1
|
Chen YC, Bäck NE, Zhen J, Xiong L, Komba M, Gloyn AL, MacDonald PE, Mains RE, Eipper BA, Verchere CB. Peptidylglycine alpha-amidating monooxygenase is important in mice for beta-cell cilia formation and insulin secretion but promotes diabetes risk through beta-cell independent mechanisms. Mol Metab 2025; 96:102123. [PMID: 40120979 PMCID: PMC12090325 DOI: 10.1016/j.molmet.2025.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVES Carriers of PAM (peptidylglycine alpha-amidating monooxygenase) coding variant alleles have reduced insulinogenic index, higher risk of developing type 2 diabetes (T2D), and islets from heterozygous carriers of the PAM p.Asp563Gly variant display reduced insulin secretion. Exactly how global PAM deficiency contributes to hyperglycemia remains unclear. PAM is the only enzyme capable of converting glycine-extended peptide hormones into amidated products. Like neuropeptide Y (NPY), α-melanocyte stimulating hormone (αMSH), and glucagon-like peptide 1 (GLP-1), islet amyloid polypeptide (IAPP), a beta cell peptide that forms islet amyloid in type 2 diabetes, is a PAM substrate. We hypothesized that Pam deficiency limited to beta cells would lead to reduced insulin secretion, prevent the production of amidated IAPP, and reveal the extent to which loss of Pam in β-cells could accelerate the onset of hyperglycemia in mice. METHODS PAM activity was assessed in human islets from donors based on their PAM genotype. We generated beta cell-specific Pam knockout (Ins1Cre/+, Pamfl/fl; βPamKO) mice and performed islet culture, histological, and metabolic assays to evaluate the physiological roles of Pam in beta cells. We analyzed human IAPP (hIAPP) amyloid fibril forming kinetics using synthetic amidated and non-amidated hIAPP peptides, and generated hIAPP knock-in beta cell-specific Pam knockout (hIAPPw/w βPamKO) mice to determine the impact of hIAPP amidation on islet amyloid burden, islet graft survival, and glucose tolerance. RESULTS PAM enzyme activity was significantly reduced in islets from donors with the PAM p. Asp563Gly T2D-risk allele. Islets from βPamKO mice had impaired second-phase glucose- and KCl-induced insulin secretion. Beta cells from βPamKO mice had larger dense-core granules and fewer and shorter cilia. Interestingly, non-amidated hIAPP was less fibrillogenic in vitro, and high glucose-treated hIAPPw/w βPamKO islets had reduced amyloid burden. Despite these changes in beta cell function, βPamKO mice were not more susceptible to diet-induced hyperglycemia. In vitro beta cell death and in vivo islet graft survival remained comparable between hIAPPw/w βPamKO and hIAPPw/w islets. Surprisingly, aged hIAPPw/w βPamKO mice had improved insulin secretion and glucose tolerance. CONCLUSIONS Eliminating Pam expression only in beta cells leads to morphological changes in insulin granules, reduced insulin secretion, reduced hIAPP amyloid burden and altered ciliogenesis. However, in mice beta-cell Pam deficiency has no impact on the development of diet- or hIAPP-induced hyperglycemia. Our data are consistent with current studies revealing ancient, highly conserved roles for peptidergic signaling in the coordination of the diverse signals needed to regulate fundamental processes such as glucose homeostasis.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, Faculty of Medicine, University of British Columbia & BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Nils E Bäck
- Department of Anatomy, Faculty of Medicine, University of Helsinki, PO Box 63 (Haartmaninkatu 8), 00014 University of Helsinki, Finland.
| | - Jenicia Zhen
- Department of Surgery, Faculty of Medicine, University of British Columbia & BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Lena Xiong
- Department of Surgery, Faculty of Medicine, University of British Columbia & BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Mitsuhiro Komba
- Department of Surgery, Faculty of Medicine, University of British Columbia & BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes and Department of Genetics, Stanford School of Medicine, Stanford Research Park, 3165 Porter Drive, Stanford, CA, 94304, USA.
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, 6-126C Li Ka Shing Centre for Health Research Innovation, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, MC 3401, Farmington, CT, 06030-3401, USA.
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, MC 3401, Farmington, CT, 06030-3401, USA.
| | - C Bruce Verchere
- Department of Surgery, Faculty of Medicine, University of British Columbia & BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
2
|
Li Y, Ye T, Li F, Tan S. Chalcogen-Bonding-Enabled, Light-Driven Decarboxylative Oxygenation of Amino Acid Derivatives and Short Peptides Using O 2. Angew Chem Int Ed Engl 2025; 64:e202502233. [PMID: 40113597 DOI: 10.1002/anie.202502233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 03/22/2025]
Abstract
Here we report a photocatalytic method for the decarboxylative oxygenation of amino acid derivatives and short peptides using dioxygen as a green oxidant. A reverse catalytic strategy utilizing Lewis basic diphenyl diselenide as a Lewis acid catalyst to activate carboxylic acid via chalcogen bonding interaction is the key to this work. This synthetic method is tolerant of functionalities present in both natural and non-proteinogenic amino acids, enabling the efficient synthesis of C-terminal amides or imides. Mechanistic studies suggest there is a dual noncovalent interaction between diphenyl diselenide and carboxylic acid, which allows radical decarboxylation through photoinduced intermolecular electron transfer. This new activation mode of carboxylic acids will add a new dimension to classical decarboxylative reactions.
Collapse
Affiliation(s)
- Yuzheng Li
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| | - Taiqiang Ye
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| | - Feng Li
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| | - Shenpeng Tan
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| |
Collapse
|
3
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Resoles JAA, Yu ET. The neuropeptidomes of the sea cucumbers Stichopus cf. horrens and Holothuria scabra. Sci Rep 2025; 15:7032. [PMID: 40016254 PMCID: PMC11868395 DOI: 10.1038/s41598-025-85696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/06/2025] [Indexed: 03/01/2025] Open
Abstract
The Philippines is a renowned marine biodiversity hotspot, home to several sea cucumber species with unusual biological traits. Among these, Stichopus cf. horrens is notable for its ability to undergo rapid body wall liquefaction when stressed, coupled with remarkable regenerative abilities. In contrast, Holothuria scabra has one of the most robust body walls in sea cucumbers and thrives in many regimes in the tropics. Despite their intriguing traits, the neurobiology and chemical diversity of these species remain underexplored. Neuropeptides are important components of an animal's neurobiological toolkit that underlie various physiological and behavioral processes. Thus, the discovery of neuropeptides is a crucial step for understanding the molecular underpinnings of unique traits in sea cucumbers. Leveraging the throughput and sensitivity of tandem mass spectrometry, we obtained an unbiased view of the endogenous peptidomes of radial nerve cord tissues of non-model sea cucumber species, H. scabra and S. cf. horrens. In this work, we sequenced 60 mature peptides from S. cf. horrens that were derived from 22 precursor proteins, and 43 peptides originating from 25 precursor proteins in H. scabra nervous tissues. A total of seven previously unannotated and uncharacterized neuropeptide precursors were identified, thereby expanding the known animal neuropeptide repertoire. Furthermore, we discovered consistent structural features in mature neuropeptides based on the type of post-translational modifications while pushing forward potentially novel proteolytic processing sites during peptide maturation based on the enriched flanking amino acid residues. Collectively, our results provide preliminary data that expand our understanding of echinoderm neurobiology through neuropeptide discovery, potentially paving the way for innovative solutions to address the global demand for echinoderms.
Collapse
Affiliation(s)
- John Aidan A Resoles
- Marine Science Institute, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Eizadora T Yu
- Marine Science Institute, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
5
|
Oparin P, Khokhlova O, Cherkashin A, Nadezhdin K, Palikov V, Palikova Y, Korolkova Y, Mosharova I, Rogachevskaja O, Baranov M, Shaidullova K, Ermakova E, Lushpa V, Bruter A, Deykin A, Ivanova E, Silaeva Y, Dyachenko I, Bocharov E, Sitdikova G, Andreev-Andrievskiy A, Poteryaev D, Shuster A, Murashev A, Kolesnikov S, Stepanenko V, Grishin E, Vassilevski A. Potent painkiller from spider venom antagonizes P2X3 receptors without dysgeusia. Mol Ther 2025; 33:771-785. [PMID: 39960544 PMCID: PMC11852983 DOI: 10.1016/j.ymthe.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/15/2024] [Accepted: 12/27/2024] [Indexed: 02/28/2025] Open
Abstract
P2X3 receptors are a validated molecular target in pain syndromes and chronic cough. Known P2X3 inhibitors generally suffer from poor selectivity and efficacy. Taking advantage of peptide combinatorial libraries found in venoms, we describe a P2X3 antagonist from the crab spider Thomisus onustus. This peptide potently inhibits P2X3 in the dorsal root and trigeminal ganglia neurons of rodents, as well as recombinant human P2X3, showing no effect on P2X2 or P2X2/3 receptors. PT6 presents a compact and rigid structure and produces pronounced antinociception in animal models of inflammatory and neuropathic pain at low doses (0.01-0.1 mg/kg subcutaneously). It does not show antinociceptive activity in P2rx3-knockout mice, providing further evidence in favor of its specificity. Importantly, PT6 shows no dysgeusia or ageusia effects, notoriously characteristic of small-molecule P2X3 ligands, and therefore stands out as an attractive hit for analgesic drug discovery.
Collapse
Affiliation(s)
- Peter Oparin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Future Analgesics Ltd, Moscow 123060, Russia
| | - Oksana Khokhlova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Aleksandr Cherkashin
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Moscow Region, Russia
| | - Kirill Nadezhdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Victor Palikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Yulia Palikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Yuliya Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Irina Mosharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Olga Rogachevskaja
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Moscow Region, Russia
| | - Mikhail Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ksenia Shaidullova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russia
| | - Elizaveta Ermakova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russia
| | - Vladislav Lushpa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexandra Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexey Deykin
- Joint Center for Genetic Technology, Belgorod State University, Belgorod 308015, Russia
| | - Elena Ivanova
- Zakusov Institute of Pharmacology, Moscow 125315, Russia
| | - Yulia Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor Dyachenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Eduard Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Moscow Region, Russia
| | - Guzel Sitdikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russia
| | - Alexander Andreev-Andrievskiy
- M.V. Lomonosov Moscow State University, Moscow 119991, Russia; Institute for Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia
| | | | | | - Arkady Murashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Stanislav Kolesnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Moscow Region, Russia
| | - Vasiliy Stepanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Eugene Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Future Analgesics Ltd, Moscow 123060, Russia
| | - Alexander Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Future Analgesics Ltd, Moscow 123060, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Moscow Region, Russia.
| |
Collapse
|
6
|
Hymel D, Wojcik F, Halskov KS, Hogendorf WFJ, Wong SC, Williams BM, Mortensen AR, Cox N, Misquith A, Holländer NB, Matthiesen F, Mehrotra S, Harris MR. Photochemically-enabled, post-translational production of C-terminal amides. Nat Commun 2024; 15:7162. [PMID: 39616180 PMCID: PMC11608224 DOI: 10.1038/s41467-024-51005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 05/17/2025] Open
Abstract
C-terminal α-amidated peptides are attractive therapeutic targets, but preparative methods to access amidated pharmaceuticals are limited both on lab and manufacturing-scale. Here we report a straightforward and scalable approach to the C-terminal α-amidation of peptides and proteins from cysteine-extended polypeptide precursors. This amidation protocol consists of three highly efficient steps: 1) selective cysteine thiol substitution with a photolabel, 2) photoinduced decarboxylative elimination and 3) enamide cleavage by simple acidolysis or inverse electron demand Diels-Alder reaction. We provide a blueprint for applying this protocol to the semi-recombinant production of therapeutically relevant targets where gram scale C-terminal α-amidation is achieved in a photoflow reactor on a recombinantly prepared peptide YY analogue and a GLP-1/amylin co-agonist precursor peptide. Robust performance of this reaction cascade in flow highlights the potential of this chemistry to enable amidated drug leads to enter development that would not be viable on commercial scale using existing technology.
Collapse
Affiliation(s)
- David Hymel
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Felix Wojcik
- Research Chemistry, Novo Nordisk A/S, Måløv, Denmark
| | - Kim S Halskov
- Research Chemistry, Novo Nordisk A/S, Måløv, Denmark
| | | | - Sydnee C Wong
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ben M Williams
- Chemical Development, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Nick Cox
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ayesha Misquith
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | | | | | - Suneet Mehrotra
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | | |
Collapse
|
7
|
Mao RT, Guo SQ, Zhang G, Li YD, Xu JP, Wang HY, Fu P, Liu CP, Wu SQ, Chen P, Mei YS, Jin QC, Liu CY, Zhang YCF, Ding XY, Liu WJ, Romanova EV, Zhou HB, Cropper EC, Checco JW, Sweedler JV, Jing J. Two C-terminal isoforms of Aplysia tachykinin-related peptide receptors exhibit phosphorylation-dependent and phosphorylation-independent desensitization mechanisms. J Biol Chem 2024; 300:107556. [PMID: 39002683 PMCID: PMC11365428 DOI: 10.1016/j.jbc.2024.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.
Collapse
Affiliation(s)
- Rui-Ting Mao
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shi-Qi Guo
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Guo Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| | - Ya-Dong Li
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ju-Ping Xu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Ying Wang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Fu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cui-Ping Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shao-Qian Wu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Chen
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yu-Shuo Mei
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qing-Chun Jin
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cheng-Yi Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Chu-Fei Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xue-Ying Ding
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wei-Jia Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China.
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jian Jing
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
8
|
Gale J, Aizenman E. The physiological and pathophysiological roles of copper in the nervous system. Eur J Neurosci 2024; 60:3505-3543. [PMID: 38747014 PMCID: PMC11491124 DOI: 10.1111/ejn.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 07/06/2024]
Abstract
Copper is a critical trace element in biological systems due the vast number of essential enzymes that require the metal as a cofactor, including cytochrome c oxidase, superoxide dismutase and dopamine-β-hydroxylase. Due its key role in oxidative metabolism, antioxidant defence and neurotransmitter synthesis, copper is particularly important for neuronal development and proper neuronal function. Moreover, increasing evidence suggests that copper also serves important functions in synaptic and network activity, the regulation of circadian rhythms, and arousal. However, it is important to note that because of copper's ability to redox cycle and generate reactive species, cellular levels of the metal must be tightly regulated to meet cellular needs while avoiding copper-induced oxidative stress. Therefore, it is essential that the intricate system of copper transporters, exporters, copper chaperones and copper trafficking proteins function properly and in coordinate fashion. Indeed, disorders of copper metabolism such as Menkes disease and Wilson disease, as well as diseases linked to dysfunction of copper-requiring enzymes, such as SOD1-linked amyotrophic lateral sclerosis, demonstrate the dramatic neurological consequences of altered copper homeostasis. In this review, we explore the physiological importance of copper in the nervous system as well as pathologies related to improper copper handling.
Collapse
Affiliation(s)
- Jenna Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Devère M, Takhlidjt S, Prévost G, Chartrel N, Leprince J, Picot M. The 26RFa (QRFP)/GPR103 Neuropeptidergic System: A Key Regulator of Energy and Glucose Metabolism. Neuroendocrinology 2024; 115:111-127. [PMID: 38599200 DOI: 10.1159/000538629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.
Collapse
Affiliation(s)
- Mélodie Devère
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Saloua Takhlidjt
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Gaëtan Prévost
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Rouen Normandie, Inserm, Normandie University, NorDiC UMR 1239, CHU Rouen, Rouen, France
| | - Nicolas Chartrel
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Jérôme Leprince
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- University Rouen Normandie, Normandie University, INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen, France
| | - Marie Picot
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| |
Collapse
|
10
|
Kroneislová G, Macůrková A, Novotná Z, Ježek R, Lovecká P. Antimicrobial activity and properties of de novo design of short synthetic lipopeptides. Folia Microbiol (Praha) 2024; 69:445-457. [PMID: 38277095 PMCID: PMC11003925 DOI: 10.1007/s12223-024-01132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
The aim of this article is to introduce the topic of newly designed peptides as well as their biological activity. We designed nine encoded peptides composed of six amino acids. All these peptides were synthesized with C-terminal amidation. To investigate the importance of increased hydrophobicity at the amino end of the peptides, all of them were subsequently synthesized with palmitic or lithocholic acid at the N-terminus. Antimicrobial activity was tested on Gram-positive and Gram-negative bacteria and fungi. Cytotoxicity was measured on HepG2 and HEK 293 T cell cultures. Peptides bearing a hydrophobic group exhibited the best antimicrobial activity. Lipopeptides with palmitic or lithocholic acid (PAL or LCA peptides) at the N-terminus and with C-terminal amidation were highly active against Gram-positive bacteria, especially against strains of Staphylococcus aureus and Candida tropicalis. The LCA peptide SHP 1.3 with the sequence LCA-LVKRAG-NH2, had high efficiency on HepG2 human liver hepatocellular carcinoma cells (97%).
Collapse
Affiliation(s)
- Gabriela Kroneislová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemical Technology Prague, Prague, Czech Republic
| | - Anna Macůrková
- Department of Diary, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemical Technology Prague, Prague, Czech Republic
| | - Zuzana Novotná
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemical Technology Prague, Prague, Czech Republic
| | - Rudolf Ježek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemical Technology Prague, Prague, Czech Republic
| | - Petra Lovecká
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemical Technology Prague, Prague, Czech Republic.
| |
Collapse
|
11
|
Chioti VT, Clark KA, Ganley JG, Han EJ, Seyedsayamdost MR. N-Cα Bond Cleavage Catalyzed by a Multinuclear Iron Oxygenase from a Divergent Methanobactin-like RiPP Gene Cluster. J Am Chem Soc 2024; 146:7313-7323. [PMID: 38452252 PMCID: PMC11062405 DOI: 10.1021/jacs.3c11740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
DUF692 multinuclear iron oxygenases (MNIOs) are an emerging family of tailoring enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Three members, MbnB, TglH, and ChrH, have been characterized to date and shown to catalyze unusual and complex transformations. Using a co-occurrence-based bioinformatic search strategy, we recently generated a sequence similarity network of MNIO-RiPP operons that encode one or more MNIOs adjacent to a transporter. The network revealed >1000 unique gene clusters, evidence of an unexplored biosynthetic landscape. Herein, we assess an MNIO-RiPP cluster from this network that is encoded in Proteobacteria and Actinobacteria. The cluster, which we have termed mov (for methanobactin-like operon in Vibrio), encodes a 23-residue precursor peptide, two MNIOs, a RiPP recognition element, and a transporter. Using both in vivo and in vitro methods, we show that one MNIO, homologous to MbnB, installs an oxazolone-thioamide at a Thr-Cys dyad in the precursor. Subsequently, the second MNIO catalyzes N-Cα bond cleavage of the penultimate Asn to generate a C-terminally amidated peptide. This transformation expands the reaction scope of the enzyme family, marks the first example of an MNIO-catalyzed modification that does not involve Cys, and sets the stage for future exploration of other MNIO-RiPPs.
Collapse
Affiliation(s)
- Vasiliki T Chioti
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kenzie A Clark
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jack G Ganley
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Esther J Han
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
13
|
Aberra YT, Ma L, Björkegren JLM, Civelek M. Predicting mechanisms of action at genetic loci associated with discordant effects on type 2 diabetes and abdominal fat accumulation. eLife 2023; 12:e79834. [PMID: 37326626 PMCID: PMC10275637 DOI: 10.7554/elife.79834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular disease, stroke, and type 2 diabetes (T2D). Excessive accumulation of fat in the abdomen further increases T2D risk. Abdominal obesity is measured by calculating the ratio of waist-to-hip circumference adjusted for the body-mass index (WHRadjBMI), a trait with a significant genetic inheritance. Genetic loci associated with WHRadjBMI identified in genome-wide association studies are predicted to act through adipose tissues, but many of the exact molecular mechanisms underlying fat distribution and its consequences for T2D risk are poorly understood. Further, mechanisms that uncouple the genetic inheritance of abdominal obesity from T2D risk have not yet been described. Here we utilize multi-omic data to predict mechanisms of action at loci associated with discordant effects on abdominal obesity and T2D risk. We find six genetic signals in five loci associated with protection from T2D but also with increased abdominal obesity. We predict the tissues of action at these discordant loci and the likely effector Genes (eGenes) at three discordant loci, from which we predict significant involvement of adipose biology. We then evaluate the relationship between adipose gene expression of eGenes with adipogenesis, obesity, and diabetic physiological phenotypes. By integrating these analyses with prior literature, we propose models that resolve the discordant associations at two of the five loci. While experimental validation is required to validate predictions, these hypotheses provide potential mechanisms underlying T2D risk stratification within abdominal obesity.
Collapse
Affiliation(s)
- Yonathan Tamrat Aberra
- Department of Biomedical Engineering, University of VirginiaCharlottesvilleUnited States
- Center for Public Health Genomics, University of VirginiaCharlottesvilleUnited States
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Johan LM Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine, Karolinska Institutet, HuddingeStockholmSweden
| | - Mete Civelek
- Department of Biomedical Engineering, University of VirginiaCharlottesvilleUnited States
- Center for Public Health Genomics, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
14
|
Madsen CT, Refsgaard JC, Teufel FG, Kjærulff SK, Wang Z, Meng G, Jessen C, Heljo P, Jiang Q, Zhao X, Wu B, Zhou X, Tang Y, Jeppesen JF, Kelstrup CD, Buckley ST, Tullin S, Nygaard-Jensen J, Chen X, Zhang F, Olsen JV, Han D, Grønborg M, de Lichtenberg U. Combining mass spectrometry and machine learning to discover bioactive peptides. Nat Commun 2022; 13:6235. [PMID: 36266275 PMCID: PMC9584923 DOI: 10.1038/s41467-022-34031-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/10/2022] [Indexed: 12/25/2022] Open
Abstract
Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development.
Collapse
Affiliation(s)
| | - Jan C Refsgaard
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- Intomics, Kongens Lyngby, Denmark
| | - Felix G Teufel
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Sonny K Kjærulff
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- Intomics, Kongens Lyngby, Denmark
| | - Zhe Wang
- Novo Nordisk Research Centre China, Beijing, China
| | - Guangjun Meng
- Novo Nordisk Research Centre China, Beijing, China
- Pulmongene LTD. Rm 502, Building 2, No. 9, Yike Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Carsten Jessen
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Petteri Heljo
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Qunfeng Jiang
- Novo Nordisk Research Centre China, Beijing, China
- Innovent Biologics, Inc. DongPing Jie 168, Suzhou, China
| | - Xin Zhao
- Novo Nordisk Research Centre China, Beijing, China
| | - Bo Wu
- Novo Nordisk Research Centre China, Beijing, China
- QL Biopharmaceutical, Rm 101, Building 7, 20 Life Science Park Road, Beijing, China
| | - Xueping Zhou
- Novo Nordisk Research Centre China, Beijing, China
- Crinetics pharmaceuticals, 10222 Barnes Canyon Rd Building 2, San Diego, CA, 92121, USA
| | - Yang Tang
- Novo Nordisk Research Centre China, Beijing, China
- Roche R&D Center (China) Ltd, Building 5, 371 Lishizhen Road, 201203, Pudong, Shanghai, China
| | - Jacob F Jeppesen
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | | | | | - Søren Tullin
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Jan Nygaard-Jensen
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Xiaoli Chen
- Novo Nordisk Research Centre China, Beijing, China
| | - Fang Zhang
- Novo Nordisk Research Centre China, Beijing, China
- Structure Therapeutics. 701 Gateway Blvd., South San Francisco, CA, 94080, USA
| | - Jesper V Olsen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Dan Han
- Novo Nordisk Research Centre China, Beijing, China
| | - Mads Grønborg
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Ulrik de Lichtenberg
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- The Novo Nordisk Foundation, Tuborg Havnevej 19, 2900, Hellerup, Denmark
| |
Collapse
|
15
|
Muscato AJ, Powell DJ, Bulhan W, Mackenzie ES, Pupo A, Rolph M, Christie AE, Dickinson PS. Structural variation between neuropeptide isoforms affects function in the lobster cardiac system. Gen Comp Endocrinol 2022; 327:114065. [PMID: 35623446 PMCID: PMC9936564 DOI: 10.1016/j.ygcen.2022.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 02/08/2023]
Abstract
Neuronal responses to peptide signaling are determined by the specific binding of a peptide to its receptor(s). For example, isoforms of the same peptide family can drive distinct responses in the same circuit by having different affinities for the same receptor, by having each isoform bind to a different receptor, or by a combination of these scenarios. Small changes in peptide composition can alter the binding kinetics and overall physiological response to a given peptide. In the American lobster (Homarus americanus), native isoforms of C-type allatostatins (AST-Cs) usually decrease heartbeat frequency and alter contraction force. However, one of the three AST-C isoforms, AST-C II, drives a cardiac response distinct from the response elicited by the other two. To investigate the aspects of the peptide that might be responsible for these differential responses, we altered various features of each peptide sequence. Although the presence of an amide group at the end of a peptide sequence (amidation) is often essential for determining physiological function, we demonstrate that C-terminal amidation does not dictate the AST-C response in the lobster cardiac system. However, single amino acid substitution within the consensus sequence did account for many of the differences in specific response characteristics (e.g. contraction frequency or force).
Collapse
Affiliation(s)
- Audrey J Muscato
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Daniel J Powell
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Warsameh Bulhan
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Evalyn S Mackenzie
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Alixander Pupo
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Madeline Rolph
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Patsy S Dickinson
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
16
|
Mollner TA, Giltrap AM, Zeng Y, Demyanenko Y, Buchanan C, Oehlrich D, Baldwin AJ, Anthony DC, Mohammed S, Davis BG. Reductive site-selective atypical C, Z-type/N2-C2 cleavage allows C-terminal protein amidation. SCIENCE ADVANCES 2022; 8:eabl8675. [PMID: 35394836 PMCID: PMC8993120 DOI: 10.1126/sciadv.abl8675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomolecule environments can enhance chemistries with the potential to mediate and modulate self-modification (e.g., self-cleavage). While these enhanced modes are found in certain biomolecules (e.g., RNA ribozymes), it is more rare in proteins. Targeted proteolytic cleavage is vital to physiology, biotechnology, and even emerging therapy. Yet, purely chemically induced methods for the site-selective cleavage of proteins remain scarce. Here, as a proof of principle, we designed and tested a system intended to combine protein-enhanced chemistry with tag modification to enable synthetic reductive protein chemistries promoted by diboron. This reductively driven, single-electron chemistry now enables an operationally simple, site-selective cleavage protocol for proteins directed to readily accessible dehydroalanine (Dha) residues as tags under aqueous conditions and in cell lysates. In this way, a mild, efficient, enzyme-free method now allows not only precise chemical proteolysis but also simultaneous use in the removal of affinity tags and/or protein-terminus editing to create altered N- and C-termini such as protein amidation (─CONH2).
Collapse
Affiliation(s)
- Tim A. Mollner
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | - Yibo Zeng
- The Rosalind Franklin Institute, Oxfordshire, UK
| | | | - Charles Buchanan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Daniel Oehlrich
- Global Medicinal Chemistry, Janssen Research & Development, Beerse, Belgium
| | - Andrew J. Baldwin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
| | | | - Shabaz Mohammed
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Benjamin G. Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
- Corresponding author.
| |
Collapse
|
17
|
Bermúdez-Guzmán MJ, Jiménez-Vargas JM, Possani LD, Zamudio F, Orozco-Gutiérrez G, Oceguera-Contreras E, Enríquez-Vara JN, Vazquez-Vuelvas OF, García-Villalvazo PE, Valdez-Velázquez LL. Biochemical characterization and insecticidal activity of isolated peptides from the venom of the scorpion Centruroides tecomanus. Toxicon 2022; 206:90-102. [PMID: 34973996 DOI: 10.1016/j.toxicon.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
Abstract
The venom of scorpions is a mixture of components that constitute a source of bioactive molecules. The venom of the scorpion Centruroides tecomanus contains peptides toxic to insects, however, to date no toxin responsible for this activity has yet been isolated and fully characterized. This communication describes two new peptides Ct-IT1 and Ct-IT2 purified from this scorpion. Both peptides contain 63 amino acids with molecular weight 6857.85 for Ct-IT1 and 6987.77 Da for Ct-IT2. The soluble venom was separated using chromatographic techniques of molecular size exclusion, cationic exchange, and reverse phase chromatography, allowing the identification of at least 99 components of which in 53 the insecticidal activity was evaluated. The LD50 determined for Ct-IT1 is 3.81 μg/100 mg of cricket weight, but low amounts of peptides (0.8 μg of peptide) already cause paralysis in crickets. The relative abundance of these two peptides in the venom is 2.1% for Ct-IT1 and 1% for Ct-IT2. The molecular masses and N-terminal sequences of both insecticidal toxins were determined by mass spectrometry and Edman degradation. The primary structure of both toxins was compared with other known peptides isolated from other scorpion venoms. The analysis of the sequence alignments revealed the position of a highly conserved amino acid residue, Gly39, exclusively present in anti-insect selective depressant β-toxins (DBTXs), which in Ct-IT1 and Ct-IT2 is at position Gly40. Similarly, a three-dimensional structure of this toxins was obtained by homology modeling and compared to the structure of known insect toxins of scorpions. An important similarity of the cavity formed by the trapping apparatus region of the depressant toxin LqhIT2, isolated from the scorpion Leiurus quinquestriatus hebraeus, was found in the toxins described here. These results indicate that Ct-IT1 and Ct-IT2 toxins have a high potential to be evaluated on pests that affect economically important crops to eventually consider them as a potential biological control method.
Collapse
Affiliation(s)
- M J Bermúdez-Guzmán
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - J M Jiménez-Vargas
- CONACYT-Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - F Zamudio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - G Orozco-Gutiérrez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - E Oceguera-Contreras
- Centro Universitario de los Valles, Universidad de Guadalajara, Km. 45.5 Carretera Guadalajara-Ameca, Ameca, Jalisco, México
| | - J N Enríquez-Vara
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Col. El Bajío C.P. 45019, Zapopan, Jalisco, México
| | - O F Vazquez-Vuelvas
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - P E García-Villalvazo
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L L Valdez-Velázquez
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México.
| |
Collapse
|
18
|
Oleisky ER, Stanhope ME, Hull JJ, Dickinson PS. Isoforms of the neuropeptide myosuppressin differentially modulate the cardiac neuromuscular system of the American lobster, Homarus americanus. J Neurophysiol 2022; 127:702-713. [PMID: 35044860 PMCID: PMC8897000 DOI: 10.1152/jn.00338.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Post-translational modifications (PTMs) diversify peptide structure and allow for greater flexibility within signaling networks. The cardiac neuromuscular system of the American lobster, Homarus americanus, consists of a central pattern generator, the cardiac ganglion (CG), and peripheral cardiac muscle. Together, these components produce flexible output in response to peptidergic modulation. Here, we examined the role of PTMs in determining the effects of a cardioactive neuropeptide, myosuppressin (pQDLDHVFLRFamide), on the whole heart, the neuromuscular junction/muscle, the isolated CG, and the neurons of the CG. Mature myosuppressin and non-cyclized myosuppressin (QDLDHVFLRFamide) elicited similar and significant changes in whole heart contraction amplitude and frequency, stimulated muscle contraction amplitude, and the bursting pattern of the intact and ligatured neurons of the ganglion. In the whole heart, non-amidated myosuppressin (pQDLDHVFLRFG) elicited only a small decrease in frequency and amplitude. In the absence of motor neuron input, non-amidated myosuppressin did not cause any significant changes in the amplitude of stimulated contractions. In the intact CG, non-amidated myosuppressin elicited a small but significant decrease in burst duration. Further analysis revealed a correlation between the extent of modulation elicited by non-amidated myosuppressin in the whole heart and the isolated, intact CG. When the neurons of the CG were physically decoupled, non-amidated myosuppressin elicited highly variable responses. Taken together, these data suggest that amidation, but not cyclization, is critical in enabling this peptide to exert its effects on the cardiac neuromuscular system.
Collapse
Affiliation(s)
- Emily R Oleisky
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| | | | | | - Patsy S Dickinson
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
19
|
The Inducible Intein-Mediated Self-Cleaving Tag (IIST) System: A Novel Purification and Amidation System for Peptides and Proteins. Molecules 2021; 26:molecules26195948. [PMID: 34641492 PMCID: PMC8512742 DOI: 10.3390/molecules26195948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
An efficient self-cleavable purification tag could be a powerful tool for purifying recombinant proteins and peptides without additional proteolytic processes using specific proteases. Thus, the intein-mediated self-cleavage tag was developed and has been commercially available as the IMPACT™ system. However, uncontrolled cleavages of the purification tag by the inteins in the IMPACT™ system have been reported, thereby reducing final yields. Therefore, controlling the protein-splicing activity of inteins has become critical. Here we utilized conditional protein splicing by salt conditions. We developed the inducible intein-mediated self-cleaving tag (IIST) system based on salt-inducible protein splicing of the MCM2 intein from the extremely halophilic archaeon, Halorhabdus utahensis and applied it to small peptides. Moreover, we described a method for the amidation using the same IIST system and demonstrated 15N-labeling of the C-terminal amide group of a single domain antibody (VHH).
Collapse
|
20
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
21
|
Abstract
Symptomatic neuromas and chronic neuropathic pain are significant problems affecting patients' quality of life and independence that are challenging to treat. These symptoms are due to structural and functional changes that occur peripherally within neuromas, as well as alterations that occur centrally within the brain and spinal cord. A multimodal approach is most effective, with goals to minimize opioid use, to capitalize on the synergistic effects of nonopioid medications and to explore potential benefits of novel adjunctive treatments.
Collapse
Affiliation(s)
- Yusha Liu
- Department of Surgery, University of Washington, 325 9th Avenue, 7 CT 70, MS 359796, Seattle, WA 98104, USA
| | - Dennis S Kao
- Department of Surgery, University of Washington, 325 9th Avenue, 7 CT 70, MS 359796, Seattle, WA 98104, USA.
| |
Collapse
|
22
|
Lin Y, Malins LR. An Electrochemical Approach to Designer Peptide α-Amides Inspired by α-Amidating Monooxygenase Enzymes. J Am Chem Soc 2021; 143:11811-11819. [PMID: 34288681 DOI: 10.1021/jacs.1c05718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Designer C-terminal peptide amides are accessed in an efficient and epimerization-free approach by pairing an electrochemical oxidative decarboxylation with a tandem hydrolysis/reduction pathway. Resembling Nature's dual enzymatic approach to bioactive primary α-amides, this method delivers secondary and tertiary amides bearing high-value functional motifs, including isotope labels and handles for bioconjugation. The protocol leverages the inherent reactivity of C-terminal carboxylates, is compatible with the vast majority of proteinogenic functional groups, and proceeds in the absence of epimerization, thus addressing major limitations associated with conventional coupling-based approaches. The utility of the method is exemplified through the synthesis of natural product acidiphilamide A via a key diastereoselective reduction, as well as bioactive peptides and associated analogues, including an anti-HIV lead peptide and blockbuster cancer therapeutic leuprolide.
Collapse
Affiliation(s)
- Yutong Lin
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
23
|
Lai X, Tang J, ElSayed MEH. Recent advances in proteolytic stability for peptide, protein, and antibody drug discovery. Expert Opin Drug Discov 2021; 16:1467-1482. [PMID: 34187273 DOI: 10.1080/17460441.2021.1942837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: To discover and develop a peptide, protein, or antibody into a drug requires overcoming multiple challenges to obtain desired properties. Proteolytic stability is one of the challenges and deserves a focused investigation.Areas covered: This review concentrates on improving proteolytic stability by engineering the amino acids around the cleavage sites of a liable peptide, protein, or antibody. Peptidases are discussed on three levels including all peptidases in databases, mixtures based on organ and tissue types, and individual peptidases. The technique to identify cleavage sites is spotlighted on mass spectrometry-based approaches such as MALDI-TOF and LC-MS. For sequence engineering, the replacements that have been commonly applied with a higher chance of success are highlighted at the beginning, while the rarely used and more complicated replacements are discussed later. Although a one-size-fits-all approach does not exist to apply to different projects, this review provides a 3-step strategy for effectively and efficiently conducting the proteolytic stability experiments to achieve the eventual goal of improving the stability by engineering the molecule itself.Expert opinion: Improving the proteolytic stability is a spiraling up process sequenced by testing and engineering. There are many ways to engineer amino acids, but the choice must consider the cost and properties affected by the changes of the amino acids.
Collapse
Affiliation(s)
- Xianyin Lai
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jason Tang
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mohamed E H ElSayed
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
24
|
Bäck N, Mains RE, Eipper BA. PAM: diverse roles in neuroendocrine cells, cardiomyocytes, and green algae. FEBS J 2021; 289:4470-4496. [PMID: 34089560 DOI: 10.1111/febs.16049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the ways in which peptides are used for communication in the nervous and endocrine systems began with the identification of oxytocin, vasopressin, and insulin, each of which is stored in electron-dense granules, ready for release in response to an appropriate stimulus. For each of these peptides, entry of its newly synthesized precursor into the ER lumen is followed by transport through the secretory pathway, exposing the precursor to a sequence of environments and enzymes that produce the bioactive products stored in mature granules. A final step in the biosynthesis of many peptides is C-terminal amidation by peptidylglycine α-amidating monooxygenase (PAM), an ascorbate- and copper-dependent membrane enzyme that enters secretory granules along with its soluble substrates. Biochemical and cell biological studies elucidated the highly conserved mechanism for amidated peptide production and raised many questions about PAM trafficking and the effects of PAM on cytoskeletal organization and gene expression. Phylogenetic studies and the discovery of active PAM in the ciliary membranes of Chlamydomonas reinhardtii, a green alga lacking secretory granules, suggested that a PAM-like enzyme was present in the last eukaryotic common ancestor. While the catalytic features of human and C. reinhardtii PAM are strikingly similar, the trafficking of PAM in C. reinhardtii and neuroendocrine cells and secretion of its amidated products differ. A comparison of PAM function in neuroendocrine cells, atrial myocytes, and C. reinhardtii reveals multiple ways in which altered trafficking allows PAM to accomplish different tasks in different species and cell types.
Collapse
Affiliation(s)
- Nils Bäck
- Department of Anatomy, University of Helsinki, Finland
| | - Richard E Mains
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
25
|
Fischer NH, Nielsen DS, Palmer D, Meldal M, Diness F. C-Terminal lactamization of peptides. Chem Commun (Camb) 2021; 57:895-898. [PMID: 33367306 DOI: 10.1039/d0cc06018f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid-phase synthesis of peptides (SPPS) with release through formation of C-terminal γ-, δ-, or ε-lactams is presented. The natural products ciliatamide A and C were synthesized in up to 90% yield. Peptides carrying C-terminal lactams were shown to possess increased bio-stability and comparable biological activity as compared to the parent non-lactamized peptide amides.
Collapse
Affiliation(s)
- Niklas H Fischer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Daniel S Nielsen
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Daniel Palmer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Frederik Diness
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| |
Collapse
|
26
|
Gigolaev AM, Kuzmenkov AI, Peigneur S, Tabakmakher VM, Pinheiro-Junior EL, Chugunov AO, Efremov RG, Tytgat J, Vassilevski AA. Tuning Scorpion Toxin Selectivity: Switching From K V1.1 to K V1.3. Front Pharmacol 2020; 11:1010. [PMID: 32733247 PMCID: PMC7358528 DOI: 10.3389/fphar.2020.01010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023] Open
Abstract
Voltage-gated potassium channels (KVs) perform vital physiological functions and are targets in different disorders ranging from ataxia and arrhythmia to autoimmune diseases. An important issue is the search for and production of selective ligands of these channels. Peptide toxins found in scorpion venom named KTx excel in both potency and selectivity with respect to some potassium channel isoforms, which may present only minute differences in their structure. Despite several decades of research the molecular determinants of KTx selectivity are still poorly understood. Here we analyze MeKTx13-3 (Kalium ID: α-KTx 3.19) from the lesser Asian scorpion Mesobuthus eupeus, a high-affinity KV1.1 blocker (IC50 ~2 nM); it also affects KV1.2 (IC50 ~100 nM), 1.3 (~10 nM) and 1.6 (~60 nM). By constructing computer models of its complex with KV1.1-1.3 channels we identify specific contacts between the toxin and the three isoforms. We then perform mutagenesis to disturb the identified contacts with KV1.1 and 1.2 and produce recombinant MeKTx13-3_AAAR, which differs by four amino acid residues from the parent toxin. As predicted by the modeling, this derivative shows decreased activity on KV1.1 (IC50 ~550 nM) and 1.2 (~200 nM). It also has diminished activity on KV1.6 (~1500 nM) but preserves KV1.3 affinity as measured using the voltage-clamp technique on mammalian channels expressed in Xenopus oocytes. In effect, we convert a selective KV1.1 ligand into a new specific KV1.3 ligand. MeKTx13-3 and its derivatives are attractive tools to study the structure-function relationship in potassium channel blockers.
Collapse
Affiliation(s)
- Andrei M Gigolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Valentin M Tabakmakher
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | - Anton O Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven, Belgium
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| |
Collapse
|
27
|
Solinski HJ, Kriegbaum MC, Tseng PY, Earnest TW, Gu X, Barik A, Chesler AT, Hoon MA. Nppb Neurons Are Sensors of Mast Cell-Induced Itch. Cell Rep 2020; 26:3561-3573.e4. [PMID: 30917312 PMCID: PMC6490177 DOI: 10.1016/j.celrep.2019.02.089] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is an unpleasant skin sensation that can be triggered by exposure to many chemicals, including those released by mast cells. The natriuretic polypeptide b (Nppb)-expressing class of sensory neurons, when activated, elicits scratching responses in mice, but it is unclear which itch-inducing agents stimulate these cells and the receptors involved. Here, we identify receptors expressed by Nppb neurons and demonstrate the functional importance of these receptors as sensors of endogenous pruritogens released by mast cells. Our search for receptors in Nppb neurons reveals that they express leukotriene, serotonin, and sphingosine-1-phosphate receptors. Targeted cell ablation, calcium imaging of primary sensory neurons, and conditional receptor knockout studies demonstrate that these receptors induce itch by the direct stimulation of Nppb neurons and neurotransmission through the canonical gastrin-releasing peptide (GRP)-dependent spinal cord itch pathway. Together, our results define a molecular and cellular pathway for mast cell-induced itch.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Mette C Kriegbaum
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Thomas W Earnest
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Xinglong Gu
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Arnab Barik
- National Center for Complementary and Integrative Health, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Structural basis of the potency and selectivity of Urotoxin, a potent Kv1 blocker from scorpion venom. Biochem Pharmacol 2020; 174:113782. [DOI: 10.1016/j.bcp.2019.113782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
29
|
Valdez-Velázquez LL, Cid-Uribe J, Romero-Gutierrez MT, Olamendi-Portugal T, Jimenez-Vargas JM, Possani LD. Transcriptomic and proteomic analyses of the venom and venom glands of Centruroides hirsutipalpus, a dangerous scorpion from Mexico. Toxicon 2020; 179:21-32. [PMID: 32126222 DOI: 10.1016/j.toxicon.2020.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Centruroides hirsutipalpus (Scorpiones: Buthidae) is related to the "striped scorpion" group inhabiting the western Pacific region of Mexico. Human accidents caused by this species are medically important due to the great number of people stung and the severity of the resulting intoxication. This communication reports an extensive venom characterization using high-throughput proteomic and Illumina transcriptomic sequencing performed with RNA purified from its venom glands. 2,553,529 reads were assembled into 44,579 transcripts. From these transcripts, 23,880 were successfully annoted using Trinotate. Using specialized databases and by performing bioinformatic searches, it was possible to identify 147 putative venom protein transcripts. These include α- and β-type sodium channel toxins (NaScTx), potassium channel toxins (KScTx) (α-, β-, δ-, γ- and λ-types), enzymes (metalloproteases, hyaluronidases, phospholipases, serine proteases, and monooxygenases), protease inhibitors, host defense peptides (HDPs) such as defensins, non-disulfide bridge peptides (NDBPs), anionic peptides, superfamily CAP proteins, insulin growth factor-binding proteins (IGFBPs), orphan peptides, and other venom components (La1 peptides). De novo tandem mass spectrometric sequencing of digested venom identificatied 50 peptides. The venom of C. hirsutipalpus contains the highest reported number (77) of transcripts encoding NaScTxs, which are the components responsible for human fatalities.
Collapse
Affiliation(s)
| | - Jimena Cid-Uribe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - María Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco, 44430, Mexico
| | - Timoteo Olamendi-Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | | | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
30
|
The influence of the stereochemistry and C-end chemical modification of dermorphin derivatives on the peptide-phospholipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183066. [PMID: 31634444 DOI: 10.1016/j.bbamem.2019.183066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 11/23/2022]
Abstract
In this work the conformation of dermorphin, Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2, an opioid peptide and its analogues with different stereochemistry of alanine and different C-terminus is studied in aqueous and membrane environments. Using two-dimensional NMR techniques we demonstrate that in D2O/H2O peptides with D-alanine have extended conformation, while for the L-isomers more compact conformation is preferred. The analysis of ROESY HR MAS spectra of the peptides interacting with the DMPC bilayer indicates that both stereoisomers have still more extended conformation compared to aqueous phase, as shown by much weaker intermolecular interactions. The influence of Ala residue stereochemistry is also reflected in the interactions of the studied peptides with model membranes, as shown by the 31P NMR static spectra, in which the shapes of the phosphorus NMR signals originating from D-isomers correspond to spherically shaped vesicles in the presence of external magnetic field, in comparison to a more elongated ones observed for L-isomers, while TEM photographs shows that upon addition of D-isomers larger lipid vesicles are formed, in contrast to smaller ones for L-isomers. The location of aromatic fragments of dermorphins in the membrane is determined based on static 2H NMR and 1H1H RFDR MAS experiments. All aromatic rings were found to be inserted in the hydrophobic part of the bilayer, with the exception of the Tyr5 rings of D-Ala dermorphins. The influence of the C-terminal modification was found to be almost imperceptible.
Collapse
|
31
|
Chieu HD, Suwansa-Ard S, Wang T, Elizur A, Cummins SF. Identification of neuropeptides in the sea cucumber Holothuria leucospilota. Gen Comp Endocrinol 2019; 283:113229. [PMID: 31348958 DOI: 10.1016/j.ygcen.2019.113229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
Neuropeptides play important roles in the regulation of physiological processes such as growth, metabolism and reproduction. In sea cucumbers (Phylum Echinodermata), numerous neuropeptides have been identified and some are attributed to reproductive processes. In this study, our goal was to gain a better understanding of the neuropeptide repertoire for the black sea cucumber Holothuria leucospilota, a species that has been severely overfished from the wild due to human consumption. We applied in silico transcriptome analysis of the adult H. leucospilota radial nerve cord, gonad and body wall to elucidate 35 neuropeptides that are conserved throughout the Bilateria. Then, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of radial nerve cord was employed and showed an additional 8 putative novel neuropeptide precursors, whose predicative cleaved peptides do not share sequence similarity with any reported neuropeptides. These data provide an important basis for experimental approaches to manipulate H. leucospilota broodstock reproduction and growth in culture, which will hopefully re-establish population numbers.
Collapse
Affiliation(s)
- Hoang Dinh Chieu
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia; Research Institute for Marine Fisheries (RIMF), 224 LeLai Street, HaiPhong City, Viet Nam
| | - Saowaros Suwansa-Ard
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia.
| |
Collapse
|
32
|
Delgado-Prudencio G, Possani LD, Becerril B, Ortiz E. The Dual α-Amidation System in Scorpion Venom Glands. Toxins (Basel) 2019; 11:toxins11070425. [PMID: 31330798 PMCID: PMC6669573 DOI: 10.3390/toxins11070425] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Many peptides in scorpion venoms are amidated at their C-termini. This post-translational modification is paramount for the correct biological function of ion channel toxins and antimicrobial peptides, among others. The discovery of canonical amidation sequences in transcriptome-derived scorpion proproteins suggests that a conserved enzymatic α-amidation system must be responsible for this modification of scorpion peptides. A transcriptomic approach was employed to identify sequences putatively encoding enzymes of the α-amidation pathway. A dual enzymatic α-amidation system was found, consisting of the membrane-anchored, bifunctional, peptidylglycine α-amidating monooxygenase (PAM) and its paralogs, soluble monofunctional peptidylglycine α-hydroxylating monooxygenase (PHMm) and peptidyl-α-hydroxyglycine α-amidating lyase (PALm). Independent genes encode these three enzymes. Amino acid residues responsible for ion coordination and enzymatic activity are conserved in these sequences, suggesting that the enzymes are functional. Potential endoproteolytic recognition sites for proprotein convertases in the PAM sequence indicate that PAM-derived soluble isoforms may also be expressed. Sequences potentially encoding proprotein convertases (PC1 and PC2), carboxypeptidase E (CPE), and other enzymes of the α-amidation pathway, were also found, confirming the presence of this pathway in scorpions.
Collapse
Affiliation(s)
- Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
33
|
Hashidume T, Sakano T, Mochizuki A, Ito K, Ito S, Kawarasaki Y, Miyoshi N. Identification of soybean peptide leginsulin variants in different cultivars and their insulin-like activities. Sci Rep 2018; 8:16847. [PMID: 30442953 PMCID: PMC6237985 DOI: 10.1038/s41598-018-35331-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023] Open
Abstract
We have recently reported that green soybean cultivar, echigomidori, and not the yellow cultivar, fukuyutaka, is a rich source of hormone-like peptide leginsulin consisting of 37 amino acids (Leg_1_37, PDB 1JU8A) and its C-terminal glycine deletant, Leg_1_36. Green soybean is mature, but the color of the seedcoat and cotyledon remains green. Therefore, in this study, we examined the leginsulin content in different varieties of 11 colored soybeans (including green, yellow, red, brown and black) and edamame (immature soybean). Profile analysis of soybean constituents by LC-MS showed that Leg_1 (36 + 37) detected as a prominent peak in 3 green and 1 yellow soybean cultivar was the strongest contributor in principal component analysis, indicating Leg_1 is the most characteristic feature for distinguishing soybean cultivars. However, smaller amounts of leginsulin-like peptides, defined as Leg_2 and Leg_3, were detected in other samples. The cDNA sequences and LC-MS/MS analyses revealed that Leg_2 was a homologue of Leg_1 with three amino acid substitutions derived from SNPs, while Leg_3 was a Leg_1/Leg_2 paralog. Expression levels of Leg_1 were markedly higher than Leg_2 and Leg_3. Additionally, in glucose uptake assay, purified TRX-His-tag fused recombinant Leg_1_37 prepared by bacterial expression showed stronger insulin-like activities than other variants including Leg_2, Leg_3, and their Gly deletants in myotube-like differentiated L6 and C2C12 cells. These results suggest that dietary consumption of soybean seed, especially including a higher amount of Leg_1_37, could be useful for lowering of blood glucose.
Collapse
Affiliation(s)
- Tsutomu Hashidume
- Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
- School of Food & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Taiken Sakano
- Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ayaka Mochizuki
- School of Food & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Keisuke Ito
- Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
- School of Food & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
- School of Food & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasuaki Kawarasaki
- Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
- School of Food & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
- School of Food & Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
34
|
Ma A, Bai J, He M, Wong AOL. Spexin as a neuroendocrine signal with emerging functions. Gen Comp Endocrinol 2018; 265:90-96. [PMID: 29355530 DOI: 10.1016/j.ygcen.2018.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/13/2018] [Accepted: 01/13/2018] [Indexed: 12/19/2022]
Abstract
Spexin (SPX), a novel peptide coevolved with the galanin/kisspeptin family, was first identified by bioinformatics prior to its protein purification/functional studies. Its mature peptide is highly conserved among different vertebrate classes. Based on the studies in mammals and fish models, SPX was found to be widely distributed at tissue level, secreted into systemic circulation, identified at notable levels in central nervous system and peripheral tissues, and has been confirmed/implicated in multiple functions in different tissues/organs, suggesting that SPX may serve as a neuroendocrine signal with pleotropic functions. In this article, different isoforms of SPX and their binding with their cognate receptors GalR2 and GalR3, the biological functions of SPX reported in mammals including GI tract movement, energy balance and weight loss, fatty acid uptake, glucose homeostasis, nociception and cardiovascular/renal functions, as well as the recent findings in fish models regarding the role of SPX in reproduction and feeding control will be reviewed with interesting questions for future investigations.
Collapse
Affiliation(s)
- Ani Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jin Bai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Anderson O L Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Thomsen SK, Raimondo A, Hastoy B, Sengupta S, Dai XQ, Bautista A, Censin J, Payne AJ, Umapathysivam MM, Spigelman AF, Barrett A, Groves CJ, Beer NL, Manning Fox JE, McCarthy MI, Clark A, Mahajan A, Rorsman P, MacDonald PE, Gloyn AL. Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nat Genet 2018; 50:1122-1131. [PMID: 30054598 PMCID: PMC6237273 DOI: 10.1038/s41588-018-0173-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human β-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in β-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.
Collapse
Affiliation(s)
- Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Vertex Pharmaceuticals Europe Ltd, Milton Park, Abingdon, UK
| | - Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- National Health and Medical Research Council, Canberra, Australia
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Xiao-Qing Dai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anthony J Payne
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
36
|
Effects of copper occupancy on the conformational landscape of peptidylglycine α-hydroxylating monooxygenase. Commun Biol 2018; 1:74. [PMID: 30271955 PMCID: PMC6123673 DOI: 10.1038/s42003-018-0082-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022] Open
Abstract
The structures of metalloproteins that use redox-active metals for catalysis are usually exquisitely folded in a way that they are prearranged to accept their metal cofactors. Peptidylglycine α-hydroxylating monooxygenase (PHM) is a dicopper enzyme that catalyzes hydroxylation of the α-carbon of glycine-extended peptides for the formation of des-glycine amidated peptides. Here, we present the structures of apo-PHM and of mutants of one of the copper sites (H107A, H108A, and H172A) determined in the presence and absence of citrate. Together, these structures show that the absence of one copper changes the conformational landscape of PHM. In one of these structures, a large interdomain rearrangement brings residues from both copper sites to coordinate a single copper (closed conformation) indicating that full copper occupancy is necessary for locking the catalytically competent conformation (open). These data suggest that in addition to their required participation in catalysis, the redox-active metals play an important structural role. Sweta Maheshwari et al. present X-ray crystal structures of the two-copper enzyme peptidylglycine α-hydroxylating monooxygenase and three inactive mutant forms. They show that full copper occupancy is needed to maintain the catalytically competent (open) conformation of the enzyme.
Collapse
|
37
|
Dickinson PS, Armstrong MK, Dickinson ES, Fernandez R, Miller A, Pong S, Powers BW, Pupo-Wiss A, Stanhope ME, Walsh PJ, Wiwatpanit T, Christie AE. Three members of a peptide family are differentially distributed and elicit differential state-dependent responses in a pattern generator-effector system. J Neurophysiol 2018; 119:1767-1781. [PMID: 29384453 PMCID: PMC6008092 DOI: 10.1152/jn.00850.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/22/2022] Open
Abstract
C-type allatostatins (AST-Cs) are pleiotropic neuropeptides that are broadly conserved within arthropods; the presence of three AST-C isoforms, encoded by paralog genes, is common. However, these peptides are hypothesized to act through a single receptor, thereby exerting similar bioactivities within each species. We investigated this hypothesis in the American lobster, Homarus americanus, mapping the distributions of AST-C isoforms within relevant regions of the nervous system and digestive tract, and comparing their modulatory influences on the cardiac neuromuscular system. Immunohistochemistry showed that in the pericardial organ, a neuroendocrine release site, AST-C I and/or III and AST-C II are contained within distinct populations of release terminals. Moreover, AST-C I/III-like immunoreactivity was seen in midgut epithelial endocrine cells and the cardiac ganglion (CG), whereas AST-C II-like immunoreactivity was not seen in these tissues. These data suggest that AST-C I and/or III can modulate the CG both locally and hormonally; AST-C II likely acts on the CG solely as a hormonal modulator. Physiological studies demonstrated that all three AST-C isoforms can exert differential effects, including both increases and decreases, on contraction amplitude and frequency when perfused through the heart. However, in contrast to many state-dependent modulatory changes, the changes in contraction amplitude and frequency elicited by the AST-Cs were not functions of the baseline parameters. The responses to AST-C I and III, neither of which is COOH-terminally amidated, are more similar to one another than they are to the responses elicited by AST-C II, which is COOH-terminally amidated. These results suggest that the three AST-C isoforms are differentially distributed in the lobster nervous system/midgut and can elicit distinct behaviors from the cardiac neuromuscular system, with particular structural features, e.g., COOH-terminal amidation, likely important in determining the effects of the peptides. NEW & NOTEWORTHY Multiple isoforms of many peptides exert similar effects on neural circuits. In this study we show that each of the three isoforms of C-type allatostatin (AST-C) can exert differential effects, including both increases and decreases in contraction amplitude and frequency, on the lobster cardiac neuromuscular system. The distribution of effects elicited by the nonamidated isoforms AST-C I and III are more similar to one another than to the effects of the amidated AST-C II.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Brian W Powers
- Department of Biology, Bowdoin College , Brunswick, Maine
| | | | | | | | | | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa , Honolulu, Hawaii
| |
Collapse
|
38
|
Monroe EB, Annangudi SP, Wadhams AA, Richmond TA, Yang N, Southey BR, Romanova EV, Schoofs L, Baggerman G, Sweedler JV. Exploring the Sea Urchin Neuropeptide Landscape by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:923-934. [PMID: 29667164 PMCID: PMC5943159 DOI: 10.1007/s13361-018-1898-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 05/08/2023]
Abstract
Neuropeptides are essential cell-to-cell signaling messengers and serve important regulatory roles in animals. Although remarkable progress has been made in peptide identification across the Metazoa, for some phyla such as Echinodermata, limited neuropeptides are known and even fewer have been verified on the protein level. We employed peptidomic approaches using bioinformatics and mass spectrometry (MS) to experimentally confirm 23 prohormones and to characterize a new prohormone in nervous system tissue from Strongylocentrotus purpuratus, the purple sea urchin. Ninety-three distinct peptides from known and novel prohormones were detected with MS from extracts of the radial nerves, many of which are reported or experimentally confirmed here for the first time, representing a large-scale study of neuropeptides from the phylum Echinodermata. Many of the identified peptides and their precursor proteins have low homology to known prohormones from other species/phyla and are unique to the sea urchin. By pairing bioinformatics with MS, the capacity to characterize novel peptides and annotate prohormone genes is enhanced. Graphical Abstract.
Collapse
Affiliation(s)
- Eric B Monroe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Suresh P Annangudi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andinet A Wadhams
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Timothy A Richmond
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ning Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Liliane Schoofs
- Functional Genomics and Proteomics Unit, KU Leuven, 3000, Leuven, Belgium
| | - Geert Baggerman
- ProMeta Interfacultary Center for Proteomics and Metabolomics, KU Leuven, 3000, Leuven, Belgium
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
39
|
Van Bael S, Watteyne J, Boonen K, De Haes W, Menschaert G, Ringstad N, Horvitz HR, Schoofs L, Husson SJ, Temmerman L. Mass spectrometric evidence for neuropeptide-amidating enzymes in Caenorhabditis elegans. J Biol Chem 2018; 293:6052-6063. [PMID: 29487130 DOI: 10.1074/jbc.ra117.000731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022] Open
Abstract
Neuropeptides constitute a vast and functionally diverse family of neurochemical signaling molecules and are widely involved in the regulation of various physiological processes. The nematode Caenorhabditis elegans is well-suited for the study of neuropeptide biochemistry and function, as neuropeptide biosynthesis enzymes are not essential for C. elegans viability. This permits the study of neuropeptide biosynthesis in mutants lacking certain neuropeptide-processing enzymes. Mass spectrometry has been used to study the effects of proprotein convertase and carboxypeptidase mutations on proteolytic processing of neuropeptide precursors and on the peptidome in C. elegans However, the enzymes required for the last step in the production of many bioactive peptides, the carboxyl-terminal amidation reaction, have not been characterized in this manner. Here, we describe three genes that encode homologs of neuropeptide amidation enzymes in C. elegans and used tandem LC-MS to compare neuropeptides in WT animals with those in newly generated mutants for these putative amidation enzymes. We report that mutants lacking both a functional peptidylglycine α-hydroxylating monooxygenase and a peptidylglycine α-amidating monooxygenase had a severely altered neuropeptide profile and also a decreased number of offspring. Interestingly, single mutants of the amidation enzymes still expressed some fully processed amidated neuropeptides, indicating the existence of a redundant amidation mechanism in C. elegans All MS data are available via ProteomeXchange with the identifier PXD008942. In summary, the key steps in neuropeptide processing in C. elegans seem to be executed by redundant enzymes, and loss of these enzymes severely affects brood size, supporting the need of amidated peptides for C. elegans reproduction.
Collapse
Affiliation(s)
- Sven Van Bael
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium,
| | - Jan Watteyne
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium
| | - Kurt Boonen
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium
| | - Wouter De Haes
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium
| | - Gerben Menschaert
- the Laboratory of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Ghent University, B-9000 Ghent, Belgium
| | - Niels Ringstad
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, New York 10016
| | - H Robert Horvitz
- the Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Liliane Schoofs
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium
| | - Steven J Husson
- SPHERE-Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Liesbet Temmerman
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium,
| |
Collapse
|
40
|
Gao B, Zhu S. Mesobuthus Venom-Derived Antimicrobial Peptides Possess Intrinsic Multifunctionality and Differential Potential as Drugs. Front Microbiol 2018; 9:320. [PMID: 29599756 PMCID: PMC5863496 DOI: 10.3389/fmicb.2018.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/09/2018] [Indexed: 11/15/2022] Open
Abstract
Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs) are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs). However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKβ1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Wang H, Xie M, Charpin-El Hamri G, Ye H, Fussenegger M. Treatment of chronic pain by designer cells controlled by spearmint aromatherapy. Nat Biomed Eng 2018; 2:114-123. [PMID: 31015627 DOI: 10.1038/s41551-018-0192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Current treatment options for chronic pain are often associated with dose-limiting toxicities, or lead to drug tolerance or addiction. Here, we describe a pain management strategy, based on cell-engineering principles and inspired by synthetic biology, consisting of microencapsulated human designer cells that produce huwentoxin-IV (a safe and potent analgesic peptide that selectively inhibits the pain-triggering voltage-gated sodium channel NaV1.7) in response to volatile spearmint aroma and in a dose-dependent manner. Spearmint sensitivity was achieved by ectopic expression of the R-carvone-responsive olfactory receptor OR1A1 rewired via an artificial G-protein deflector to induce the expression of a secretion-engineered and stabilized huwentoxin-IV variant. In a model of chronic inflammatory and neuropathic pain, mice bearing the designer cells showed reduced pain-associated behaviour on oral intake or inhalation-based intake of spearmint essential oil, and absence of cardiovascular, immunogenic and behavioural side effects. Our proof-of-principle findings indicate that therapies based on engineered cells can achieve robust, tunable and on-demand analgesia for the long-term management of chronic pain.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
42
|
Moe MK, Haug T, Sydnes MO, Sperstad SV, Li C, Vaagsfjord LC, de la Vega E, Stensvåg K. Paralithocins, Antimicrobial Peptides with Unusual Disulfide Connectivity from the Red King Crab, Paralithodes camtschaticus. JOURNAL OF NATURAL PRODUCTS 2018; 81:140-150. [PMID: 29338238 DOI: 10.1021/acs.jnatprod.7b00780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As part of an ongoing exploration of marine invertebrates as a source of new antimicrobial peptides, hemocyte extracts from the red king crab, Paralithodes camtschaticus, were studied. Three cationic cysteine (Cys)-rich peptides, named paralithocins 1-3, were isolated by bioassay-guided purification, and their amino acid sequences determined by Edman degradation and expressed sequences tag analysis. Disulfide bond mapping was performed by high-resolution tandem mass spectrometry. The peptides (38-51 amino acids in length) share a unique Cys motif composed of eight Cys, forming four disulfide bridges with a bond connectivity of (Cys relative position) Cys1-Cys8, Cys2-Cys6, Cys3-Cys5, and Cys4-Cys7, a disulfide arrangement that has not been previously reported among antimicrobial peptides. Thus, paralithocins 1-3 may be assigned to a previously unknown family of antimicrobial peptides within the group of Cys-rich antimicrobial peptides. Although none of the isolated peptides displayed antimicrobial activity against the target strains Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus, they inhibited the growth of several marine bacterial strains with minimal inhibitory concentrations in the 12.5-100 μM range. These findings corroborate the hypothesis that marine organisms are a valuable source for discovering bioactive peptides with new structural motifs.
Collapse
Affiliation(s)
- Morten K Moe
- Multidiciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital (Ahus) , NO-1478 Lørenskog, Norway
| | - Tor Haug
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Magne O Sydnes
- Biomiljø, International Research Institute of Stavanger , Mekjarvik 12, NO-4070 Randaberg, Norway
- Department of Mathematics and Natural Science, University of Stavanger , NO-4036 Stavanger, Norway
| | - Sigmund V Sperstad
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Chun Li
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Lena C Vaagsfjord
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Enrique de la Vega
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina , 221 Ft. Johnson Road, Charleston, South Carolina 29412, United States
| | - Klara Stensvåg
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina , 221 Ft. Johnson Road, Charleston, South Carolina 29412, United States
| |
Collapse
|
43
|
Houyvet B, Bouchon-Navaro Y, Bouchon C, Goux D, Bernay B, Corre E, Zatylny-Gaudin C. Identification of a moronecidin-like antimicrobial peptide in the venomous fish Pterois volitans: Functional and structural study of pteroicidin-α. FISH & SHELLFISH IMMUNOLOGY 2018; 72:318-324. [PMID: 29108968 DOI: 10.1016/j.fsi.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
The present study characterizes for the first time an antimicrobial peptide in lionfish (Pterois volitans), a venomous fish. Using a peptidomic approach, we identified a mature piscidin in lionfish and called it pteroicidin-α. We detected an amidated form (pteroicidin-α- CONH2) and a non-amidated form (pteroicidin-α-COOH), and then performed their functional and structural study. Interestingly, the two peptides displayed different antibacterial and hemolytic activity levels. Pteroicidin-α-CONH2 was bactericidal on human pathogens like Staphylococcus aureus or Escherichia coli, as well as on the fish pathogen Aeromonas salmonicida, while pteroicidin-α-COOH only inhibited their growth. Furthermore, the two peptides induced hemolysis of red blood cells from different vertebrates, namely humans, sea bass and lesser-spotted dogfish. Hemolysis occurred with low concentrations of pteroicidin-α-CONH2, indicating greater toxicity of the amidated form. Circular dichroism analysis showed that both peptides adopted a helical conformation, yet with a greater α-helix content in pteroicidin-α-CONH2. Overall, these results suggest that amidation strongly influences pteroicidin-α by modifying its structure and its physico-chemical characteristics and by increasing its hemolytic activity.
Collapse
Affiliation(s)
- Baptiste Houyvet
- Normandie Univ, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), 14032 Caen, France; SATMAR, Société ATlantique de MARiculture, 50760 Gatteville-Phare, France
| | - Yolande Bouchon-Navaro
- Université des Antilles, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UNICAEN, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Labex Corail, Campus de Fouillole, BP 592, 97159 Pointe-à-Pitre, Guadeloupe
| | - Claude Bouchon
- Université des Antilles, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UNICAEN, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Labex Corail, Campus de Fouillole, BP 592, 97159 Pointe-à-Pitre, Guadeloupe
| | - Didier Goux
- CMABio(3)FF 4206 ICORE, Normandie Université, UNICAEN, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Benoît Bernay
- Plateforme Proteogen, FF 4206 ICORE, Normandie Université, UNICAEN, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Erwan Corre
- Plateforme ABiMS, Station biologique de Roscoff (UPMC-CNRS), F-29688 Roscoff, France
| | - Céline Zatylny-Gaudin
- Normandie Univ, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), 14032 Caen, France.
| |
Collapse
|
44
|
Johnson SR, Rikli HG, Schmidt JO, Evans MS. A reexamination of poneratoxin from the venom of the bullet ant Paraponera clavata. Peptides 2017; 98:51-62. [PMID: 27266841 DOI: 10.1016/j.peptides.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
In 1991, Piek et al. [45] described a voltage-gated sodium channel (VGSC) modifier from "bullet ant" (Paraponera clavata) venom they called poneratoxin (PoTx). Using UV chromatography and Edman degradation they showed two "identical peptides" of 25 residues. We reinvestigated PoTx using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-TMS). De novo sequencing showed the two peptides were actually structurally different peptides: the originally described PoTx and a glycyl pro-peptide (glycyl-PoTx) that lacks C-terminus amidation. We examined P. clavata venom from different geographical locations and discovered two additional PoTx analogs: an A23E substitution analog and a D22N; A23V substitutions analog. We tested PoTx and these three natural analogs on the mammalian sensory voltage-gated sodium channel, Nav1.7, using whole cell voltage-clamp. PoTx and each analog induced slowly activating currents in response to small depolarizing steps and sustained currents due to blockade of channel inactivation, similar to that described previously in skeletal muscle [19]. Glycyl-PoTx had the same potency and efficacy as PoTx. A23E PoTx, with a decrease in both C-terminal net positive charge and hydrophobicity, had an eight-fold reduction in potency compared to PoTx. In contrast, the D22N; A23V PoTx, with an increase in both C-terminal net positive charge and hydrophobicity, had a nearly five-fold increase in potency compared to PoTx. We found that changes in PoTx C-terminus caused a significant change in PoTx potency.
Collapse
Affiliation(s)
- Stephen R Johnson
- Department of Biology, University of Illinois Springfield, Springfield, IL, United States; Department of Chemistry, University of Illinois Springfield, Springfield, IL, United States; Carbon Dynamics Institute, LLC, Sherman, IL, United States.
| | - Hillary G Rikli
- Department of Biology, University of Illinois Springfield, Springfield, IL, United States; Department of Chemistry, University of Illinois Springfield, Springfield, IL, United States
| | | | - M Steven Evans
- Department of Neurology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
45
|
Arbour CA, Kondasinghe TD, Saraha HY, Vorlicek TL, Stockdill JL. Epimerization-free access to C-terminal cysteine peptide acids, carboxamides, secondary amides, and esters via complimentary strategies. Chem Sci 2017; 9:350-355. [PMID: 29629104 PMCID: PMC5868297 DOI: 10.1039/c7sc03553e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023] Open
Abstract
We present a convenient method for the diversification of peptides bearing cysteine at the C-terminus that proceeds to form a variety of carboxylic acid, carboxamide, 2° amide, and ester terminated peptides without any detectable epimerization of the α-stereocenter.
C-Terminal cysteine peptide acids are difficult to access without epimerization of the cysteine α-stereocenter. Diversification of the C-terminus after solid-phase peptide synthesis poses an even greater challenge because of the proclivity of the cysteine α-stereocenter to undergo deprotonation upon activation of the C-terminal carboxylic acid. We present herein two general strategies to access C-terminal cysteine peptide derivatives without detectable epimerization, diketopiperazine formation, or piperidinylalanine side products.
Collapse
Affiliation(s)
- Christine A Arbour
- Wayne State University , Department of Chemistry , Detroit , MI , USA 48202 .
| | | | - Hasina Y Saraha
- Wayne State University , Department of Chemistry , Detroit , MI , USA 48202 .
| | - Teanna L Vorlicek
- Wayne State University , Department of Chemistry , Detroit , MI , USA 48202 .
| | | |
Collapse
|
46
|
Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola. Toxins (Basel) 2017; 9:toxins9100323. [PMID: 29027956 PMCID: PMC5666370 DOI: 10.3390/toxins9100323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023] Open
Abstract
Ants (hymenoptera: Formicidae) have adapted to many different environments and have become some of the most prolific and successful insects. To date, 13,258 ant species have been reported. They have been classified into 333 genera and 17 subfamilies. Except for a few Formicinae, Dolichoderinae, and members of other subfamilies, most ant species have a sting with venom. The venoms are composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Unlike the venoms of other animals such as snakes and spiders, ant venoms have seldom been analyzed comprehensively, and their compositions are not yet completely known. In this study, we used both transcriptomic and peptidomic analyses to study the composition of the venom produced by the predatory ant species Odontomachus monticola. The transcriptome analysis yielded 49,639 contigs, of which 92 encoded toxin-like peptides and proteins with 18,106,338 mapped reads. We identified six pilosulin-like peptides by transcriptomic analysis in the venom gland. Further, we found intact pilosulin-like peptide 1 and truncated pilosulin-like peptides 2 and 3 by peptidomic analysis in the venom. Our findings related to ant venom peptides and proteins may lead the way towards development and application of novel pharmaceutical and biopesticidal resources.
Collapse
|
47
|
Leprince J, Bagnol D, Bureau R, Fukusumi S, Granata R, Hinuma S, Larhammar D, Primeaux S, Sopkova-de Oliveiras Santos J, Tsutsui K, Ukena K, Vaudry H. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br J Pharmacol 2017; 174:3573-3607. [PMID: 28613414 DOI: 10.1111/bph.13907] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
The RFamide neuropeptide 26RFa was first isolated from the brain of the European green frog on the basis of cross-reactivity with antibodies raised against bovine neuropeptide FF (NPFF). 26RFa and its N-terminally extended form glutamine RF-amide peptide (QRFP) have been identified as cognate ligands of the former orphan receptor GPR103, now renamed glutamine RF-amide peptide receptor (QRFP receptor). The 26RFa/QRFP precursor has been characterized in various mammalian and non-mammalian species. In the brain of mammals, including humans, 26RFa/QRFP mRNA is almost exclusively expressed in hypothalamic nuclei. The 26RFa/QRFP transcript is also present in various organs especially in endocrine glands. While humans express only one QRFP receptor, two isoforms are present in rodents. The QRFP receptor genes are widely expressed in the CNS and in peripheral tissues, notably in bone, heart, kidney, pancreas and testis. Structure-activity relationship studies have led to the identification of low MW peptidergic agonists and antagonists of QRFP receptor. Concurrently, several selective non-peptidic antagonists have been designed from high-throughput screening hit optimization. Consistent with the widespread distribution of QRFP receptor mRNA and 26RFa binding sites, 26RFa/QRFP exerts a large range of biological activities, notably in the control of energy homeostasis, bone formation and nociception that are mediated by QRFP receptor or NPFF2. The present report reviews the current knowledge concerning the 26RFa/QRFP-QRFP receptor system and discusses the potential use of selective QRFP receptor ligands for therapeutic applications.
Collapse
Affiliation(s)
- Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| | - Didier Bagnol
- CNS Drug Discovery, Arena Pharmaceuticals Inc., San Diego, CA, USA
| | - Ronan Bureau
- Normandy Centre for Studies and Research on Medicines (CERMN), Normandy University, Caen, France
| | - Shoji Fukusumi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shuji Hinuma
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, Suita-City, Osaka, Japan
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden
| | - Stefany Primeaux
- Department of Physiology, Joint Diabetes, Endocrinology & Metabolism Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science, Tokyo, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| |
Collapse
|
48
|
Li J, Tang X, Awakawa T, Moore BS. Enzymatic C−H Oxidation-Amidation Cascade in the Production of Natural and Unnatural Thiotetronate Antibiotics with Potentiated Bioactivity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Li
- Center of Marine Biotechnology and Biomedicine; Scripps Institution of Oceanography; University of California at San Diego; 9500 Gilman Drive La Jolla CA 92093-0204 USA
| | - Xiaoyu Tang
- Center of Marine Biotechnology and Biomedicine; Scripps Institution of Oceanography; University of California at San Diego; 9500 Gilman Drive La Jolla CA 92093-0204 USA
| | - Takayoshi Awakawa
- Center of Marine Biotechnology and Biomedicine; Scripps Institution of Oceanography; University of California at San Diego; 9500 Gilman Drive La Jolla CA 92093-0204 USA
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Bradley S. Moore
- Center of Marine Biotechnology and Biomedicine; Scripps Institution of Oceanography; University of California at San Diego; 9500 Gilman Drive La Jolla CA 92093-0204 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California at San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
49
|
Li J, Tang X, Awakawa T, Moore BS. Enzymatic C-H Oxidation-Amidation Cascade in the Production of Natural and Unnatural Thiotetronate Antibiotics with Potentiated Bioactivity. Angew Chem Int Ed Engl 2017; 56:12234-12239. [PMID: 28833969 DOI: 10.1002/anie.201705239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Indexed: 11/10/2022]
Abstract
The selective activation of unreactive hydrocarbons by biosynthetic enzymes has inspired new synthetic methods in C-H bond activation. Herein, we report the unprecedented two-step biosynthetic conversion of thiotetromycin to thiotetroamide C involving the tandem oxidation and amidation of an unreactive ethyl group. We detail the genetic and biochemical basis for the terminal amidation in thiotetroamide C biosynthesis, which involves a uniquely adapted cytochrome P450-amidotransferase enzyme pair and highlights the first oxidation-amidation enzymatic cascade reaction leading to the selective formation of a primary amide group from a chemically inert alkyl group. Motivated by the ten-fold increase in antibiotic potency of thiotetroamide C ascribed to the acetamide group and the unusual enzymology involved, we enzymatically interrogated diverse thiolactomycin analogues and prepared an unnatural thiotetroamide C analogue with potentiated bioactivity compared to the parent molecule.
Collapse
Affiliation(s)
- Jie Li
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0204, USA
| | - Xiaoyu Tang
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0204, USA
| | - Takayoshi Awakawa
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0204, USA.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Bradley S Moore
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0204, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
50
|
Adamson KJ, Wang T, Rotgans BA, Kruangkum T, Kuballa AV, Storey KB, Cummins SF. Genes and associated peptides involved with aestivation in a land snail. Gen Comp Endocrinol 2017; 246:88-98. [PMID: 26497253 DOI: 10.1016/j.ygcen.2015.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023]
Abstract
Some animals can undergo a remarkable transition from active normal life to a dormant state called aestivation; entry into this hypometabolic state ensures that life continues even during long periods of environmental hardship. In this study, we aimed to identify those central nervous system (CNS) peptides that may regulate metabolic suppression leading to aestivation in land snails. Mass spectral-based neuropeptidome analysis of the CNS comparing active and aestivating states, revealed 19 differentially produced peptides; 2 were upregulated in active animals and 17 were upregulated in aestivated animals. Of those, the buccalin neuropeptide was further investigated since there is existing evidence in molluscs that buccalin modulates physiology by muscle contraction. The Theba pisana CNS contains two buccalin transcripts that encode precursor proteins that are capable of releasing numerous buccalin peptides. Of these, Tpi-buccalin-2 is most highly expressed within our CNS transcriptome derived from multiple metabolic states. No significant difference was observed at the level of gene expression levels for Tpi-buccalin-2 between active and aestivated animals, suggesting that regulation may reside at the level of post-translational control of peptide abundance. Spatial gene and peptide expression analysis of aestivated snail CNS demonstrated that buccalin-2 has widespread distribution within regions that control several physiological roles. In conclusion, we provide the first detailed molecular analysis of the peptides and associated genes that are related to hypometabolism in a gastropod snail known to undergo extended periods of aestivation.
Collapse
Affiliation(s)
- K J Adamson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - T Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - B A Rotgans
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - T Kruangkum
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - A V Kuballa
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - K B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - S F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|