1
|
Wu S, Cai Y, Zhang L, Li X, Liu X, Zhou G, Luo H, Li R, Huo Y, Zhang Z, Chen S, Huang J, Shi J, Ding S, Sun Z, Zhou Z, Wang P, Wang G. Noncoding RNA Terc-53 and hyaluronan receptor Hmmr regulate aging in mice. Protein Cell 2025; 16:28-48. [PMID: 38721690 DOI: 10.1093/procel/pwae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/11/2024] [Indexed: 01/07/2025] Open
Abstract
One of the basic questions in the aging field is whether there is a fundamental difference between the aging of lower invertebrates and mammals. A major difference between the lower invertebrates and mammals is the abundancy of noncoding RNAs, most of which are not conserved. We have previously identified a noncoding RNA Terc-53 that is derived from the RNA component of telomerase Terc. To study its physiological functions, we generated two transgenic mouse models overexpressing the RNA in wild-type and early-aging Terc-/- backgrounds. Terc-53 mice showed age-related cognition decline and shortened life span, even though no developmental defects or physiological abnormality at an early age was observed, indicating its involvement in normal aging of mammals. Subsequent mechanistic study identified hyaluronan-mediated motility receptor (Hmmr) as the main effector of Terc-53. Terc-53 mediates the degradation of Hmmr, leading to an increase of inflammation in the affected tissues, accelerating organismal aging. adeno-associated virus delivered supplementation of Hmmr in the hippocampus reversed the cognition decline in Terc-53 transgenic mice. Neither Terc-53 nor Hmmr has homologs in C. elegans. Neither do arthropods express hyaluronan. These findings demonstrate the complexity of aging in mammals and open new paths for exploring noncoding RNA and Hmmr as means of treating age-related physical debilities and improving healthspan.
Collapse
Affiliation(s)
- Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yiqi Cai
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lixiao Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xu Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Guangkeng Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hongdi Luo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Renjian Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yujia Huo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhirong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Siyi Chen
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiahao Shi
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shanwei Ding
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhe Sun
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zizhuo Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Pengcheng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
3
|
Verma S, Moreno IY, Sun M, Gesteira TF, Coulson-Thomas VJ. Age related changes in hyaluronan expression leads to Meibomian gland dysfunction. Matrix Biol 2023; 124:23-38. [PMID: 37949327 PMCID: PMC11095397 DOI: 10.1016/j.matbio.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The prevalence of dry eye disease (DED) ranges from ∼5 to 50 % and its associated symptoms decrease productivity and reduce the quality of life. Approximately 85 % of all DED cases are caused by Meibomian gland dysfunction (MGD). As humans and mice age, their Meibomian glands (MGs) undergo age-related changes resulting in age related-MGD (ARMGD). The precise cause of ARMGD remains elusive, which makes developing therapies extremely challenging. We previously demonstrated that a hyaluronan (HA)-rich matrix exists surrounding the MG, regulating MG morphogenesis and homeostasis. Herein, we investigated whether changes to the HA matrix in the MG throughout life contributes towards ARMGD, and whether altering this HA matrix can prevent ARMGD. For such, HA synthase (Has) knockout mice were aged and compared to age matched wild type (wt) mice. MG morphology, lipid production, PPARγ expression, basal cell proliferation, stem cells, presence of atrophic glands and MG dropout were analyzed at 8 weeks, 6 months, 1 year and 2 years of age and correlated with the composition of the HA matrix. We found that as mice age, there is a loss of HA expression in and surrounding the MGs of wt mice, while, in contrast, Has1-/-Has3-/- mice present a significant increase in HA expression through Has2 upregulation. At 1 year, Has1-/-Has3-/- mice present significantly enlarged MGs, compared to age-matched wt mice and compared to all adult mice. Thus, Has1-/-Has3-/- mice continue to develop new glandular tissue as they age, instead of suffering MG atrophy. At 2 years, Has1-/-Has3-/- mice continue to present significantly larger MGs compared to age-matched wt mice. Has1-/-Has3-/- mice present increased lipid production, increased PPARγ expression and an increase in the number of proliferating cells when compared to wt mice at all-time points analyzed. Taken together, our data shows that a loss of the HA matrix surrounding the MG as mice age contributes towards ARMGD, and increasing Has2 expression, and consequently HA levels, prevents ARMGD in mice.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Isabel Y Moreno
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Mingxia Sun
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Tarsis Ferreira Gesteira
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Vivien J Coulson-Thomas
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA.
| |
Collapse
|
4
|
de Paula MC, Carvalho SG, Silvestre ALP, Dos Santos AM, Meneguin AB, Chorilli M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer. Carbohydr Polym 2023; 320:121257. [PMID: 37659830 DOI: 10.1016/j.carbpol.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Despite advances in new approaches for colorectal cancer (CRC) therapy, intravenous chemotherapy remains one of the main treatment options; however, it has limitations associated with off-target toxicity, tumor cell resistance due to molecular complexity and CRC heterogeneity, which lead to tumor recurrence and metastasis. In oncology, nanoparticle-based strategies have been designed to avoid systemic toxicity and increase drug accumulation at tumor sites. Hyaluronic acid (HA) has obtained significant attention thanks to its ability to target nanoparticles (NPs) to CRC cells through binding to cluster-determinant-44 (CD44) and hyaluronan-mediated motility (RHAMM) receptors, along with its efficient biological properties of mucoadhesion. This review proposes to discuss the state of the art in HA-based nanoparticulate systems intended for localized treatment of CRC, highlighting the importance of the mucoadhesion and active targeting provided by this polymer. In addition, an overview of CRC will be provided, emphasizing the importance of CD44 and RHAMM receptors in this type of cancer and the current challenges related to this disease, and important concepts about the physicochemical and biological properties of HA will also be addressed. Finally, this review aims to contribute to the advancement of accuracy treatment of CRC by the design of new platforms based on by HA.
Collapse
Affiliation(s)
- Mariana Carlomagno de Paula
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
5
|
Rajbhandari N, Hamilton M, Quintero CM, Ferguson LP, Fox R, Schürch CM, Wang J, Nakamura M, Lytle NK, McDermott M, Diaz E, Pettit H, Kritzik M, Han H, Cridebring D, Wen KW, Tsai S, Goggins MG, Lowy AM, Wechsler-Reya RJ, Von Hoff DD, Newman AM, Reya T. Single-cell mapping identifies MSI + cells as a common origin for diverse subtypes of pancreatic cancer. Cancer Cell 2023; 41:1989-2005.e9. [PMID: 37802055 PMCID: PMC10836835 DOI: 10.1016/j.ccell.2023.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Identifying the cells from which cancers arise is critical for understanding the molecular underpinnings of tumor evolution. To determine whether stem/progenitor cells can serve as cells of origin, we created a Msi2-CreERT2 knock-in mouse. When crossed to CAG-LSL-MycT58A mice, Msi2-CreERT2 mice developed multiple pancreatic cancer subtypes: ductal, acinar, adenosquamous, and rare anaplastic tumors. Combining single-cell genomics with computational analysis of developmental states and lineage trajectories, we demonstrate that MYC preferentially triggers transformation of the most immature MSI2+ pancreas cells into multi-lineage pre-cancer cells. These pre-cancer cells subsequently diverge to establish pancreatic cancer subtypes by activating distinct transcriptional programs and large-scale genomic changes, and enforced expression of specific signals like Ras can redirect subtype specification. This study shows that multiple pancreatic cancer subtypes can arise from a common pool of MSI2+ cells and provides a powerful model to understand and control the programs that shape divergent fates in pancreatic cancer.
Collapse
Affiliation(s)
- Nirakar Rajbhandari
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Michael Hamilton
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Cynthia M Quintero
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA
| | - L Paige Ferguson
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Raymond Fox
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Jun Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mari Nakamura
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA
| | - Nikki K Lytle
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Matthew McDermott
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Emily Diaz
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Hannah Pettit
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA
| | - Marcie Kritzik
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Derek Cridebring
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Kwun Wah Wen
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Susan Tsai
- Department of Surgery, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael G Goggins
- Departments of Pathology, Medicine and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA; Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Rady Children's Institute for Genomic Medicine, San Diego, CA, USA; Department of Neurology, Columbia University Medical Center, New York City, NY, USA
| | - Daniel D Von Hoff
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tannishtha Reya
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA.
| |
Collapse
|
6
|
Berdiaki A, Thrapsanioti LN, Giatagana EM, K Karamanos N, C Savani R, N Tzanakakis G, Nikitovic D. RHAMM/hyaluronan inhibit β-catenin degradation, enhance downstream signaling, and facilitate fibrosarcoma cell growth. Mol Biol Rep 2023; 50:8937-8947. [PMID: 37710072 DOI: 10.1007/s11033-023-08763-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Increased hyaluronan deposition (HA) in various cancer tissues, including sarcomas, correlates with disease progression. The receptor for hyaluronic acid-mediated motility (RHAMM) expression is elevated in most human cancers. β-catenin is a critical downstream mediator of the Wnt signaling pathways, facilitating carcinogenic events characterized by deregulated cell proliferation. We previously showed that low molecular weight (LMW) HA/RHAMM/β-catenin signaling axis increases HT1080 fibrosarcoma cell growth. Here, focusing on mechanistic aspects and utilizing immunofluorescence and immunoprecipitation, we demonstrate that LMW HA treatment enhanced RHAMM intracellular localization (p ≤ 0.001) and RHAMM/β-catenin colocalization in HT1080 fibrosarcoma cells (p ≤ 0.05). Downregulating endogenous HA attenuated the association of RHAMM/β-catenin in HT1080 fibrosarcoma cells (p ≤ 0.0.01). Notably, Axin-2, the key β-catenin degradation complex component, and RHAMM were demonstrated to form a complex primarily to cell membranes, enhanced by LMW HA (p ≤ 0.01). In contrast, LMW HA attenuated the association of β-catenin and Axin-2 (p ≤ 0.05). The utilization of FH535, a Wnt signaling inhibitor, showed that LMW HA partially rescued the Wnt-dependent growth of HT1080 cells and restored the expression of Wnt/β-catenin mediators, cyclin-D1 and c-myc (p ≤ 0.05). B6FS fibrosarcoma cells with different HA metabolism do not respond to the LMW HA growth stimulus (p = NS). The present study identifies a novel LMW HA/RHAMM mechanism in a fibrosarcoma model. LMW HA regulates intracellular RHAMM expression, which acts as a scaffold protein binding β-catenin and Axin-2 at different cellular compartments to increase β-catenin expression, transcriptional activity, and fibrosarcoma growth.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Lydia-Nefeli Thrapsanioti
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | | | - Rashmin C Savani
- Department of Pediatrics, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100296, Gainesville, FL, USA
| | - George N Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
| |
Collapse
|
7
|
Tarullo SE, He Y, Daughters C, Knutson TP, Henzler CM, Price MA, Shanley R, Witschen P, Tolg C, Kaspar RE, Hallstrom C, Gittsovich L, Sulciner ML, Zhang X, Forster CL, Lange CA, Shats O, Desler M, Cowan KH, Yee D, Schwertfeger KL, Turley EA, McCarthy JB, Nelson AC. Receptor for hyaluronan-mediated motility (RHAMM) defines an invasive niche associated with tumor progression and predicts poor outcomes in breast cancer patients. J Pathol 2023; 260:289-303. [PMID: 37186300 PMCID: PMC10417882 DOI: 10.1002/path.6082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Breast cancer invasion and metastasis result from a complex interplay between tumor cells and the tumor microenvironment (TME). Key oncogenic changes in the TME include aberrant synthesis, processing, and signaling of hyaluronan (HA). Hyaluronan-mediated motility receptor (RHAMM, CD168; HMMR) is an HA receptor enabling tumor cells to sense and respond to this aberrant TME during breast cancer progression. Previous studies have associated RHAMM expression with breast tumor progression; however, cause and effect mechanisms are incompletely established. Focused gene expression analysis of an internal breast cancer patient cohort confirmed that increased RHAMM expression correlates with aggressive clinicopathological features. To probe mechanisms, we developed a novel 27-gene RHAMM-related signature (RRS) by intersecting differentially expressed genes in lymph node (LN)-positive patient cases with the transcriptome of a RHAMM-dependent model of cell transformation, which we validated in an independent cohort. We demonstrate that the RRS predicts for poor survival and is enriched for cell cycle and TME-interaction pathways. Further analyses using CRISPR/Cas9-generated RHAMM-/- breast cancer cells provided direct evidence that RHAMM promotes invasion in vitro and in vivo. Immunohistochemistry studies highlighted heterogeneous RHAMM protein expression, and spatial transcriptomics associated the RRS with RHAMM-high microanatomic foci. We conclude that RHAMM upregulation leads to the formation of 'invasive niches', which are enriched in RRS-related pathways that drive invasion and could be targeted to limit invasive progression and improve patient outcomes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah E Tarullo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yuyu He
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Claire Daughters
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Todd P Knutson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christine M Henzler
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Matthew A Price
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ryan Shanley
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Patrice Witschen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Cornelia Tolg
- London Health Sciences Center, Western University, Ontario, Canada
| | - Rachael E Kaspar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Hallstrom
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lyubov Gittsovich
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Megan L Sulciner
- School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Colleen L Forster
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Oleg Shats
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michelle Desler
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kenneth H Cowan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eva A Turley
- London Health Sciences Center, Western University, Ontario, Canada
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan Receptors as Mediators and Modulators of the Tumor Microenvironment. Adv Healthc Mater 2023; 12:e2202118. [PMID: 36373221 PMCID: PMC11469756 DOI: 10.1002/adhm.202202118] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) is a dynamic and complex matter shaped by heterogenous cancer and cancer-associated cells present at the tumor site. Hyaluronan (HA) is a major TME component that plays pro-tumorigenic and carcinogenic functions. These functions are mediated by different hyaladherins expressed by cancer and tumor-associated cells triggering downstream signaling pathways that determine cell fate and contribute to TME progression toward a carcinogenic state. Here, the interaction of HA is reviewed with several cell-surface hyaladherins-CD44, RHAMM, TLR2 and 4, LYVE-1, HARE, and layilin. The signaling pathways activated by these interactions and the respective response of different cell populations within the TME, and the modulation of the TME, are discussed. Potential cancer therapies via targeting these interactions are also briefly discussed.
Collapse
Affiliation(s)
- Ana M. Carvalho
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Rui L. Reis
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Iva Pashkuleva
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| |
Collapse
|
9
|
Lu KH, Lu PWA, Lin CW, Yang SF. Curcumin in human osteosarcoma: From analogs to carriers. Drug Discov Today 2023; 28:103437. [PMID: 36372327 DOI: 10.1016/j.drudis.2022.103437] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Osteosarcoma (osteogenic sarcoma), the most prevalent primary malignant bone tumor in adolescents, confers low survival rates in patients with metastatic disease. Dietary curcumin has a number of anticancer properties but has poor bioavailability. To improve the clinical applications of curcumin, several potential curcumin analogs and nanobased curcumin delivery systems have been developed. In this critical review, we address the biological and pharmacological characteristics of curcumin and its analogs, with an emphasis on strategies to improve the bioactivity and bioavailability of curcumin analogs that may increase their application in the treatment of potent human metastatic osteosarcoma. We highlight promising current multifunctional nanoformulations and three-dimensional printed scaffold systems utilized for the targeting and delivery of curcumin in human osteosarcoma cells. Our purpose is to drive further research on curcumin analogs and carriers to improve their bioavailability and anti-osteosarcoma bioactivity.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
10
|
Synthesis and Characterization of Magnetic Nanoparticles-Grafted-Hyaluronic Acid/β-Cyclodextrin as a Novel pH-Sensetive Nanocarrier for Targeted Delivery of Doxorubicin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Ziyi L, Xuanxuan S, Dongjian L, Azmoun S, Shaohua L. The role of hyaluronic acid in polidocanol foam: An in vitro study. Phlebology 2022; 37:701-708. [DOI: 10.1177/02683555221129555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective To study the role of hyaluronic acid (HA) in polidocanol (POL) foam. Methods The dose-dependent effect of HA-POL on cultured human umbilical vein endothelial cells (HUVECs) as well as foam stability was evaluated by measuring optical density (OD) values and foam half-life time (FHT), respectively. An in vitro model was utilized for estimating the foam blood-displacement capacity by adopting maximum displacement distance (MDD) and displacement time. A comparison of foam viscosity was also carried out. Results The OD values of HUVECs treated with HA first increased and then decreased with the growing dosage of HA while cells treated with HA-POL died. Both FHT and displacement time were prolonged statistically with a gradually enhanced foam viscosity. As to MDD, there were no significant differences. Conclusions HA was found to promote HUVECs proliferation slightly, but this was almost negligible when compared to the cell-killing capacity of 1% POL. The viscosity of POL foam was enhanced by HA indicating its positive correlation with both stability and displacement capacity of POL foam.
Collapse
Affiliation(s)
- Liu Ziyi
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Plastic and Burn Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Shi Xuanxuan
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Dongjian
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Plastic and Burn Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Sajjad Azmoun
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Plastic and Burn Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Liu Shaohua
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
- Institute of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
12
|
Hinneh JA, Gillis JL, Moore NL, Butler LM, Centenera MM. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities. Front Oncol 2022; 12:982231. [PMID: 36033439 PMCID: PMC9400171 DOI: 10.3389/fonc.2022.982231] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface receptor for hyaluronic acid that is critical for cell migration and a cell cycle protein involved in microtubule assembly and stability. These functions of RHAMM are required for cellular stress responses and cell cycle progression but are also exploited by tumor cells for malignant progression and metastasis. RHAMM is often overexpressed in tumors and is an independent adverse prognostic factor for a number of cancers such as breast and prostate. Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a potential therapeutic target to restrict tumor growth and improve patient survival. However, RHAMM’s pro-tumor activity is dependent on its subcellular distribution, which complicates the design of RHAMM-directed therapies. An alternative approach is to identify downstream signaling pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we discuss the pro-tumoral roles of RHAMM and elucidate the corresponding regulators and signaling pathways mediating RHAMM downstream events, with a specific focus on strategies to target the RHAMM signaling network in cancer cells.
Collapse
Affiliation(s)
- Josephine A. Hinneh
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Joanna L. Gillis
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nicole L. Moore
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| | - Margaret M. Centenera
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| |
Collapse
|
13
|
Cheraga N, Ye Z, Xu MJ, Zou L, Sun NC, Hang Y, Shan CJ, Yang ZZ, Chen LJ, Huang NP. Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin. NANOSCALE 2022; 14:8709-8726. [PMID: 35673987 DOI: 10.1039/d1nr06514a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atherosclerosis, the leading cause of death in the elderly worldwide, is typically characterized by elevated reactive oxygen species (ROS) levels and a chronic inflammatory state at the arterial plaques. Herein, pH-sensitive nanoparticles (HRRAP NPs) co-delivering all-trans retinal (ATR), an antioxidant linked to hyaluronic acid (HA) through a pH-sensitive hydrazone bond, and rapamycin (RAP), an anti-atherosclerotic drug loaded into the nanoparticle core, are developed for targeted combination therapy of atherosclerosis. In this way, HRRAP NPs might simultaneously reduce ROS levels via ATR antioxidant activity and reduce inflammation via the anti-inflammatory effect of RAP. In response to mildly acidic conditions mimicking the lesional inflammation in vitro, HRRAP NPs dissociated and both ATR and RAP were effectively released. The developed HRRAP NPs effectively inhibited pro-inflammatory macrophage proliferation, and displayed dose- and time-dependent specific internalization by different cellular models of atherosclerosis. Also, HRRAP NP combination therapy showed an efficient synergetic anti-atherosclerotic effect in vitro by effectively inhibiting the inflammatory response and oxidative stress in inflammatory cells. More importantly, HR NPs specifically accumulated in the atherosclerotic plaques of apolipoprotein E-deficient (ApoE-/-) mice, by active interaction with HA receptors overexpressed by different cells of the plaque. The treatment with HRRAP NPs remarkably inhibited the progression of atherosclerosis in ApoE-/- mice which resulted in stable plaques with considerably smaller necrotic cores, lower matrix metalloproteinase-9, and decreased proliferation of macrophages and smooth muscle cells (SMCs). Furthermore, HRRAP NPs attenuated RAP adverse effects and exhibited a good safety profile after long-term treatment in mice. Consequently, the developed pH-sensitive HRRAP NP represent a promising nanoplatform for atherosclerosis combination therapy.
Collapse
Affiliation(s)
- Nihad Cheraga
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ming-Jie Xu
- Nanjing University Medical School, Nanjing, 210093, China
| | - Lin Zou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ning-Cong Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Yue Hang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Cong-Jia Shan
- Nanjing University Medical School, Nanjing, 210093, China
| | | | - Li-Juan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| |
Collapse
|
14
|
Tolg C, Messam BJA, McCarthy JB, Nelson AC, Turley EA. Hyaluronan Functions in Wound Repair That Are Captured to Fuel Breast Cancer Progression. Biomolecules 2021; 11:1551. [PMID: 34827550 PMCID: PMC8615562 DOI: 10.3390/biom11111551] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Signaling from an actively remodeling extracellular matrix (ECM) has emerged as a critical factor in regulating both the repair of tissue injuries and the progression of diseases such as metastatic cancer. Hyaluronan (HA) is a major component of the ECM that normally functions in tissue injury to sequentially promote then suppress inflammation and fibrosis, a duality in which is featured, and regulated in, wound repair. These essential response-to-injury functions of HA in the microenvironment are hijacked by tumor cells for invasion and avoidance of immune detection. In this review, we first discuss the numerous size-dependent functions of HA and emphasize the multifunctional nature of two of its receptors (CD44 and RHAMM) in regulating the signaling duality of HA in excisional wound healing. This is followed by a discussion of how HA metabolism is de-regulated in malignant progression and how targeting HA might be used to better manage breast cancer progression.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada;
| | - Britney Jodi-Ann Messam
- Department Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - James Benjamin McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Andrew Cook Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Eva Ann Turley
- London Regional Cancer Program, Lawson Health Research Institute, Department Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
15
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
16
|
Cardiovascular Effects Mediated by HMMR and CD44. Mediators Inflamm 2021; 2021:4977209. [PMID: 34335086 PMCID: PMC8286199 DOI: 10.1155/2021/4977209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The most dangerous life-threatening symptoms of CVD are myocardial infarction and stroke. The causes of CVD are not entirely clear, and new therapeutic targets are still being sought. One of the factors involved in CVD development among vascular damage and oxidative stress is chronic inflammation. It is known that hyaluronic acid plays an important role in inflammation and is regulated by numerous stimuli, including proinflammatory cytokines. The main receptors for hyaluronic acid are CD44 and RHAMM. These receptors are membrane proteins that differ in structure, but it seems that they can perform similar or synergistic functions in many diseases. Both RHAMM and CD44 are involved in cell migration and wound healing. However, their close association with CVD is not fully understood. In this review, we describe the role of both receptors in CVD.
Collapse
|
17
|
Pang TCY, Xu Z, Mekapogu AR, Pothula S, Becker T, Corley S, Wilkins MR, Goldstein D, Pirola R, Wilson J, Apte M. HGF/c-Met Inhibition as Adjuvant Therapy Improves Outcomes in an Orthotopic Mouse Model of Pancreatic Cancer. Cancers (Basel) 2021; 13:2763. [PMID: 34199452 PMCID: PMC8199621 DOI: 10.3390/cancers13112763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Inhibition of hepatocyte growth factor (HGF)/c-MET pathway, a major mediator of pancreatic stellate cell (PSC)-PC cell interactions, retards local and distant cancer progression. This study examines the use of this treatment in preventing PC progression after resection. We further investigate the postulated existence of circulating PSCs (cPSCs) as a mediator of metastatic PC. METHODS Two orthotopic PC mouse models, produced by implantation of a mixture of luciferase-tagged human pancreatic cancer cells (AsPC-1), and human PSCs were used. Model 1 mice underwent distal pancreatectomy 3-weeks post-implantation (n = 62). One-week post-resection, mice were randomised to four treatments of 8 weeks: (i) IgG, (ii) gemcitabine (G), (iii) HGF/c-MET inhibition (HiCi) and (iv) HiCi + G. Tumour burden was assessed longitudinally by bioluminescence. Circulating tumour cells and cPSCs were enriched by filtration. Tumours of Model 2 mice progressed for 8 weeks prior to the collection of primary tumour, metastases and blood for single-cell RNA-sequencing (scRNA-seq). RESULTS HiCi treatments: (1) reduced both the risk and rate of disease progression after resection; (2) demonstrated an anti-angiogenic effect on immunohistochemistry; (3) reduced cPSC counts. cPSCs were identified using immunocytochemistry (α-smooth muscle actin+, pan-cytokeratin-, CD45-), and by specific PSC markers. scRNA-seq confirmed the existence of cPSCs and identified potential genes associated with development into cPSCs. CONCLUSIONS This study is the first to demonstrate the efficacy of adjuvant HGF/c-Met inhibition for PC and provides the first confirmation of the existence of circulating PSCs.
Collapse
Affiliation(s)
- Tony C. Y. Pang
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
- Surgical Innovations Unit, Westmead Hospital, Westmead, NSW 2145, Australia
- Westmead Clinical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Srinivasa Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Therese Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia;
| | - Susan Corley
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia; (S.C.); (M.R.W.)
| | - Marc R. Wilkins
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia; (S.C.); (M.R.W.)
| | - David Goldstein
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Romano Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Jeremy Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| |
Collapse
|
18
|
Singh P, Chen Y, Tyagi D, Wu L, Ren X, Feng J, Carrier A, Luan T, Tang Y, Zhang J, Zhang X. β-Cyclodextrin-grafted hyaluronic acid as a supramolecular polysaccharide carrier for cell-targeted drug delivery. Int J Pharm 2021; 602:120602. [PMID: 33862128 DOI: 10.1016/j.ijpharm.2021.120602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
β-Cyclodextrin (β-CD) was grafted onto hyaluronic acid (HA) in a single step to generate a supramolecular biopolymer (HA-β-CD) that was explored for targeted drug delivery applications. Along with its excellent biocompatibility, the prepared HA-β-CD exhibits not only exceptionally high loading capacity for the model drugs doxorubicin and Rhodamine B through the formation of inclusion complexes with the β-CD component, but also the capability of targeted drug delivery to cancerous cells with a high level of expression of CD44 receptors, attributable to its HA component. The polymer can release the drug under slightly acidic conditions. With all its attributes, HA-β-CD may be a promising cancer-cell-targeting drug carrier.
Collapse
Affiliation(s)
- Parbeen Singh
- Postdoctoral Innovation Practice Base, Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China; State Key Laboratory Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou 51027, China; Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongli Chen
- Postdoctoral Innovation Practice Base, Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China; State Key Laboratory Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou 51027, China
| | - Deependra Tyagi
- School of Basic Medical Sciences, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinglong Feng
- Postdoctoral Innovation Practice Base, Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Andrew Carrier
- Department of Chemistry and Department of Health Sciences, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Tiangang Luan
- State Key Laboratory Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou 51027, China
| | - Yongjun Tang
- Postdoctoral Innovation Practice Base, Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China.
| | - Xu Zhang
- Department of Chemistry and Department of Health Sciences, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| |
Collapse
|
19
|
Tumor microenvironment targeting with dual stimuli-responsive nanoparticles based on small heat shock proteins for antitumor drug delivery. Acta Biomater 2020; 114:369-383. [PMID: 32688090 DOI: 10.1016/j.actbio.2020.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Tumour microenvironment (TME)-targeting nanoparticles (NPs) were developed based on Methanococcus jannaschii small heat shock proteins (Mj-sHSPs). Transactivator of transcription (TAT) were modified on the surface of Mj-sHSPs (T-HSPs) to enhance their cellular internalization ability (CIA), and a pH/enzyme dual sensitive PEG/N-(2-aminoethyl)piperidine-hyaluronic acid (PAHA) coat was combined with T-HSPs (PT-HSPs). PT-HSP NPs exhibited multi-layered morphologies and good stability against plasma protein adsorption. The release of paclitaxel (PTX) from PT-HSP NPs was negligible at physiological pH. Under conditions similar to the TME (acidic pH and overexpressed hyaluronidase (HAase)), the PAHA coat deshielded from PT-HSP NPs because of two factors: charge reversal and HAase degradation. Once the PAHA coat was shed, the size of the NPs decreased; its surface charge became positive; and remarkable drug release was triggered. Cellular experiments indicated that the CIA of PT-HSPs was shielded in the microenvironment of normal cells and recovered in that of tumour cells. In vivo imaging exhibited that the PT-HSP NPs had an impressive tumour targeting ability compared with the uncoated controls. The antitumor efficacy in vivo demonstrated that tumour-bearing mice treated with PTX-loaded PT-HSP NPs achieved better anti-tumour effects and safety than the Taxol formulation. In summary, this study provided Mj-sHSP NPs with coats that could be shed in response to the particular pH and enzymes in the TME, which improved the efficacy of tumour therapy. STATEMENT OF SIGNIFICANCE: This study reports on tumor microenvironment-targeting protein-based nanoparticles (PT-HSP NPs) for targeted tumor therapy. The NPs had a multilayered structure: a protein cage, a TAT cationic layer, and a dual-sensitive coat. PT-HSP NPs exhibited multilayered morphology, with good stability against plasma protein adsorption, and PTX release negligible at physiological pH. Under the tumor microenvironment (acidic pH and overexpressed HAase), PAHA coat deshielded from PT-HSP NPs due to two factors: the charge reversal induced by protonation of piperidines in PAHA and HAase degradation. The results of cellular uptake, cytotoxicity, in vivo imaging, and tumor inhibition experiments confirmed that PT-HSP NPs exhibited promising tumor targeting efficacy in vitro and in vivo.
Collapse
|
20
|
The Role of CD44 and RHAMM in Endometrial (Endometrioid Type) Cancer: An Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2020; 27:606-612. [PMID: 29734248 DOI: 10.1097/pai.0000000000000673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hyaluronan controls cell migration, differentiation, and proliferation, and it is involved in tumor invasion. The extracellular matrix containing hyaluronan regulates cell behavior via cell surface receptors such as CD44 and receptor for hyaluronan-mediated motility (RHAMM, CD168). We investigated the expression of CD44 and RHAMM in tissue samples of endometrial cancer and the relation of their expression with clinicopathologic parameters of patients. In order to evaluate the value of CD44 and RHAMM as prognostic factors, we investigated the relation of their expression with patients' survival. Our results demonstrated a statistically significant correlation with the depth of myometrial invasion, lymphovascular invasion (LVSI), The International Federation of Gynecology and Obstetrics stage of disease, and, in the case of RHAMM expression, a significant correlation with histologic tumor grade as well. CD44 expression was present in the cell membrane in all cases, but in a proportion of tumors in the cytoplasm as well. In this group of patients, we noticed a significantly greater number of cases with deeper myometrial invasion and LVSI. Finally, we sorted out the group of tumors with simultaneous strong CD44 and strong RHAMM expression, and found a statistically significant correlation with the depth of myometrial invasion and LVSI. Using an univariate analysis, we demonstrated that, in our sample of patients, CD44 expression showed a statistically significant influence on patients' 5-year survival. However, using a multivariate Cox regression analysis, neither CD44 nor RHAMM confirmed themselves as independent prognostic factors.
Collapse
|
21
|
Intracellular hyaluronan: Importance for cellular functions. Semin Cancer Biol 2020; 62:20-30. [DOI: 10.1016/j.semcancer.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
22
|
Xi Y, Jiang T, Yu Y, Yu J, Xue M, Xu N, Wen J, Wang W, He H, Shen Y, Chen D, Ye X, Webster TJ. Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy. Int J Nanomedicine 2019; 14:6425-6437. [PMID: 31496695 PMCID: PMC6691947 DOI: 10.2147/ijn.s211981] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Curcumin (CUR) is a general ingredient of traditional Chinese medicine, which has potential antitumor effects. However, its use clinically has been limited due to its low aqueous solubility and bioavailability. In order to improve the therapeutic effect of CUR on osteosarcoma (i.e., bone cancer), a multifunctional micelle was developed here by combining active bone accumulating ability with tumor CD44 targeting capacity. METHODS The CUR loaded micelles were self-assembled by using alendronate-hyaluronic acid-octadecanoic acid (ALN-HA-C18) as an amphiphilic material. The obtained micelles were characterized for size and drug loading. In addition, the in vitro release behavior of CUR was investigated under PBS (pH 5.7) medium containing 1% Tween 80 at 37℃. Furthermore, an hydroxyapatite (the major inorganic component of bone) affinity experiment was studied. In vitro antitumor activity was evaluated. Finally, the anti-tumor efficiency was studied. RESULTS The size and drug loading of the CUR loaded ALN-HA-C18 micelles were about 118 ± 3.6 nm and 6 ± 1.2%, respectively. CUR was released from the ALN-HA-C18 micelles in a sustained manner after 12 h. The hydroxyapatite affinity experiment indicated that CUR loaded ALN-HA-C18 micelles exhibited a high affinity to bone. CUR loaded ALN-HA-C18 micelles exhibited much higher cytotoxic activity against MG-63 cells compared to free CUR. Finally, CUR loaded ALN-HA-C18 micelles effectively delayed anti-tumor growth properties in osteosarcoma bearing mice as compared with free CUR. CONCLUSION The present study suggested that ALN-HA-C18 is a novel promising micelle for osteosarcoma targeting and delivery of the hydrophobic anticancer drug CUR.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu215500, Jiangsu, People’s Republic of China
| | - Yinglan Yu
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jiangmin Yu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Mintao Xue
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Ning Xu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jiankun Wen
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Weiheng Wang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Hailong He
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Daquan Chen
- Department of Pharmaceutics, School of Pharmacy, Yantai University, Yantai264005, People’s Republic of China
| | - Xiaojian Ye
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
23
|
Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019; 78-79:1-10. [PMID: 30802498 DOI: 10.1016/j.matbio.2019.02.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Cell-matrix interactions are fundamental to many developmental, homeostatic, immune and pathologic processes. Hyaluronan (HA), a critical component of the extracellular matrix (ECM) that regulates normal structural integrity and development, also regulates tissue responses during injury, repair, and regeneration. Though simple in its primary structure, HA regulates biological responses in a highly complex manner with balanced contributions from its molecular size and concentration, synthesis versus enzymatic and/or oxidative-nitrative fragmentation, interactions with key HA binding proteins and cell associated receptors, and its cell context-specific signaling. This review highlights the different, but inter-related factors that dictate the biological activity of HA and introduces the overarching themes that weave throughout this special issue of Matrix Biology on hyaluronan.
Collapse
|
24
|
Mandal K, Raz-Ben Aroush D, Graber ZT, Wu B, Park CY, Fredberg JJ, Guo W, Baumgart T, Janmey PA. Soft Hyaluronic Gels Promote Cell Spreading, Stress Fibers, Focal Adhesion, and Membrane Tension by Phosphoinositide Signaling, Not Traction Force. ACS NANO 2019; 13:203-214. [PMID: 30500159 PMCID: PMC6511072 DOI: 10.1021/acsnano.8b05286] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cells respond to both physical and chemical aspects of their substrate. Whether intracellular signals initiated by physical stimuli are fundamentally different from those elicited by chemical stimuli is an open question. Here, we show that the requirement for a stiff substrate (and, therefore, high cellular tension) for cells to produce large focal adhesions and stress fibers is obviated when a soft substrate contains both hyaluronic acid (HA) and an integrin ligand (collagen I). HA is a major extracellular matrix component that is often up-regulated during wound healing and tumor growth. HA, together with collagen I, promotes hepatocellular carcinoma cell (Huh7) spreading on very soft substrates (300 Pa), resulting in morphology and motility similar to what these cells develop only on stiff substrates (>30 kPa) formed by polyacrylamide that contains collagen but not HA. The effect of HA requires turnover of polyphosphoinositides and leads to the activation of Akt. The inhibition of polyphosphoinositide turnover causes Huh7 cells and fibroblasts to decrease spreading and detach, whereas cells on stiffer substrates show almost no response. Traction force microscopy shows that the cell maintains a low strain energy and net contractile moment on HA substrates compared to stiff polyacrylamide substrates. Membrane tension measured by tether pulling is similar on soft HA and stiff polyacrylamide substrates. These results suggest that simultaneous signaling stimulated by HA and an integrin ligand can generate phosphoinositide-mediated signals to the cytoskeleton that reproduce those generated by high cellular tension.
Collapse
Affiliation(s)
| | - Dikla Raz-Ben Aroush
- Kennedy Institute of Rheumatology , University of Oxford , Oxford OX3 7FY , United Kingdom
| | | | | | - Chan Young Park
- School of Public Health , Harvard University , Boston , Massachusetts 02115 , United States
| | - Jeffery J Fredberg
- School of Public Health , Harvard University , Boston , Massachusetts 02115 , United States
| | | | | | | |
Collapse
|
25
|
Maso K, Grigoletto A, Vicent MJ, Pasut G. Molecular platforms for targeted drug delivery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:1-50. [DOI: 10.1016/bs.ircmb.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Abstract
Over 50 years after its first description, Bronchopulmonary Dysplasia (BPD) remains a devastating pulmonary complication in preterm infants with respiratory failure and develops in 30-50% of infants less than 1000-gram birth weight. It is thought to involve ventilator- and oxygen-induced damage to an immature lung that results in an inflammatory response and ends in aberrant lung development with dysregulated angiogenesis and alveolarization. Significant morbidity and mortality are associated with this most common chronic lung disease of childhood. Thus, any therapies that decrease the incidence or severity of this condition would have significant impact on morbidity, mortality, human costs, and healthcare expenditure. It is clear that an inflammatory response and the elaboration of growth factors and cytokines are associated with the development of BPD. Numerous approaches to control the inflammatory process leading to the development of BPD have been attempted. This review will examine the anti-inflammatory approaches that are established or hold promise for the prevention or treatment of BPD.
Collapse
Affiliation(s)
- Rashmin C Savani
- Center for Pulmonary & Vascular Biology, Division of Neonatal-Perinatal Medicine, The Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| |
Collapse
|
27
|
Shalini CNS, Suman FR, Jacob JS, Rajendran R, Scott JX, Latha MS. Prognostic significance of receptor for hyaluronan acid-mediated motility (CD168) in acute pediatric leukemias - assessment of clinical outcome, post induction, end of treatment and minimal residual disease. Hematol Transfus Cell Ther 2018; 40:310-316. [PMID: 30370408 PMCID: PMC6200675 DOI: 10.1016/j.htct.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The extracellular matrix protein hyaluronan acid plays an active in role in tumor cell proliferation and invasion. Hyaluronan acid receptors, namely CD168 or the receptor for hyaluronan acid-mediated motility (RHAMM) and CD44 have been implicated in promoting malignancy. There is a lacuna in data on the expression of the receptor in pediatric leukemias. METHODS Pediatric patients with acute leukemia who were diagnosed, treated and followed up in our center were enrolled. The bone marrow biopsies performed prior to treatment were subjected to immunohistochemical staining (54 biopsies: acute lymphoblastic leukemia - 45, acute myeloid leukemia - 9). Blast counts were carried out at diagnosis, end of the induction phase and end of chemotherapy, the minimal residual disease was assessed and follow up details were collected. Positivity was correlated with initial blast count, post-induction blast count, minimal residual disease and patient survival. RESULTS There was no correlation between the initial blast count and the percentage of blasts with RHAMM expression. The positive correlation between percentage of blasts expressing RHAMM and the post-induction blast count was moderate in acute myeloid leukemia (0.74) and mild in acute lymphoblastic leukemia (0.48). There was a statistically significant difference in RHAMM expression between the two minimal residual disease risk groups (p-value = 0.012) with a negative prognostic effect of RHAMM expression. Moreover, a negative prognostic effect of RHAMM expression was noted when patient survival was considered. CONCLUSION This study shows that blasts in acute myeloid leukemia show more RHAMM positivity than those of acute lymphoblastic leukemia indicating the aggressive nature of this type of leukemia. In acute leukemias, patients with high percentages of RHAMM-positive blasts had more post-induction blasts, blasts in minimal residual disease and poorer prognosis.
Collapse
|
28
|
Han L, Hu L, Liu F, Wang X, Huang X, Liu B, Feng F, Liu W, Qu W. Redox-sensitive micelles for targeted intracellular delivery and combination chemotherapy of paclitaxel and all-trans-retinoid acid. Asian J Pharm Sci 2018; 14:531-542. [PMID: 32104480 PMCID: PMC7032146 DOI: 10.1016/j.ajps.2018.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 01/17/2023] Open
Abstract
The application of paclitaxel (PTX) in clinic has been restricted due to its poor solubility. Several traditional nano-medicines have been developed to improve this defect, while they are still lack of tumor targeting ability and rapid drug release. In this work, an amphiphilic polymeric micelle of hyaluronic acid (HA) – all-trans-retinoid acid (ATRA) with a disulfide bond, was developed successfully for the co-delivery of PTX and ATRA. The combination chemotherapy of PTX and ATRA can strengthen the anti-tumor activity. Along with self-assembling to micelles in water, the delivery system displayed satisfying drug loading capacities for both PTX (32.62% ± 1.39%) and ATRA, due to directly using ATRA as the hydrophobic group. Rapid drug release properties of the PTX-loaded redox-sensitive micelles (HA-SS-ATRA) in vitro were confirmed under reducing condition containing GSH. Besides, HA-CD44 mediated endocytosis promoted the uptake of HA-SS-ATRA micelles by B16F10 cells. Due to these properties, cytotoxicity assay verified that PTX-loaded HA-SS-ATRA micelles showed concentration-dependent cytotoxicity and displayed obvious combination therapy of PTX and ATRA. Importantly, HA-SS-ATRA micelles could remarkably prolong plasma circulation time after intravenously administration. Therefore, redox-sensitive HA-SS-ATRA micelles could be utilized and explored as a promising drug delivery system for cancer combination chemotherapy.
Collapse
Affiliation(s)
- Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Lejian Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Fulei Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Bowen Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. China Pharmaceutical University, No. 639, Longmian Road, Nanjing 211198, China. Tel.: +86 13851630593.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. China Pharmaceutical University, No. 639, Longmian Road, Nanjing 211198, China. Tel.: +86 13851630593.
| |
Collapse
|
29
|
Hauser-Kawaguchi A, Tolg C, Peart T, Milne M, Turley EA, Luyt LG. A truncated RHAMM protein for discovering novel therapeutic peptides. Bioorg Med Chem 2018; 26:5194-5203. [PMID: 30249497 DOI: 10.1016/j.bmc.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
The receptor for hyaluronan mediated motility (RHAMM, gene name HMMR) belongs to a group of proteins that bind to hyaluronan (HA), a high-molecular weight anionic polysaccharide that has pro-angiogenic and inflammatory properties when fragmented. We propose to use a chemically synthesized, truncated version of the protein (706-767), 7 kDa RHAMM, as a target receptor in the screening of novel peptide-based therapeutic agents. Chemical synthesis by Fmoc-based solid-phase peptide synthesis, and optimization using pseudoprolines, results in RHAMM protein of higher purity and yield than synthesis by recombinant protein production. 7 kDa RHAMM was evaluated for its secondary structure, ability to bind the native ligand, HA, and its bioactivity. This 62-amino acid polypeptide replicates the HA binding properties of both native and recombinant RHAMM protein. Furthermore, tubulin-derived HA peptide analogues that bind to recombinant RHAMM and were previously reported to compete with HA for interactions with RHAMM, bind with a similar affinity and specificity to the 7 kDa RHAMM. Therefore, in terms of its key binding properties, the 7 kDa RHAMM mini-protein is a suitable replacement for the full-length recombinant protein.
Collapse
Affiliation(s)
| | - Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Teresa Peart
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Mark Milne
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Eva A Turley
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Department of Biochemistry, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, Ontario, Canada; Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada.
| |
Collapse
|
30
|
Cui Z, Liao J, Cheong N, Longoria C, Cao G, DeLisser HM, Savani RC. The Receptor for Hyaluronan-Mediated Motility (CD168) promotes inflammation and fibrosis after acute lung injury. Matrix Biol 2018; 78-79:255-271. [PMID: 30098420 PMCID: PMC6368477 DOI: 10.1016/j.matbio.2018.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/09/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
Abstract
Acute lung injury results in early inflammation and respiratory distress, and later fibrosis. The glycosaminoglycan hyaluronan (HA) and the Receptor for Hyaluronan-Mediated Motility (RHAMM, CD168) have been implicated in the response to acute lung injury. We hypothesized that, compared to wild type (WT) mice, RHAMM knockout (KO) mice would be protected from, whereas mice with macrophage-specific transgenic overexpression of RHAMM (TG) would have worse inflammation, respiratory distress and fibrosis after intratracheal (IT) bleomycin. Compared to WT mice, 10 days after IT bleomycin, RHAMM KO mice had less weight loss, less increase in respiratory rate, and fewer CD45+ cells in the lung. At day 28, compared to injured WT animals, injured RHAMM KO mice had lower M1 macrophage content, as well as decreased fibrosis as determined by trichrome staining, Ashcroft scores and lung HPO content. Four lines of transgenic mice with selective overexpression of RHAMM in macrophages were generated using the Scavenger Receptor A promoter driving a myc-tagged full length RHAMM cDNA. Baseline expression of RHAMM and CD44 was the same in WT and TG mice. By flow cytometry, TG bone marrow-derived macrophages (BMDM) had increased cell surface RHAMM and myc, but equal CD44 expression. TG BMDM also had 2-fold increases in both chemotaxis to HA and proliferation in fetal bovine serum. In TG mice, increased inflammation after thioglycollate-induced peritonitis was restricted to macrophages and not neutrophils. For lung injury studies, non-transgenic mice given bleomycin had respiratory distress with increased respiratory rates from day 7 to 21. However, TG mice had higher respiratory rates from 4 days after bleomycin and continued to increase respiratory rates up to day 21. At 21 days after IT bleomycin, TG mice had increased lung macrophage accumulation. Lavage HA concentrations were 6-fold higher in injured WT mice, but 30-fold higher in injured TG mice. At 21 days after IT bleomycin, WT mice had developed fibrosis, but TG mice showed exaggerated fibrosis with increased Ashcroft scores and HPO content. We conclude that RHAMM is a critical component of the inflammatory response, respiratory distress and fibrosis after acute lung injury. We speculate that RHAMM is a potential therapeutic target to limit the consequences of acute lung injury.
Collapse
Affiliation(s)
- Zheng Cui
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jie Liao
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naeun Cheong
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Longoria
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaoyuan Cao
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Horace M DeLisser
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Rashmin C Savani
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Vastrad C, Vastrad B. Bioinformatics analysis of gene expression profiles to diagnose crucial and novel genes in glioblastoma multiform. Pathol Res Pract 2018; 214:1395-1461. [PMID: 30097214 DOI: 10.1016/j.prp.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Therefore, the current study aimed to diagnose the genes associated in the pathogenesis of GBM. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppFun was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs carried out. A total of 701 DEGs, including 413 upregulated and 288 downregulated genes, were diagnosed between U1118MG cell line (PK 11195 treated with 1 h exposure) and U1118MG cell line (PK 11195 treated with 24 h exposure). The up-regulated genes were enriched in superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis, cell cycle, cell cycle process and chromosome. The down-regulated genes were enriched in folate transformations I, biosynthesis of amino acids, cellular amino acid metabolic process and vacuolar membrane. The current study screened the genes in PPI network, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network with higher degrees as hub genes, which included MYC, TERF2IP, CDK1, EEF1G, TXNIP, SLC1A5, RGS4 and IER5L Survival suggested that low expressed NR4A2, SLC7 A5, CYR61 and ID1 in patients with GBM was linked with a positive prognosis for overall survival. In conclusion, the current study could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new molecular markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karanataka, India.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka, 580002, India
| |
Collapse
|
32
|
McCarthy JB, El-Ashry D, Turley EA. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol 2018; 6:48. [PMID: 29868579 PMCID: PMC5951929 DOI: 10.3389/fcell.2018.00048] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA) in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM) and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA). Cancer-associated fibroblasts (CAFs) are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT). The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs) also form heterotypic clusters with circulating tumor cells (CTC), which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.
Collapse
Affiliation(s)
- James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Eva A Turley
- London Regional Cancer Program, Department of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
33
|
Yildirim A, Turgut B, Bebek AI, Gumus C, Kocaturk S, Kunt T. Early Effect of Exogenous Na Hyaluronate on Mucociliary Clearance. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240501900305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background An animal study is performed to determine the early effect of 1% Na hyaluronate on mucociliary clearance function. Methods One percent of Na hyaluronate was introduced into the maxillary sinuses of rabbits by anterior antrostomy. A physiological solution of 1% NaCl was introduced into the maxillary sinuses of a control group to equalize the influence of Na for both groups. The treatment material was sprayed with an atomizer for coating the maxillary sinus lining. Technetium-99m diethylenetriamine pentaacetate dynamic scintigraphic imaging was performed to evaluate mucociliary clearance function on all rabbits 72 hours after the surgical procedure. Results Although the mean rate of mucociliary clearance of the Na hyaluronate group was slightly worse than the control group; there was no statistically significant difference between them. Conclusion There is no early effect of exogenous 1% Na hyaluronate on mucociliary clearance function.
Collapse
Affiliation(s)
- Altan Yildirim
- Medical Faculty, Departments of Otorhinolaryngology Head and Neck Surgery, Sivas, Turkey
| | | | - Ali Ihsan Bebek
- Medical Faculty, Departments of Otorhinolaryngology Head and Neck Surgery, Sivas, Turkey
| | - Cesur Gumus
- Departments of Radiology Cumhuriyet University, Sivas, Turkey
| | - Sinan Kocaturk
- Medical Faculty, Departments of Otorhinolaryngology Head and Neck Surgery, Sivas, Turkey
| | - Tanfer Kunt
- Medical Faculty, Departments of Otorhinolaryngology Head and Neck Surgery, Sivas, Turkey
| |
Collapse
|
34
|
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2018; 78-79:292-313. [PMID: 29625181 DOI: 10.1016/j.matbio.2018.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The tissue microenvironment contributes to local immunity and to the pathogenesis of autoimmune diseases - a diverse set of conditions characterized by sterile inflammation, immunity against self-antigens, and destruction of tissues. However, the specific factors within the tissue microenvironment that contribute to local immune dysregulation in autoimmunity are poorly understood. One particular tissue component implicated in multiple autoimmune diseases is hyaluronan (HA), an extracellular matrix (ECM) polymer. HA is abundant in settings of chronic inflammation and contributes to lymphocyte activation, polarization, and migration. Here, we first describe what is known about the size, amount, and distribution of HA at sites of autoimmunity and in associated lymphoid structures in type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. Next, we examine the recent literature on HA and its impact on adaptive immunity, particularly in regards to the biology of lymphocytes and Foxp3+ regulatory T-cells (Treg), a T-cell subset that maintains immune tolerance in healthy individuals. We propose that HA accumulation at sites of chronic inflammation creates a permissive environment for autoimmunity, characterized by CD44-mediated inhibition of Treg expansion. Finally, we address potential tools and strategies for targeting HA and its receptor CD44 in chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Wang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
35
|
Schütze A, Vogeley C, Gorges T, Twarock S, Butschan J, Babayan A, Klein D, Knauer SK, Metzen E, Müller V, Jendrossek V, Pantel K, Milde-Langosch K, Fischer JW, Röck K. RHAMM splice variants confer radiosensitivity in human breast cancer cell lines. Oncotarget 2017; 7:21428-40. [PMID: 26870892 PMCID: PMC5008296 DOI: 10.18632/oncotarget.7258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022] Open
Abstract
Biomarkers for prognosis in radiotherapy-treated breast cancer patients are urgently needed and important to stratify patients for adjuvant therapies. Recently, a role of the receptor of hyaluronan-mediated motility (RHAMM) has been suggested for tumor progression. Our aim was (i) to investigate the prognostic value of RHAMM in breast cancer and (ii) to unravel its potential function in the radiosusceptibility of breast cancer cells. We demonstrate that RHAMM mRNA expression in breast cancer biopsies is inversely correlated with tumor grade and overall survival. Radiosusceptibility in vitro was evaluated by sub-G1 analysis (apoptosis) and determination of the proliferation rate. The potential role of RHAMM was addressed by short interfering RNAs against RHAMM and its splice variants. High expression of RHAMMv1/v2 in p53 wild type cells (MCF-7) induced cellular apoptosis in response to ionizing radiation. In comparison, in p53 mutated cells (MDA-MB-231) RHAMMv1/v2 was expressed sparsely resulting in resistance towards irradiation induced apoptosis. Proliferation capacity was not altered by ionizing radiation in both cell lines. Importantly, pharmacological inhibition of the major ligand of RHAMM, hyaluronan, sensitized both cell lines towards radiation induced cell death. Based on the present data, we conclude that the detection of RHAMM splice variants in correlation with the p53 mutation status could help to predict the susceptibility of breast cancer cells to radiotherapy. Additionally, our studies raise the possibility that the response to radiotherapy in selected cohorts may be improved by pharmaceutical strategies against RHAMM and its ligand hyaluronan.
Collapse
Affiliation(s)
- Alexandra Schütze
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christian Vogeley
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Tobias Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Twarock
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jonas Butschan
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anna Babayan
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Shirley K Knauer
- Institute for Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Eric Metzen
- Institute of Physiology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Volkmar Müller
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Katharina Röck
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
36
|
Li J, Zhou Y, Wang H, Gao Y, Li L, Hwang SH, Ji X, Hammock BD. COX-2/sEH dual inhibitor PTUPB suppresses glioblastoma growth by targeting epidermal growth factor receptor and hyaluronan mediated motility receptor. Oncotarget 2017; 8:87353-87363. [PMID: 29152086 PMCID: PMC5675638 DOI: 10.18632/oncotarget.20928] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
Aims Cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) dual inhibitor, PTUPB, has been demonstrated to inhibit angiogenesis, primary tumor growth and metastasis. The aim of this study is to investigate the effects of PTUPB on glioblastoma cells and xenograft model. Results We show here that PTUPB inhibits glioblastoma cell proliferation and G1 phase cell cycle arrest in vitro, and suppresses the tumor growth and angiogenesis in vivo. The expression and activation of epidermal growth factor receptor (EGFR) and its downstream kinases, ERK1/2 and AKT, are reduced by PTUPB, indicating that the EGF/EGFR signaling pathway is a potential target. Moreover, PTUPB dramatically suppresses expression of hyaluronan mediated motility receptor (HMMR) in the glioblastoma cell lines and xenograft mouse model, suggesting that the HMMR is the other potential target. Materials and Methods Cellular immunofluorescence assays were used for cell staining of actin fibers and HMMR. CCK-8 kit was used for cell proliferation assay. Cell-cycle analysis was performed by flow cytometry. Quantitative real-time PCR assay was performed to test mRNA level. Western blot analysis was used to test protein expression. Immunohistochemical staining assay was used for xenograft tumor tissue staining of Ki-67, CD31 and HMMR. The SPSS version 17.0 software was applied for statistical analysis. Conclusions Our data demonstrate that PTUPB is a potential therapeutic agent to treat glioblastomas.
Collapse
Affiliation(s)
- Junyang Li
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Yali Zhou
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Yongyue Gao
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
37
|
The hyaluronan-mediated motility receptor RHAMM promotes growth, invasiveness and dissemination of colorectal cancer. Oncotarget 2017; 8:70617-70629. [PMID: 29050306 PMCID: PMC5642581 DOI: 10.18632/oncotarget.19904] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022] Open
Abstract
In colorectal cancer (CRC), RHAMM is an independent adverse prognostic factor. The aim of the study was therefore to investigate on the role of RHAMM as a potential direct driver of cell proliferation and migration in CRC cell lines and to identify pathways dependent on RHAMM in human CRC. Proliferation, cell cycle alterations and invasive capacity were tested in two RHAMM- and control- knockdown CRC cell lines by flow cytometry and in vitro assays. Tumorigenicity and metastasis formation was assessed in immunodeficient mice. RNA-Seq and immunohistochemistry was performed on six RHAMM+/- primary CRC tumors. In vitro, silencing of RHAMM inhibited CRC cell migration and invasion by 50% (p<0.01). In vivo, RHAMM knockdown resulted in slower growth, lower tumor size (p<0.001) and inhibition of metastasis (p<0.001). Patients with RHAMM-high CRC had a worse prognosis (p=0.040) and upregulated pathways for cell cycle progression and adhesion turnover. RHAMM overexpression is correlated with increased migration and invasion of CRC cells, leads to larger, fast growing tumors, and its downregulation essentially abolishes metastasis in mouse models. RHAMM is therefore a promising therapeutic target in all CRC stages as its inhibition affects growth and dissemination of the primary CRC as well as the metastases.
Collapse
|
38
|
hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus. Dev Biol 2017; 430:188-201. [PMID: 28778799 DOI: 10.1016/j.ydbio.2017.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022]
Abstract
Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis.
Collapse
|
39
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
40
|
Mende M, Nieger M, Bräse S. Chemical Synthesis of Modified Hyaluronic Acid Disaccharides. Chemistry 2017; 23:12283-12296. [PMID: 28423199 DOI: 10.1002/chem.201701238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 02/04/2023]
Abstract
Herein we report a chemical synthesis towards new modified hyaluronic acid oligomers by using only commercially available d-glucose and d-glucosamine hydrochloride. The various protected hyaluronic acid disaccharides were synthesized bearing new functional groups at C-6 of the β-d-glucuronic acid moiety with a view to structure-related biological activity tests. The orthogonal protecting group pattern allows ready access to the corresponding higher oligomers. Also, 1 H NMR studies of the new derivatives demonstrated the effect of the various functional groups on the intramolecular electronic environment.
Collapse
Affiliation(s)
- Marco Mende
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P. O. Box 55, 00014, Helsinki, Finland
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
41
|
Abstract
Abstract
RHAMM is hyaluronan- receptor with multiple functions in the cell, RHAMM is involved in proliferation, motility, migration, invasion, mitotic spindle formation in tumour cells. Therefore, RHAMM could be a relevant target for molecular targeted therapies against tumors.The role of RHAMM-target peptides in inhibition invasion for preventing breast cancer has not yet been investigated. Base on this, we analyzed the RHAMM-target peptides for their therapeutic activity against breast cancer cells. In the present study, we examined the effect of RHAMM-target peptides on the invasion of breast cancer cells (MDAMB- 231), using confocal microscopy. We shown that RHAMM-target peptides decreased formation of invadopodia of breast cancer cells. The treatment of breast cancer cells by RHAMM -target peptides inhibited the invasion up to 99 %. Additionally, RHAMM-target peptides induced the morphological changes of of breast cancer cells. Therefore, based on these results, we can conclude that RHAMM-target peptides may be potential anti-cancer agents.
Collapse
Affiliation(s)
- Natalia Akentieva
- Kinetics Chemical and Biological Processes; Institute problems of Chemical Physics RAS, pr.acad. Semenova, 1 Chernogolovka Moscow , Russian Federation
| |
Collapse
|
42
|
Stevens LE, Cheung WKC, Adua SJ, Arnal-Estapé A, Zhao M, Liu Z, Brewer K, Herbst RS, Nguyen DX. Extracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases. Cancer Res 2017; 77:1905-1917. [PMID: 28196904 PMCID: PMC5468792 DOI: 10.1158/0008-5472.can-16-1978] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/28/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023]
Abstract
Mechanisms underlying the propensity of latent lung adenocarcinoma (LUAD) to relapse are poorly understood. In this study, we show how differential expression of a network of extracellular matrix (ECM) molecules and their interacting proteins contributes to risk of relapse in distinct LUAD subtypes. Overexpression of the hyaluronan receptor HMMR in primary LUAD was associated with an inflammatory molecular signature and poor prognosis. Attenuating HMMR in LUAD cells diminished their ability to initiate lung tumors and distant metastases. HMMR upregulation was not required for dissemination in vivo, but enhanced ECM-mediated signaling, LUAD cell survival, and micrometastasis expansion in hyaluronan-rich microenvironments in the lung and brain metastatic niches. Our findings reveal an important mechanism by which disseminated cancer cells can coopt the inflammatory ECM to persist, leading to brain metastatic outgrowths. Cancer Res; 77(8); 1905-17. ©2017 AACR.
Collapse
Affiliation(s)
- Laura E Stevens
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - William K C Cheung
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Sally J Adua
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Anna Arnal-Estapé
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Minghui Zhao
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Zongzhi Liu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly Brewer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Roy S Herbst
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
43
|
Wu RL, Huang L, Zhao HC, Geng XP. Hyaluronic acid in digestive cancers. J Cancer Res Clin Oncol 2017; 143:1-16. [PMID: 27535565 DOI: 10.1007/s00432-016-2213-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/27/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE Hyaluronan (HA), an extracellular and peri-cellular glycosaminoglycan with a large molecular weight, plays an important role in cancer growth and metastasis. The aim of this study was to summarize the biological roles and regulation of HA and small HA fragments, and their metabolismn enzymes and receptors in human digestive cancers. METHODS A systematic literature search mainly focusing on the biological roles of HA in the development and progression of human digestive cancers was performed using electronic databases. RESULTS The correlation between HA accumulation and tumor progression has been shown in various digestive cancers. HA and HA fragment-tumor cell interaction could activate the downstream signaling pathways, promoting cell proliferation, adhesion, migration and invasion, and inducing angiogenesis, lymphangiogenesis, epithelial-mesenchymal transition, stem cell-like property, and chemoradioresistance in digestive cancers. CONCLUSIONS A better insight into the mechanism of HA and HA fragment involvement in digestive cancer progression might be useful for the development of novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Ruo-Lin Wu
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
- Research Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Lei Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Hong-Chuan Zhao
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Xiao-Ping Geng
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
44
|
Lachowicz D, Szpak A, Malek-Zietek KE, Kepczynski M, Muller RN, Laurent S, Nowakowska M, Zapotoczny S. Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives. Colloids Surf B Biointerfaces 2016; 150:402-407. [PMID: 27842931 DOI: 10.1016/j.colsurfb.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
Syntheses and characterizations of biocompatible superparamagnetic iron oxide nanoparticles with embedded curcumin and coated with ultrathin layer of hyaluronic acid-curcumin (HA-Cur) conjugate have been reported. Zeta potential measurements confirmed effective coating of native iron oxide nanoparticles stabilized by cationic derivative of chitosan (SPION-CCh) with the synthesized HA-Cur conjugate. Both SPIONs with embedded curcumin and the ones coated with HA-Cur (SPION-CCh/HA-Cur) revealed desired magnetic characteristics while fluorescent properties were much better for the coated nanoparticles. SPION-CCh/HA-Cur nanoparticles were shown to be very promising candidates for T2 MRI contrast agents as they can easily penetrate cell membrane and their relaxivity is exceptionally high (ca. 470mM-1s-1). They may be also tracked using confocal fluorescence microscopy due to the presence of fluorescent curcumin in the coating. In vitro studies indicated that the obtained SPIONs-CCh/HA-Cur were non-toxic for EA.hy926 endothelial cells.
Collapse
Affiliation(s)
- Dorota Lachowicz
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland; Academic Centre of Materials and Nanotechnology, AGH - University of Science and Technology, Kawiory 30, 30-055 Krakow, Poland
| | - Agnieszka Szpak
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna E Malek-Zietek
- Research Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8, 6041Gosselies, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8, 6041Gosselies, Belgium
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| |
Collapse
|
45
|
Tsepilov RN, Beloded AV. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2016; 80:1093-108. [PMID: 26555463 DOI: 10.1134/s0006297915090011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.
Collapse
Affiliation(s)
- R N Tsepilov
- Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, 123098, Russia.
| | | |
Collapse
|
46
|
Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 2016; 97:186-203. [PMID: 26541745 PMCID: PMC4753080 DOI: 10.1016/j.addr.2015.10.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Accumulation and turnover of extracellular matrix is a hallmark of tissue injury, repair and remodeling in human diseases. Hyaluronan is a major component of the extracellular matrix and plays an important role in regulating tissue injury and repair, and controlling disease outcomes. The function of hyaluronan depends on its size, location, and interactions with binding partners. While fragmented hyaluronan stimulates the expression of an array of genes by a variety of cell types regulating inflammatory responses and tissue repair, cell surface hyaluronan provides protection against tissue damage from the environment and promotes regeneration and repair. The interactions of hyaluronan and its binding proteins participate in the pathogenesis of many human diseases. Thus, targeting hyaluronan and its interactions with cells and proteins may provide new approaches to developing therapeutics for inflammatory and fibrosing diseases. This review focuses on the role of hyaluronan in biological and pathological processes, and as a potential therapeutic target in human diseases.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
47
|
Park HK, Lee SJ, Oh JS, Lee SG, Jeong YIL, Lee HC. Smart Nanoparticles Based on Hyaluronic Acid for Redox-Responsive and CD44 Receptor-Mediated Targeting of Tumor. NANOSCALE RESEARCH LETTERS 2015; 10:981. [PMID: 26163139 PMCID: PMC4499038 DOI: 10.1186/s11671-015-0981-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/14/2015] [Indexed: 05/27/2023]
Abstract
BACKGROUND Since aggressive cancer cells highly express the CD44 receptor compared to normal cells, hyaluronic acid (HA) can be used for CD44 targeting molecule. Since glutathione (GSH) level is normally elevated in the intracellular compartment and in the tumor cell, the fact that disulfide bond can be cleaved by GSH is widely used for intracellular drug delivery. METHODS HA was connected with poly(DL-lactide-co-glycolide) (PLGA) using disulfide linkage, and then a diblock copolymer (HAssLG) was prepared. Doxorubicin (DOX)-loaded HAssLG nanoparticles were prepared by dialysis procedures. RESULTS AND DISCUSSION DOX-loaded HAssLG nanoparticles have spherical shapes with small particle size of less than 300 nm. In fluorescence measurement, DOX was dose-dependently liberated from nanoparticles by the addition of GSH. DOX release rate from HAssLG nanoparticles was increased by the addition of GSH. To confirm CD44 receptor-mediated endocytosis of nanoparticles, CD44-positive MDA-MB231 cells were employed and fluorescence intensity was strong when nanoparticles were treated to tumor cells. However, fluorescence intensity was significantly decreased through blocking of the CD44 receptor by pretreatment of cells with free HA. Fluorescence intensity of cells was increased again when GSH was added, indicating that HAssLG nanoparticles have CD44 receptor targetability and potential of redox-responsive drug delivery. For animal imaging study, CD44-positive MDA-MB231 cells and CD44-negative NIH3T3 cells were simultaneously implanted into the right flank and left flank of mice, respectively. Fluorescence intensity was significantly stronger at tumor mass of MDA-MB231 cells than solid mass of NIH3T3 cells, indicating that HAssLG nanoparticles were specifically delivered to tumor cells. CONCLUSIONS The results indicated that HAssLG nanoparticles have specificity against the CD44 receptor and can be used for anticancer drug targeting. We recommend HAssLG nanoparticles as a promising vehicle for cancer drug targeting.
Collapse
Affiliation(s)
- Hyung-Kyu Park
- />Department of Microbiology, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 501-746 Republic of Korea
| | - Sang Joon Lee
- />Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 501-746 Republic of Korea
| | - Jong-Suk Oh
- />Department of Microbiology, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 501-746 Republic of Korea
| | - Sam-Gyu Lee
- />Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Gwangju, 501-746 Republic of Korea
| | - Young-IL Jeong
- />Biomedical Research Institute, Pusan National University Hospital, Pusan, 602-739 Republic of Korea
| | - Hyun Chul Lee
- />Department of Microbiology, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 501-746 Republic of Korea
| |
Collapse
|
48
|
Veiseh M, Leith SJ, Tolg C, Elhayek SS, Bahrami SB, Collis L, Hamilton S, McCarthy JB, Bissell MJ, Turley E. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells. Front Cell Dev Biol 2015; 3:63. [PMID: 26528478 PMCID: PMC4606125 DOI: 10.3389/fcell.2015.00063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.
Collapse
Affiliation(s)
- Mandana Veiseh
- Life Sciences Division, Lawrence Berkeley National LaboratoriesBerkeley, CA, USA
- Palo Alto Research Center (a Xerox Company)Palo Alto, CA, USA
| | - Sean J. Leith
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - Cornelia Tolg
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - Sallie S. Elhayek
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - S. Bahram Bahrami
- Life Sciences Division, Lawrence Berkeley National LaboratoriesBerkeley, CA, USA
| | - Lisa Collis
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - Sara Hamilton
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, University of MinnesotaMinneapolis, MN, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National LaboratoriesBerkeley, CA, USA
| | - Eva Turley
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| |
Collapse
|
49
|
Esguerra KVN, Tolg C, Akentieva N, Price M, Cho CF, Lewis JD, McCarthy JB, Turley EA, Luyt LG. Identification, design and synthesis of tubulin-derived peptides as novel hyaluronan mimetic ligands for the receptor for hyaluronan-mediated motility (RHAMM/HMMR). Integr Biol (Camb) 2015; 7:1547-60. [PMID: 26456171 DOI: 10.1039/c5ib00222b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragments of the extracellular matrix component hyaluronan (HA) promote tissue inflammation, fibrosis and tumor progression. HA fragments act through HA receptors including CD44, LYVE1, TLR2, 4 and the receptor for hyaluronan mediated motility (RHAMM/HMMR). RHAMM is a multifunctional protein with both intracellular and extracellular roles in cell motility and proliferation. Extracellular RHAMM binds directly to HA fragments while intracellular RHAMM binds directly to ERK1 and tubulin. Both HA and regions of tubulin (s-tubulin) are anionic and bind to basic amino acid-rich regions in partner proteins, such as in HA and tubulin binding regions of RHAMM. We used this as a rationale for developing bioinformatics and SPR (surface plasmon resonance) based screening to identify high affinity anionic RHAMM peptide ligands. A library of 12-mer peptides was prepared based on the carboxyl terminal tail sequence of s-tubulin isoforms and assayed for their ability to bind to the HA/tubulin binding region of recombinant RHAMM using SPR. This approach resulted in the isolation of three 12-mer peptides with nanomolar affinity for RHAMM. These peptides bound selectively to RHAMM but not to CD44 or TLR2,4 and blocked RHAMM:HA interactions. Furthermore, fluorescein-peptide uptake by PC3MLN4 prostate cancer cells was blocked by RHAMM mAb but not by CD44 mAb. These peptides also reduced the ability of prostate cancer cells to degrade collagen type I. The selectivity of these novel HA peptide mimics for RHAMM suggest their potential for development as HA mimetic imaging and therapeutic agents for HA-promoted disease.
Collapse
|
50
|
Cheng XB, Sato N, Kohi S, Koga A, Hirata K. Receptor for Hyaluronic Acid-Mediated Motility is Associated with Poor Survival in Pancreatic Ductal Adenocarcinoma. J Cancer 2015; 6:1093-8. [PMID: 26516356 PMCID: PMC4615344 DOI: 10.7150/jca.12990] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/09/2015] [Indexed: 01/10/2023] Open
Abstract
Receptor for hyaluronic acid (HA)-mediated motility (RHAMM) is a nonintegral cell surface receptor involved in the aggressive phenotype in a wide spectrum of human malignancies, but the significance of RHAMM in pancreatic ductal adenocarcinoma (PDAC) remains unknown. In this study, we investigated the expression of RHAMM and its clinical relevance in PDAC. RHAMM mRNA expression was examined in 8 PDAC cell lines and in primary pancreatic cancer and adjacent non-tumor tissues from 14 patients using real-time RT-PCR. Western blotting was carried out to analyze the expression of RHAMM protein in PDAC cell lines. We also investigated the expression patterns of RHAMM protein in tissue samples from 70 PDAC patients using immunohistochemistry. The RHAMM mRNA expression was increased in some PDAC cell lines as compared to a non-tumorous pancreatic epithelial cell line HPDE. The RHAMM mRNA expression was significantly higher in PDAC tissues as compared to corresponding non-tumorous pancreatic tissues (P < 0.0001). The RHAMM protein expression was higher in the vast majority of PDAC cell lines relative to the expression in HPDE. The immunohistochemical analysis revealed strong expression of RHAMM in 52 (74%) PDAC tissues. Strong expression of RHAMM was significantly associated with a shorter survival time (P = 0.038). In multivariate analysis, tumor stage (P = 0.039), residual tumor (P = 0.015), and strong RHAMM expression (P = 0.034) were independent factors predicting poor survival. Strong expression of RHAMM may predict poor survival in PDAC patients and may provide prognostic and, possibly, therapeutic value.
Collapse
Affiliation(s)
- Xiao-Bo Cheng
- 1. Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan ; 2. Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Norihiro Sato
- 1. Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Shiro Kohi
- 1. Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Atsuhiro Koga
- 1. Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Keiji Hirata
- 1. Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|