divided into two major classes with non-small cell lung cancer representing ~84% of lung cancer cases. One strategy widely used to treat non-small cell lung cancer patients includes targeting the epidermal growth factor receptor (EGFR) using EGFR-inhibitors, such as erlotinib, gefitinib, and afatinib. However, most patients develop resistance to EGFR-inhibitors within a year post-treatment. Although some mechanisms that drive resistance to EGFR-inhibitors have been identified, there are many cases in which the mechanisms are unknown. Thus, in this study, we examined the role of microRNAs in driving EGFR-inhibitor resistance. As mediators of critical pro-growth pathways, microRNAs are severely dysregulated in multiple diseases, including non-small cell lung cancer where microRNA dysregulation also contributes to drug resistance. In this work, through screening of 2019 mature microRNAs, multiple microRNAs were identified that drive EGFR-inhibitor resistance in non-small cell lung cancer cell lines, including miR-432-5p.
Collapse
Affiliation(s)
- A S Pal
- Department of Biological Sciences, West Lafayette, IN, USA; Purdue Life Sciences Interdisciplinary Program (PULSe), West Lafayette, IN, USA
| | - M Bains
- Department of Biological Sciences, West Lafayette, IN, USA
| | - A Agredo
- Department of Biological Sciences, West Lafayette, IN, USA; Purdue Life Sciences Interdisciplinary Program (PULSe), West Lafayette, IN, USA
| | - A L Kasinski
- Department of Biological Sciences, West Lafayette, IN, USA; Purdue University Center for Cancer Research, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
12
|
Irnaten M, Duff A, Clark A, O’Brien C. Intra-Cellular Calcium Signaling Pathways (PKC, RAS/RAF/MAPK, PI3K) in Lamina Cribrosa Cells in Glaucoma. J Clin Med 2020; 10:jcm10010062. [PMID: 33375386 PMCID: PMC7795259 DOI: 10.3390/jcm10010062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
The lamina cribrosa (LC) is a key site of fibrotic damage in glaucomatous optic neuropathy and the precise mechanisms of LC change remain unclear. Elevated Ca2+ is a major driver of fibrosis, and therefore intracellular Ca2+ signaling pathways are relevant glaucoma-related mechanisms that need to be studied. Protein kinase C (PKC), mitogen-activated MAPK kinases (p38 and p42/44-MAPK), and the PI3K/mTOR axis are key Ca2+ signal transducers in fibrosis and we therefore investigated their expression and activity in normal and glaucoma cultured LC cells. We show, using Western immune-blotting, that hyposmotic-induced cellular swelling activates PKCα, p42/p44, and p38 MAPKs, the activity is transient and biphasic as it peaks between 2 min and 10 min. The expression and activity of PKCα, p38 and p42/p44-MAPKs are significantly (p < 0.05) increased in glaucoma LC cells at basal level, and at different time-points after hyposmotic stretch. We also found elevated mRNA expression of mRNA expression of PI3K, IP3R, mTOR, and CaMKII in glaucoma LC cells. This study has identified abnormalities in multiple calcium signaling pathways (PKCα, MAPK, PI3K) in glaucoma LC cells, which might have significant functional and therapeutic implications in optic nerve head (ONH) fibrosis and cupping in glaucoma.
Collapse
Affiliation(s)
- Mustapha Irnaten
- Department Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland;
- Correspondence: ; Tel.: +353-851-334-932
| | - Aisling Duff
- Milton Medical Centre New South Wales, Milton, NSW 2538, Australia;
| | - Abbot Clark
- Department Pharmacology & Neuroscience and the North Texas Eye Research Institute, Health Science Center, Fort Worth, TX 76107, USA;
| | - Colm O’Brien
- Department Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland;
- School of Medicine and Medical Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
13
|
Abstract
RAS proteins control a number of essential cellular processes as molecular switches in the human body. Presumably due to their important signalling role, RAS proteins are among the most frequently mutated oncogenes in human cancers. Hence, numerous efforts were done to develop appropriate therapies for RAS-mutant cancers in the last three decades. This review aimed to collect all of the reported small molecules that affect RAS signalling. These molecules can be divided in four main branches. First, we address approaches blocking RAS membrane association. Second, we focus on the stabilization efforts of non-productive RAS complexes. Third, we examine the approach to block RAS downstream signalling through disturbance of RAS-effector complex formation. Finally, we discuss direct inhibition; particularly the most recently reported covalent inhibitors, which are already advanced to human clinical trials.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, Budapest, H-1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, Budapest, H-1117, Hungary.
| |
Collapse
|
14
|
Ingram TW, Oh Y, Adhikari TB, Louws FJ, Dean RA. Comparative Genome Analyses of 18 Verticillium dahliae Tomato Isolates Reveals Phylogenetic and Race Specific Signatures. Front Microbiol 2020; 11:573755. [PMID: 33329432 PMCID: PMC7734093 DOI: 10.3389/fmicb.2020.573755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Host resistance is one of the few strategies available to combat the soil borne pathogenic fungus Verticillium dahliae. Understanding pathogen diversity in populations is key to successfully deploying host resistance. In this study the genomes of 18 V. dahliae isolates of races 1 (n = 2), 2 (n = 4), and 3 (n = 12) from Japan, California, and North Carolina were sequenced and mapped to the reference genome of JR2 (from tomato). The genomes were analyzed for phylogenetic and pathogen specific signatures to classify specific strains or genes for future research. Four highly clonal lineages/groups were discovered, including a lineage unique to North Carolina isolates, which had the rare MAT1-1 mating type. No evidence for recombination between isolates of different mating types was observed, even in isolates of different mating types discovered in the same field. By mapping these 18 isolates genomes to the JR2 reference genome, 193 unique candidate effectors were found using SignalP and EffectorP. Within these effectors, 144 highly conserved effectors, 42 mutable effectors (truncated or present in some isolates but absent in others), and 7 effectors present in highly variable regions of the chromosomes were discovered. Of the 144 core effectors, 21 were highly conserved in V. alfalfae and V. longisporum, 7 of which have no known function. Within the non-core effectors 30 contained large numbers of non-synonymous mutations, while 15 of them contained indels, frameshift mutations, or were present on highly variable regions of the chromosome. Two of these highly variable region effectors (HVREs) were only present in race 2 isolates, but not in race 3 isolates. The race 1 effector Ave1 was also present in a highly variable region. These data may suggest that these highly variable regions are enriched in race determinant genes, consistent with the two-speed genome hypothesis.
Collapse
Affiliation(s)
- Thomas W Ingram
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Yeonyee Oh
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Tika B Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States.,Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Ralph A Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
15
|
The significance of gene mutations across eight major cancer types. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:88-99. [PMID: 31416581 DOI: 10.1016/j.mrrev.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Mutations occur spontaneously, which can be induced by either chemicals (e.g. benzene) or biological factors (e.g. virus). Not all mutations cause noticeable changes in cellular functions. However, mutation in key cellular genes leads to developmental disorders. It is one of the main ways in which proto-oncogenes can be changed into their oncogenic state. The progressive accumulation of multiple mutations throughout life leads to cancer. In the past few decades, extensive research on cancer biology has discovered many genes and pathways having role in cancer development. In this review, we tried to summarize the current knowledge of mutational effect on different cancer types and its consequences in brief for future reference and guidance of researchers in cancer biology.
Collapse
|
16
|
Orlando E, Aebersold DM, Medová M, Zimmer Y. Oncogene addiction as a foundation of targeted cancer therapy: The paradigm of the MET receptor tyrosine kinase. Cancer Lett 2019; 443:189-202. [DOI: 10.1016/j.canlet.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
|
17
|
Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther 2018; 187:45-60. [PMID: 29454854 DOI: 10.1016/j.pharmthera.2018.02.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is de-regulated in a variety of cancers due to mutations in receptor tyrosine kinases (RTKs), negative regulators of RAS (such as NF1) and core pathway components themselves (RAS, BRAF, CRAF, MEK1 or MEK2). This has driven the development of a variety of pharmaceutical agents to inhibit RAF-MEK1/2-ERK1/2 signalling in cancer and both RAF and MEK inhibitors are now approved and used in the clinic. There is now much interest in targeting at the level of ERK1/2 for a variety of reasons. First, since the pathway is linear from RAF-to-MEK-to-ERK then ERK1/2 are validated as targets per se. Second, innate resistance to RAF or MEK inhibitors involves relief of negative feedback and pathway re-activation with all signalling going through ERK1/2, validating the use of ERK inhibitors with RAF or MEK inhibitors as an up-front combination. Third, long-term acquired resistance to RAF or MEK inhibitors involves a variety of mechanisms (KRAS or BRAF amplification, MEK mutation, etc.) which re-instate ERK activity, validating the use of ERK inhibitors to forestall acquired resistance to RAF or MEK inhibitors. The first potent highly selective ERK1/2 inhibitors have now been developed and are entering clinical trials. They have one of three discrete mechanisms of action - catalytic, "dual mechanism" or covalent - which could have profound consequences for how cells respond and adapt. In this review we describe the validation of ERK1/2 as anti-cancer drug targets, consider the mechanism of action of new ERK1/2 inhibitors and how this may impact on their efficacy, anticipate factors that will determine how tumour cells respond and adapt to ERK1/2 inhibitors and consider ERK1/2 inhibitor drug combinations.
Collapse
Affiliation(s)
- Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| | - James Sipthorp
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom
| | - Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| |
Collapse
|
18
|
Serna-Blasco R, Sanz-Álvarez M, Aguilera Ó, García-Foncillas J. Targeting the RAS-dependent chemoresistance: The Warburg connection. Semin Cancer Biol 2018; 54:80-90. [PMID: 29432815 DOI: 10.1016/j.semcancer.2018.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
RAS protein family members (KRAS4A, KRAS4B, HRAS and NRAS) function as GDP-GTP-regulated on-off switches, which regulate cytoplasmic-nuclear signaling networks ruling diverse normal cellular processes. Constitutive activating mutations in RAS genes are found in up to 30% of human cancers, and remarkably, the oncogenic Ras mutations and mutations in other components of Ras/MAPK signaling pathways seem to be mutually exclusive in most tumors, pointing out that deregulation of Ras-dependent signaling is an essential requirement for tumorigenesis. Up to 30% of solid tumors are known to have a mutated (abnormal) KRAS gene. Unfortunately, patients harboring mutated KRAS CRC are unlikely to benefit from anti-EGFR therapy. Moreover, it remains unclear that patients with KRAS wild-type CRC will definitely respond to such therapies. Although some clinically designed-strategies to modulate KRAS aberrant activation have been designed, all attempts to target KRAS have failed in the clinical assays and K-RAS has been assumed to be invulnerable to chemotherapeutic attack. Recently, different encouraging publications reported that ascorbate may have a selective antitumoral effect on KRAS mutant cancer cells. In this review we aim to describe the prevalence and importance of KRAS mutation in cancer and associated problems for the clinical handling of patients harboring these tumors. We highlight the role of mutated KRAS in boosting and keeping the tumor associated aberrant cell metabolism stating that further in-depth studies on the molecular mechanism of ascorbate to bypass mutated KRAS-related metabolic alterations may constitute a new pathway to design novel molecules in order handle tumor resistance to anti EGFR-therapies.
Collapse
Affiliation(s)
- Roberto Serna-Blasco
- Translational Oncology Division, Oncohealth Institute, Fundacion Jimenez Diaz University Hospital, 28040, Madrid, Spain
| | - Marta Sanz-Álvarez
- Translational Oncology Division, Oncohealth Institute, Fundacion Jimenez Diaz University Hospital, 28040, Madrid, Spain
| | - Óscar Aguilera
- Translational Oncology Division, Oncohealth Institute, Fundacion Jimenez Diaz University Hospital, 28040, Madrid, Spain.
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, Fundacion Jimenez Diaz University Hospital, 28040, Madrid, Spain
| |
Collapse
|
19
|
Yang L, Tang L, Dai F, Meng G, Yin R, Xu X, Yao W. Raf-1/CK2 and RhoA/ROCK signaling promote TNF-α-mediated endothelial apoptosis via regulating vimentin cytoskeleton. Toxicology 2017; 389:74-84. [PMID: 28743511 DOI: 10.1016/j.tox.2017.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 01/04/2023]
Abstract
Both RhoA/ROCK and Raf-1/CK2 pathway play essential roles in cell proliferation, apoptosis, differentiation, and multiple other common cellular functions. We previously reported that vimentin is responsible for TNF-α-induced cell apoptosis. Herein, we investigated the regulation of RhoA/ROCK and Raf-1/CK2 signaling on vimentin filaments and endothelial apoptosis mediated by TNF-α. Treatment with TNF-α significantly induced the activation of RhoA and ROCK, and the expression of ROCK1. RhoA deficiency could obviously inhibit ROCK activation and ROCK1 expression induced by TNF-α. Both RhoA deficiency and ROCK activity inhibition (Y-27632) greatly inhibited endothelial apoptosis and preserved cell viability in TNF-α-induced human umbilical vein endothelial cells (HUVECs). Also vimentin phosphorylation and the remodeling of vimentin or phospho-vimentin induced by TNF-α were obviously attenuated by RhoA suppression and ROCK inhibition. TNF-α-mediated vimentin cleavage was significantly inhibited by RhoA suppression and ROCK inhibition through decreasing the activation of caspase3 and 8. Furthermore, TNF-α treatment greatly enhanced the activation of Raf-1. Suppression of Raf-1 or CK2 by its inhibitor (GW5074 or TBB) blocked vimentin phosphorylation, remodeling and endothelial apoptosis, and preserved cell viability in TNF-α-induced HUVECs. However, Raf-1 inhibition showed no significant effect on TNF-α-induced ROCK expression and activation, suggesting that the regulation of Raf-1/CK2 signaling on vimentin was independent of ROCK. Taken together, these results indicate that both RhoA/ROCK and Raf-1/CK2 pathway are responsible for TNF-α-mediated endothelial cytotoxicity via regulating vimentin cytoskeleton.
Collapse
Affiliation(s)
- Lifeng Yang
- School of pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Lian Tang
- School of pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Fan Dai
- School of pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Guoliang Meng
- School of pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Runting Yin
- School of pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Xiaole Xu
- School of pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Wenjuan Yao
- School of pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China.
| |
Collapse
|
20
|
Abstract
Cells respond to changes in their environment, to developmental cues, and to pathogen aggression through the action of a complex network of proteins. These networks can be decomposed into a multitude of signaling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signaling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signaling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the somewhat lesser known contribution of these multicellular organisms to our understanding of what has come to be known as the prototype of signaling pathways. We also discuss the ostensibly much larger network of regulators that has emerged from recent functional genomic investigations of RTK/RAS/ERK signaling.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
- Département de Pathologie et de Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
| |
Collapse
|
21
|
Stefan E, Bister K. MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer. Curr Top Microbiol Immunol 2017; 407:117-151. [PMID: 28466200 DOI: 10.1007/82_2017_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prototypes of the human MYC and RAF gene families are orthologs of animal proto-oncogenes that were originally identified as transduced alleles in the genomes of highly oncogenic retroviruses. MYC and RAF genes are now established as key regulatory elements in normal cellular physiology, but also as major cancer driver genes. Although the predominantly nuclear MYC proteins and the cytoplasmic RAF proteins have different biochemical functions, they are functionally linked in pivotal signaling cascades and circuits. The MYC protein is a transcription factor and together with its dimerization partner MAX holds a central position in a regulatory network of bHLH-LZ proteins. MYC regulates transcription conducted by all RNA polymerases and controls virtually the entire transcriptome. Fundamental cellular processes including distinct catabolic and anabolic branches of metabolism, cell cycle regulation, cell growth and proliferation, differentiation, stem cell regulation, and apoptosis are under MYC control. Deregulation of MYC expression by rearrangement or amplification of the MYC locus or by defects in kinase-mediated upstream signaling, accompanied by loss of apoptotic checkpoints, leads to tumorigenesis and is a hallmark of most human cancers. The critically controlled serine/threonine RAF kinases are central nodes of the cytoplasmic MAPK signaling cascade transducing converted extracellular signals to the nucleus for reshaping transcription factor controlled gene expression profiles. Specific mutations of RAF kinases, such as the prevalent BRAF(V600E) mutation in melanoma, or defects in upstream signaling or feedback loops cause decoupled kinase activities which lead to tumorigenesis. Different strategies for pharmacological interference with MYC- or RAF-induced tumorigenesis are being developed and several RAF kinase inhibitors are already in clinical use.
Collapse
Affiliation(s)
- Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
22
|
Lin KH, Shibu MA, Kuo YH, Chen YC, Hsu HH, Bau DT, Chen MC, Tu CC, Viswanadha VP, Huang CY. Taiwanin C selectively inhibits arecoline and 4-NQO-induced oral cancer cell proliferation via ERK1/2 inactivation. ENVIRONMENTAL TOXICOLOGY 2017; 32:62-69. [PMID: 26537528 DOI: 10.1002/tox.22212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Arecoline, the most abundant alkaloid in betel nut is known to promote abnormal proliferation of epithelial cells by enhancing epidermal growth factor receptor (EGFR) activation and cyclooxygenase-2 (COX2) expression. Taiwanin C, a naturally occurring lignan extracted from Taiwania cryptomerioides, has been found to be a potential inhibitor of COX2 expression. Based on the MTT assay results, taiwanin C was found to be effective in inhibiting the tumorous T28 cell than the non-tumorous N28 cells. The modulations in the expression of relevant proteins were determined to understand the mechanism induced by taiwanin C to inhibit T28 cell proliferation. The levels of activated EGFR and COX2 were found to be abnormally high in the T28 oral cancer cells. However, taiwanin C was found to inhibit the activation of EGFR and regulated other related downstream proteins and thereby inhibited the T28 cell proliferation. In conclusion the results indicate that taiwanin C suppresses COX2-EGFR and enhances P27 pathways to suppress arecoline induced oral cancer cell proliferation via ERK1/2 inactivation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 62-69, 2017.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- Emergency Department, China Medical University Hospital, Taichung, Taiwan
| | | | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yueh-Chiu Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Ostrem JML, Shokat KM. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov 2016; 15:771-785. [PMID: 27469033 DOI: 10.1038/nrd.2016.139] [Citation(s) in RCA: 437] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
KRAS is the most frequently mutated oncogene in human cancer. In addition to holding this distinction, unsuccessful attempts to target this protein have led to the characterization of RAS as 'undruggable'. However, recent advances in technology and novel approaches to drug discovery have renewed hope that a direct KRAS inhibitor may be on the horizon. In this Review, we provide an in-depth analysis of the structure, dynamics, mutational activation and inactivation, and signalling mechanisms of RAS. From this perspective, we then consider potential mechanisms of action for effective RAS inhibitors. Finally, we examine each of the many recent reports of direct RAS inhibitors and discuss promising avenues for further development.
Collapse
Affiliation(s)
- Jonathan M L Ostrem
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
24
|
Schmitz SK, King C, Kortleven C, Huson V, Kroon T, Kevenaar JT, Schut D, Saarloos I, Hoetjes JP, de Wit H, Stiedl O, Spijker S, Li KW, Mansvelder HD, Smit AB, Cornelisse LN, Verhage M, Toonen RF. Presynaptic inhibition upon CB1 or mGlu2/3 receptor activation requires ERK/MAPK phosphorylation of Munc18-1. EMBO J 2016; 35:1236-50. [PMID: 27056679 DOI: 10.15252/embj.201592244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 03/02/2016] [Indexed: 01/22/2023] Open
Abstract
Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.
Collapse
Affiliation(s)
- Sabine K Schmitz
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Cillian King
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Christian Kortleven
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Vincent Huson
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Tim Kroon
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Josta T Kevenaar
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Desiree Schut
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Ingrid Saarloos
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Joost P Hoetjes
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Heidi de Wit
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Sabine Spijker
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Lennart Niels Cornelisse
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
SHI HUAIPING, ZHANG TIANYING, YI YONGQING, MA YUE. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins. Oncol Rep 2016; 35:3593-9. [DOI: 10.3892/or.2016.4696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/03/2016] [Indexed: 11/05/2022] Open
|
26
|
Biological and Pharmacological Aspects of the NK1-Receptor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:495704. [PMID: 26421291 PMCID: PMC4573218 DOI: 10.1155/2015/495704] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/19/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high and moderate emesis.
Collapse
|
27
|
Ufelmann H, Schrenk D. Nodularin-triggered apoptosis and hyperphosphorylation of signaling proteins in cultured rat hepatocytes. Toxicol In Vitro 2015; 29:16-26. [DOI: 10.1016/j.tiv.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
|
28
|
Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2014; 149:1-123. [PMID: 25435018 DOI: 10.1016/j.pharmthera.2014.11.013] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.
Collapse
Affiliation(s)
- Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences - North (ISCS-N), CESPU, CRL, Gandra, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
29
|
Cox AD, Der CJ. Ras history: The saga continues. Small GTPases 2014; 1:2-27. [PMID: 21686117 DOI: 10.4161/sgtp.1.1.12178] [Citation(s) in RCA: 534] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 12/24/2022] Open
Abstract
Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years.
Collapse
Affiliation(s)
- Adrienne D Cox
- Department of Radiation Oncology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | | |
Collapse
|
30
|
Abstract
The survival outcome of patients with malignant gliomas is still poor, despite advances in surgical techniques, radiation therapy and the development of novel chemotherapeutic agents. The heterogeneity of molecular alterations in signaling pathways involved in the pathogenesis of these tumors contributes significantly to their resistance to treatment. Several molecular targets for therapy have been discovered over the last several years. Therapeutic agents targeting these signaling pathways may provide more effective treatments and may improve survival. This review summarizes the important molecular therapeutic targets and the outcome of published clinical trials involving targeted therapeutic agents in glioma patients.
Collapse
|
31
|
Lee HS, Hwang CY, Shin SY, Kwon KS, Cho KH. MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species. Sci Signal 2014; 7:ra52. [PMID: 24894995 DOI: 10.1126/scisignal.2005260] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis. Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase (MAPK) pathways, including those involving extracellular signal-regulated kinases (ERKs) or c-Jun N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high concentrations result in cell death. We found that low concentrations of ROS induced activating phosphorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that control the cellular responses to different concentrations of ROS.
Collapse
Affiliation(s)
- Ho-Sung Lee
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Chae Young Hwang
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Sung-Young Shin
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
32
|
Bell GP, Thompson BJ. Colorectal cancer progression: lessons from Drosophila? Semin Cell Dev Biol 2014; 28:70-7. [PMID: 24583474 DOI: 10.1016/j.semcdb.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
Human colorectal cancers arise as benign adenomas, tumours that retain their epithelial character, and then progress to malignant adenocarcinomas and carcinomas in which the epithelium becomes disrupted. Carcinomas often exhibit transcriptional downregulation of E-cadherin and other epithelial genes in an epithelial-to-mesenchymal transition (EMT), a mechanism first discovered in Drosophila to be mediated by the transcription factors Twist and Snail. In contrast, adenocarcinomas retain expression of E-cadherin and disruption of the epithelium occurs through formation of progressively smaller epithelial cysts with apical Crumbs/CRB3, Stardust/PALS1, and Bazooka/PAR3 localised to the inner lumen. Results from Drosophila show that morphologically similar cysts form upon induction of clonal heterogeneity in Wnt, Smad, or Ras signalling levels, which causes extrusion of epithelial cells at clonal boundaries. Thus, intratumour heterogeneity might also promote formation of adenocarcinomas in humans. Finally, epithelial cysts can collectively migrate, as in the case of Drosophila border cells, a potential model system for the invasive migration of adenocarcinoma cells.
Collapse
Affiliation(s)
- Graham P Bell
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Barry J Thompson
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom.
| |
Collapse
|
33
|
Wu Z, Yan M, Hu SH, Yu ZC, Zhu Y, Cheng YD, Liu HC, Zhang YM, Yao SH, Tang WF, Lu T. Design, synthesis and biological evaluation of indole derivatives as novel inhibitors targeting B-Raf kinase. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2013.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
|
35
|
Ras palmitoylation is necessary for N-Ras activation and signal propagation in growth factor signalling. Biochem J 2013; 454:323-32. [PMID: 23758196 DOI: 10.1042/bj20121799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ras GTPases undergo post-translational modifications that govern their subcellular trafficking and localization. In particular, palmitoylation of the Golgi tags N-Ras and H-Ras for exocytotic transport and residency at the PM (plasma membrane). Following depalmitoylation, PM-Ras redistributes to all subcellular membranes causing an accumulation of palmitate-free Ras at endomembranes, including the Golgi and endoplasmic reticulum. Palmitoylation is unanimously regarded as a critical modification at the crossroads of Ras activity and trafficking control, but its precise relevance to native wild-type Ras function in growth factor signalling is unknown. We show in the present study by use of palmitoylation-deficient N-Ras mutants and via the analysis of palmitate content of agonist-activated GTP-loaded N-Ras that only palmitoylated N-Ras becomes activated by agonists. In line with an essential role of palmitoylation in Ras activation, dominant-negative RasS17N loses its blocking potency if rendered devoid of palmitoylation. Live-cell Ras-GTP imaging shows that N-Ras activation proceeds only at the PM, consistent with activated N-Ras-GTP being palmitoylated. Finally, palmitoylation-deficient N-Ras does not sustain EGF (epidermal growth factor) or serum-elicited mitogenic signalling, confirming that palmitoylation is essential for signal transduction by N-Ras. These findings document that N-Ras activation proceeds at the PM and suggest that depalmitoylation, by removing Ras from the PM, may contribute to the shutdown of Ras signalling.
Collapse
|
36
|
Abstract
Treatment decisions for patients with lung cancer have historically been based upon tumor morphological analysis. Over the past decade, some molecular alterations have been identified as being necessary and sufficient to drive tumor carcinogenesis. These "driver" mutations occur in genes that encode signaling proteins critical for cellular proliferation and survival. Epidermal growth factor (EGF) receptor (EGFR) mutations are the best illustration of the therapeutic relevance of identifying such molecular clusters of lung cancer based on driver genetic alterations that predict the efficacy of specific tyrosine kinase inhibitors, a strategy referred to as "personalized medicine." Besides EGFR and ALK, other genes harboring driver molecular alterations have been identified as part of integrated genomic studies of lung cancers. The objectives of this review are (1) to provide the reader with preclinical and clinical data on these new oncogenic mutations, focusing on druggable ones; (2) to discuss the dynamic nature of lung cancer molecular features in the context of acquired resistance to specific inhibitors; and (3) to highlight emerging data on other cancer hallmarks that may be of interest from a therapeutic perspective in the next future. From bench to bedside, personalized medicine represents a major revolution in the treatment of lung cancer.
Collapse
|
37
|
Nagai H, Yasuda S, Ohba Y, Fukuda M, Nakamura T. All members of the EPI64 subfamily of TBC/RabGAPs also have GAP activities towards Ras. J Biochem 2012; 153:283-8. [PMID: 23248241 DOI: 10.1093/jb/mvs147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The importance of interconnective signalling networks between distinct GTPases and their regulators is being recognized. EPI64C/TBC1D10C/carabin, a haematopoietically enriched GTPase-activating protein (GAP) for Rab35, has been shown to exhibit RasGAP activity. Owing to the diverged Rab specificities among the EPI64 members (EPI64A-C) and the relatively weak sequence conservation between EPI64A/B and EPI64C in their catalytic TBC domains, it is difficult to predict whether EPI64A and B will also have RasGAP activities. Therefore, in this study, we examined the RasGAP activities of all three EPI64 subfamily members. We found that EPI64A-C exhibited in vivo GAP activities towards Ras using three independent methods, spectrofluorometry with Förster resonance energy transfer (FRET) sensors, the Bos' pull-down assay and time-lapse FRET imaging. EPI64A and B were predominantly localized at the periphery of COS-7 cells. In COS-7 cells, confocal FRET imaging showed that H-Ras activity was higher at the Golgi than at the plasma membrane. Thus, we propose that EPI64A and B, which are ubiquitously expressed members of the EPI64 subfamily, inactivate Ras and certain Rabs at the periphery of cells.
Collapse
Affiliation(s)
- Hiroyuki Nagai
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | |
Collapse
|
38
|
Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 2012; 11:873-86. [PMID: 23060265 DOI: 10.1038/nrd3847] [Citation(s) in RCA: 571] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of driver oncogenes has provided important targets for drugs that can change the landscape of cancer therapies. One such example is the BRAF oncogene, which is found in about half of all melanomas as well as several other cancers. As a druggable kinase, oncogenic BRAF has become a crucial target of small-molecule drug discovery efforts. Following a rapid clinical development path, vemurafenib (Zelboraf; Plexxikon/Roche) was approved for the treatment of BRAF-mutated metastatic melanoma in the United States in August 2011 and the European Union in February 2012. This Review describes the underlying biology of BRAF, the technology used to identify vemurafenib and its clinical development milestones, along with future prospects based on lessons learned during its development.
Collapse
Affiliation(s)
- Gideon Bollag
- Plexxikon, 91 Bolivar Drive, Berkeley, California 94710, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Genetic and biochemical alterations in non-small cell lung cancer. Biochem Res Int 2012; 2012:940405. [PMID: 22928112 PMCID: PMC3426175 DOI: 10.1155/2012/940405] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/09/2012] [Indexed: 11/17/2022] Open
Abstract
Despite significant advances in the detection and treatment of lung cancer, it causes the highest number of cancer-related mortality. Recent advances in the detection of genetic alterations in patient samples along with physiologically relevant animal models has yielded a new understanding of the molecular etiology of lung cancer. This has facilitated the development of potent and specific targeted therapies, based on the genetic and biochemical alterations present in the tumor, especially non-small-cell lung cancer (NSCLC). It is now clear that heterogeneous cell signaling pathways are disrupted to promote NSCLC, including mutations in critical growth regulatory proteins (K-Ras, EGFR, B-RAF, MEK-1, HER2, MET, EML-4-ALK, KIF5B-RET, and NKX2.1) and inactivation of growth inhibitory pathways (TP53, PTEN, p16, and LKB-1). How these pathways differ between smokers and non-smokers is also important for clinical treatment strategies and development of targeted therapies. This paper describes these molecular targets in NSCLC, and describes the biological significance of each mutation and their potential to act as a therapeutic target.
Collapse
|
40
|
Liu Y, Chen Y, Wen L, Cui G. Molecular mechanisms underlying the time-dependent autophagy and apoptosis induced by nutrient depletion in multiple myeloma: a pilot study. ACTA ACUST UNITED AC 2012; 32:1-8. [PMID: 22282237 DOI: 10.1007/s11596-012-0001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Indexed: 11/26/2022]
Abstract
This study explored the molecular mechanisms underlying the time-dependent autophagy and apoptosis induced by nutrient depletion in human multiple myeloma cell line RPMI8226 cells. RT-PCR and qRT-PCR were used to evaluate the transcriptional levels of Deptor, JNK1, JNK2, JNK3, Raf-1, p53, p21 and NFκB1 at 0, 6, 12, 18, 24 and 48 h after nutrient depletion in RPMI8226 cells. We found that transcriptional levels of Deptor were increased time-dependently at 0, 6, 12 and 18 h, and then decreased. Its alternation was consistent with autophagy. Transcriptional levels of Raf-1, JNK1, JNK2, p53 and p21 were increased time-dependently at 0, 6, 12, 18, 24 and 48 h accompanying with the increase of apoptosis. Transcriptional levels of NFκB1 at 6, 12, 18, 24 and 48 h were decreased as compared with 0 h. It was suggested that all the studied signaling molecules were involved in cellular response to nutrient depletion in RPMI8226 cells. Deptor contributed to autophagy in this process. Raf-1/JNK /p53/p21 pathway may be involved in apoptosis, and NFκB1 may play a possible role in inhibiting apoptosis. It remained to be studied whether Deptor was involved in both autophagy and apoptosis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guohui Cui
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
41
|
Vijayalakshmi R, Krishnamurthy A. Targetable "driver" mutations in non small cell lung cancer. Indian J Surg Oncol 2011; 2:178-88. [PMID: 22942608 DOI: 10.1007/s13193-011-0108-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality in the world despite advances in the field of cancer therapeutics. Traditional treatment with empirically chosen cytotoxic chemotherapeutic agents, have given small, but real survival benefits. Recent advances and insights into molecular pathogenesis of lung cancers have provided some novel molecular targets, offering newer strategies and agents that are tumor specific. Studies have identified mutations in specific genes that are involved in driving the development of lung cancer and so it is important to subsequently target them with specific drugs thus changing paradigms of management of this type of cancer. Recently, Lung Cancer Mutation Consortium (LCMC) has identified at least one of the many recognized "driver mutations" in nearly two thirds of the patients with advanced cancer. This study suggests that identification of driver mutations can help in molecular targeted therapeutics and in addition supplant tumor histology in guiding treatment decisions, identifying subset of patients who may benefit therapy. This review focuses on these mutations identified in specific genes serving as "drivers" of lung tumorigenesis and suggests that clear promise for the future of lung cancer treatment is indeed personalized therapy with drugs chosen according to the patient mutation profile. Most clinically relevant translational advances made in genes involved in lung tumorigenesis namely EML4-ALK fusions, HER2, PIK3CA, AKT, BRAF, MAP2K1, MET mutations and amplifications along with the well established EGFR and KRAS mutations are discussed in the context of NSCLCs. These studies emphasize the need for treatment management based on mutation profile along with routine histology based classification of these tumors in future for a directed therapy and thus a better therapeutic outcome.
Collapse
|
42
|
Karakida S, Kawano Y, Utsunomiya Y, Furukawa Y, Sasaki T, Narahara H. Effect of heparin-binding EGF-like growth factor and amphiregulin on the MAP kinase-induced production of vascular endothelial growth factor by human granulosa cells. Growth Factors 2011; 29:271-7. [PMID: 21854110 DOI: 10.3109/08977194.2011.607136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The function of granulosa cells is regulated by various hormones and growth factors. Our aim is to clarify the regulation of vascular endothelial growth factor (VEGF) production induced by heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR) in a human granulosa cell line, KGN. KGN cells were cultured and incubated for 24 h with HB-EGF and AR. The levels of VEGF in the culture media were measured by an enzyme-linked immunosorbent assay. The activation of MAP kinase in KGN cells was detected by Western blot analysis. VEGF production was significantly increased by HB-EGF or AR alone in a dose-dependent manner, whereas it was decreased by AG1478 or U0126. The MAP kinase activity was increased by treatment with HB-EGF or AR. The results suggested that VEGF is induced by HB-EGF and AR through mechanisms involving MAP kinase. The increase in VEGF may contribute to neovascularization, which in turn would promote various ovulation phenomena as well as follicular growth.
Collapse
Affiliation(s)
- Sinya Karakida
- Department of Obstetrics and Gynecology, Oita University, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Lee HS, Kim EY, Lee KA. Changes in gene expression associated with oocyte meiosis after Obox4 RNAi. Clin Exp Reprod Med 2011; 38:68-74. [PMID: 22384421 PMCID: PMC3283059 DOI: 10.5653/cerm.2011.38.2.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 05/31/2011] [Accepted: 06/03/2011] [Indexed: 12/03/2022] Open
Abstract
Objective Previously, we found that oocyte specific homeobox (Obox) 4 plays significant role in completion of meiosis specifically at meiosis I-meiosis II (MI-MII) transition. The purpose of this study was to determine the mechanism of action of Obox4 in oocyte maturation by evaluating downstream signal networking. Methods The Obox4 dsRNA was prepared by in vitro transcription and microinjected into the cytoplasm of germinal vesicle oocytes followed by in vitro maturation in the presence or absence of 0.2 mM 3-isobutyl-1-metyl-xanthine. Total RNA was extracted from 200 oocytes of each group using a PicoPure RNA isolation kit then amplified two-rounds. The probe hybridization and data analysis were used by Affymetrix GeneChip® Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. Results Total 424 genes were up (n=80) and down (n=344) regulated after Obox4 RNA interference (RNAi). Genes mainly related to metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathway was changed. Among the protein kinase C (PKC) isoforms, PKC-alpha, beta, gamma were down-regulated and especially the MAPK signaling pathway PKC-gamma was dramatically decreased by Obox4 RNAi. In the cell cycle pathway, we evaluated the expression of genes involved in regulation of chromosome separation, and found that these genes were down-regulated. It may cause the aberrant chromosome segregation during MI-MII transition. Conclusion From the results of this study, it is concluded that Obox4 is important upstream regulator of the PKC and anaphase-promoting complex action for maintaining intact germinal vesicle.
Collapse
Affiliation(s)
- Hyun-Seo Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | | | | |
Collapse
|
44
|
An RNAi-based system for loss-of-function analysis identifies Raf1 as a crucial mediator of BCR-ABL-driven leukemogenesis. Blood 2011; 118:2200-10. [PMID: 21715303 DOI: 10.1182/blood-2010-10-309583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic loss-of-function studies in murine tumor models have been essential in the analysis of downstream mediators of oncogenic transformation. Unfortunately, these studies are frequently limited by the availability of genetically modified mouse strains. Here we describe a versatile method allowing the efficient expression of an oncogene and simultaneous knockdown of targets of interest (TOI) from a single retroviral vector. Both oncogene and TOI-specific miR30-based shRNA are under the control of the strong viral long terminal repeat promoter, resulting in a single shared RNA transcript. Using this vector in a murine syngeneic BM transplantation model for BCR-ABL-induced chronic myeloid leukemia, we find that oncogene expression and target knockdown in primary hematopoietic cells with this vector is efficient both in vitro and in vivo, and demonstrate that Raf1, but not BRAF, modulates BCR-ABL-dependent ERK activation and transformation of hematopoietic cells. This expression system could facilitate genetic loss-of-function studies and allow the rapid validation of potential drug targets in a broad range of oncogene-driven murine tumor models.
Collapse
|
45
|
Abstract
Treatment decisions for patients with lung cancer have historically been based on tumour histology. Some understanding of the molecular composition of tumours has led to the development of targeted agents, for which initial findings are promising. Clearer understanding of mutations in relevant genes and their effects on cancer cell proliferation and survival, is, therefore, of substantial interest. We review current knowledge about molecular subsets in non-small-cell lung cancer that have been identified as potentially having clinical relevance to targeted therapies. Since mutations in EGFR and KRAS have been extensively reviewed elsewhere, here, we discuss subsets defined by so-called driver mutations in ALK, HER2 (also known as ERBB2), BRAF, PIK3CA, AKT1, MAP2K1, and MET. The adoption of treatment tailored according to the genetic make-up of individual tumours would involve a paradigm shift, but might lead to substantial therapeutic improvements.
Collapse
Affiliation(s)
- William Pao
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232–6307, USA.
| | | |
Collapse
|
46
|
Kawano Y, Furukawa Y, Kawano Y, Nasu K, Narahara H. Thrombin-induced chemokine production in endometrial stromal cells. Hum Reprod 2010; 26:407-13. [DOI: 10.1093/humrep/deq347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
47
|
Lin MH, Chang KW, Lin SC, Miner JH. Epidermal hyperproliferation in mice lacking fatty acid transport protein 4 (FATP4) involves ectopic EGF receptor and STAT3 signaling. Dev Biol 2010; 344:707-19. [PMID: 20513444 DOI: 10.1016/j.ydbio.2010.05.503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 12/27/2022]
Abstract
Fatty acid transport protein (FATP) 4 is one of a family of six FATPs that facilitate long- and very long-chain fatty acid uptake. Mice lacking FATP4 are born with tight, thick skin and a defective epidermal barrier; they die neonatally due to dehydration and restricted movements. Both the skin phenotype and the lethality are rescued by transgene-driven expression of FATP4 solely in suprabasal keratinocytes. Here we show that Fatp4 mutants exhibit epidermal hyperplasia resulting from an increased number of proliferating suprabasal cells. In addition, barrier formation initiates precociously but never progresses to completion. To investigate possible mechanisms whereby Fatp4 influences skin development, we identified misregulated genes in Fatp4 mutants. Remarkably, three members of the epidermal growth factor (EGF) family (Ereg, Areg, and Epgn) showed increased expression that was associated with elevated epidermal activation of the EGF receptor (EGFR) and STAT3, a downstream effector of EGFR signaling. Both Tyrphostin AG1478, an EGFR tyrosine kinase inhibitor, and curcumin, an inhibitor of both STAT3 and EGFR, attenuated STAT3 activation/nuclear translocation, reduced skin thickening, and partially suppressed the barrier abnormalities. These data identify FATP4 activity as negatively influencing EGFR activation and the resulting STAT3 signaling during normal skin development. These findings have important implications for understanding the pathogenesis of ichthyosis prematurity syndrome, a disease recently shown to be caused by FATP4 mutations.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
48
|
Sharma A, Luke CT, Dower NA, Stone JC, Lorenzo PS. RasGRP1 is essential for ras activation by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in epidermal keratinocytes. J Biol Chem 2010; 285:15724-30. [PMID: 20308057 PMCID: PMC2871438 DOI: 10.1074/jbc.m109.100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/24/2010] [Indexed: 11/06/2022] Open
Abstract
RasGRP1 is a guanine nucleotide exchange factor for Ras that binds with high affinity to diacylglycerol analogs like the phorbol esters. Recently, we demonstrated a role for RasGRP1 in skin carcinogenesis and suggested its participation in the action of tumor-promoting phorbol esters like 12-O-tetradecanoylphorbol-13-acetate (TPA) on Ras pathways in epidermal cells. Given the importance of Ras in carcinogenesis, we sought to discern whether RasGRP1 was a critical pathway in Ras activation, using a RasGRP1 knockout (KO) mouse model to examine the response of keratinocytes to TPA. In contrast to the effect seen in wild type keratinocytes, Ras(GTP) levels were barely detected in RasGRP1 KO cells even after 60 min of exposure to phorbol esters. The lack of response was rescued by enforced expression of RasGRP1. Furthermore, small hairpin RNA-induced silencing of RasGRP1 abrogated the effect of TPA on Ras. Analysis of Ras isoforms showed that both H-Ras and N-Ras depended on RasGRP1 for activation by TPA, whereas activation of K-Ras could not be detected. Although RasGRP1 was dispensable for ERK activation in response to TPA, JNK activation was reduced in the KO keratinocytes. Notably, TPA-induced phosphorylation of JNK2, but not JNK1, was reduced by RasGRP1 depletion. These data identify RasGRP1 as a critical molecule in the activation of Ras by TPA in primary mouse keratinocytes and suggest JNK2 as one of the relevant downstream targets. Given the role of TPA as a skin tumor promoter, our findings provide additional support for a role for RasGRP1 in skin carcinogenesis.
Collapse
Affiliation(s)
- Amrish Sharma
- From the Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | - Courtney T. Luke
- From the Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | | | - James C. Stone
- Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Patricia S. Lorenzo
- From the Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| |
Collapse
|
49
|
Thaker NG, Pollack IF. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies. Expert Rev Neurother 2009; 9:1815-36. [PMID: 19951140 PMCID: PMC2819818 DOI: 10.1586/ern.09.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Median survival of patients with malignant glioma (MG) from time of diagnosis is approximately 1 year, despite surgery, irradiation and conventional chemotherapy. Improving patient outcome relies on our ability to develop more effective therapies that are directed against the unique molecular aberrations within a patient's tumor. Such molecularly targeted therapies may provide novel treatments that are more effective than conventional chemotherapeutics. Recently developed therapeutic strategies have focused on targeting several core glioma signaling pathways, including pathways mediated by growth-factors, PI3K/Akt/PTEN/mTOR, Ras/Raf/MEK/MAPK and other vital pathways. However, given the molecular diversity, heterogeneity and diverging and converging signaling pathways associated with MG, it is unlikely that any single agent will have efficacy in more than a subset of tumors. Overcoming these therapeutic barriers will require multiple agents that can simultaneously inhibit these processes, providing a rationale for combination therapies. This review summarizes the currently implemented single-agent and combination molecularly targeted therapies for MG.
Collapse
Affiliation(s)
- Nikhil G Thaker
- Doris Duke Clinical Research Fellow, Departments of Neurosurgery, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260 and 6 Oakwood Place, Voorhees, NJ 08043, USA Tel.: +1 856 392 4727 Fax: +1 412 692 5921
| | - Ian F Pollack
- Department of Neurosurgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Brain Tumor Center, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh, Pittsburgh, PA 15213, USA Tel.: +1 412 692 5881 Fax: +1 412 692 5921
| |
Collapse
|
50
|
|