1
|
Guzeloglu-Kayisli O, Ozmen A, Un BC, Un B, Blas J, Johnson I, Thurman A, Walters M, Friend D, Kayisli UA, Lockwood CJ. Targeting FKBP51 prevents stress-induced preterm birth. EMBO Mol Med 2025; 17:775-796. [PMID: 40097636 PMCID: PMC11982339 DOI: 10.1038/s44321-025-00211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Preterm birth (PTB) is a leading cause of perinatal morbidity and mortality, with maternal stress-related disorders, such as depression and anxiety, linked to idiopathic PTB (iPTB). At the maternal-fetal interface, decidualized stromal cells (DSCs) exclusively express the progesterone receptor (PR) and play pivotal roles in maintaining pregnancy and initiating labor. DSCs also express FKBP51, a protein that binds to and inhibits transcriptional activity of glucocorticoid and PR receptors and is associated with stress-related diseases. We previously found that iPTB specimens exhibit increased FKBP51 levels and enhanced FKBP51-PR interactions in DSC nuclei. Additionally, we demonstrated that Fkbp5-deficient mice have prolonged gestation and are resistant to stress-induced PTB, suggesting that FKBP51 contributes to iPTB pathogenesis. Since no FDA-approved therapy exists for PTB, we hypothesized that inhibiting FKBP51 could prevent iPTB. Our current results show that the endogenous prostaglandin D2 derivative 15dPGJ2 reduces FKBP51 levels and FKBP51-PR interactions in cultured cells. Maternal stress increases uterine expression of Fkbp5, Oxtr, and Akr1c18, leading to shortened gestation. However, treatment with 15dPGJ2 lowers uterine Fkbp51, Oxtr, and Ptgs2 levels and prevents stress-induced PTB. Notably, co-treatment with 15dPGJ2 and either P4 or R5020 produced the most significant effects, highlighting the potential of 15dPGJ2 alone or in combination with progestins as a promising therapeutic strategy to prevent PTB.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Asli Ozmen
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Busra Cetinkaya Un
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Burak Un
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jacqueline Blas
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | | | | | - Umit A Kayisli
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles J Lockwood
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Nicchio IG, Cirelli T, Quil LCDC, Camilli AC, Scarel-Caminaga RM, Leite FRM. Understanding the peroxisome proliferator-activated receptor gamma (PPAR-γ) role in periodontitis and diabetes mellitus: A molecular perspective. Biochem Pharmacol 2025; 237:116908. [PMID: 40157459 DOI: 10.1016/j.bcp.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Periodontitis and Type 2 Diabetes Mellitus (T2DM) are chronic conditions with dysregulated immune responses. Periodontitis involves immune dysfunction and dysbiotic biofilms, leading to tissue destruction. T2DM is marked by insulin resistance and systemic inflammation, driving metabolic and tissue damage. Both conditions share activation of key pathways, including Nuclear Factor Kappa B (NF-κB), Activator Protein-1 (AP-1), and Signal Transducer and Activator of Transcription (STAT) proteins, reinforcing an inflammatory feedback loop. This review highlights the role of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), a transcription factor central to lipid and glucose metabolism, adipogenesis, and immune regulation. PPAR-γ activation has been shown to suppress inflammatory mediators such as Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) through the inhibition of NF-κB, AP-1, and STAT pathways, thereby potentially disrupting the inflammatory-metabolic cycle that drives both diseases. PPAR-γ agonists, including thiazolidinediones (TZDs) and endogenous ligands such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), show promise in reducing inflammation and improving insulin sensitivity, but they are limited by adverse effects. Therapies, including Selective Peroxisome Proliferator-Activated Receptor Modulators (SPPARMs), have been developed to offer a more targeted approach, allowing for selective modulation of PPAR-γ activity to retain its anti-inflammatory benefits while minimizing their side effects. By integrating insights into PPAR-γ's molecular mechanisms, this review underscores its therapeutic potential in mitigating inflammation and enhancing metabolic control.
Collapse
Affiliation(s)
- Ingra Gagno Nicchio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Thamiris Cirelli
- Department of Dentistry, Centro Universitário das Faculdades Associadas, São João da Boa Vista 13870-377, SP, Brazil.
| | - Lucas César da Costa Quil
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Fabio Renato Manzolli Leite
- National Dental Research Institute Singapore, National Dental Centre Singapore, 168938, Singapore; Oral Health Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore.
| |
Collapse
|
3
|
Huang X, Li S, Yin Z. Metabolic Profiles of Serum and Ovarian Tissue in Taihe Black-Boned Silky Fowl During the Early and Peak Laying Periods. Animals (Basel) 2025; 15:912. [PMID: 40218306 PMCID: PMC11987729 DOI: 10.3390/ani15070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Egg production is a complex biological process closely linked to ovarian development and metabolic adaptation in laying hens. As the core reproductive organ, the ovary undergoes significant changes during different egg-laying stages. This study employed untargeted metabolomics to analyze metabolites in serum and ovarian tissues of hens at 20W and 30W. The results revealed that metabolic reprogramming in ovarian tissues was more pronounced than in serum. Shared metabolites between serum and ovarian tissues demonstrated coordinated interactions between systemic and local metabolic networks. The synthesis of prostaglandin E1 during lipid metabolism was identified as a key driver of ovulation and hormone production. Extracellular matrix remodeling and polyamine metabolism, particularly spermidine/spermine, enhanced cell adhesion and antioxidant capacity during ovarian development. These findings provide new insights into follicular development, ovulation regulation, and steroid hormone biosynthesis, while suggesting potential metabolic targets to improve poultry reproductive efficiency.
Collapse
Affiliation(s)
| | | | - Zhaozheng Yin
- Animal Science College, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (S.L.)
| |
Collapse
|
4
|
Chang YC, Hsieh ML, Lee HL, Hee SW, Chang CF, Yen HY, Chen YA, Chen YR, Chou YW, Li FA, Ke YY, Chen SY, Hung MS, Hung AFH, Huang JY, Chiu CH, Lin SY, Shih SF, Hsu CN, Hwang JJ, Yeh TK, Cheng TJR, Liao KCW, Laio D, Lin SW, Chen TY, Hu CM, Vogel U, Saar D, Kragelund BB, Tsou LK, Tseng YH, Chuang LM. Identification of PTGR2 inhibitors as a new therapeutic strategy for diabetes and obesity. EMBO Mol Med 2025:10.1038/s44321-025-00216-4. [PMID: 40119175 DOI: 10.1038/s44321-025-00216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master transcriptional regulator of systemic insulin sensitivity and energy balance. The anti-diabetic drug thiazolidinediones (TZDs) are potent synthetic PPARγ ligands with undesirable side effects, including obesity, fluid retention, and osteoporosis. 15-keto prostaglandin E2 (15-keto-PGE2) is an endogenous PPARγ ligand metabolized by prostaglandin reductase 2 (PTGR2). Here, we confirmed that 15-keto-PGE2 binds to and activates PPARγ via covalent binding. In patients with type 2 diabetes and obese mice, serum 15-keto-PGE2 levels were decreased. Administration of 15-keto-PGE2 improves glucose homeostasis and prevented diet-induced obesity in mice. Either genetic inhibition of PTGR2 or PTGR2 inhibitor BPRPT0245 protected mice from diet-induced obesity, insulin resistance, and hepatic steatosis without causing fluid retention and osteoporosis. In conclusion, inhibition of PTGR2 is a new therapeutic approach to treat diabetes and obesity through increasing endogenous PPARγ ligands while avoiding side effects including increased adiposity, fluid retention, and osteoporosis.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Meng-Lun Hsieh
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-An Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Ya-Wen Chou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-Yu Ke
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, 11571, Taiwan
| | - Shih-Yi Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | | | - Jing-Yong Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Chu-Hsuan Chiu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Shih-Yao Lin
- AltruBio Taiwan R&D Center, Taipei, 114063, Taiwan
| | | | - Chih-Neng Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin branch, Yunlin, 64041, Taiwan
| | - Juey-Jen Hwang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin branch, Yunlin, 64041, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | | | - Karen Chia-Wen Liao
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Daniel Laio
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Shu-Wha Lin
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 100225, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, 10048, Taiwan
| | - Tzu-Yu Chen
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 11571, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Daniel Saar
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Birthe B Kragelund
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan.
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 022515, USA.
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
| |
Collapse
|
5
|
Zhang B, Han Y, Cheng M, Yan L, Gao K, Zhou D, Wang A, Lin P, Jin Y. Metabolomic effects of intrauterine meloxicam perfusion on histotroph in dairy heifers during diestrus. Front Vet Sci 2025; 12:1528530. [PMID: 40171410 PMCID: PMC11959509 DOI: 10.3389/fvets.2025.1528530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
In ruminants, conceptus elongation is a crucial developmental process that depends on uterine lumen fluid (ULF) and coincides with a period of high pregnancy loss. Prostaglandins (PGs) play indispensable roles in conceptus elongation and implantation. However, the effects of uterus-derived PGs on the uterine environment remain unclear. To explore the metabolic pathways and metabolites induced by endometrium-derived PGs that may affect conceptus elongation and implantation in dairy cows, we investigated the biochemical composition of ULF following intrauterine perfusion of meloxicam from days 12 to 14 of the estrous cycle. Intrauterine administration of meloxicam significantly downregulated the prostaglandin-related metabolites in the ULF. A total of 385 distinct metabolites, primarily clustered within lipids and lipid-like molecules, organic acids and derivatives, organoheterocyclic compounds, and benzenoids, were identified. The metabolite network analysis identified 10 core metabolites as follows: S-adenosylhomocysteine, guanosine, inosine, thymidine, cholic acid, xanthine, niacinamide, prostaglandin I2, 5-hydroxyindoleacetic acid, and indoleacetaldehyde. The pathway enrichment analysis revealed three significantly altered metabolic pathways: arachidonic acid metabolism, tryptophan (Trp) metabolism, and linoleic acid metabolism. A total of five metabolites-guanosine, inosine, thymidine, butyryl-l-carnitine, and l-carnitine-were associated with attachment and pregnancy loss and could serve as predictors of fertility. This global metabolic study of ULF enhances our understanding of histotroph alternations induced by uterus-derived PGs during diestrus in dairy cows, with implications for improving dairy cow fertility.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Longgang Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Chen F, Ma L, Liu Q, Zhou Z, Yi W. Recent advances and therapeutic applications of PPARγ-targeted ligands based on the inhibition mechanism of Ser273 phosphorylation. Metabolism 2025; 163:156097. [PMID: 39637972 DOI: 10.1016/j.metabol.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
PPARγ functions as a master ligand-dependent transcription factor that regulates the expressions of a variety of key genes related to metabolic homeostasis and inflammatory immunity. It has been recognized as a popular and druggable target in modern drug discovery. Similar to other nuclear receptors, PPARγ is a phosphoprotein, and its biological functions are regulated by phosphorylation, especially at Ser273 site which is mediated by CDK5 or ERK. In the past decade, the excessive level of PPARγ-Ser273 phosphorylation has been confirmed to be a crucial factor in promoting the occurrence and development of some major diseases. Ligands capable of inhibiting PPARγ-Ser273 phosphorylation have shown great potentials for treatment. Despite these achievements, to our knowledge, no related review focusing on this topic has been conducted so far. Therefore, we herein summarize the basic knowledge of PPARγ and CDK5/ERK-mediated PPARγ-Ser273 phosphorylation as well as its physiopathological role in representative diseases. We also review the developments and therapeutic applications of PPARγ-targeted ligands based on this mechanism. Finally, we suggest several directions for future investigations. We expect that this review can evoke more inspiration of scientific communities, ultimately facilitating the promotion of the PPARγ-Ser273 phosphorylation-involved mechanism as a promising breakthrough point for addressing the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
7
|
Beigoli S, Kiani S, Asgharzadeh F, Memarzia A, Boskabady MH. Promising role of peroxisome proliferator-activated receptors in respiratory disorders, a review. Drug Metab Rev 2025; 57:26-50. [PMID: 39726246 DOI: 10.1080/03602532.2024.2442012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Several studies indicate various pharmacological and therapeutic effects of peroxisome proliferator-activated receptors (PPARs) in different disorders. The current review describes the influences of PPARs on respiratory, allergic, and immunologic diseases. Various databases, including PubMed, Science Direct, and Scopus, were searched regarding the effect of PPARs on respiratory and allergic disorders from 1990 to 2024. The effects of PPARs stimulation on experimental animal models of respiratory diseases such as asthma, chronic obstructive pulmonary diseases (COPD), pulmonary fibrosis (PF), and lung infections were shown. Therapeutic potential mediated through PPARs has also been demonstrated in lung cancer, lung infections, and allergic and immunologic disorders. However, few clinical studies showed PPARs mediated therapeutic effects on asthma and COPD. The PPARs-mediated effects on various respiratory disorders were shown through antioxidant, immunomodulatory, anti-inflammatory, and other mechanisms. Therefore, this review indicated possible remedy effects mediated by these receptors in treating respiratory, allergic, and immunologic diseases. Moreover, this mechanistic review paves the way for researchers to consider further experimental and clinical studies.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Becker A, Röhrich K, Leske A, Heinicke U, Knape T, Kannt A, Trümper V, Sohn K, Wilken-Schmitz A, Neb H, Adam EH, Laux V, Parnham MJ, Onasch V, Weigert A, Zacharowski K, von Knethen A. Identification of CRTH2 as a New PPARγ-Target Gene in T Cells Suggested CRTH2 Dependent Conversion of T h2 Cells as Therapeutic Concept in COVID-19 Infection. Immunotargets Ther 2024; 13:595-616. [PMID: 39507298 PMCID: PMC11539866 DOI: 10.2147/itt.s463601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/10/2024] [Indexed: 11/08/2024] Open
Abstract
Background COVID-19 is a serious viral infection, which is often associated with a lethal outcome. Therefore, understanding mechanisms, which affect the immune response during SARS-CoV2 infection, are important. Methods To address this, we determined the number of T cells in peripheral blood derived from intensive care COVID-19 patients. Based on our previous studies, evaluating PPARγ-dependent T cell apoptosis in sepsis patients, we monitored PPARγ expression. We performed a next generation sequencing approach to identify putative PPARγ-target genes in Jurkat T cells and used a PPARγ transactivation assay in HEK293T cells. Finally, we translated these data to primary T cells derived from healthy donors. Results A significantly reduced count of total CD3+ T lymphocytes and the CD4+ and CD8+ subpopulations was observed. Also, the numbers of anti-inflammatory, resolutive Th2 cells and FoxP3-positive regulatory T cells (Treg) were decreased. We observed an augmented PPARγ expression in CD4+ T cells of intensive care COVID-19 patients. Adapted from a next generation sequencing approach in Jurkat T cells, we found the chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) as one gene regulated by PPARγ in T cells. This Th2 marker is a receptor for prostaglandin D and its metabolic degradation product 15-deoxy-∆12,14-prostaglandin J2 (15d-PGJ2), an established endogenous PPARγ agonist. In line, we observed an increased PPARγ transactivation in response to 15d-PGJ2 treatment in HEK293T cells overexpressing CRTH2. Translating these data to primary T cells, we found that Th2 differentiation was associated with an increased expression of CRTH2. Interestingly, these CRTH2+ T cells were prone to apoptosis. Conclusion These mechanistic data suggest an involvement of PPARγ in Th2 differentiation and T cell depletion in COVID-19 patients.
Collapse
Affiliation(s)
- Antonia Becker
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Karoline Röhrich
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Amanda Leske
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Ulrike Heinicke
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Tilo Knape
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt, 60590, Germany
| | - Verena Trümper
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Kai Sohn
- Innovation Field in-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, 70569, Germany
| | - Annett Wilken-Schmitz
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Holger Neb
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Elisabeth H Adam
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Valerie Onasch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Kai Zacharowski
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Andreas von Knethen
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| |
Collapse
|
9
|
Tol MJ, Shimanaka Y, Bedard AH, Sapia J, Cui L, Colaço-Gaspar M, Hofer P, Ferrari A, Qian K, Kennelly JP, Lee SD, Gao Y, Xiao X, Gao J, Mack JJ, Weston TA, Pan C, Lusis AJ, Williams KJ, Su B, Pike DP, Reed A, Milosevich N, Cravatt BF, Arita M, Young SG, Ford DA, Zechner R, Vanni S, Tontonoz P. Dietary control of peripheral adipose storage capacity through membrane lipid remodelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620374. [PMID: 39554041 PMCID: PMC11565995 DOI: 10.1101/2024.10.25.620374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Complex genetic and dietary cues contribute to the development of obesity, but how these are integrated on a molecular level is incompletely understood. Here, we show that PPARγ supports hypertrophic expansion of adipose tissue via transcriptional control of LPCAT3, a membrane-bound O-acyltransferase that enriches diet-derived omega-6 ( n -6) polyunsaturated fatty acids (PUFAs) in the phospholipidome. In high-fat diet-fed mice, lowering membrane n -6 PUFA levels by adipocyte-specific Lpcat3 knockout ( Lpcat3 AKO ) or by dietary lipid manipulation leads to dysfunctional triglyceride (TG) storage, ectopic fat deposition and insulin resistance. Aberrant lipolysis of stored TGs in Lpcat3 AKO adipose tissues instigates a non-canonical adaptive response that engages a futile lipid cycle to increase energy expenditure and limit further body weight gain. Mechanistically, we find that adipocyte LPCAT3 activity promotes TG storage by selectively enriching n -6 arachidonoyl-phosphatidylethanolamine at the ER-lipid droplet interface, which in turn favours the budding of large droplets that exhibit greater resistance to ATGL-dependent hydrolysis. Thus, our study highlights the PPARγ-LPCAT3 pathway as a molecular link between dietary n -6 PUFA intake, adipose expandability and systemic energy balance.
Collapse
|
10
|
Hou X, Shi W, Luo W, Luo Y, Huang X, Li J, Ji N, Chen Q. FUS::DDIT3 Fusion Protein in the Development of Myxoid Liposarcoma and Possible Implications for Therapy. Biomolecules 2024; 14:1297. [PMID: 39456230 PMCID: PMC11506083 DOI: 10.3390/biom14101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The FUS::DDIT3 fusion protein, formed by the chromosomal translocation t (12;16) (q13;p11), is found in over 90% of myxoid liposarcoma (MLS) cases and is a crucial protein in its development. Many studies have explored the role of FUS::DDIT3 in MLS, and the prevailing view is that FUS::DDIT3 inhibits adipocyte differentiation and promotes MLS growth and invasive migration by functioning as an aberrant transcription factor that affects gene expression and regulates its downstream molecules. As fusion proteins are gradually showing their potential as targets for precision cancer therapy, FUS::DDIT3 has also been investigated as a therapeutic target. Drugs that target FUS::DDIT3 and its downstream molecules for treating MLS are widely utilized in both clinical practice and experimental studies, and some of them have demonstrated promising results. This article reviews the findings of relevant research, providing an overview of the oncogenic mechanisms of the FUS::DDIT3 fusion protein in MLS, as well as recent advancements in its therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.H.); (W.S.); (W.L.); (Y.L.); (X.H.); (J.L.); (Q.C.)
| | | |
Collapse
|
11
|
Kanno T, Miyako K, Endo Y. Lipid metabolism: a central modulator of RORγt-mediated Th17 cell differentiation. Int Immunol 2024; 36:487-496. [PMID: 38824406 DOI: 10.1093/intimm/dxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Among the T helper cell subsets, Th17 cells contribute to the development of various inflammatory and autoimmune diseases, including psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, serves as a master transcription factor for Th17 cell differentiation. Recent findings have shown that modulating the metabolic pathway is critical for Th17 cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Suppression of lipid biosynthesis, either through the pharmacological inhibition or gene deletion of related enzymes in CD4+ T cells, results in significant impairment of Th17 cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways have a pivotal role in the regulation of RORγt activity through the generation of endogenous RORγt lipid ligands. This review discusses recent discoveries highlighting the importance of lipid metabolism in Th17 cell differentiation and function, as well as exploring specific molecular pathways involved in RORγt activation through cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach to improve inflammatory and autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
12
|
Rapuano R, Mercuri A, Dallavalle S, Moricca S, Lavecchia A, Lupo A. Cladosporols and PPARγ: Same Gun, Same Bullet, More Targets. Biomolecules 2024; 14:998. [PMID: 39199386 PMCID: PMC11353246 DOI: 10.3390/biom14080998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Several natural compounds have been found to act as PPARγ agonists, thus regulating numerous biological processes, including the metabolism of carbohydrates and lipids, cell proliferation and differentiation, angiogenesis, and inflammation. Recently, Cladosporols, secondary metabolites purified from the fungus Cladosporium tenuissimum, have been demonstrated to display an efficient ability to control cell proliferation in human colorectal and prostate cancer cells through a PPARγ-mediated modulation of gene expression. In addition, Cladosporols exhibited a strong anti-adipogenetic activity in 3T3-L1 murine preadipocytes, preventing their in vitro differentiation into mature adipocytes. These data interestingly point out that the interaction between Cladosporols and PPARγ, in the milieu of different cells or tissues, might generate a wide range of beneficial effects for the entire organism affected by diabetes, obesity, inflammation, and cancer. This review explores the molecular mechanisms by which the Cladosporol/PPARγ complex may simultaneously interfere with a dysregulated lipid metabolism and cancer promotion and progression, highlighting the potential therapeutic benefits of Cladosporols for human health.
Collapse
Affiliation(s)
- Roberta Rapuano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 82100 Benevento, Italy; (R.R.); (A.M.)
| | - Antonella Mercuri
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 82100 Benevento, Italy; (R.R.); (A.M.)
| | - Sabrina Dallavalle
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;
| | - Salvatore Moricca
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Firenze, Italy;
| | - Antonio Lavecchia
- Dipartimento di Farmacia “Drug Discovery Laboratory”, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Angelo Lupo
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 82100 Benevento, Italy; (R.R.); (A.M.)
| |
Collapse
|
13
|
Du L, Wang J, Qiu X, Wang Q, Peng H, Huang J, Yang F, Liu Z, Qi R. Clostridium sporogenes increases fat accumulation in mice by enhancing energy absorption and adipogenesis. Microbiol Spectr 2024; 12:e0411623. [PMID: 38916334 PMCID: PMC11302664 DOI: 10.1128/spectrum.04116-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024] Open
Abstract
Gut bacteria belonging to the Clostridium family play a pivotal role in regulating host energy balance and metabolic homeostasis. As a commensal bacterium, Clostridium sporogenes has been implicated in modulating host energy homeostasis, albeit the underlying mechanism remains elusive. Therefore, this study aimed to investigate the impact of C. sporogenes supplementation on various physiological parameters, intestinal morphology, particularly adipose tissue accumulation, and glucolipid metabolism in mice. The findings reveal that mice supplemented with C. sporogenes for 6 weeks exhibited a notable increase in body weight, fat mass, adipocyte size, and serum triglyceride (TG) levels. Notably, the increased fat accumulation is observed despite consistent feed intake in treated mice. Mechanistically, C. sporogenes supplementation significantly improved the structure integrity of intestinal villi and enhanced energy absorption efficiency while reducing excretion of carbohydrates and fatty acids in feces. This was accompanied by upregulation of glucose and fatty acid transporter expression. Furthermore, supplementation with C. sporogenes promoted adipogenesis in both liver and adipose tissues, as evidenced by increased levels of hepatic pyruvate, acetyl-CoA, and TG, along with elevated expression levels of genes associated with lipid synthesis. Regarding the microbiological aspect, C. sporogenes supplementation correlated with an increased abundance of Clostridium genus bacteria and enhanced carbohydrate enzyme activity. In summary, C. sporogenes supplementation significantly promotes fat accumulation in mice by augmenting energy absorption and adipogenesis, possibly mediated by the expansion of Clostridium bacteria population with robust glycolipid metabolic ability. IMPORTANCE The Clostridia clusters have been implicated in energy metabolism, the specific species and underlying mechanisms remain unclear. This present study is the first to report Clostridium sporogenes is able to affect fat accumulation and glycolipid metabolism. We indicated that gavage of C. sporogenes promoted the adipogenesis and fat accumulation in mice by not only increasing the abundance of Clostridium bacteria but by also enhancing the metabolic absorption of carbohydrates and fatty acids significantly. Obviously, changes of gut microbiota caused by the C. sporogenes, especially the significant increase of Clostridium bacteria, contributed to the fat accumulation of mice. In addition, the enhancement of Clostridium genus bacteria remarkably improved the synthesis of hepatic pyruvate, acetyl-CoA, and triglyceride levels, as well as reduced the excretion of fecal carbohydrates, short-chain fatty acids, and free fatty acids remarkably. These findings will help us to understand the relationship of specific bacteria and host energy homeostasis.
Collapse
Affiliation(s)
- Lei Du
- Chongqing Academy of Animal Science, Chongqing, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Han Peng
- Sichuan Animal Science Academy, Chengdu, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| |
Collapse
|
14
|
Ozcagli E, Kubickova B, Jacobs MN. Addressing chemically-induced obesogenic metabolic disruption: selection of chemicals for in vitro human PPARα, PPARγ transactivation, and adipogenesis test methods. Front Endocrinol (Lausanne) 2024; 15:1401120. [PMID: 39040675 PMCID: PMC11260640 DOI: 10.3389/fendo.2024.1401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.
Collapse
|
15
|
Haas B, Hass MDS, Voltz A, Vogel M, Walther J, Biswas A, Hass D, Pfeifer A. Sulfonylureas exert antidiabetic action on adipocytes by inhibition of PPARγ serine 273 phosphorylation. Mol Metab 2024; 85:101956. [PMID: 38735390 PMCID: PMC11112612 DOI: 10.1016/j.molmet.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024] Open
Abstract
OBJECTIVE Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice. METHODS Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated. RESULTS SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes. CONCLUSIONS Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations.
Collapse
Affiliation(s)
- Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| | - Moritz David Sebastian Hass
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany; Sonnen-Gesundheitszentrum - MVZ for Hemostaseology, Rheumathology, Endocrinology, General Medicine and Transfusion Medicine, Munich, Germany
| | - Alexander Voltz
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Matthias Vogel
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Julia Walther
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital, University of Bonn, Bonn, Germany
| | - Daniela Hass
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research, Neuherberg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
17
|
Chang YH, Tseng YH, Wang JM, Tsai YS, Huang HS. TG-interacting factor 1 regulates mitotic clonal expansion during adipocyte differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159492. [PMID: 38575107 DOI: 10.1016/j.bbalip.2024.159492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Obesity is one of the significant health challenges in the world and is highly associated with abnormal adipogenesis. TG-interacting factor 1 (TGIF1) is essential for differentiating murine adipocytes and human adipose tissue-derived stem cells. However, the mode of action needs to be better elucidated. To investigate the roles of TGIF1 in differentiation in-depth, CRISPR/Cas9 knockout technology was performed to generate TGIF1-silenced preadipocytes. The absence of TGIF1 in 3 T3-F442A preadipocytes abolished lipid accumulation throughout the differentiation using Oil Red O staining. Conversely, we established 3 T3-F442A preadipocytes stably expressing TGIF1 and doxycycline-inducible TGIF1 in TGIF1-silenced 3 T3-F442A preadipocytes. Remarkably, the induction of TGIF1 by doxycycline during the initial differentiation phase successfully promoted lipid accumulation in TGIF1-silenced 3 T3-F442A cells. We further explored the mechanisms of TGIF1 in early differentiation. We demonstrated that TGIF1 promoted the mitotic clonal expansion via upregulation of CCAAT/enhancer-binding proteins β expression, interruption with peroxisome proliferators activated receptor γ downstream regulation, and inhibition of p27kip1 expression. In conclusion, we strengthen the pivotal roles of TGIF1 in early differentiation, which might contribute to resolving obesity-associated metabolic syndromes.
Collapse
Affiliation(s)
- Yu-Hao Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
18
|
Geisert RD, Bazer FW, Lucas CG, Pfeiffer CA, Meyer AE, Sullivan R, Johns DN, Sponchiado M, Prather RS. Maternal recognition of pregnancy in the pig: A servomechanism involving sex steroids, cytokines and prostaglandins. Anim Reprod Sci 2024; 264:107452. [PMID: 38522133 DOI: 10.1016/j.anireprosci.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Riley Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
Hateley C, Olona A, Halliday L, Edin ML, Ko JH, Forlano R, Terra X, Lih FB, Beltrán-Debón R, Manousou P, Purkayastha S, Moorthy K, Thursz MR, Zhang G, Goldin RD, Zeldin DC, Petretto E, Behmoaras J. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity. EBioMedicine 2024; 103:105127. [PMID: 38677183 PMCID: PMC11061246 DOI: 10.1016/j.ebiom.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Charlotte Hateley
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Antoni Olona
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Laura Halliday
- Department of Surgery and Cancer, Imperial College London, UK
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Jeong-Hun Ko
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Ximena Terra
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Raúl Beltrán-Debón
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Penelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Sanjay Purkayastha
- Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK; University of Brunel, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Guodong Zhang
- Department of Nutrition, College of Agriculture and Environmental Sciences, 3135 Meyer Hall, One Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Enrico Petretto
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
20
|
Arikawa LM, Mota LFM, Schmidt PI, Frezarim GB, Fonseca LFS, Magalhães AFB, Silva DA, Carvalheiro R, Chardulo LAL, Albuquerque LGD. Genome-wide scans identify biological and metabolic pathways regulating carcass and meat quality traits in beef cattle. Meat Sci 2024; 209:109402. [PMID: 38056170 DOI: 10.1016/j.meatsci.2023.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Genome association studies (GWAS) provides knowledge about the genetic architecture of beef-related traits that allow linking the target phenotype to genomic information aiding breeding decision. Thus, the present study aims to uncover the genetic mechanism involved in carcass (REA: rib eye area, BF: backfat thickness, and HCW: hot carcass weight) and meat quality traits (SF: shear-force, MARB: marbling score, and IMF: intramuscular fat content) in Nellore cattle. For this, 6910 young bulls with phenotypic information and 23,859 animals genotyped with 435 k markers were used to perform the weighted single-step GBLUP (WssGBLUP) approach, considering two iterations. The top 10 genomic regions explained 8.13, 11.81, and 9.58% of the additive genetic variance, harboring a total of 119, 143, and 95 positional candidate genes for REA, BF, and HCW, respectively. For meat quality traits, the top 10 windows explained a large proportion of the total genetic variance for SF (14.95%), MARB (17.56%), and IMF (21.41%) surrounding 92, 155, and 111 candidate genes, respectively. Relevant candidate genes (CAST, PLAG1, XKR4, PLAGL2, AQP3/AQP7, MYLK2, WWOX, CARTPT, and PLA2G16) are related to physiological aspects affecting growth, carcass, meat quality, feed intake, and reproductive traits by signaling pathways controlling muscle control, key signal metabolic molecules INS / IGF-1 pathway, lipid metabolism, and adipose tissue development. The GWAS results provided insights into the genetic control of the traits studied and the genes found are potential candidates to be used in the improvement of carcass and meat quality traits.
Collapse
Affiliation(s)
- Leonardo Machestropa Arikawa
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil.
| | - Lucio Flavio Macedo Mota
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Patrícia Iana Schmidt
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Gabriela Bonfá Frezarim
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Larissa Fernanda Simielli Fonseca
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Ana Fabrícia Braga Magalhães
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Jequitinhonha and Mucuri Valleys, Department of Animal Science, Rod. MG 367, Diamantina, MG 39100-000, Brazil
| | - Delvan Alves Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Viçosa, Department of Animal Science, Av. PH Rolfs, Viçosa, MG 36570-900, Brazil
| | - Roberto Carvalheiro
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Luis Artur Loyola Chardulo
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil
| | - Lucia Galvão de Albuquerque
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil.
| |
Collapse
|
21
|
Chen K, Liu S, Wei Y. Sub-nanosized vanadate hybrid clusters maintain glucose homeostasis and restore treatment response in inflammatory disease in obese mice. NANO RESEARCH 2024; 17:1818-1826. [DOI: 10.1007/s12274-023-6366-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 09/11/2024]
|
22
|
Wu S, Dai H, Bai X, Wu Z, Wang X, Xiao B. Highlights from the Top 100 Most Influential Articles Regarding the Nuclear Receptor PPAR-γ: A Bibliometric Analysis. Endocr Metab Immune Disord Drug Targets 2024; 24:1303-1314. [PMID: 38317461 DOI: 10.2174/0118715303265935231114073638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND PPAR-γ is one of three members of the PPAR group of the nuclear receptor superfamily and plays an important regulatory role as a ligand-dependent transcription factor. OBJECTIVE This study aimed to identify the top 100 most influential articles in the field of PPAR-γ. We hypothesized that a bibliometric and scientometric analysis of the PPAR-γ research field could render trends that provide researchers and funding agencies valuable insight into the history of the field, and potential future directions. METHODS A literature search of publications was carried out using the Web of Science (WOS) and Scopus database based on specific subject words on September 11, 2023. Articles were listed in descending order of the number of citations. Statistical analysis was performed on the data of the top 100 cited articles in terms of year of publication, journal, research direction, institution, author, and country. Meanwhile, co-authorship networks and co-citation networks were constructed by using VOSviewer software, and keywords were analyzed for co-occurrence. RESULTS A total of 9,456 articles regarding PPAR-γ were identified and analyzed based on the WOS database, and the top 100 cited articles in the field of PPAR-γ were ranked by citation. The most cited article was published in 1998, with 2,571 citations and a density of 102.80 citations/ year. Of the 100 articles, Harvard University was the institution with the highest number of articles published. Spiegelman, B. M. was the author with the highest number of articles published. Using the VOSviewer software, we found that the most used keywords were geneexpression, activated receptor-gamma, and adipocyte differentiation. PPAR-γ, one of the most widely studied transcription factors, is an important drug target for many diseases. Therefore, screening for small molecule compounds targeting PPAR-γ remains of great value. CONCLUSION The present study identified the top 100 most influential articles in the field of PPAR-γ, which help global researchers to better understand research perspectives and develop future research directions of PPAR-γ.
Collapse
Affiliation(s)
- Si Wu
- General Clinical Research Center, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos 017000, China
| | - Haijiao Dai
- State Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Xianxiang Bai
- General Clinical Research Center, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos 017000, China
| | - Zhen Wu
- Department of Chemical Engineering, Ordos Institute of Technology, 017000, Ordos, China
| | - Xianglei Wang
- Department of Chemical Engineering, Ordos Institute of Technology, 017000, Ordos, China
| | - Bin Xiao
- General Clinical Research Center, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos 017000, China
| |
Collapse
|
23
|
Slanovc J, Mikulčić M, Jahn N, Wizsy NGT, Sattler W, Malle E, Hrzenjak A. Prostaglandin 15d-PGJ 2 inhibits proliferation of lung adenocarcinoma cells by inducing ROS production and activation of apoptosis via sirtuin-1. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166924. [PMID: 37898426 DOI: 10.1016/j.bbadis.2023.166924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Lung adenocarcinoma (LUADC) belongs to the most prevalent and lethal cancer types. As 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) displays anti-oxidative, -inflammatory, and -cancer properties, we investigated whether this cyclopentenone PG, a stable degradation end-product of cyclooxygenase-generated PGD2, exerts beneficial effects in three LUADC cell lines (A549, H1299, H23). We here report that 15d-PGJ2 had substantial cytotoxic effects in all three LUADC cell lines by promoting early apoptosis and inhibiting the cell cycle, proliferation, and migration. As indicators of cell malignancy, scratch closure and colony formation were significantly inhibited by 15d-PGJ2. 15d-PGJ2 induced generation of ROS and subsequent activation of MAPKs. Expression of Nrf-2, a well-known tumor driver, was markedly diminished by 15d-PGJ2 treatment. Although PPARγ, DP1, and DP2 are expressed in LUADC cells, blocking these receptors with specific inhibitors (SR16832 and BW245C) did not reverse 15d-PGJ2-mediated cytotoxicity, suggesting receptor-independent effects. 15d-PGJ2 decreased SIRT1 expression in LUADC cells and the knockdown of SIRT1 diminished the cytotoxic effects of 15d-PGJ2. Importantly, 15d-PGJ2 significantly reduced tumor growth using the chorioallantoic membrane (CAM) assay. The structural analog of 15d- PGJ2, 9,10-dihydro-15d-PGJ2 (lacking the α,β-unsaturated ketone structural element), did not show any toxic effects in LUADC cells. Altogether, our findings suggest that 15d-PGJ2 led to significantly reduced tumor growth and cell proliferation in three LUADC cell lines. The CAM assay results suggest that 15d-PGJ2 is a suitable endogenous compound to interfere with LUADC tumor progression. We show that SIRT1 modulates the effects of 15d-PGJ2 and may be used as a therapeutic target for LUADC.
Collapse
Affiliation(s)
- Julia Slanovc
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria.
| | - Mateja Mikulčić
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria.
| | - Nicole Jahn
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria.
| | | | - Wolfgang Sattler
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
24
|
Khazdouz M, Daryani NE, Cheraghpour M, Alborzi F, Hasani M, Ghavami SB, Shidfar F. The effect of selenium supplementation on disease activity and immune-inflammatory biomarkers in patients with mild-to-moderate ulcerative colitis: a randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr 2023; 62:3125-3134. [PMID: 37525068 DOI: 10.1007/s00394-023-03214-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Selenium (Se) supplementation may help reduce inflammation and disease activity in ulcerative colitis (UC) patients. We investigated the therapeutic effects of Se administration in cases with mild-to-moderate active UC. METHODS A multicenter, double-blind, randomized clinical trial (RCT) was conducted on 100 cases with active mild-to-moderate UC. The patients were randomly allocated to be given an oral selenomethionine capsule (200 mcg/day, n = 50) or a placebo capsule (n = 50) for 10 weeks. The primary outcome was defined as disease activity via the Simple Clinical Colitis Activity Index (SCCAI), and secondary outcomes were measured at the end of the study. RESULTS After 10 weeks, the SCCAI score's mean was reduced in the Se group (P < 0.001). At the end of the intervention, clinical improvement (decline of 3 ≥ score from baseline score) was observed in 19 patients (38%) of the Se group and 3 patients (6%) of the placebo group. The patients with clinical remission (defined as SCCAI ≤ 2) were assigned in the Se group (P = 0.014). The Se group's quality of life and Se serum levels were enhanced at the end of the study (P < 0/001). In the Se group, the mean concentration of interleukin-17 decreased (P < 0/001). However, the levels of interleukin-10 showed no considerable change between the two groups in the 10th week (P = 0.23). CONCLUSION Se supplementation as add-on therapy with medical management induced remission and improved the quality of life in patients with active mild-to-moderate UC. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION IRCT20091114002709N51; 2020-04-13.
Collapse
Affiliation(s)
- Maryam Khazdouz
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ebrahimi Daryani
- Department of Gastroenterology and Hepatology, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foroogh Alborzi
- Department of Gastroenterology and Hepatology, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Hasani
- Department of Nutrition, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Mehranfard N, Ghasemi M, Rajabian A, Ansari L. Protective potential of naringenin and its nanoformulations in redox mechanisms of injury and disease. Heliyon 2023; 9:e22820. [PMID: 38058425 PMCID: PMC10696200 DOI: 10.1016/j.heliyon.2023.e22820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Increasing evidence suggests that elevated intracellular levels of reactive oxygen species (ROS) play a significant role in the pathogenesis of many diseases. Increased intracellular levels of ROS can lead to the oxidation of lipids, DNA, and proteins, contributing to cellular damage. Hence, the maintenance of redox hemostasis is essential. Naringenin (NAR) is a flavonoid included in the flavanones subcategory. Various pharmacological actions have been ascribable to this phytochemical composition, including antioxidant, anti-inflammatory, antibacterial, antiviral, antitumor, antiadipogenic, neuro-, and cardio-protective activities. This review focused on the underlying mechanism responsible for the antioxidative stress properties of NAR and its' nanoformulations. Several lines of in vitro and in vivo investigations suggest the effects of NAR and its nanoformulation on their target cells via modulating signaling pathways. These nanoformulations include nanoemulsion, nanocarriers, solid lipid nanoparticles (SLN), and nanomicelle. This review also highlights several beneficial health effects of NAR nanoformulations on human diseases including brain disorders, cancer, rheumatoid arthritis, and small intestine injuries. Employing nanoformulation can improve the pharmacokinetic properties of NAR and consequently efficiency by reducing its limitations, such as low bioavailability. The protective effects of NAR and its' nanoformulations against oxidative stress may be linked to the modulation of Nrf2-heme oxygenase-1, NO/cGMP/potassium channel, COX-2, NF-κB, AMPK/SIRT3, PI3K/Akt/mTOR, BDNF, NOX, and LOX-1 pathways. Understanding the mechanism behind the protective effects of NAR can facilitate drug development for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Legha Ansari
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
26
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Scherer PE, Horton JD, Garg A. Regulated adipose tissue-specific expression of human AGPAT2 in lipodystrophic Agpat2-null mice results in regeneration of adipose tissue. iScience 2023; 26:107806. [PMID: 37752957 PMCID: PMC10518674 DOI: 10.1016/j.isci.2023.107806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic loss of Agpat2 in humans and mice results in congenital generalized lipodystrophy with near-total loss of adipose tissue and predisposition to develop insulin resistance, diabetes mellitus, hepatic steatosis, and hypertriglyceridemia. The mechanism by which Agpat2 deficiency results in loss of adipose tissue remains unknown. We studied this by re-expressing human AGPAT2 (hAGPAT2) in Agpat2-null mice, regulated by doxycycline. In both sexes of Agpat2-null mice, adipose-tissue-specific re-expression of hAGPAT2 resulted in partial regeneration of both white and brown adipose tissue (but only 30%-50% compared with wild-type mice), which had molecular signatures of adipocytes, including leptin secretion. Furthermore, the stromal vascular fraction cells of regenerated adipose depots differentiated ex vivo only with doxycycline, suggesting the essential role of Agpat2 in adipocyte differentiation. Turning off expression of hAGPAT2 in vivo resulted in total loss of regenerated adipose tissue, clear evidence that Agpat2 is essential for adipocyte differentiation in vivo.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E. Scherer
- Touchstone Center for Diabetes Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
27
|
Zhao T, Du H, Yan C. Characterization of lysosomal acid lipase in Ly6G + and CD11c + myeloid-derived suppressor cells. Methods Cell Biol 2023; 184:119-131. [PMID: 38555152 DOI: 10.1016/bs.mcb.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Lysosomal acid lipase (LAL) is a key enzyme in the metabolic pathway of neutral lipids, whose deficiency (LAL-D) induces the differentiation of myeloid lineage cells into myeloid-derived suppressor cells (MDSCs), which promotes tumor growth and metastasis. This protocol provides detailed procedures for assessment of various LAL biochemical and physiological activities in Ly6G+ and CD11c+ MDSCs, including isolation of Ly6G+ and CD11c+ cells from the bone marrow and blood of mice, assays of LAL-D-induced cellular metabolic and mitochondrial activities, assessment of LAL-D-induced pathogenic immunosuppressive activity and tumor stimulatory activity. Pharmacological inhibition of the LAL activity was also described in both murine myeloid cells and human white blood cells.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
28
|
Luan J, Ji X, Liu L. PPARγ in Atherosclerotic Endothelial Dysfunction: Regulatory Compounds and PTMs. Int J Mol Sci 2023; 24:14494. [PMID: 37833942 PMCID: PMC10572723 DOI: 10.3390/ijms241914494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The formation of atherosclerotic plaques is one of the main sources of cardiovascular disease. In addition to known risk factors such as dyslipidemia, diabetes, obesity, and hypertension, endothelial dysfunction has been shown to play a key role in the formation and progression of atherosclerosis. Peroxisome proliferator-activated receptor-gamma (PPARγ), a transcription factor belonging to the steroid superfamily, is expressed in the aorta and plays a critical role in protecting endothelial function. It thereby serves as a target for treating both diabetes and atherosclerosis. Although many studies have examined endothelial cell disorders in atherosclerosis, the role of PPARγ in endothelial dysfunction is still not well understood. In this review, we summarize the possible mechanisms of action behind PPARγ regulatory compounds and post-translational modifications (PTMs) of PPARγ in the control of endothelial function. We also explore the potential use of endothelial PPARγ-targeted agents in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200082, China
| |
Collapse
|
29
|
Yang XF, Shang DJ. The role of peroxisome proliferator-activated receptor γ in lipid metabolism and inflammation in atherosclerosis. Cell Biol Int 2023; 47:1469-1487. [PMID: 37369936 DOI: 10.1002/cbin.12065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease events are the result of functional and structural abnormalities in the arteries and heart. Atherosclerosis is the main cause and pathological basis of cardiovascular diseases. Atherosclerosis is a multifactorial disease associated with dyslipidemia, inflammation, and oxidative stress, among which dyslipidemia and chronic inflammation occur in all processes. Under the influence of lipoproteins, the arterial intima causes inflammation, necrosis, fibrosis, and calcification, leading to plaque formation in specific parts of the artery, which further develops into plaque rupture and secondary thrombosis. Foam cell formation from macrophages is an early event in the development of atherosclerosis. Lipid uptake causes a vascular inflammatory response, and persistent inflammatory infiltration in the lesion area further promotes the development of the disease. Inhibition of macrophage differentiation into foam cell and reduction of the level of proinflammatory factors in macrophages can effectively alleviate the occurrence and development of atherosclerosis. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that plays an important antiatherosclerotic role by regulating triglyceride metabolism, lipid uptake, cholesterol efflux, macrophage polarity, and inhibiting inflammatory signaling pathways. In addition, PPARγ shifts its binding to ligands and co-activators or co-repressors of transcription of target genes through posttranslational modification, thereby affecting the regulation of its downstream target genes. Many ligand agonists have also been developed targeting PPARγ. In this review, we summarized the role of PPARγ in lipid metabolism and inflammation in development of atherosclerosis, the posttranslational regulatory mechanism of PPARγ, and further discusses the value of PPARγ as an antiatherosclerosis target.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
30
|
Nartey MNN, Shimizu H, Sugiyama H, Higa M, Syeda PK, Nishimura K, Jisaka M, Yokota K. Eicosapentaenoic Acid Induces the Inhibition of Adipogenesis by Reducing the Effect of PPARγ Activator and Mediating PKA Activation and Increased COX-2 Expression in 3T3-L1 Cells at the Differentiation Stage. Life (Basel) 2023; 13:1704. [PMID: 37629561 PMCID: PMC10456008 DOI: 10.3390/life13081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity has received increasing attention in recent years because it is a factor in the development of non-communicable diseases. The current study aimed to analyze how representative fatty acids (FAs) such as palmitic acid, stearic acid, oleic acid, α-linolenic acid (ALA), and eicosapentaenoic acid (EPA) affected adipogenesis when/if introduced at the differentiation stage of 3T3-L1 cell culture. These FAs are assumed to be potentially relevant to the progression or prevention of obesity. EPA added during the differentiation stage reduced intracellular triacylglycerol (TAG) accumulation, as well as the expression of the established adipocyte-specific marker genes, during the maturation stage. However, no other FAs inhibited intracellular TAG accumulation. Coexistence of Δ12-prostaglandin J2, a peroxisome proliferator-activated receptor γ activator, with EPA during the differentiation stage partially attenuated the inhibitory effect of EPA on intracellular TAG accumulation. EPA increased cyclooxygenase-2 (COX-2) expression and protein kinase A (PKA) activity at the differentiation stage, which could explain the inhibitory actions of EPA. Taken together, exposure of preadipocytes to EPA only during the differentiation stage may be sufficient to finally reduce the mass of white adipose tissue through increasing COX-2 expression and PKA activity.
Collapse
Affiliation(s)
- Michael N. N. Nartey
- Council for Scientific and Industrial Research-Animal Research Institute, Achimota, Accra P.O. Box AH20, Ghana;
| | - Hidehisa Shimizu
- Estuary Research Center, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
| | - Hikaru Sugiyama
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
| | - Manami Higa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
| | - Pinky Karim Syeda
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
| | - Kohji Nishimura
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
| | - Mitsuo Jisaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
| | - Kazushige Yokota
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
| |
Collapse
|
31
|
Qian F, Nettleford SK, Zhou J, Arner BE, Hall MA, Sharma A, Annageldiyev C, Rossi RM, Tukaramrao DB, Sarkar D, Hegde S, Gandhi UH, Finch ER, Goodfield L, Quickel MD, Claxton DF, Paulson RF, Prabhu KS. Activation of GPR44 decreases severity of myeloid leukemia via specific targeting of leukemia initiating stem cells. Cell Rep 2023; 42:112794. [PMID: 37459233 PMCID: PMC10428076 DOI: 10.1016/j.celrep.2023.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Relapse of acute myeloid leukemia (AML) remains a significant concern due to persistent leukemia-initiating stem cells (LICs) that are typically not targeted by most existing therapies. Using a murine AML model, human AML cell lines, and patient samples, we show that AML LICs are sensitive to endogenous and exogenous cyclopentenone prostaglandin-J (CyPG), Δ12-PGJ2, and 15d-PGJ2, which are increased upon dietary selenium supplementation via the cyclooxygenase-hematopoietic PGD synthase pathway. CyPGs are endogenous ligands for peroxisome proliferator-activated receptor gamma and GPR44 (CRTH2; PTGDR2). Deletion of GPR44 in a mouse model of AML exacerbated the disease suggesting that GPR44 activation mediates selenium-mediated apoptosis of LICs. Transcriptomic analysis of GPR44-/- LICs indicated that GPR44 activation by CyPGs suppressed KRAS-mediated MAPK and PI3K/AKT/mTOR signaling pathways, to enhance apoptosis. Our studies show the role of GPR44, providing mechanistic underpinnings of the chemopreventive and chemotherapeutic properties of selenium and CyPGs in AML.
Collapse
Affiliation(s)
- Fenghua Qian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaneice K Nettleford
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jiayan Zhou
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Brooke E Arner
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Molly A Hall
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Arati Sharma
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Charyguly Annageldiyev
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Randy M Rossi
- Transgenic Core Facility, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Diwakar B Tukaramrao
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Deborpita Sarkar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shailaja Hegde
- Hoxworth Blood Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ujjawal H Gandhi
- Department of Hematology and Oncology, University of North Carolina Health, Cary, NC 27518, USA
| | - Emily R Finch
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Goodfield
- Immunooncology Division, Bicycle Therapeutics, Boston, MA 02140, USA
| | - Michael D Quickel
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - David F Claxton
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
32
|
Huang M, Claussnitzer M, Saadat A, Coral DE, Kalamajski S, Franks PW. Engineered allele substitution at PPARGC1A rs8192678 alters human white adipocyte differentiation, lipogenesis, and PGC-1α content and turnover. Diabetologia 2023; 66:1289-1305. [PMID: 37171500 PMCID: PMC10244287 DOI: 10.1007/s00125-023-05915-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
AIMS/HYPOTHESIS PPARGC1A encodes peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), a central regulator of energy metabolism and mitochondrial function. A common polymorphism in PPARGC1A (rs8192678, C/T, Gly482Ser) has been associated with obesity and related metabolic disorders, but no published functional studies have investigated direct allele-specific effects in adipocyte biology. We examined whether rs8192678 is a causal variant and reveal its biological function in human white adipose cells. METHODS We used CRISPR-Cas9 genome editing to perform an allelic switch (C-to-T or T-to-C) at rs8192678 in an isogenic human pre-adipocyte white adipose tissue (hWAs) cell line. Allele-edited single-cell clones were expanded and screened to obtain homozygous T/T (Ser482Ser), C/C (Gly482Gly) and heterozygous C/T (Gly482Ser) isogenic cell populations, followed by functional studies of the allele-dependent effects on white adipocyte differentiation and mitochondrial function. RESULTS After differentiation, the C/C adipocytes were visibly less BODIPY-positive than T/T and C/T adipocytes, and had significantly lower triacylglycerol content. The C allele presented a dose-dependent lowering effect on lipogenesis, as well as lower expression of genes critical for adipogenesis, lipid catabolism, lipogenesis and lipolysis. Moreover, C/C adipocytes had decreased oxygen consumption rate (OCR) at basal and maximal respiration, and lower ATP-linked OCR. We determined that these effects were a consequence of a C-allele-driven dysregulation of PGC-1α protein content, turnover rate and transcriptional coactivator activity. CONCLUSIONS/INTERPRETATION Our data show allele-specific causal effects of the rs8192678 variant on adipogenic differentiation. The C allele confers lower levels of PPARGC1A mRNA and PGC-1α protein, as well as disrupted dynamics of PGC-1α turnover and activity, with downstream effects on cellular differentiation and mitochondrial function. Our study provides the first experimentally deduced insights on the effects of rs8192678 on adipocyte phenotype.
Collapse
Affiliation(s)
- Mi Huang
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Melina Claussnitzer
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alham Saadat
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daniel E Coral
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Sebastian Kalamajski
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Malmö, Sweden.
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Malmö, Sweden.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
33
|
Wautier JL, Wautier MP. Pro- and Anti-Inflammatory Prostaglandins and Cytokines in Humans: A Mini Review. Int J Mol Sci 2023; 24:ijms24119647. [PMID: 37298597 DOI: 10.3390/ijms24119647] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation has been described for two millennia, but cellular aspects and the paradigm involving different mediators have been identified in the recent century. Two main groups of molecules, the prostaglandins (PG) and the cytokines, have been discovered and play a major role in inflammatory processes. The activation of prostaglandins PGE2, PGD2 and PGI2 results in prominent symptoms during cardiovascular and rheumatoid diseases. The balance between pro- and anti-inflammatory compounds is nowadays a challenge for more targeted therapeutic approaches. The first cytokine was described more than a century ago and is now a part of different families of cytokines (38 interleukins), including the IL-1 and IL-6 families and TNF and TGFβ families. Cytokines can perform a dual role, being growth promotors or inhibitors and having pro- and anti-inflammatory properties. The complex interactions between cytokines, vascular cells and immune cells are responsible for dramatic conditions and lead to the concept of cytokine storm observed during sepsis, multi-organ failure and, recently, in some cases of COVID-19 infection. Cytokines such as interferon and hematopoietic growth factor have been used as therapy. Alternatively, the inhibition of cytokine functions has been largely developed using anti-interleukin or anti-TNF monoclonal antibodies in the treatment of sepsis or chronic inflammation.
Collapse
Affiliation(s)
- Jean-Luc Wautier
- Faculté de Médecine, Université Denis Diderot Paris Cité, 75013 Paris, France
| | - Marie-Paule Wautier
- Faculté de Médecine, Université Denis Diderot Paris Cité, 75013 Paris, France
| |
Collapse
|
34
|
Kitakaze K, Ali H, Kimoto R, Takenouchi Y, Ishimaru H, Yamashita A, Ueda N, Tanaka T, Okamoto Y, Tsuboi K. GDE7 produces cyclic phosphatidic acid in the ER lumen functioning as a lysophospholipid mediator. Commun Biol 2023; 6:524. [PMID: 37193762 PMCID: PMC10188492 DOI: 10.1038/s42003-023-04900-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
Cyclic phosphatidic acid (cPA) is a lipid mediator, which regulates adipogenic differentiation and glucose homeostasis by suppressing nuclear peroxisome proliferator-activated receptor γ (PPARγ). Glycerophosphodiesterase 7 (GDE7) is a Ca2+-dependent lysophospholipase D that localizes in the endoplasmic reticulum. Although mouse GDE7 catalyzes cPA production in a cell-free system, it is unknown whether GDE7 generates cPA in living cells. Here, we demonstrate that human GDE7 possesses cPA-producing activity in living cells as well as in a cell-free system. Furthermore, the active site of human GDE7 is directed towards the luminal side of the endoplasmic reticulum. Mutagenesis revealed that amino acid residues F227 and Y238 are important for catalytic activity. GDE7 suppresses the PPARγ pathway in human mammary MCF-7 and mouse preadipocyte 3T3-L1 cells, suggesting that cPA functions as an intracellular lipid mediator. These findings lead to a better understanding of the biological role of GDE7 and its product, cPA.
Collapse
Affiliation(s)
- Keisuke Kitakaze
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Raiki Kimoto
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hironobu Ishimaru
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Atsushi Yamashita
- Laboratory of Biological Chemistry, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Yasuo Okamoto
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
35
|
Liu J, Peng B, Steinmetz-Späh J, Idborg H, Korotkova M, Jakobsson PJ. Microsomal prostaglandin E synthase-1 inhibition promotes shunting in arachidonic acid metabolism during inflammatory responses in vitro. Prostaglandins Other Lipid Mediat 2023; 167:106738. [PMID: 37094780 DOI: 10.1016/j.prostaglandins.2023.106738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Microsomal Prostaglandin E Synthase 1 (mPGES-1) is the key enzyme for the generation of the pro-inflammatory lipid mediator prostaglandin E2 (PGE2), which contributes to several pathological features of many diseases. Inhibition of mPGES-1 has been shown to be a safe and effective therapeutic strategy in various pre-clinical studies. In addition to reduced PGE2 formation, it is also suggested that the potential shunting into other protective and pro-resolving prostanoids may play an important role in resolution of inflammation. In the present study, we analysed the eicosanoid profiles in four in vitro inflammation models and compared the effects of mPGES-1 inhibition with those of cyclooxygenase-2 (Cox-2) inhibition. Our results showed a marked shift to the PGD2 pathway under mPGES-1 inhibition in A549 cells, RAW264.7 cells and mouse bone marrow-derived macrophages (BMDMs), whereas enhanced prostacyclin production was observed in rheumatoid arthritis synovial fibroblasts (RASFs) treated with an mPGES-1 inhibitor. As expected, Cox-2 inhibition completely suppressed all prostanoids. This study suggests that the therapeutic effects of mPGES-1 inhibition may be mediated by modulation of other prostanoids in addition to PGE2 reduction.
Collapse
Affiliation(s)
- Jianyang Liu
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Bing Peng
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
36
|
Cavati G, Pirrotta F, Merlotti D, Ceccarelli E, Calabrese M, Gennari L, Mingiano C. Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants (Basel) 2023; 12:antiox12040928. [PMID: 37107303 PMCID: PMC10135862 DOI: 10.3390/antiox12040928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes (T2D) and osteoporosis (OP) are major causes of morbidity and mortality that have arelevant health and economic burden. Recent epidemiological evidence suggests that both of these disorders are often associated with each other and that T2D patients have an increased risk of fracture, making bone an additional target of diabetes. As occurs for other diabetic complications, the increased accumulation of advanced glycation end-products (AGEs) and oxidative stress represent the major mechanisms explaining bone fragility in T2D. Both of these conditions directly and indirectly (through the promotion of microvascular complications) impair the structural ductility of bone and negatively affect bone turnover, leading to impaired bone quality, rather than decreased bone density. This makes diabetes-induced bone fragility remarkably different from other forms of OP and represents a major challenge for fracture risk stratification, since either the measurement of BMD or the use of common diagnostic algorithms for OP have a poor predictive value. We review and discuss the role of AGEs and oxidative stress on the pathophysiology of bone fragility in T2D, providing some indications on how to improve fracture risk prediction in T2D patients.
Collapse
Affiliation(s)
- Guido Cavati
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Filippo Pirrotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Ceccarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Marco Calabrese
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Christian Mingiano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
37
|
Kanno T, Nakajima T, Miyako K, Endo Y. Lipid metabolism in Th17 cell function. Pharmacol Ther 2023; 245:108411. [PMID: 37037407 DOI: 10.1016/j.pharmthera.2023.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Among the subset of T helper cells, Th17 cells are known to play a crucial role in the pathogenesis of various autoimmune disorders, such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. The master transcription factor retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, plays a vital role in inducing Th17-cell differentiation. Recent findings suggest that metabolic control is critical for Th17-cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Inhibition of lipid biosynthesis, either through the use of pharmacological inhibitors or by the deficiency of related enzymes in CD4+ T cells, results in significant suppression of Th17-cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways are essential for controlling RORγt activity through the generation of a lipid ligand of RORγt. This review highlights recent findings that underscore the significant role of lipid metabolism in the differentiation and function of Th17 cells, as well as elucidating the distinctive molecular pathways that drive the activation of RORγt by cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach for ameliorating autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan.
| |
Collapse
|
38
|
Youssef ME, Yahya G, Popoviciu MS, Cavalu S, Abd-Eldayem MA, Saber S. Unlocking the Full Potential of SGLT2 Inhibitors: Expanding Applications beyond Glycemic Control. Int J Mol Sci 2023; 24:ijms24076039. [PMID: 37047011 PMCID: PMC10094124 DOI: 10.3390/ijms24076039] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The number of diabetic patients has risen dramatically in recent decades, owing mostly to the rising incidence of type 2 diabetes mellitus (T2DM). Several oral antidiabetic medications are used for the treatment of T2DM including, α-glucosidases inhibitors, biguanides, sulfonylureas, meglitinides, GLP-1 receptor agonists, PPAR-γ agonists, DDP4 inhibitors, and SGLT2 inhibitors. In this review we focus on the possible effects of SGLT2 inhibitors on different body systems. Beyond the diabetic state, SGLT2 inhibitors have revealed a demonstrable ability to ameliorate cardiac remodeling, enhance myocardial function, and lower heart failure mortality. Additionally, SGLT2 inhibitors can modify adipocytes and their production of cytokines, such as adipokines and adiponectin, which enhances insulin sensitivity and delays diabetes onset. On the other hand, SGLT2 inhibitors have been linked to decreased total hip bone mineral deposition and increased hip bone resorption in T2DM patients. More data are needed to evaluate the role of SGLT2 inhibitors on cancer. Finally, the effects of SGLT2 inhibitors on neuroprotection appear to be both direct and indirect, according to scientific investigations utilizing various experimental models. SGLT2 inhibitors improve vascular tone, elasticity, and contractility by reducing oxidative stress, inflammation, insulin signaling pathways, and endothelial cell proliferation. They also improve brain function, synaptic plasticity, acetylcholinesterase activity, and reduce amyloid plaque formation, as well as regulation of the mTOR pathway in the brain, which reduces brain damage and cognitive decline.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt
| | - Mihaela Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
39
|
Simvastatin Improves Benign Prostatic Hyperplasia: Role of Peroxisome-Proliferator-Activated Receptor-γ and Classic WNT/β-Catenin Pathway. Int J Mol Sci 2023; 24:ijms24054911. [PMID: 36902342 PMCID: PMC10003121 DOI: 10.3390/ijms24054911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with an uncertain etiology and mechanistic basis. Metabolic syndrome (MetS) is also a very common illness and is closely related to BPH. Simvastatin (SV) is one of the widely used statins for MetS. Peroxisome-proliferator-activated receptor gamma (PPARγ), crosstalking with the WNT/β-catenin pathway, plays important roles in MetS. Our current study aimed to examine SV-PPARγ-WNT/β-catenin signaling in the development of BPH. Human prostate tissues and cell lines plus a BPH rat model were utilized. Immunohistochemical, immunofluorescence, hematoxylin and eosin (H&E) and Masson's trichrome staining, construction of a tissue microarray (TMA), ELISA, CCK-8 assay, qRT-PCR, flow cytometry, and Western blotting were also performed. PPARγ was expressed in both prostate stroma and epithelial compartments and downregulated in BPH tissues. Furthermore, SV dose-dependently triggered cell apoptosis and cell cycle arrest at the G0/G1 phase and attenuated tissue fibrosis and the epithelial-mesenchymal transition (EMT) process both in vitro and in vivo. SV also upregulated the PPARγ pathway, whose antagonist could reverse SV produced in the aforementioned biological process. Additionally, crosstalk between PPARγ and WNT/β-catenin signaling was demonstrated. Finally, correlation analysis with our TMA containing 104 BPH specimens showed that PPARγ was negatively related with prostate volume (PV) and free prostate-specific antigen (fPSA) and positively correlated with maximum urinary flow rate (Qmax). WNT-1 and β-catenin were positively related with International Prostate Symptom Score (IPSS) and nocturia, respectively. Our novel data demonstrate that SV could modulate cell proliferation, apoptosis, tissue fibrosis, and the EMT process in the prostate through crosstalk between PPARγ and WNT/β-catenin pathways.
Collapse
|
40
|
Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods 2023; 12:foods12040725. [PMID: 36832799 PMCID: PMC9956263 DOI: 10.3390/foods12040725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The purpose of this study was to explore the effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation on serum lipid profile and blood pressure in patients with metabolic syndrome. We searched PubMed, Web of Science, Embase, and the Cochrane library from database inception to 30 April 2022. This meta-analysis included eight trials with 387 participants. We found that supplementation of n-3 PUFAs has no significant reduction in TC level (SMD = -0.02; 95% CI: -0.22 ~ 0.18, I2 = 23.7%) and LDL-c level in serum (SMD = 0.18; 95% CI: -0.18 ~ 0.53, I2 = 54.9%) of patients with metabolic syndrome. Moreover, we found no significant increase in serum high-density lipoprotein cholesterol level (SMD = 0.02; 95% CI: -0.21 ~ 0.25, I2 = 0%) in patients with metabolic syndrome after consuming n-3 PUFAs. In addition, we found that n-3 PUFAs can significantly decrease serum triglyceride levels (SMD= -0.39; 95% CI: -0.59 ~ -0.18, I2 = 17.2%), systolic blood pressure (SMD = -0.54; 95% CI: -0.86 ~ -0.22, I2 = 48.6%), and diastolic blood pressure (SMD = -0.56; 95% CI: -0.79 ~ 0.33, I2 = 14.0%) in patients with metabolic syndrome. The results from the sensitivity analysis confirmed that our results were robust. These findings suggest that n-3 PUFA supplementation may serve as a potential dietary supplement for improving lipids and blood pressure in metabolic syndrome. Given the quality of the included studies, further studies are still needed to verify our findings.
Collapse
|
41
|
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T, Huang C. An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis 2023; 38:855-872. [PMID: 36729260 PMCID: PMC10106353 DOI: 10.1007/s11011-023-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Ischemic stroke (IS) has become the second leading cause of morbidity and mortality worldwide, and the prevention of IS should be given high priority. Recent studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) may be a protective nonpharmacological method, but its underlying mechanisms remain poorly defined. This study comprehensively reviewed the pathophysiology of IS and revealed the underlying mechanism of HBO-PC in protection against IS. The preventive effects of HBO-PC against IS may include inducing antioxidant, anti-inflammation, and anti-apoptosis capacity; activating autophagy and immune responses; upregulating heat shock proteins, hypoxia-inducible factor-1, and erythropoietin; and exerting protective effects upon the blood-brain barrier. In addition, HBO-PC may be considered a safe and effective method to prevent IS in combination with stem cell therapy. Although the benefits of HBO-PC on IS have been widely observed in recent research, the implementation of this technique is still controversial due to regimen differences. Transferring the results to clinical application needs to be taken carefully, and screening for the optimal regimen would be a daunting task. In addition, whether we should prescribe an individualized preconditioning regimen to each stroke patient needs further exploration.
Collapse
Affiliation(s)
- Xuyi Wu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong You
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Chen
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mei Zhou
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hui Ma
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tianle Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
42
|
Effects of Fatty Acid Metabolites on Adipocytes Britening: Role of Thromboxane A2. Cells 2023; 12:cells12030446. [PMID: 36766790 PMCID: PMC9913700 DOI: 10.3390/cells12030446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Obesity is a complex disease highly related to diet and lifestyle and is associated with low amount of thermogenic adipocytes. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to fight overweight and associated comorbidities. Recent studies suggest a role for several fatty acids and their metabolites, called lipokines, in the control of thermogenesis. The purpose of this work was to analyze the role of several lipokines in the control of brown/brite adipocyte formation. We used a validated human adipocyte model, human multipotent adipose-derived stem cell model (hMADS). In the absence of rosiglitazone, hMADS cells differentiate into white adipocytes, but convert into brite adipocytes upon rosiglitazone or prostacyclin 2 (PGI2) treatment. Gene expression was quantified using RT-qPCR and protein levels were assessed by Western blotting. We show here that lipokines such as 12,13-diHOME, 12-HEPE, 15dPGJ2 and 15dPGJ3 were not able to induce browning of white hMADS adipocytes. However, both fatty acid esters of hydroxy fatty acids (FAHFAs), 9-PAHPA and 9-PAHSA potentiated brown key marker UCP1 mRNA levels. Interestingly, CTA2, the stable analog of thromboxane A2 (TXA2), but not its inactive metabolite TXB2, inhibited the rosiglitazone and PGI2-induced browning of hMADS adipocytes. These results pinpoint TXA2 as a lipokine inhibiting brown adipocyte formation that is antagonized by PGI2. Our data open new horizons in the development of potential therapies based on the control of thromboxane A2/prostacyclin balance to combat obesity and associated metabolic disorders.
Collapse
|
43
|
Nartey MNN, Jisaka M, Syeda PK, Nishimura K, Shimizu H, Yokota K. Prostaglandin D 2 Added during the Differentiation of 3T3-L1 Cells Suppresses Adipogenesis via Dysfunction of D-Prostanoid Receptor P1 and P2. Life (Basel) 2023; 13:life13020370. [PMID: 36836727 PMCID: PMC9963520 DOI: 10.3390/life13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
We previously reported that the addition of prostaglandin, (PG)D2, and its chemically stable analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), during the maturation phase of 3T3-L1 cells promotes adipogenesis. In the present study, we aimed to elucidate the effects of the addition of PGD2 or 11d-11m-PGD2 to 3T3-L1 cells during the differentiation phase on adipogenesis. We found that both PGD2 and 11d-11m-PGD2 suppressed adipogenesis through the downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) expression. However, the latter suppressed adipogenesis more potently than PGD2, most likely because of its higher resistance to spontaneous transformation into PGJ2 derivatives. In addition, this anti-adipogenic effect was attenuated by the coexistence of an IP receptor agonist, suggesting that the effect depends on the intensity of the signaling from the IP receptor. The D-prostanoid receptors 1 (DP1) and 2 (DP2, also known as a chemoattractant receptor-homologous molecule expressed on Th2 cells) are receptors for PGD2. The inhibitory effects of PGD2 and 11d-11m-PGD2 on adipogenesis were slightly attenuated by a DP2 agonist. Furthermore, the addition of PGD2 and 11d-11m-PGD2 during the differentiation phase reduced the DP1 and DP2 expression during the maturation phase. Overall, these results indicated that the addition of PGD2 or 11d-11m-PGD2 during the differentiation phase suppresses adipogenesis via the dysfunction of DP1 and DP2. Therefore, unidentified receptor(s) for both molecules may be involved in the suppression of adipogenesis.
Collapse
Affiliation(s)
- Michael N. N. Nartey
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Council for Scientific and Industrial Research-Animal Research Institute, Achimota, Accra P.O. Box AH20, Ghana
| | - Mitsuo Jisaka
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Correspondence:
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Kohji Nishimura
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Hidehisa Shimizu
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Kazushige Yokota
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| |
Collapse
|
44
|
Nartey MNN, Jisaka M, Syeda PK, Nishimura K, Shimizu H, Yokota K. Arachidonic Acid Added during the Differentiation Phase of 3T3-L1 Cells Exerts Anti-Adipogenic Effect by Reducing the Effects of Pro-Adipogenic Prostaglandins. Life (Basel) 2023; 13:life13020367. [PMID: 36836723 PMCID: PMC9962328 DOI: 10.3390/life13020367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
A linoleic acid (LA) metabolite arachidonic acid (AA) added to 3T3-L1 cells is reported to suppress adipogenesis. The purpose of the present study aimed to clarify the effects of AA added during the differentiation phase, including adipogenesis, the types of prostaglandins (PG)s produced, and the crosstalk between AA and the PGs produced. Adipogenesis was inhibited by AA added, while LA did not. When AA was added, increased PGE2 and PGF2α production, unchanged Δ12-PGJ2 production, and reduced PGI2 production were observed. Since the decreased PGI2 production was reflected in decreased CCAAT/enhancer-binding protein-β (C/EBPβ) and C/EBPδ expression, we expected that the coexistence of PGI2 with AA would suppress the anti-adipogenic effects of AA. However, the coexistence of PGI2 with AA did not attenuate the anti-adipogenic effects of AA. In addition, the results were similar when Δ12-PGJ2 coexisted with AA. Taken together, these results indicated that the metabolism of ingested LA to AA is necessary to inhibit adipogenesis and that exposure of AA to adipocytes during only the differentiation phase is sufficient. As further mechanisms for suppressing adipogenesis, AA was found not only to increase PGE2 and PGF2α and decrease PGI2 production but also to abrogate the pro-adipogenic effects of PGI2 and Δ12-PGJ2.
Collapse
Affiliation(s)
- Michael N. N. Nartey
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Council for Scientific and Industrial Research-Animal Research Institute, Achimota, Accra P.O. Box AH20, Ghana
| | - Mitsuo Jisaka
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Correspondence:
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| | - Kohji Nishimura
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| | - Hidehisa Shimizu
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| | - Kazushige Yokota
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| |
Collapse
|
45
|
Burkhardt LM, Bucher CH, Löffler J, Rinne C, Duda GN, Geissler S, Schulz TJ, Schmidt-Bleek K. The benefits of adipocyte metabolism in bone health and regeneration. Front Cell Dev Biol 2023; 11:1104709. [PMID: 36895792 PMCID: PMC9988968 DOI: 10.3389/fcell.2023.1104709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Patients suffering from musculoskeletal diseases must cope with a diminished quality of life and an increased burden on medical expenses. The interaction of immune cells and mesenchymal stromal cells during bone regeneration is one of the key requirements for the restoration of skeletal integrity. While stromal cells of the osteo-chondral lineage support bone regeneration, an excessive accumulation of cells of the adipogenic lineage is thought to promote low-grade inflammation and impair bone regeneration. Increasing evidence indicates that pro-inflammatory signaling from adipocytes is responsible for various chronic musculoskeletal diseases. This review aims to summarize the features of bone marrow adipocytes by phenotype, function, secretory features, metabolic properties and their impact on bone formation. In detail, the master regulator of adipogenesis and prominent diabetes drug target, peroxisome proliferator-activated receptor γ (PPARG), will be debated as a potential therapeutic approach to enhance bone regeneration. We will explore the possibilities of using clinically established PPARG agonists, the thiazolidinediones (TZDs), as a treatment strategy to guide the induction of a pro-regenerative, metabolically active bone marrow adipose tissue. The impact of this PPARG induced bone marrow adipose tissue type on providing the necessary metabolites to sustain osteogenic-as well as beneficial immune cells during bone fracture healing will be highlighted.
Collapse
Affiliation(s)
- Lisa-Marie Burkhardt
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Julia Löffler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Charlotte Rinne
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
46
|
DeLuca JH, Reilly SM. Culture and Differentiation of Primary Preadipocytes from Mouse Subcutaneous White Adipose Tissue. Methods Mol Biol 2023; 2662:11-24. [PMID: 37076667 PMCID: PMC10583291 DOI: 10.1007/978-1-0716-3167-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Adipocytes are terminally differentiated cells derived from fibroblastic preadipocyte precursors. Here, we describe a method for the isolation and proliferation of preadipocytes from murine subcutaneous white adipose tissue, followed by differentiation in culture to mature adipocytes; we refer to these cells as primary preadipocytes differentiated in vitro (PPDIVs). Compared to adipogenic cell lines, PPDIV metabolism and adipokine secretion more closely resemble in vivo adipocyte biology. While primary mature adipocytes have the greatest in vivo relevance, their fragility and buoyancy make them unsuitable for many cell culture-based methods. PPDIVs can also take advantage of transgenic and knockout mouse models to produce genetically modified adipocytes. Thus, PPDIVs are a valuable resource for studying adipocyte biology in cell culture.
Collapse
Affiliation(s)
- Julia H DeLuca
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Shannon M Reilly
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
47
|
Shaikh SR, Virk R, Van Dyke TE. Potential Mechanisms by Which Hydroxyeicosapentaenoic Acids Regulate Glucose Homeostasis in Obesity. Adv Nutr 2022; 13:2316-2328. [PMID: 35709423 PMCID: PMC9776734 DOI: 10.1093/advances/nmac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Dysregulation of glucose metabolism in response to diet-induced obesity contributes toward numerous complications, such as insulin resistance and hepatic steatosis. Therefore, there is a need to develop effective strategies to improve glucose homeostasis. In this review, we first discuss emerging evidence from epidemiological studies and rodent experiments that increased consumption of EPA (either as oily fish, or dietary/pharmacological supplements) may have a role in preventing impairments in insulin and glucose homeostasis. We then review the current evidence on how EPA-derived metabolites known as hydroxyeicosapentaenoic acids (HEPEs) may be a major mode of action by which EPA exerts its beneficial effects on glucose and lipid metabolism. Notably, cell culture and rodent studies show that HEPEs prevent fat accumulation in metabolic tissues through peroxisome proliferator activated receptor (PPAR)-mediated mechanisms. In addition, activation of the resolvin E1 pathway, either by administration of EPA in the diet or via intraperitoneal administration of resolvin E1, improves hyperglycemia, hyperinsulinemia, and liver steatosis through multiple mechanisms. These mechanisms include shifting immune cell phenotypes toward resolution of inflammation and preventing dysbiosis of the gut microbiome. Finally, we present the next steps for this line of research that will drive future precision randomized clinical trials with EPA and its downstream metabolites. These include dissecting the variables that drive heterogeneity in the response to EPA, such as the baseline microbiome profile and fatty acid status, circadian rhythm, genetic variation, sex, and age. In addition, there is a critical need to further investigate mechanisms of action for HEPEs and to establish the concentration of HEPEs in differing tissues, particularly in response to consumption of oily fish and EPA-enriched supplements.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, The Forsyth
Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of
Dental Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Li Q, Fadoul G, Ikonomovic M, Yang T, Zhang F. Sulforaphane promotes white matter plasticity and improves long-term neurological outcomes after ischemic stroke via the Nrf2 pathway. Free Radic Biol Med 2022; 193:292-303. [PMID: 36244590 DOI: 10.1016/j.freeradbiomed.2022.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023]
Abstract
AIMS Post-stroke cognitive impairment (PSCI) is a common condition following ischemic stroke. Neuronal loss and white matter injury are among the most common neuropathological characteristics in patients with PSCI. The present study tested our hypothesis that activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) reduces neuronal loss, white matter injury, and neurobehavioral deficits in a mouse model of PSCI and investigated the underlying protective mechanisms. METHODS PSCI was modeled in wildtype (WT) and Nrf2 knockout (KO), male and female mice, by distal middle cerebral artery occlusion (dMCAO), with intraperitoneal injections of the Nrf2 activator sulforaphane (Sfn) or vehicle. Long-term (35 days) sensorimotor and cognitive performances, white matter integrity, oligodendrogenesis by BrdU incorporation, and neurite sprouting using anterograde tract-tracing were evaluated up to 35 days after dMCAO. Neuronal apoptosis was evaluated three days after dMCAO. In vitro, primary neuronal cultures were applied to validate the in vivo findings. RESULTS Compared to vehicle-injected controls, Sfn treatment improved long-term sensorimotor and cognitive deficits after dMCAO in WT male and female mice. Sfn-treated WT mice also had less myelin loss/axonal injury and showed evidence of Nrf2 activation. Sfn treatment failed to provide the same level of protection in Nrf2 KO mice. Mechanistically, the ability of Sfn to reduce neuronal death after ischemia in vitro and in vivo, augment axonal sprouting and enhance oligodendrogenesis after dMCAO was dependent on Nrf2 activation. CONCLUSION Our results support that Nrf2 is critical for Sfn-afforded neuroprotection after ischemic stroke. Thus, targeting Nrf2 may be a promising strategy for the treatment of PSCI.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Fadoul
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Milos Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, USA; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Addition of ROCK Inhibitors Alleviates Prostaglandin-Induced Inhibition of Adipogenesis in 3T3L-1 Spheroids. Bioengineering (Basel) 2022; 9:bioengineering9110702. [DOI: 10.3390/bioengineering9110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
To elucidate the additive effects of the ROCK inhibitors (ROCK-i), ripasudil (Rip) and Y27632 on bimatoprost acid (BIM-A), a prostaglandin analog (PG), on adipose tissue, two- and three-dimensional (2D or 3D) cultures of 3T3-L1 cells, the most well characterized cells in the field of lipid research, were used. The cells were subjected to a variety of analyses including lipid staining, real-time cellular metabolic analysis, the mRNA expressions of genes related to adipogenesis and extracellular matrices (ECMs) as well as the sizes and physical properties of the 3D spheroids by a micro-squeezer. BIM-A induced strong inhibitory effects on most of the adipogenesis-related changes in the 2D and 3D cultured 3T3-L1 cells, including (1) the enlargement and softening of the 3D spheroids, (2) a dramatic enhancement in lipid staining and the expression of adipogenesis-related genes, and (3) a decrease in mitochondrial and glycolytic metabolic function. By adding ROCK-i to the BIM-A, most of these BIM-A-induced effects were cancelled. The collective findings reported herein suggest that ROCK-i eliminated the PG-induced suppression of adipogenesis in the 3T3-L1 cells, accompanied by the formation of enlarged 3D spheroids. Such effects of adding ROCK-i to a PG in preadipocytes on cellular properties appear to be associated with the suppression of PG-induced adverse effects, and provide additional insight into our understanding of lipid-related research.
Collapse
|
50
|
Steinmetz-Späh J, Liu J, Singh R, Ekoff M, Boddul S, Tang X, Bergqvist F, Idborg H, Heitel P, Rönnberg E, Merk D, Wermeling F, Haeggström JZ, Nilsson G, Steinhilber D, Larsson K, Korotkova M, Jakobsson PJ. Biosynthesis of prostaglandin 15dPGJ 2 -glutathione and 15dPGJ 2-cysteine conjugates in macrophages and mast cells via MGST3. J Lipid Res 2022; 63:100310. [PMID: 36370807 PMCID: PMC9792570 DOI: 10.1016/j.jlr.2022.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.
Collapse
Affiliation(s)
- Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jianyang Liu
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rajkumar Singh
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ekoff
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sanjaykumar Boddul
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Filip Bergqvist
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Elin Rönnberg
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Z. Haeggström
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Karin Larsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,For correspondence: Per-Johan Jakobsson
| |
Collapse
|