1
|
Turner-Ivey B, Jenkins DP, Carroll SL. Multiple Roles for Neuregulins and their ERBB Receptors in Neurodegenerative Disease Pathogenesis and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00119-1. [PMID: 40254133 DOI: 10.1016/j.ajpath.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
The role that neurotrophins such as nerve growth factor play in the pathogenesis of neurodegenerative diseases has long been appreciated. However, the neuregulin (NRG) family of growth factors and/or their ERBB receptors have also been implicated in the pathogenesis of conditions such as Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). In this review, we consider (1) the structural variability of NRG isoforms generated by alternative RNA splicing, the use of multiple promoters and proteolysis and the impact that this structural variability has on neuronal and glial physiology during development and adulthood. We discuss (2) the NRG receptors ERBB2, ERBB3 and ERBB4, how activation of each of these receptors further diversifies NRG actions in the central nervous system and how dementia-related proteins such as γ-secretase modulate the action of NRGs and their ERBB receptors. We then (3) turn to the abnormalities in NRG and ERBB expression and function evident in human AD and mouse AD models, how these abnormalities affect brain function, and attempts to use NRGs to treat AD. Finally, (4) we discuss NRG effects on the survival and function of neurons relevant to FTLD and ALS, alterations in NRG/ERBB signaling identified in these conditions and the recent discovery of multiple human pedigrees in which autosomal dominant FTLD/ALS potentially results from point mutations in ERBB4.
Collapse
Affiliation(s)
- Brittany Turner-Ivey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425-9080
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425-9080
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425-9080.
| |
Collapse
|
2
|
Tseng YC, Liu PF, Chen YR, Yang WH, Chang CC, Chang HW, Lee CH, Goan YG, Shu CW. Elevated neuregulin‑1 expression modulates tumor malignancy and autophagy in esophageal squamous cell carcinoma. Int J Mol Med 2025; 55:62. [PMID: 39950316 PMCID: PMC11878479 DOI: 10.3892/ijmm.2025.5503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The 5‑year survival rate of patients with esophageal squamous cell carcinoma (ESCC) is <20%, highlighting the need for the development of novel therapeutic targets. Neuregulin‑1 (NRG1), a transmembrane protein involved in cell proliferation and survival signaling, has unclear biological functions and clinical value in ESCC. The present study investigated the association between NRG1 expression and ESCC by analyzing data from both patients with ESCC and The Cancer Genome Atlas database. Reverse transcription‑quantitative PCR and immunohistochemistry staining were used to determine the levels of gene and protein in the tissue. The findings revealed that NRG1 gene and protein levels were significantly higher in tumor tissues compared with the normal tissues. Elevated expression of NRG1 was associated with poor outcomes, particularly in patients with advanced ESCC. Silencing NRG1 decreased both its mRNA and protein levels, disrupting key signaling pathways, such as phosphorylated (p‑)AKT and cellular rapidly accelerated fibrosarcoma (p‑cRAF), which led to decreased cancer cell proliferation, migration and tumor sphere formation, along with increased cell death. High expression levels of NRG1 and cRAF were significantly associated with poor prognosis. Additionally, silencing NRG1 promoted autophagosome and autolysosome formation, decreasing LC3B levels. The use of the autophagy inhibitor chloroquine significantly enhanced cell death induced by NRG1 silencing, suggesting that autophagy functions as a survival mechanism in ESCC cells in which NRG1 is silenced. Furthermore, high co‑expression of NRG1 and LC3B was associated with a worse prognosis. On the whole, the present study demonstrated that targeting NRG1 with autophagy inhibitors may serve as a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Yen-Chiang Tseng
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81341, Taiwan, R.O.C
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 300025, Taiwan, R.O.C
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907391, Taiwan, R.O.C
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Yu-Ru Chen
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Wen-Hsin Yang
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Chia-Che Chang
- Department of Oncology, Zuoying Armed Forces General Hospital, Kaohsiung 81320, Taiwan, R.O.C
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Yih-Gang Goan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81341, Taiwan, R.O.C
- Division of Thoracic Surgery, Department of Surgery, Pingtung Veterans General Hospital, Pingtung 91245, Taiwan, R.O.C
| | - Chih-Wen Shu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
- Innovation Center for Drug Development and Optimization, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
3
|
Noll JM, Sherafat AA, Ford GD, Ford BD. The case for neuregulin-1 as a clinical treatment for stroke. Front Cell Neurosci 2024; 18:1325630. [PMID: 38638304 PMCID: PMC11024452 DOI: 10.3389/fncel.2024.1325630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Ischemic stroke is the leading cause of serious long-term disability and the 5th leading cause of death in the United States. Revascularization of the occluded cerebral artery, either by thrombolysis or endovascular thrombectomy, is the only effective, clinically-approved stroke therapy. Several potentially neuroprotective agents, including glutamate antagonists, anti-inflammatory compounds and free radical scavenging agents were shown to be effective neuroprotectants in preclinical animal models of brain ischemia. However, these compounds did not demonstrate efficacy in clinical trials with human patients following stroke. Proposed reasons for the translational failure include an insufficient understanding on the cellular and molecular pathophysiology of ischemic stroke, lack of alignment between preclinical and clinical studies and inappropriate design of clinical trials based on the preclinical findings. Therefore, novel neuroprotective treatments must be developed based on a clearer understanding of the complex spatiotemporal mechanisms of ischemic stroke and with proper clinical trial design based on the preclinical findings from specific animal models of stroke. We and others have demonstrated the clinical potential for neuregulin-1 (NRG-1) in preclinical stroke studies. NRG-1 significantly reduced ischemia-induced neuronal death, neuroinflammation and oxidative stress in rodent stroke models with a therapeutic window of >13 h. Clinically, NRG-1 was shown to be safe in human patients and improved cardiac function in multisite phase II studies for heart failure. This review summarizes previous stroke clinical candidates and provides evidence that NRG-1 represents a novel, safe, neuroprotective strategy that has potential therapeutic value in treating individuals after acute ischemic stroke.
Collapse
Affiliation(s)
- Jessica M. Noll
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
- Nanostring Technologies, Seattle, WA, United States
| | - Arya A. Sherafat
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
| | - Gregory D. Ford
- Southern University-New Orleans, New Orleans, LA, United States
| | - Byron D. Ford
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
4
|
Zhang X, Li L, Gao F, Liu B, Li J, Ren S, Peng S, Qiu W, Pu X, Ye Q. Fluorescent in situ hybridization has limitations in screening NRG1 gene rearrangements. Diagn Pathol 2024; 19:1. [PMID: 38173003 PMCID: PMC10762970 DOI: 10.1186/s13000-023-01424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND NRG1 fusion is a promising therapeutic target for various tumors but its prevalence is extremely low, and there are no standardized testing algorithms for genetic assessment. MOTHODS In this study, we analyzed 3008 tumors using Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) to screen for NRG1 translocation and p-HER3 expression. RESULTS Our results demonstrated no cases with p-HER3 positivity through IHC. Nonetheless, 29 cases (0.96%) were identified positive for NRG1 translocation through FISH, with three different signal types. FISH-positive cases were subsequently subjected to next-generation sequencing (NGS) testing. However, only eight of these cases were confirmed with NRG1 fusion through NGS. Notably, we divided FISH into three types and FISH type C group was consistent with NGS results. All NGS NRG1 fusion tumors were adenocarcinomas, with a higher prevalence in females. Our findings indicate that although FISH has limitations in screening NRG1 gene rearrangements, NRG1 fusions can be reliably detected with signals exhibiting low copy numbers of the 5'-end of the gene and no fusion signals. CONCLUSION Considering the high cost of NGS, FISH remains a useful method for screening NRG1 fusions in various types of tumors. This study provides valuable insights into the molecular mechanisms of NRG1 fusion and identifies potential treatment targets for patients suffering from this disease.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Pathology, Nanjing Jiangning Hospital, Nanjing, 211100, Jiangsu Province, China
| | - Lin Li
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Fuping Gao
- Department of Pathology, Nanjing Gaochun People's Hospital, Nanjing, 210008, Jiangsu Province, China
| | - Binbin Liu
- Department of Pathology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210008, Jiangsu Province, China
| | - Jing Li
- Berry Oncology Corporation, Beijing, 100102, China
| | - Shuang Ren
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Shuangshuang Peng
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Wei Qiu
- Department of Pathology, Nanjing Jiangning Hospital, Nanjing, 211100, Jiangsu Province, China.
| | - Xiaohong Pu
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China.
| | - Qing Ye
- Department of Pathology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230036, Anhui Province, China.
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui Province, China.
| |
Collapse
|
5
|
Poumay Y, Faway E. Human Epidermal Keratinocytes in Culture: A Story of Multiple Recipes for a Single Cell Type. Skin Pharmacol Physiol 2023; 36:215-224. [PMID: 37717566 PMCID: PMC10836957 DOI: 10.1159/000534137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND For one half-century, cultures of human epidermal keratinocytes have opened new paths of research in skin biology and dermatology. Either performed with serum and feeder layer, in serum-free conditions, or in autocrine conditions, cells cultured as monolayers became research materials for basic science and dermatology, as well as a source for grafting, particularly to treat severely burned patients. More recently, tissue reconstruction at air-liquid interface has opened new perspectives for in vitro toxicology, studies of epidermal barrier, and modeling skin diseases. SUMMARY This review presents a brief retrospective of the emergence of keratinocyte-based culture techniques. It also presents opportunities and eventual problems that researchers might encounter when exploring the skin using such procedures. KEY MESSAGES While methodologies in tissue culture evolve, the multiplicity of procedures concomitantly increases, requiring to make some selective but difficult choice. Keeping tracks of technological evolution in epidermal cell culture should help choosing the adequate methodology for a specific investigation or innovating with new, more dedicated ones.
Collapse
Affiliation(s)
- Yves Poumay
- Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, Namur, Belgium
| | - Emilie Faway
- Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, Namur, Belgium
| |
Collapse
|
6
|
EGFR Signaling in Lung Fibrosis. Cells 2022; 11:cells11060986. [PMID: 35326439 PMCID: PMC8947373 DOI: 10.3390/cells11060986] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
In this review article, we will first provide a brief overview of the ErbB receptor-ligand system and its importance in developmental and physiological processes. We will then review the literature regarding the role of ErbB receptors and their ligands in the maladaptive remodeling of lung tissue, with special emphasis on idiopathic pulmonary fibrosis (IPF). Here we will focus on the pathways and cellular processes contributing to epithelial-mesenchymal miscommunication seen in this pathology. We will also provide an overview of the in vivo studies addressing the efficacy of different ErbB signaling inhibitors in experimental models of lung injury and highlight how such studies may contribute to our understanding of ErbB biology in the lung. Finally, we will discuss what we learned from clinical applications of the ErbB1 signaling inhibitors in cancer in order to advance clinical trials in IPF.
Collapse
|
7
|
NRG1 and NRG2 fusion positive solid tumor malignancies: a paradigm of ligand-fusion oncogenesis. Trends Cancer 2022; 8:242-258. [PMID: 34996744 DOI: 10.1016/j.trecan.2021.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023]
Abstract
Neuregulins (NRGs) are a family of six related physiological ligands all containing a receptor-binding epidermal growth factor (EGF)-like domain that mediate their binding to cellular receptors. Neuregulin-1 (NRG1) is the main physiological ligand to HER3. NRG1 fusion (NRG1+) was first reported in a breast cancer cell line and NRG2 fusions have recently been identified in solid tumors. It is postulated that NRG1 fusions, through mostly transmembrane fusion partners, result in NRG1 being concentrated in proximity to HER3, leading to its constitutive activation and oncogenesis. Recently, a monoclonal antibody that disrupts the binding of NRG1 to HER3 and HER3/HER2 heterodimerization has resulted in NRG1+ tumor shrinkage, suggesting that 'ligand-fusion' may be a novel mechanism of oncogenesis.
Collapse
|
8
|
El-Gamal MI, Mewafi NH, Abdelmotteleb NE, Emara MA, Tarazi H, Sbenati RM, Madkour MM, Zaraei SO, Shahin AI, Anbar HS. A Review of HER4 (ErbB4) Kinase, Its Impact on Cancer, and Its Inhibitors. Molecules 2021; 26:7376. [PMID: 34885957 PMCID: PMC8659013 DOI: 10.3390/molecules26237376] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
HER4 is a receptor tyrosine kinase that is required for the evolution of normal body systems such as cardiovascular, nervous, and endocrine systems, especially the mammary glands. It is activated through ligand binding and activates MAPKs and PI3K/AKT pathways. HER4 is commonly expressed in many human tissues, both adult and fetal. It is important to understand the role of HER4 in the treatment of many disorders. Many studies were also conducted on the role of HER4 in tumors and its tumor suppressor function. Mostly, overexpression of HER4 kinase results in cancer development. In the present article, we reviewed the structure, location, ligands, physiological functions of HER4, and its relationship to different cancer types. HER4 inhibitors reported mainly from 2016 to the present were reviewed as well.
Collapse
Affiliation(s)
- Mohammed I. El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nada H. Mewafi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Nada E. Abdelmotteleb
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Minnatullah A. Emara
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Rawan M. Sbenati
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Moustafa M. Madkour
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Afnan I. Shahin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Hanan S. Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| |
Collapse
|
9
|
Abstract
Neuregulins, members of the largest subclass of growth factors of the epidermal growth factor family, mediate a myriad of cellular functions including survival, proliferation, and differentiation in normal tissues through binding to receptor tyrosine kinases of the ErbB family. However, aberrant neuregulin signaling in the tumor microenvironment is increasingly recognized as a key player in initiation and malignant progression of human cancers. In this chapter, we focus on the role of neuregulin signaling in the hallmarks of cancer, including cancer initiation and development, metastasis, as well as therapeutic resistance. Moreover, role of neuregulin signaling in the regulation of tumor microenvironment and targeting of neuregulin signaling in cancer from the therapeutic perspective are also briefly discussed.
Collapse
|
10
|
Wang XM, Hu ZJ, Guo PF, Chen ML, Wang JH. Boron-Modified Defect-Rich Molybdenum Disulfide Nanosheets: Reducing Nonspecific Adsorption and Promoting a High Capacity for Isolation of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43273-43280. [PMID: 32852193 DOI: 10.1021/acsami.0c12171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new type of boric acid derivative-modified molybdenum disulfide nanosheet was prepared by amination and sulfur chemical grafting, where lipoic acid, lysine, and 5-carboxybenzoboroxole were used as reactants. The two-dimensional composite, abbreviated as MoS2-Lys-CBX, is an ultrathin nanosheet with a minimum unit of single or few layers. Compared with the original molybdenum disulfide, the nonspecific adhesion of interfering proteins on the surface was reduced, and the adsorption capacity of glycoproteins was enhanced, which was 1682.2 mg g-1 represented by IgG. The adsorbed IgG can be easily eluted with 0.3 wt % CTAB with an elution efficiency of 94.1%. Circular dichroism spectra indicate no obvious conformation change of IgG during the purification process by the MoS2-Lys-CBX nanosheets. The as-prepared MoS2-Lys-CBX nanosheets were then employed for the isolation of IgG from human serum sample, obtaining high-purity light and heavy chains of IgG, as demonstrated by SDS-PAGE assays.
Collapse
Affiliation(s)
- Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Zheng-Jie Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
11
|
Schram S, Loeb JA, Song F. Disease propagation in amyotrophic lateral sclerosis (ALS): an interplay between genetics and environment. J Neuroinflammation 2020; 17:175. [PMID: 32505190 PMCID: PMC7276078 DOI: 10.1186/s12974-020-01849-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease affecting the neuromuscular system. While there have been a number of important genetic discoveries, there are no therapeutics capable of stopping its insidious progression. Lessons from clinical histories reveal that ALS can start focally at a single limb, but then segmentally spread up and down the spinal cord as well as in the motor cortex and cortex of frontal and temporal lobes until respiratory muscles fail. With or without a clear genetic etiology, often there is no explanation as to why it starts in one region of the body versus another. Similarly, once the disease starts the mechanisms by which the neurodegenerative process spreads are not known. Here, we summarize recent work in animal models that support the hypothesis that critical environmental contributions, such as a nerve injury, can initiate the disease process. We also propose that pathological axoglial signaling by the glial growth factor neuregulin-1 leads to the slow propagation of neuroinflammation resulting in neurodegeneration up and down the spinal cord and that locally applied drugs that block neuregulin-1 signaling could slow or halt the spread of disease.
Collapse
Affiliation(s)
- Sarah Schram
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, NPI North Bldg., Room 657, M/C 796, 912 S. Wood Street, Chicago, IL, 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, NPI North Bldg., Room 657, M/C 796, 912 S. Wood Street, Chicago, IL, 60612, USA.
| | - Fei Song
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, NPI North Bldg., Room 657, M/C 796, 912 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Ledonne A, Mercuri NB. On the Modulatory Roles of Neuregulins/ErbB Signaling on Synaptic Plasticity. Int J Mol Sci 2019; 21:ijms21010275. [PMID: 31906113 PMCID: PMC6981567 DOI: 10.3390/ijms21010275] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Neuregulins (NRGs) are a family of epidermal growth factor-related proteins, acting on tyrosine kinase receptors of the ErbB family. NRGs play an essential role in the development of the nervous system, since they orchestrate vital functions such as cell differentiation, axonal growth, myelination, and synapse formation. They are also crucially involved in the functioning of adult brain, by directly modulating neuronal excitability, neurotransmission, and synaptic plasticity. Here, we provide a review of the literature documenting the roles of NRGs/ErbB signaling in the modulation of synaptic plasticity, focusing on evidence reported in the hippocampus and midbrain dopamine (DA) nuclei. The emerging picture shows multifaceted roles of NRGs/ErbB receptors, which critically modulate different forms of synaptic plasticity (LTP, LTD, and depotentiation) affecting glutamatergic, GABAergic, and DAergic synapses, by various mechanisms. Further, we discuss the relevance of NRGs/ErbB-dependent synaptic plasticity in the control of brain processes, like learning and memory and the known involvement of NRGs/ErbB signaling in the modulation of synaptic plasticity in brain’s pathological conditions. Current evidence points to a central role of NRGs/ErbB receptors in controlling glutamatergic LTP/LTD and GABAergic LTD at hippocampal CA3–CA1 synapses, as well as glutamatergic LTD in midbrain DA neurons, thus supporting that NRGs/ErbB signaling is essential for proper brain functions, cognitive processes, and complex behaviors. This suggests that dysregulated NRGs/ErbB-dependent synaptic plasticity might contribute to mechanisms underlying different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Correspondence: ; Tel.: +3906-501703160; Fax: +3906-501703307
| | - Nicola B. Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier no 1, 00133 Rome, Italy
| |
Collapse
|
13
|
Foroughi S, Tie J, Gibbs P, Burgess AW. Epidermal growth factor receptor ligands: targets for optimizing treatment of metastatic colorectal cancer. Growth Factors 2019; 37:209-225. [PMID: 31878812 DOI: 10.1080/08977194.2019.1703702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The discovery of epidermal growth factor (EGF) and its receptor (EGFR) revealed the connection between EGF-like ligands, signaling from the EGFR family members and cancer. Over the next fifty years, analysis of EGFR expression and mutation led to the use of monoclonal antibodies to target EGFR in the treatment of metastatic colorectal cancer (mCRC) and this treatment has improved outcomes for patients. The use of the RAS oncogene mutational status has helped to refine patient selection for EGFR antibody therapy, but an effective molecular predictor of likely responders is lacking. This review analyzes the potential utility of measuring the expression, levels and activation of EGF-like ligands and associated processes as prognostic or predictive markers for the identification of patient risk and more effective mCRC therapies.
Collapse
Affiliation(s)
- Siavash Foroughi
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Jeanne Tie
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Western Health, St Albans, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Western Health, St Albans, Australia
| | - Antony Wilks Burgess
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Noll JM, Li Y, Distel TJ, Ford GD, Ford BD. Neuroprotection by Exogenous and Endogenous Neuregulin-1 in Mouse Models of Focal Ischemic Stroke. J Mol Neurosci 2019; 69:333-342. [PMID: 31290093 DOI: 10.1007/s12031-019-01362-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022]
Abstract
Identifying novel neuroprotectants that can halt or reverse the neurological effects of stroke is of interest to both clinicians and scientists. We and others previously showed the pre-clinical neuroprotective efficacy of neuregulin-1 (NRG-1) in rats following focal brain ischemia. In this study, we examined neuroprotection by exogenous and endogenous NRG-1 using a mouse model of ischemic stroke. C57BL6 mice were subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion. NRG-1 or vehicle was infused intra-arterially (i.a.) or intravenously (i.v.) after MCAO and before the onset of reperfusion. NRG-1 treatment (16 μg/kg; i.a.) reduced cerebral cortical infarct volume by 72% in mice when delivered post-ischemia. NRG-1 also inhibited neuronal injury as measured by Fluoro Jade B labeling and rescued NeuN immunoreactivity in neurons. Neuroprotection by NRG-1 was also observed in mice when administered i.v. (100 μg/kg) in both male and female mice. We investigated whether endogenous NRG-1 was neuroprotective using male and female heterozygous NRG-1 knockout mice (NRG-1+/-) compared with wild-type mice (WT) littermates. NRG-1+/- and WT mice were subjected to MCAO for 45 min, and infarct size was measured 24 h following MCAO. NRG-1+/- mice displayed a sixfold increase in cortical infarct size compared with WT mice. These results demonstrate that NRG-1 treatment mitigates neuronal damage following cerebral ischemia. We further showed that reduced endogenous NRG-1 results in exacerbated neuronal injury in vivo. These findings suggest that NRG-1 represents a promising therapy to treat stroke in human patients.
Collapse
Affiliation(s)
- Jessica M Noll
- Division of Biomedical Sciences, University of California - Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA
| | - Yonggang Li
- Division of Biomedical Sciences, University of California - Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA.,ICF, Atlanta, GA, 30329, USA
| | - Timothy J Distel
- Division of Biomedical Sciences, University of California - Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA
| | - Gregory D Ford
- Fort Valley State University, 1005 State University Dr., Fort Valley, GA, 31030, USA
| | - Byron D Ford
- Division of Biomedical Sciences, University of California - Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
16
|
Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 2019; 197:61-82. [PMID: 30677475 PMCID: PMC6520143 DOI: 10.1016/j.pharmthera.2019.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increased incidence of neurodegenerative diseases worldwide, Parkinson's disease (PD) represents the second-most common neurodegenerative disease. PD is a progressive multisystem neurodegenerative disorder characterized by a marked loss of nigrostriatal dopaminergic neurons and the formation of Lewy pathology in diverse brain regions. Although the mechanisms underlying dopaminergic neurodegeneration remain poorly characterized, data from animal models and postmortem studies have revealed that heightened inflammatory responses mediated via microglial and astroglial activation and the resultant release of proinflammatory factors may act as silent drivers of neurodegeneration. In recent years, numerous studies have demonstrated a positive association between the exposure to environmental neurotoxicants and the etiology of PD. Although it is unclear whether neuroinflammation drives pesticide-induced neurodegeneration, emerging evidence suggests that the failure to dampen neuroinflammatory mechanisms may account for the increased vulnerability to pesticide neurotoxicity. Furthermore, recent studies provide additional evidence that shifts the focus from a neuron-centric view to glial-associated neurodegeneration following pesticide exposure. In this review, we propose to summarize briefly the possible factors that regulate neuroinflammatory processes during environmental neurotoxicant exposure with a focus on the potential roles of mitochondria-driven redox mechanisms. In this context, a critical discussion of the data obtained from experimental research and possible epidemiological studies is included. Finally, we hope to provide insights on the pivotal role of exosome-mediated intercellular transmission of aggregated proteins in microglial activation response and the resultant dopaminergic neurodegeneration after exposure to pesticides. Collectively, an improved understanding of glia-mediated neuroinflammatory signaling might provide novel insights into the mechanisms that contribute to neurodegeneration induced by environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Adhithiya Charli
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anantharam Vellareddy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
17
|
Zhu S, Liu W, Ding HF, Cui H, Yang L. BMP4 and Neuregulin regulate the direction of mouse neural crest cell differentiation. Exp Ther Med 2019; 17:3883-3890. [PMID: 31007733 PMCID: PMC6468403 DOI: 10.3892/etm.2019.7439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
The neural crest is a transient embryonic tissue that initially generates neural crest stem cells, which then migrate throughout the body to give rise to a variety of mature tissues. It was proposed that the fate of neural crest cells is gradually determined via environmental cues from the surrounding tissues. In the present study, neural crest cells were isolated and identified from mouse embryos. Bone morphogenetic protein 4 (BMP4) and Neuregulin (NRG) were employed to induce the differentiation of neural crest cells. Treatment with BMP4 revealed neuron-associated differentiation; cells treated with NRG exhibited differentiation into the Schwann cell lineage, a type of glia. Soft agar clonogenic and neurosphere formation assays were conducted to investigate the effects of N-Myc (MYCN) overexpression in neural crest cells; the number of colonies and neurospheres notably increased after 14 days. These findings demonstrated that the direction of cell differentiation may be affected by altering the factors present in the surrounding environment. In addition, MYCN may serve a key role in regulating neural crest cell differentiation.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, P.R. China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Han-Fei Ding
- Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
18
|
Mosedale M, Button D, Jackson JP, Freeman KM, Brouwer KR, Caggiano AO, Eisen A, Iaci JF, Parry TJ, Stanulis R, Srinivas M, Watkins PB. Transient Changes in Hepatic Physiology That Alter Bilirubin and Bile Acid Transport May Explain Elevations in Liver Chemistries Observed in Clinical Trials of GGF2 (Cimaglermin Alfa). Toxicol Sci 2019; 161:401-411. [PMID: 29069498 DOI: 10.1093/toxsci/kfx222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
GGF2 is a recombinant human neuregulin-1β in development for chronic heart failure. Phase 1 clinical trials of GGF2 were put on hold when transient elevations in serum aminotransferases and total bilirubin were observed in 2 of 43 subjects who received single doses of GGF2 at 1.5 or 0.378 mg/kg. However, aminotransferase elevations were modest and not typical of liver injury sufficient to result in elevated serum bilirubin. Cynomolgus monkeys administered a single 15 mg/kg dose of GGF2 had similar transient elevations in serum aminotransferases and bilirubin as well as transient elevations in serum bile acids. However, no hepatocellular necrosis was observed in liver biopsies obtained during peak elevations. When sandwich-cultured human hepatocytes were treated with GGF2 for up to 72 h at concentrations approximately 0.8-fold average plasma Cmax for the 0.378 mg/kg dose, no cytotoxicity was observed. Gene expression profiling identified approximately 50% reductions in mRNAs coding for bilirubin transporters and bile acid conjugating enzymes, as well as changes in expression of additional genes mimicking the interleukin-6-mediated acute phase response. Similar gene expression changes were observed in GGF2-treated HepG2 cells and primary monkey hepatocytes. Additional studies conducted in sandwich-cultured human hepatocytes revealed a transient and GGF2 concentration-dependent decrease in hepatocyte bile acid content and biliary clearance of taurocholate without affecting biliary taurocholate efflux. Taken together, these data suggest that GGF2 does not cause significant hepatocellular death, but transiently modifies hepatic handling of bilirubin and bile acids, effects that may account for the elevations in serum bilirubin observed in the clinical trial subjects.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | | | | | | | | | | | | | | | - Tom J Parry
- Acorda Therapeutics, Ardsley, New York 10502
| | | | | | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| |
Collapse
|
19
|
Rahman A, Weber J, Labin E, Lai C, Prieto AL. Developmental expression of Neuregulin‐3 in the rat central nervous system. J Comp Neurol 2018; 527:797-817. [DOI: 10.1002/cne.24559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Afrida Rahman
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Janet Weber
- Department NeuroscienceUniversity of California San Diego San Diego California
| | - Edward Labin
- Department of NeurologyUniversity of Minnesota Minneapolis
| | - Cary Lai
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Anne L Prieto
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| |
Collapse
|
20
|
Surles-Zeigler MC, Li Y, Distel TJ, Omotayo H, Ge S, Ford BD. Transcriptomic analysis of neuregulin-1 regulated genes following ischemic stroke by computational identification of promoter binding sites: A role for the ETS-1 transcription factor. PLoS One 2018; 13:e0197092. [PMID: 29856744 PMCID: PMC5983438 DOI: 10.1371/journal.pone.0197092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 04/26/2018] [Indexed: 11/19/2022] Open
Abstract
Ischemic stroke is a major cause of mortality in the United States. We previously showed that neuregulin-1 (NRG1) was neuroprotective in rat models of ischemic stroke. We used gene expression profiling to understand the early cellular and molecular mechanisms of NRG1's effects after the induction of ischemia. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Rats were allocated to 3 groups: (1) control, (2) MCAO and (3) MCAO + NRG1. Cortical brain tissues were collected three hours following MCAO and NRG1 treatment and subjected to microarray analysis. Data and statistical analyses were performed using R/Bioconductor platform alongside Genesis, Ingenuity Pathway Analysis and Enrichr software packages. There were 2693 genes differentially regulated following ischemia and NRG1 treatment. These genes were organized by expression patterns into clusters using a K-means clustering algorithm. We further analyzed genes in clusters where ischemia altered gene expression, which was reversed by NRG1 (clusters 4 and 10). NRG1, IRS1, OPA3, and POU6F1 were central linking (node) genes in cluster 4. Conserved Transcription Factor Binding Site Finder (CONFAC) identified ETS-1 as a potential transcriptional regulator of NRG1 suppressed genes following ischemia. A transcription factor activity array showed that ETS-1 activity was increased 2-fold, 3 hours following ischemia and this activity was attenuated by NRG1. These findings reveal key early transcriptional mechanisms associated with neuroprotection by NRG1 in the ischemic penumbra.
Collapse
Affiliation(s)
- Monique C. Surles-Zeigler
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Yonggang Li
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
- ICF, Atlanta, GA, United States of America
| | - Timothy J. Distel
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
| | - Hakeem Omotayo
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
| | - Shaokui Ge
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
| | - Byron D. Ford
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Avramopoulos D. Neuregulin 3 and its roles in schizophrenia risk and presentation. Am J Med Genet B Neuropsychiatr Genet 2018; 177:257-266. [PMID: 28556469 PMCID: PMC5735014 DOI: 10.1002/ajmg.b.32552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
Abstract
Neuregulins, a four-member family of epidermal growth factor-like signaling molecules, have been studied for over two decades. They were first implicated in schizophrenia in 2002 with the detection of linkage and association at the NRG1 locus followed after a few years by NRG3. However, the associations with disease have not been very consistently observed. In contrast, association of NGR3 variants with disease presentation, specifically the presence of delusions, has been more consistent. This appears to be mediated by quantitative changes in the alternative splicing of the gene, which has also been consistently observed. Additional diseases and phenotypes, psychiatric or not, have also been connected with NRG3. These results demonstrate two important aspects of behavioral genetics research. The first is that if we only consider simple risk and fail to examine the details of each patient's individual phenotype, we will miss important insights on the disease biology. This is an important aspect of the goals of precision medicine. The second is that the functional consequences of variants are often more complex than simple alterations in levels of transcription of a particular gene, including, among others, regulation of alternative splicing. To accurately model and understand the biological consequences of phenotype-associated genetic variants, we need to study the biological consequences of each specific variant. Simply studying the consequences of a null allele of the orthologous gene in a model system, runs the risk of missing the many nuances of hypomorphic and/or gain of function variants in the genome of interest.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- Johns Hopkins University, Institute of Genetic Medicine and Department of Psychiatry and Behavioral Sciences, 733 North Broadway - MRB room 507, Baltimore MD 21205
| |
Collapse
|
22
|
Neuregulin 1 improves complex 2-mediated mitochondrial respiration in skeletal muscle of healthy and diabetic mice. Sci Rep 2017; 7:1742. [PMID: 28496106 PMCID: PMC5431817 DOI: 10.1038/s41598-017-02029-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
It has been reported that neuregulin1 (NRG1) improves glucose tolerance in healthy and diabetic rodents. In vitro studies also suggest that NRG1 regulates myocyte oxidative capacity. To confirm this observation in vivo, we evaluated the effect on mitochondrial function of an 8-week treatment with NRG1 in db/db diabetic mice and C57BL/6JRJ healthy controls. NRG1 treatment improved complex 2-mediated mitochondrial respiration in the gastrocnemius of both control and diabetic mice and increased mitochondrial complex 2 subunit content by 2-fold. This effect was not associated with an increase in mitochondrial biogenesis markers. Enhanced ERBB4 phosphorylation could mediate NRG1 effects on mitochondrial function through signalling pathways, independently of ERK1/2, AKT or AMPK.
Collapse
|
23
|
King G, Smith ME, Cake MH, Nielsen HC. What is the identity of fibroblast-pneumocyte factor? Pediatr Res 2016; 80:768-776. [PMID: 27500537 PMCID: PMC5112109 DOI: 10.1038/pr.2016.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/03/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoid induction of pulmonary surfactant involves a mesenchyme-derived protein first characterized in 1978 by Smith and termed fibroblast-pneumocyte factor (FPF). Despite a number of agents having been postulated as being FPF, its identity has remained obscure. In the past decade, three strong candidates for FPF have arisen. This review examines the evidence that keratinocyte growth factor (KGF), leptin or neuregulin-1β (NRG-1β) act as FPF or components of it. As with FPF production, glucocorticoids enhance the concentration of each of these agents in fibroblast-conditioned media. Moreover, each stimulates the synthesis of surfactant-associated phospholipids and proteins in type II pneumocytes. Further, some have unique activities, for example, KGF also minimizes lung injury through enhanced epithelial cell proliferation and NRG-1β enhances surfactant phospholipid secretion and β-adrenergic receptor activity in type II cells. However, even though these agents have attributes in common with FPF, it is inappropriate to specify any one of these agents as FPF. Rather, it appears that each contributes to separate mesenchymal-epithelial signaling mechanisms involved in different aspects of lung development. Given that the production of pulmonary surfactant is essential for postnatal survival, it is reasonable to suggest that several mechanisms independently regulate surfactant synthesis.
Collapse
Affiliation(s)
- George King
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Megan E. Smith
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| | - Max H. Cake
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Heber C. Nielsen
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| |
Collapse
|
24
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
25
|
Gilbert MA, Lin B, Peterson J, Jang W, Schwob JE. Neuregulin1 and ErbB expression in the uninjured and regenerating olfactory mucosa. Gene Expr Patterns 2015; 19:108-19. [PMID: 26474499 DOI: 10.1016/j.gep.2015.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/23/2022]
Abstract
Neuregulin1, a protein involved in signaling through the ErbB receptors, is required for the proper development of multiple organ systems. A complete understanding of the expression profile of Neuregulin1 is complicated by the presence of multiple isoform variants that result from extensive alternative splicing. Remarkably, these numerous protein products display a wide range of divergent functional roles, making the characterization of tissue-specific isoforms critical to understanding signaling. Recent evidence suggests an important role for Neuregulin1 signaling during olfactory epithelium development and regeneration. In order to understand the physiological consequences of this signaling, we sought to identify the isoform-specific and cell type-specific expression pattern of Neuregulin1 in the adult olfactory mucosa using a combination of RT-qPCR, FACS, and immunohistochemistry. To complement this information, we also analyzed the cell-type specific expression patterns of the ErbB receptors using immunohistochemistry. We found that multiple Neuregulin1 isoforms, containing predominantly the Type I and Type III N-termini, are expressed in the uninjured olfactory mucosa. Specifically, we found that Type III Neuregulin1 is highly expressed in mature olfactory sensory neurons and Type I Neuregulin1 is highly expressed in duct gland cells. Surprisingly, the divergent localization of these Neuregulin isoforms and their corresponding ErbB receptors does not support a role for active signaling during normal turnover and maintenance of the olfactory mucosa. Conversely, we found that injury to the olfactory epithelium specifically upregulates the Neuregulin1 Type I isoform bringing the expression pattern adjacent to cells expressing both ErbB2 and ErbB3 which is compatible with active signaling, supporting a functional role for Neuregulin1 specifically during regeneration.
Collapse
Affiliation(s)
- M A Gilbert
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - B Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - J Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - W Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - J E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
26
|
Rupert CE, Coulombe KL. The roles of neuregulin-1 in cardiac development, homeostasis, and disease. Biomark Insights 2015; 10:1-9. [PMID: 25922571 PMCID: PMC4395047 DOI: 10.4137/bmi.s20061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 02/07/2023] Open
Abstract
Neuregulin-1 (NRG-1) and its signaling receptors, erythroblastic leukemia viral oncogene homologs (ErbB) 2, 3, and 4, have been implicated in both cardiomyocyte development and disease, as well as in homeostatic cardiac function. NRG-1/ErbB signaling is involved in a multitude of cardiac processes ranging from myocardial and cardiac conduction system development to angiogenic support of cardiomyocytes, to cardioprotective effects upon injury. Numerous studies of NRG-1 employ a variety of platforms, including in vitro assays, animal models, and human clinical trials, with equally varying and, sometimes, contradictory outcomes. NRG-1 has the potential to be used as a therapeutic tool in stem cell therapies, tissue engineering applications, and clinical diagnostics and treatment. This review presents a concise summary of the growing body of literature to highlight the temporally persistent significance of NRG-1/ErbB signaling throughout development, homeostasis, and disease in the heart, specifically in cardiomyocytes.
Collapse
Affiliation(s)
- Cassady E Rupert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen Lk Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA. ; Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
27
|
Li Y, Lein PJ, Ford GD, Liu C, Stovall KC, White TE, Bruun DA, Tewolde T, Gates AS, Distel TJ, Surles-Zeigler MC, Ford BD. Neuregulin-1 inhibits neuroinflammatory responses in a rat model of organophosphate-nerve agent-induced delayed neuronal injury. J Neuroinflammation 2015; 12:64. [PMID: 25880399 PMCID: PMC4391606 DOI: 10.1186/s12974-015-0283-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/17/2015] [Indexed: 11/24/2022] Open
Abstract
Background Neuregulin-1 (NRG-1) has been shown to act as a neuroprotectant in animal models of nerve agent intoxication and other acute brain injuries. We recently demonstrated that NRG-1 blocked delayed neuronal death in rats intoxicated with the organophosphate (OP) neurotoxin diisopropylflurophosphate (DFP). It has been proposed that inflammatory mediators are involved in the pathogenesis of OP neurotoxin-mediated brain damage. Methods We examined the influence of NRG-1 on inflammatory responses in the rat brain following DFP intoxication. Microglial activation was determined by immunohistchemistry using anti-CD11b and anti-ED1 antibodies. Gene expression profiling was performed with brain tissues using Affymetrix gene arrays and analyzed using the Ingenuity Pathway Analysis software. Cytokine mRNA levels following DFP and NRG-1 treatment was validated by real-time reverse transcription polymerase chain reaction (RT-PCR). Results DFP administration resulted in microglial activation in multiple brain regions, and this response was suppressed by treatment with NRG-1. Using microarray gene expression profiling, we observed that DFP increased mRNA levels of approximately 1,300 genes in the hippocampus 24 h after administration. NRG-1 treatment suppressed by 50% or more a small fraction of DFP-induced genes, which were primarily associated with inflammatory responses. Real-time RT-PCR confirmed that the mRNAs for pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly increased following DFP exposure and that NRG-1 significantly attenuated this transcriptional response. In contrast, tumor necrosis factor α (TNFα) transcript levels were unchanged in both DFP and DFP + NRG-1 treated brains relative to controls. Conclusion Neuroprotection by NRG-1 against OP neurotoxicity is associated with the suppression of pro-inflammatory responses in brain microglia. These findings provide new insight regarding the molecular mechanisms involved in the neuroprotective role of NRG-1 in acute brain injuries.
Collapse
Affiliation(s)
- Yonggang Li
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA, 30310, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| | - Gregory D Ford
- Department of Biology, Morehouse College, 830 Westview Drive SW, Atlanta, GA, 30310, USA.
| | - Cuimei Liu
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA, 30310, USA. .,Institute of Infectious Disease, Xiangya Hospital, Central-South University, No.9 Chegongzhuang Avenue, Changsha, 100044, China.
| | - Kyndra C Stovall
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA, 30310, USA. .,Department of Biology, Morehouse College, 830 Westview Drive SW, Atlanta, GA, 30310, USA. .,Department of Physiology, Emory University, 201 Dowman Dr., Atlanta, GA, 30322, USA.
| | - Todd E White
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA, 30310, USA.
| | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| | - Teclemichael Tewolde
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA, 30310, USA.
| | - Alicia S Gates
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA, 30310, USA.
| | - Timothy J Distel
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA, 30310, USA.
| | - Monique C Surles-Zeigler
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA, 30310, USA.
| | - Byron D Ford
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA, 30310, USA.
| |
Collapse
|
28
|
Huang LL, Liu ZY, Huang JH, Luo ZJ. Expression pattern of neuregulin-1 type III during the development of the peripheral nervous system. Neural Regen Res 2015; 10:65-70. [PMID: 25788922 PMCID: PMC4357119 DOI: 10.4103/1673-5374.150708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2014] [Indexed: 12/20/2022] Open
Abstract
Neuregulin-1 type III is a key regulator in Schwann cell proliferation, committing to a myelinating fate and regulating myelin sheath thickness. However, the expression pattern of neuregulin-1 type III in the peripheral nervous system during developmental periods (such as the premyelinating stage, myelinating stage and postmyelinating stage) has rarely been studied. In this study, dorsal root ganglia were isolated from rats between postnatal day 1 and postnatal day 56. The expression pattern of neuregulin-1 type III in dorsal root ganglia neurons at various developmental stages were compared by quantitative real-time polymerase chain reaction, western blot assay and immunofluorescent staining. The expression of neuregulin-1 type III mRNA reached its peak at postnatal day 3 and then stabilized at a relative high expression level from postnatal day 3 to postnatal day 56. The expression of neuregulin-1 type III protein increased gradually from postnatal day 1, reached a peak at postnatal day 28, and then decreased at postnatal day 56. Immunofluorescent staining results showed a similar tendency to western blot assay results. Experimental findings indicate that the expression of neuregulin-1 type III in rat dorsal root ganglion was increased during the premyelinating (from postnatal day 2 to postnatal day 5) and myelinating stage (from postnatal day 5 to postnatal day 10), but remained at a high level in the postmyelinating stage (after postnatal day 10).
Collapse
Affiliation(s)
- Liang-Liang Huang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Zhong-Yang Liu
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Jing-Hui Huang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Zhuo-Jing Luo
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| |
Collapse
|
29
|
Activation of HER3 interferes with antitumor effects of Axl receptor tyrosine kinase inhibitors: suggestion of combination therapy. Neoplasia 2015; 16:301-18. [PMID: 24862757 DOI: 10.1016/j.neo.2014.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 12/14/2022] Open
Abstract
The Axl receptor tyrosine kinase (RTK) has been established as a strong candidate for targeted therapy of cancer. However, the benefits of targeted therapies are limited due to acquired resistance and activation of alternative RTKs. Therefore, we asked if cancer cells are able to overcome targeted Axl therapies. Here, we demonstrate that inhibition of Axl by short interfering RNA or the tyrosine kinase inhibitor (TKI) BMS777607 induces the expression of human epidermal growth factor receptor 3 (HER3) and the neuregulin 1(NRG1)-dependent phosphorylation of HER3 in MDA-MB231 and Ovcar8 cells. Moreover, analysis of 20 Axl-expressing cancer cell lines of different tissue origin indicates a low basal phosphorylation of RAC-α serine/threonine-protein kinase (AKT) as a general requirement for HER3 activation on Axl inhibition. Consequently, phosphorylation of AKT arises as an independent biomarker for Axl treatment. Additionally, we introduce phosphorylation of HER3 as an independent pharmacodynamic biomarker for monitoring of anti-Axl therapy response. Inhibition of cell viability by BMS777607 could be rescued by NRG1-dependent activation of HER3, suggesting an escape mechanism by tumor microenvironment. The Axl-TKI MPCD84111 simultaneously blocked Axl and HER2/3 signaling and thereby prohibited HER3 feedback activation. Furthermore, dual inhibition of Axl and HER2/3 using BMS777607 and lapatinib led to a significant inhibition of cell viability in Axl-expressing MDA-MB231 and Ovcar8 cells. Therefore, we conclude that, in patient cohorts with expression of Axl and low basal activity of AKT, a combined inhibition of Axl and HER2/3 kinase would be beneficial to overcome acquired resistance to Axl-targeted therapies.
Collapse
|
30
|
Luo X, He W, Hu X, Yan R. Reversible overexpression of bace1-cleaved neuregulin-1 N-terminal fragment induces schizophrenia-like phenotypes in mice. Biol Psychiatry 2014; 76:120-7. [PMID: 24210810 PMCID: PMC3976896 DOI: 10.1016/j.biopsych.2013.09.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Neuregulin-1 (Nrg1) is a pleiotropic signaling molecule that regulates neural development, and mutation of Nrg1 is a risk factor for schizophrenia. Cleavage of type I β1 Nrg1 isoform by Bace1 releases a secreted N-terminal fragment (Nrg1-ntfβ), which can bind to a cognate ErbB receptor to activate the specific signaling cascade. This study aimed to determine whether increased expression of Nrg1 is beneficial for brain development and functions. METHODS We generated transgenic mice overexpressing this fragment under the control of a tetracycline-inducible promoter and examined functional and behavioral changes in mice upon reversible expression of the transgene. RESULTS Increased expression of full-length Nrg1 in mouse neurons has been previously shown to enhance myelination in the central nervous system. Overexpressing Nrg1-ntfβ enhanced the expression of myelin proteins, consistent with the expected activation of the Nrg1 signaling pathway by Nrg1-ntfβ. Contrary to expectations, overexpressing Nrg1-ntfβ transgene caused schizophrenia-like behaviors in transgenic mice, and these abnormal behaviors were reversible if the expression of the Nrg1-ntfβ transgene was turned off. Our molecular assay suggests that protein levels of N-methyl-D-aspartate receptors are reduced in this transgenic mouse model, which might underlie the observed social and cognitive behavioral impairments. CONCLUSIONS Our results indicate that overexpressing the secreted form of Nrg1 is sufficient to cause schizophrenia-like behaviors in a mouse model, meaning the effect is independent of the transmembrane and C-terminal domains of Nrg1. Hence, genetic gain-of-function mutations of Nrg1 are also risk factors for schizophrenia.
Collapse
Affiliation(s)
- Xiaoyang Luo
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
31
|
Turner JR, Ray R, Lee B, Everett L, Xiang J, Jepson C, Kaestner KH, Lerman C, Blendy JA. Evidence from mouse and man for a role of neuregulin 3 in nicotine dependence. Mol Psychiatry 2014; 19:801-10. [PMID: 23999525 PMCID: PMC3877725 DOI: 10.1038/mp.2013.104] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022]
Abstract
Addiction to nicotine and the ability to quit smoking are influenced by genetic factors. We used functional genomic approaches (chromatin immunoprecipitation (ChIP) and whole-genome sequencing) to identify cAMP response element-binding protein (CREB) targets following chronic nicotine administration and withdrawal (WD) in rodents. We found that chronic nicotine and WD differentially modulate CREB binding to the gene for neuregulin 3 (NRG3). Quantitative analysis of saline, nicotine and nicotine WD in two biological replicates corroborate this finding, with NRG3 increases in both mRNA and protein following WD from chronic nicotine treatment. To translate these data for human relevance, single-nucleotide polymorphisms (SNPs) across NRG3 were examined for association with prospective smoking cessation among smokers of European ancestry treated with transdermal nicotine in two independent cohorts. Individual SNP and haplotype analysis support the association of NRG3 SNPs and smoking cessation success. NRG3 is a neural-enriched member of the epidermal growth factor family, and a specific ligand for the receptor tyrosine kinase ErbB4, which is also upregulated following nicotine treatment and WD. Mice with significantly reduced levels of NRG3 or pharmacological inhibition of ErbB4 show similar reductions in anxiety following nicotine WD compared with control animals, suggesting a role for NRG3 in nicotine dependence. Although the function of the SNP in NRG3 in humans is not known, these data suggest that Nrg3/ErbB4 signaling may be an important factor in nicotine dependence.
Collapse
Affiliation(s)
- Jill R. Turner
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Riju Ray
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Bridgin Lee
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Logan Everett
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jing Xiang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher Jepson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Klaus H. Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Caryn Lerman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Julie A. Blendy
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
32
|
Parodi EM, Kuhn B. Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc Res 2014; 102:194-204. [PMID: 24477642 PMCID: PMC3989448 DOI: 10.1093/cvr/cvu021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/23/2013] [Accepted: 01/10/2014] [Indexed: 12/26/2022] Open
Abstract
Heterocellular communication in the heart is an important mechanism for matching circulatory demands with cardiac structure and function, and neuregulins (Nrgs) play an important role in transducing this signal between the hearts' vasculature and musculature. Here, we review the current knowledge regarding Nrgs, explaining their roles in transducing signals between the heart's microvasculature and cardiomyocytes. We highlight intriguing areas being investigated for developing new, Nrg-mediated strategies to heal the heart in acquired and congenital heart diseases, and note avenues for future research.
Collapse
Affiliation(s)
| | - Bernhard Kuhn
- Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Enders Building, Room 1212, Brookline, MA 02115, USA
| |
Collapse
|
33
|
Jang H, Han DS, Yuk SM. Changes of neuregulin-1 (NRG-1) expression in a rat model of overactive bladder induced by partial urethral obstruction: is NRG-1 a new biomarker of overactive bladder? BMC Urol 2013; 13:54. [PMID: 24152577 PMCID: PMC4015862 DOI: 10.1186/1471-2490-13-54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/22/2013] [Indexed: 11/10/2022] Open
Abstract
Background To determine whether neuregulin-1(NRG-1) is a potential new biomarker of overactive bladder (OAB) induced by partial urethral obstruction in a rat model of OAB and to evaluate the urothelium as a therapeutic target of OAB. Methods Female Sprague–Dawley rats were separated into three 20-animal groups: normal, OAB, and 5-hydroxymethyl tolterodine (5-HMT)-treated OAB. In the OAB and OAB + 5-HMT groups, the urethra of each animal was partially obstructed; the OAB + 5-HMT group received intravenous 5-HMT for 3 weeks. At the conclusion of the 5-HMT dosing, the rats in each group underwent cystometrography, and the bladders were histologically evaluated. The expression of brain derived-neurotrophic factor (BDNF) and NRG-1 were evaluated in the urothelium. Results Compared with the control group, the OAB group showed a markedly increased bladder weight and a significant decrease in the micturition interval and volume; rats in the OAB + 5-HMT group showed decreased bladder weights and an improved micturition interval and volume. BDNF and NRG-1 were expressed at significantly higher levels in the OAB group, and were significantly reduced in the OAB + 5-HMT group compared with the control group. Conclusions The study suggests that NRG-1 is a potential new biomarker of OAB; the urothelium might be a therapeutic target for OAB treatment.
Collapse
Affiliation(s)
| | | | - Seung Mo Yuk
- The Department of Urology, The Catholic University of Korea, DaeJeon St, Mary's Hospital, Daeheung-dong, jug-gu, Daejeon, South Korea.
| |
Collapse
|
34
|
Chang HM, Shyu MK, Tseng GF, Liu CH, Chang HS, Lan CT, Hsu WM, Liao WC. Neuregulin facilitates nerve regeneration by speeding Schwann cell migration via ErbB2/3-dependent FAK pathway. PLoS One 2013; 8:e53444. [PMID: 23301073 PMCID: PMC3534691 DOI: 10.1371/journal.pone.0053444] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
Abstract
Background Adequate migration of Schwann cells (Sc) is crucial for axon-guidance in the regenerative process after peripheral nerve injury (PNI). Considering neuregulin-erbB-FAK signaling is an essential pathway participating in the regulation of Sc migration during development, the present study is aimed to examine whether neuregulin would exert its beneficial effects on adult following PNI and further determine the potential changes of downstream pathway engaged in neuro-regeneration by both in vitro and in vivo approaches. Methodology and Principal Findings Cultured RSC96 cells treated with neuregulin were processed for erbB2/3 immunofluorescence and FAK immunoblotings. The potential effects of neuregulin on Sc were assessed by cell adherence, spreading, and migration assays. In order to evaluate the functional significance of neuregulin on neuro-regeneration, the in vivo model of PNI was performed by chronic end-to-side neurorrhaphy (ESN). In vitro studies indicated that after neuregulin incubation, erbB2/3 were not only expressed in cell membranes, but also distributed throughout the cytoplasm and nucleus of RSC96 cells. Activation of erbB2/3 was positively correlated with FAK phosphorylation. Neuregulin also increases Sc adherence, spreading, and migration by 127.2±5.0%, 336.8±3.0%, and 80.0±5.7%, respectively. As for in vivo study, neuregulin significantly accelerates the speed of Sc migration and increases Sc expression in the distal stump of injured nerves. Retrograde labeling and compound muscle action potential recordings (CMAP) also showed that neuregulin successfully facilitates nerve regeneration by eliciting noticeably larger CMAP and promoting quick re-innervation of target muscles. Conclusions As neuregulin successfully improves axo-glial interaction by speeding Sc migration via the erbB2/3-FAK pathway, therapeutic use of neuregulin may thus serve as a promising strategy to facilitate the progress of nerve regeneration after PNI.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Kwang Shyu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chiung-Hui Liu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Shuo Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Ming Hsu
- Division of Pediatric Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Abstract
Although it is broadly agreed that the improved treatment of patients with cancer will depend on a deeper molecular understanding of the underlying pathogenesis, only a few examples are already available. This Timeline article focuses on the ERBB (also known as HER) network of receptor tyrosine kinases (RTKs), which exemplifies how a constant dialogue between basic research and medical oncology can translate into both a sustained pipeline of novel drugs and ways to overcome acquired treatment resistance in patients. We track the key early discoveries that linked this RTK family to oncogenesis, the course of pioneering clinical research and their merger into a systems-biology framework that is likely to inspire further generations of effective therapeutic strategies.
Collapse
Affiliation(s)
- Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, 1 Hertzl Street, Candiotty Building, Room 312, Rehovot 76100, Israel.
| | | |
Collapse
|
36
|
Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 2012; 98:16-37. [PMID: 22609046 DOI: 10.1016/j.pneurobio.2012.05.005] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs.
Collapse
|
37
|
Watanabe T, Sato K, Itoh F, Iso Y. Pathogenic involvement of heregulin-β1 in anti-atherogenesis. ACTA ACUST UNITED AC 2012; 175:11-4. [DOI: 10.1016/j.regpep.2012.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/12/2011] [Accepted: 01/10/2012] [Indexed: 12/28/2022]
|
38
|
Echocardiography signs of early cardiac impairment in patients with breast cancer and trastuzumab therapy. Clin Res Cardiol 2012; 101:415-26. [PMID: 22249492 DOI: 10.1007/s00392-011-0406-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 12/23/2011] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Recent studies in breast cancer patients and Trastuzumab therapy (Herceptin) showed a development of a toxic cardiomyopathy as a severe complication. The aim of this study was to discover early changes in cardiac function and morphology. METHODS We studied 42 female patients with Her-2/-neu over-expression in breast cancer by echocardiography before, 3, and 6 months after start of the adjuvant Herceptin therapy. All values were mean value ± standard deviation. RESULTS After 3 or 6 months of a trastuzumab therapy we discovered significant increases in the diastolic and systolic left ventricle volume indices (LV-DVI 32.4 ± 8.5 vs. 38.5 ± 8.7 vs. 40.3 ± 10.3 ml/m², p < 0.001 and LV-SVI 12.6 ± 4.0 vs. 15.7 ± 4.7 vs. 17.2 ± 6.8 ml/m², p < 0.001), an increase of the end-diastolic and end-systolic LV diameter (LVEDD 46.8 ± 4.2 vs. 48.0 ± 4.7 vs. 49.7 ± 4.5 ml/m², p < 0.01; LVESD 28.3 ± 4.2 vs. 31.0 ± 4.7 vs. 32.3 ± 4.9 mm, p < 0.001), a reduced systolic ventricle function determined by the tissue Doppler imaging (TDI) velocity (9.2 ± 2.5 vs. 8.0 ± 1,7 vs. 7.7 ± 1.5 cm/s, p < 0.001), fractional shortening (39,6 ± 7.5 vs. 35.4 ± 7.4 vs. 35.2 ± 7.0%, p < 0.01), and the LV-EF Simpson biplane [62.0 ± 5.1 vs. 60.1 ± 6.3 (p = ns) vs. 58.4 ± 7.9%, p < 0.01] compared to pretreatment values. There was also an increase of the left atrial volume index (21.4 ± 6.2 vs. 26.2 ± 7.9 vs. 29.7 ± 8.8 ml/m², p < 0.001), a decrease of the median TDI atrial velocities (11.9 ± 2.4 vs. 10.5 ± 2.8 vs. 10.1 ± 2.1 cm/s, p < 0.01), an increase of the peak early diastolic filling velocities (73.1 ± 15.4 vs. 83.1 ± 16.4 vs. 82.2 ± 19.4 cm/s, p < 0.05), and an increase of the median mitral valve insufficiency degree (0.64 ± 0.65 vs. 1.03 ± 0.76 vs. 1.11 ± 0.73°, p < 0.001). We could not detect a significant increase in diastolic dysfunction. Also right heart diameters and function did not change significantly. Most patients stayed in an asymptomatic stage of cardiac disease. CONCLUSION The blockade of Her2/-neu receptors with trastuzumab in patients with breast cancer led to measurable alterations of left ventricular volume, left atrial volume, and systolic function as early as 3 months after start of treatment.
Collapse
|
39
|
NISHIYAMA HIROSHI, SOEDA SHU, WATANABE TAKAFUMI, FUJIMORI KEIYA. ASSOCIATION BETWEEN GROWTH FACTOR HEREGULIN -1^|^alpha; AND RECEPTORS IN GROWTH OF OVARIAN CANCER CELL LINE WITH HIGH POTENTIALITY OF PERITONEAL DISSEMINATION. Fukushima J Med Sci 2012. [DOI: 10.5387/fms.58.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
Luo X, Prior M, He W, Hu X, Tang X, Shen W, Yadav S, Kiryu-Seo S, Miller R, Trapp BD, Yan R. Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination. J Biol Chem 2011; 286:23967-74. [PMID: 21576249 DOI: 10.1074/jbc.m111.251538] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuregulin-1 (Nrg1) is encoded by a single gene and exists in naturally secreted and transmembrane isoforms. Nrg1 exerts its signaling activity through interaction with its cognate ErbB receptors. Multiple membrane-anchored Nrg1 isoforms, present in six different membrane topologies, must be processed by a protease to initiate a signaling cascade. Here, we demonstrate that BACE1 and ADAM10 can process type I and III Nrg1 at two adjacent sites. Our cleavage site mapping experiments showed that the BACE1 cleavage site is located eight amino acids downstream of the ADAM10 cleavage site, and this order of cleavage is the opposite of amyloid precursor protein cleavage by these two enzymes. Cleavages were further confirmed via optimized electrophoresis. Cleavage of type I or III Nrg1 by ADAM10 and BACE1 released a signaling-capable N-terminal fragment (ntf), either Nrg1-ntfα or Nrg1-ntfβ, which could similarly activate an ErbB receptor as evidenced by increased phosphorylation of Akt and ERK, two downstream signaling molecules. Although both Nrg1-ntfα and Nrg1-ntfβ could initiate a common signaling cascade, inhibition or down-regulation of ADAM10 alone in a co-culture system did not affect normal myelination, whereas specific inhibition of BACE1 impaired normal myelination. Thus, processing of Nrg1 by BACE1 appears to be more critical for regulating myelination. Our results imply that a significant inhibition of BACE1 could potentially impair Nrg1 signaling activity in vivo.
Collapse
Affiliation(s)
- Xiaoyang Luo
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Campreciós G, Lorita J, Pardina E, Peinado-Onsurbe J, Soley M, Ramírez I. Expression, localization, and regulation of the neuregulin receptor ErbB3 in mouse heart. J Cell Physiol 2011; 226:450-5. [PMID: 20672328 DOI: 10.1002/jcp.22354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuregulins (NRG) belong to the EGF family of growth factors, which are ligands of the ErbB receptors. Their expression in the adult heart is essential, especially when the heart is submitted to cardiotoxic stress such as that produced by anthracyclines. It is considered that ErbB4 is the only NRG receptor expressed by the adult heart. Upon binding, ErbB4 may dimerize with ErbB2 to generate signals inside cells. However, here we show the presence of ErbB3 in the mouse heart from birth to adulthood by Western blotting and real-time RT-PCR. The expression level of ErbB3 mRNA was lower than that of ErbB2 or ErbB4, but was more stable throughout postnatal development. In isolated heart myocytes, ErbB3 localized to the Z-lines similarly to ErbB1. Perfusion of isolated hearts with NRG-1β induced phosphorylation of ErbB3, as well as ErbB2 and ErbB4. In adult mice, both ErbB2 and ErbB3, but not ErbB1 or ErbB4, were rapidly down-regulated upon the induction of heart hypertrophy. In conclusion, our results demonstrate that ErbB3, in addition to ErbB4, is a receptor for neuregulin-1β in the adult mouse heart.
Collapse
Affiliation(s)
- Genís Campreciós
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Mill CP, Gettinger KL, Riese DJ. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines. Exp Cell Res 2010; 317:392-404. [PMID: 21110957 DOI: 10.1016/j.yexcr.2010.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/12/2010] [Accepted: 11/12/2010] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1β. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Christopher P Mill
- Purdue University College of Pharmacy, Purdue University Center for Cancer Research, West Lafayette, IN 47907-2064, USA
| | | | | |
Collapse
|
43
|
Geng L, Li Q. Expression and function of heregulin-alpha and its receptors in the mouse mammary gland. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1015-24. [PMID: 20821301 DOI: 10.1007/s11427-010-4042-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 05/26/2010] [Indexed: 11/26/2022]
Abstract
Heregulin-alpha (HRGalpha) is a cytokine secreted by the mammary mesenchyme, adjacent to lobuloalveolar structures. To understand the role of HRGalpha and its receptors in mammary glands, and the underlying mechanisms, we performed this study to determine the expression and localization of HRGalpha and its receptors ErbB2 and ErbB3. We also determined the role of HRGalpha in the development of mammary glands, beta-casein expression and secretion, Rab3A protein expression and the phosphorylation of HRGalpha signaling molecules using confocal laser scanning microscopy, tissue culture, capillary electrophoresis, Western blotting and enzyme-linked immunosorbent assays. We found that a peak was on pregnancy day 15. Changes of ErbB2 and ErbB3 expression were positively and linearly correlated with HRGalpha, indicating that HRGalpha positively regulates ErbB2 and ErbB3 expression. During pregnancy, HRGalpha enhanced the phosphorylation of STAT5, p42/p44, p38, PKC and Rab3A protein expression, stimulated the proliferation and differentiation of the ductal epithelial cells of mammary glands, and increased and maintained the expression and secretion of beta-casein. During lactation, HRGalpha enhanced the phosphorylation of STAT5 and p38, inhibited the phosphorylation of PKC and Rab3A protein expression, maintained the morphology of the mammary glands and increased the secretion of lactoprotein to reduce the expression of beta-casein in mammary epithelial cells. During involution, HRGalpha induced the phosphorylation of STAT3 and Rab3A protein expression, and inhibited the phosphorylation of PKC to stimulate the degeneration of mammary epithelial cells. It also inhibited the secretion of beta-casein, resulting in increased levels of beta-casein in mammary epithelial cells.
Collapse
Affiliation(s)
- LiJing Geng
- Institute of Food Science and Engineering, Liaoning Medical University, Jinzhou, China
| | | |
Collapse
|
44
|
Affiliation(s)
- A S Leong
- Division of Tissue Pathology, Institute of Medical and Veterinary Science and Department of Pathology, University of Adelaide, Adelaide, South Australia
| | | |
Collapse
|
45
|
Gumà A, Martínez-Redondo V, López-Soldado I, Cantó C, Zorzano A. Emerging role of neuregulin as a modulator of muscle metabolism. Am J Physiol Endocrinol Metab 2010; 298:E742-50. [PMID: 20028964 DOI: 10.1152/ajpendo.00541.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuregulin was described initially as a neurotrophic factor involved in the formation of the neuromuscular junction in skeletal muscle. However, in recent years, neuregulin has been reported to be a myokine that exerts relevant effects on myogenesis and the regulation of muscle metabolism. In this new context, the rapid and chronic metabolic effects of neuregulin appear to be related to muscle contraction. Indeed, the effects of neuregulin resemble those of exercise, which are accompanied by an improvement in insulin sensitivity. In this review, we challenge the classical role assigned to neuregulin in muscle and propound the emerging concept of its involvement in the regulation of energetic metabolism and insulin responsiveness.
Collapse
Affiliation(s)
- Anna Gumà
- Dept. of Biochemistry and Molecular Biology, Univ. of Barcelona, Spain.
| | | | | | | | | |
Collapse
|
46
|
Neuregulin-1 modulates the differentiation of neural stem cells in vitro trough an interaction with the Swi/Snf complex. Mol Cell Neurosci 2010; 43:72-80. [DOI: 10.1016/j.mcn.2009.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/24/2009] [Accepted: 09/08/2009] [Indexed: 11/24/2022] Open
|
47
|
Esper RM, Loeb JA. Neurotrophins induce neuregulin release through protein kinase Cdelta activation. J Biol Chem 2009; 284:26251-60. [PMID: 19648576 PMCID: PMC2785313 DOI: 10.1074/jbc.m109.002915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/28/2009] [Indexed: 12/20/2022] Open
Abstract
Proper, graded communication between different cell types is essential for normal development and function. In the nervous system, heart, and for some cancer cells, part of this communication requires signaling by soluble and membrane-bound factors produced by the NRG1 gene. We have previously shown that glial-derived neurotrophic factors activate a rapid, localized release of soluble neuregulin from neuronal axons that can, in turn promote proper axoglial development (Esper, R. M., and Loeb, J. A. (2004) J. Neurosci. 24, 6218-6227). Here we elucidate the mechanism of this localized, regulated release by implicating the delta isoform of protein kinase C (PKC). Blocking the PKC delta isoform with either rottlerin, a selective antagonist, or small interference RNA blocks the regulated release of neuregulin from both transfected cells and primary neuronal cultures. PKC activation also leads to the rapid phosphorylation of the pro-NRG1 cytoplasmic tail on serine residues adjacent to the membrane-spanning segment, that, when mutated markedly reduce the rate of NRG1 activity release. These findings implicate this specific PKC isoform as an important factor for the cleavage and neurotrophin-regulated release of soluble NRG1 forms that have important effects in nervous system development and disease.
Collapse
Affiliation(s)
- Raymond M. Esper
- the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Jeffrey A. Loeb
- From the Department of Neurology and
- the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| |
Collapse
|
48
|
Ehrlichman RS, Luminais SN, White SL, Rudnick ND, Ma N, Dow HC, Kreibich AS, Abel T, Brodkin ES, Hahn CG, Siegel SJ. Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions. Brain Res 2009; 1294:116-27. [PMID: 19643092 DOI: 10.1016/j.brainres.2009.07.065] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Neuregulin-1 (NRG1) is one of susceptibility genes for schizophrenia and plays critical roles in glutamatergic, dopaminergic and GABAergic signaling. Using mutant mice heterozygous for Nrg1 (Nrg1(+/-)) we studied the effects of Nrg1 signaling on behavioral and electrophysiological measures relevant to schizophrenia. EXPERIMENTAL PROCEDURE Behavior of Nrg1(+/-) mice and their wild type littermates was evaluated using pre-pulse inhibition, contextual fear conditioning, novel object recognition, locomotor, and social choice paradigms. Event-related potentials (ERPs) were recorded to assess auditory gating and novel stimulus detection. RESULTS Gating of ERPs was unaffected in Nrg1(+/-) mice, but mismatch negativity in response to novel stimuli was attenuated. The Nrg1(+/-) mice exhibited behavioral deficits in contextual fear conditioning and social interactions, while locomotor activity, pre-pulse inhibition and novel object recognition were not impaired. SUMMARY Nrg1(+/-) mice had impairments in a subset of behavioral and electrophysiological tasks relevant to the negative/cognitive symptom domains of schizophrenia that are thought to be influenced by glutamatergic and dopaminergic neurotransmission. These mice are a valuable tool for studying endophenotypes of schizophrenia, but highlight that single genes cannot account for the complex pathophysiology of the disorder.
Collapse
|
49
|
Szvalb S, Stein M, Gershuny A, Gez E, Hadary A, Zidan J. Lack of HER-2 gene amplification in non-Hodgkin lymphoma using chromogenicin situhybridisation test. Leuk Lymphoma 2009; 50:736-40. [DOI: 10.1080/10428190902801820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance. J Neurosci 2009; 29:7667-78. [PMID: 19535578 DOI: 10.1523/jneurosci.6053-08.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuregulin-1 has a key role in mediating signaling between axons and Schwann cells during development. A limitation to studying its role in adulthood is the embryonic lethality of global Nrg1 gene deletion. We used the Cre-loxP system to generate transgenic mice in which neuregulin-1 is conditionally ablated in the majority of small-diameter and a proportion of large-diameter sensory neurons that have axons conducting in the C- and Adelta-fiber range, respectively. Sensory neuron-specific neuregulin-1 ablation resulted in abnormally large Remak bundles with axons clustered in "polyaxonal" pockets. The total number of axons in the sural nerve was unchanged, but a greater proportion was unmyelinated. In addition, we observed large-diameter axons that were in a 1:1 relationship with Schwann cells, surrounded by a basal lamina but not myelinated. There was no evidence of DRG or Schwann cell death; the markers of different DRG cell populations and cutaneous innervation were unchanged. These anatomical changes were reflected in a slowing of conduction velocity at the lower end of the A-fiber conduction velocity range and a new population of more rapidly conducting C-fibers that are likely to represent large-diameter axons that have failed to myelinate. Conditional neuregulin-1 ablation resulted in a reduced sensitivity to noxious mechanical stimuli. These findings emphasize the importance of neuregulin-1 in mediating the signaling between axons and both myelinating and nonmyelinating Schwann cells required for normal sensory function. Sensory neuronal survival and axonal maintenance, however, are not dependent on axon-derived neuregulin-1 signaling in adulthood.
Collapse
|