1
|
Tang R, Ding C, Dang F, Ma Y, Wang J, Zhang T, Wang X. NMR-based metabolic toxicity of low-level Hg exposure to earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:428-437. [PMID: 29679940 DOI: 10.1016/j.envpol.2018.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Mercury is a globally distributed toxicant to aquatic animals and mammals. However, the potential risks of environmental relevant mercury in terrestrial systems remain largely unclear. The metabolic profiles of the earthworm Eisenia fetida after exposure to soil contaminated with mercury at 0.77 ± 0.09 mg/kg for 2 weeks were investigated using a two-dimensional nuclear magnetic resonance-based (1H-13C NMR) metabolomics approach. The results revealed that traditional endpoints (e.g., mortality and weight loss) did not differ significantly after exposure. Although histological examination showed sub-lethal toxicity in the intestine as a result of soil ingestion, the underlying mechanisms were unclear. Metabolite profiles revealed significant decreases in glutamine and 2-hexyl-5-ethyl-3-furansulfonate in the exposed group and remarkable increases in glycine, alanine, glutamate, scyllo-inositol, t-methylhistidine and myo-inositol. More importantly, metabolic network analysis revealed that low mercury in the soil disrupted osmoregulation, amino acid and energy metabolisms in earthworms. A metabolic net link and schematic diagram of mercury-induced responses were proposed to predict earthworm responses after exposure to mercury at environmental relevant concentrations. These results improved the current understanding of the potential toxicity of low mercury in terrestrial systems.
Collapse
Affiliation(s)
- Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210014, People's Republic of China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
2
|
Horvat M, Degenek N, Lipej L, Snoj Tratnik J, Faganeli J. Trophic transfer and accumulation of mercury in ray species in coastal waters affected by historic mercury mining (Gulf of Trieste, northern Adriatic Sea). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4163-4176. [PMID: 24234756 DOI: 10.1007/s11356-013-2262-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/20/2013] [Indexed: 06/02/2023]
Abstract
Total mercury (Hg) and monomethylmercury (MMHg) were analysed in the gills, liver and muscle of four cartilaginous fish species (top predators), namely, the eagle ray (Myliobatis aquila), the bull ray (Pteromylaeus bovinus), the pelagic stingray (Dasyatis violacea) and the common stingray (Dasyatis pastinaca), collected in the Gulf of Trieste, one of the most Hg-polluted areas in the Mediterranean and worldwide due to past mining activity in Idrija (West Slovenia). The highest Hg and MMHg concentrations expressed on a dry weight (d.w.) basis were found in the muscle of the pelagic stingray (mean, 2.529 mg/kg; range, 1.179-4.398 mg/kg, d.w.), followed by the bull ray (mean, 1.582 mg/kg; range, 0.129-3.050 mg/kg d.w.) and the eagle ray (mean, 0.222 mg/kg; range, 0.070-0.467 mg/kg, d.w.). Only one specimen of the common stingray was analysed, with a mean value in the muscle of 1.596 mg/kg, d.w. Hg and MMHg contents in the bull ray were found to be positively correlated with species length and weight. The highest MMHg accumulation was found in muscle tissue. Hg and MMHg were also found in two embryos of a bull ray, indicating Hg transfer from the mother during pregnancy. The number of specimens and the size coverage of the bull rays allowed an assessment of Hg accumulation with age. It was shown that in bigger bull ray specimens, the high uptake of inorganic Hg in the liver and the slower MMHg increase in the muscle were most probably due to the demethylation of MMHg in the liver. The highest Hg and MMHg contents in all organs were found in the pelagic stingray, which first appeared in the northern Adriatic in 1999. High Hg and MMHg concentrations were also found in prey species such as the banded murex (Hexaplex trunculus), the principal prey of the eagle rays and bull rays, the anchovy (Engraulis encrasicholus) and the red bandfish (Cepola rubescens), which are preyed upon by the pelagic stingray, as well as in zooplankton and seawater. Based on previously published data, a tentative estimation of MMHg bioamagnification was established. The average increase in MMHg between seawater, including phytoplankton, and zooplankton in the Gulf was about 10(4), and MMHg in anchovy was about 50-fold higher than in zooplankton. The bioaccumulation of MMHg between seawater and small pelagic fish (anchovy) amounted to 10(6) and between water and the muscle of larger pelagic fish (pelagic stingray) to 10(7). The MMHg increase between surface sediment and benthic invertebrates (murex) and between benthic invertebrates and small benthic fish was 10(2). Ultimately, the trophic transfer resulted in a 10(3) accumulation of MMHg between water and muscle of larger benthic fish (bull ray, eagle ray, common stingray), suggesting lower bioaccumulation by benthic feeding species.
Collapse
Affiliation(s)
- Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia,
| | | | | | | | | |
Collapse
|
3
|
Barnes DW. Cell and molecular biology of the spiny dogfish Squalus acanthias and little skate Leucoraja erinacea: insights from in vitro cultured cells. JOURNAL OF FISH BIOLOGY 2012; 80:2089-2111. [PMID: 22497417 DOI: 10.1111/j.1095-8649.2011.03205.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two of the most commonly used elasmobranch experimental model species are the spiny dogfish Squalus acanthias and the little skate Leucoraja erinacea. Comparative biology and genomics with these species have provided useful information in physiology, pharmacology, toxicology, immunology, evolutionary developmental biology and genetics. A wealth of information has been obtained using in vitro approaches to study isolated cells and tissues from these organisms under circumstances in which the extracellular environment can be controlled. In addition to classical work with primary cell cultures, continuously proliferating cell lines have been derived recently, representing the first cell lines from cartilaginous fishes. These lines have proved to be valuable tools with which to explore functional genomic and biological questions and to test hypotheses at the molecular level. In genomic experiments, complementary (c)DNA libraries have been constructed, and c. 8000 unique transcripts identified, with over 3000 representing previously unknown gene sequences. A sub-set of messenger (m)RNAs has been detected for which the 3' untranslated regions show elements that are remarkably well conserved evolutionarily, representing novel, potentially regulatory gene sequences. The cell culture systems provide physiologically valid tools to study functional roles of these sequences and other aspects of elasmobranch molecular cell biology and physiology. Information derived from the use of in vitro cell cultures is valuable in revealing gene diversity and information for genomic sequence assembly, as well as for identification of new genes and molecular markers, construction of gene-array probes and acquisition of full-length cDNA sequences.
Collapse
Affiliation(s)
- D W Barnes
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA.
| |
Collapse
|
4
|
Ratner MA, Decker SE, Aller SG, Weber G, Forrest JN. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride. ACTA ACUST UNITED AC 2006; 305:259-67. [PMID: 16432888 DOI: 10.1002/jez.a.257] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action.
Collapse
Affiliation(s)
- Martha A Ratner
- Nephrology Division, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
5
|
Aduayom I, Denizeau F, Jumarie C. Multiple effects of mercury on cell volume regulation, plasma membrane permeability, and thiol content in the human intestinal cell line Caco-2. Cell Biol Toxicol 2005; 21:163-79. [PMID: 16328895 DOI: 10.1007/s10565-005-0157-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
In a previous study, we characterized Cd-Hg interactions for uptake in human intestinal Caco-2 cells. We pursued our investigations on metal uptake from metal mixtures, focusing on the effects of Hg on cellular homeostasis. A 4-fold higher equilibrium accumulation value of 0.3 micromol/L (203)Hg was measured in the presence of 100 micromol/L unlabeled Hg in the serum-free exposure medium without modification in the initial uptake rate. This phenomenon was eliminated at 4 degrees C. Mercury induced an increase in tritiated water and [(3)H]mannitol uptakes for exposure times greater than 20 min. Incubations for 20 min and 30 min with 100 micromol/L Hg and 2 mmol/L N-ethylmaleimide (NEM) resulted in a 34% and 50% reductions in cellular thiol staining, respectively, with additive effects. Lactate dehydrogenase leakage and live/dead assays confirmed the maintenance of cell membrane integrity in Hg- or NEM-treated cells. We conclude that Hg may alter membrane permeability and increase cell volume without any loss in cell viability. This phenomenon is sensitive to temperature and could involve Hg interaction with membrane thiols, possibly related to solute transport. During metal uptake from metal mixtures, Hg may thus promote the uptake of other toxic metals by increasing cell volume and consequently cell capacity.
Collapse
Affiliation(s)
- I Aduayom
- Département de Chimie, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
6
|
Marchi B, Burlando B, Panfoli I, Dondero F, Viarengo A, Gallo G. Heavy metal interference with growth hormone signalling in trout hepatoma cells RTH-149. Biometals 2005; 18:179-90. [PMID: 15954744 DOI: 10.1007/s10534-004-6254-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied the effects of heavy metals (Hg2+, Cu2+, Cd2+) on growth hormone (GH) activation of tyrosine kinase and Ca2+ signaling in the trout (Oncorhynchus mykiss) hepatoma cell line RTH-149. Molecular cloning techniques using primer designed on Oncorhynchus spp. growth hormone receptor (GHR) genes allowed to isolate a highly homologous cDNA fragment from RTH-149 mRNA. Thereafter, cells were analysed by Western blotting or, alternatively, with Ca2+ imaging using fura-2/AM. Exposure of cells to ovine GH alone produced a stimulation of the JAK2/STAT5 pathway and intracellular free Ca2+ variations similar to what has been observed in mammalian models. Cell pre-exposure to Cu2+, Hg2+ or Cd2+ affected cell response to GH by enhancing (Cu2+) or inhibiting (Cd2+) the phosphorylation of JAK2 and STAT5. Heavy metals induced the activation of the MAP kinase p38, and pre-exposure to Hg2+ or Cu2+ followed by GH enhanced the effect of metal alone. Image analysis of fura2-loaded cells indicated that pre-treatment with Hg2+ prior to GH produced a considerable increase of the [Ca2+]i variation produced by either element, while using Cu2+ or Cd2+ the result was similar but much weaker. Data suggest that heavy metals interfere with GH as follows: Hg2+ is nearly ineffective on JAK/STAT and strongly synergistic on Ca2+ signaling; Cu2+ is activatory on JAK/STAT and slightly activatory on Ca2+; Cd2+ is strongly inhibitory on JAK/STAT and slightly activatory on Ca2+; heavy metals could partially activate STAT via p38 independently from GH interaction.
Collapse
Affiliation(s)
- Barbara Marchi
- Dipartimento di Biologia, Università di Genova, Viale Benedetto XV 5, 16132, Genova, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Florea AM, Dopp E, Büsselberg D. Elevated Ca2+i transients induced by trimethyltin chloride in HeLa cells: types and levels of response. Cell Calcium 2005; 37:251-8. [PMID: 15670872 DOI: 10.1016/j.ceca.2004.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 10/07/2004] [Accepted: 10/26/2004] [Indexed: 11/26/2022]
Abstract
Humans are exposed to organotins, like trimethyltin (TMT) chloride via air, water and food, and intoxication might result in severe health complications. Toxic effects of organotin compounds are well documented, but possible mechanisms remain unclear and only little information is available how organometallic species interact with calcium controlling mechanisms. Therefore, the aim of this work was to investigate the effects of TMT on calcium homeostasis in HeLa S3 cells. Dynamic changes of cytosolic calcium (Ca2+(i)) were monitored using laser-scanning microscopy and fluo-4 loaded cells. Application of TMT resulted in sustained as well as in transient elevations of Ca2+(i). The number of reacting cells was directly correlated to the concentration of TMT used: with 500 microM TMT all cells reacted, with 50 microM TMT 80% and with 5 microM 74%. The fast Ca2+(i)-transients (spikes), measured in single cells, occurred even with 0.25 microM TMT and varied in size and duration. The sustained increase of Ca2+(i), measured as the average over all cells, was dose dependent with an approximately 8% increase for 5 microM TMT, approximately 12.3% for 50 microM and approximately 145% for 500 microM TMT. Moreover, this effect was partly reversible. A second application resulted in a similar sustained rise of Ca2+(i) compared to the first application of TMT, there was also no difference when no calcium was added to the external solution (151+/-10% compared to 145+/-15%; 500 microM TMT). This rise of Ca2+(i) was highly reduced (<10% increase) when the internal calcium stores were depleted before TMT (500 microM) was applied. Our data suggest that TMT influences Ca2+(i)-homeostasis of HeLa S3 cells, which might be related to its toxicity in this cell line.
Collapse
Affiliation(s)
- Ana-Maria Florea
- Institute of Hygiene and Occupational Medicine, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | |
Collapse
|
8
|
Burlando B, Bonomo M, Caprì F, Mancinelli G, Pons G, Viarengo A. Different effects of Hg2+ and Cu2+ on mussel (Mytilus galloprovincialis) plasma membrane Ca2+-ATPase: Hg2+ induction of protein expression. Comp Biochem Physiol C Toxicol Pharmacol 2004; 139:201-7. [PMID: 15683828 DOI: 10.1016/j.cca.2004.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 10/29/2004] [Accepted: 11/01/2004] [Indexed: 11/18/2022]
Abstract
Deregulation of Ca2+ homeostasis can produce serious effects on cell functioning due to an alteration of Ca2+ signaling. The aim of this study was to evaluate variations in plasma membrane Ca2+-ATPase (PMCA) induced in mussels by in vivo exposure to Cu2+ or Hg2+. PMCA activity was assayed using a cytochemical method allowing localization and in situ quantification of Ca2+-ATPase on cryostat tissue sections. The effects of fixed concentrations of Cu2+ (0.6 microM) or Hg2+ (1.3 microM) were evaluated after different times of exposure (1, 4, 6 days), while those of increasing amounts of Cu2+ (0.3, 0.6, 1.3 microM) or of Hg2+ (0.6, 1.3, 2.4 microM) were evaluated after 4 days. Cu2+ produces dose-dependent inhibition of PMCA in the digestive gland, with a minimum at the fourth day of treatment and a recovery at the sixth day. Conversely, Hg2+ induces a significant rise of PMCA activity, with a maximum at the fourth day. Similar results have been found after biochemical assay of PMCA, using plasma membranes obtained from density-gradient separation of gill homogenates. PMCA expression has been assessed by immunoprecipitation and Western immunoblotting on digestive gland homogenates, showing an induction after exposure to Hg2+ but not to Cu2+. In conclusion, Cu2+ does not vary PMCA expression but reduces PMCA activity, indicating PMCA inhibition; conversely, Hg2+ increases PMCA expression more than PMCA activity, suggesting that it also produces PMCA inhibition, but the induction of PMCA expression leads to a net increase in enzyme activity.
Collapse
Affiliation(s)
- B Burlando
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale "A. Avogadro", Via Bellini 25 G, 15100 Alessandria, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Marchi B, Burlando B, Moore MN, Viarengo A. Mercury- and copper-induced lysosomal membrane destabilisation depends on [Ca2+]i dependent phospholipase A2 activation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 66:197-204. [PMID: 15036874 DOI: 10.1016/j.aquatox.2003.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2003] [Revised: 07/16/2003] [Accepted: 09/25/2003] [Indexed: 05/24/2023]
Abstract
Heavy metals are environmental pollutants able to produce different cellular effects, such as an alteration of Ca2+ homeostasis and lysosomal membrane destabilisation. The latter is one of the most used stress indices in biomonitoring programs. Recently, it has been demonstrated that cytosolic calcium increase can modulate lysosomal membrane destabilisation via activation of Ca(2+)-dependent phospholipase A2 (cPLA2). The aim of this work was to investigate the possible involvement of Ca(2+)-activated PLA2 in lysosomal membrane destabilisation induced by heavy metals in mussel haemolymph cells. We have studied the effects of Hg2+ and Cu2+ on free cytosolic calcium using Fura2/AM-loaded cells and lysosomal membrane destabilisation using neutral red (NR) staining. Hg2+ induced a [Ca2+]i rise from 100 to 780 nM in 30 min, and a lysosome destaining of 70% after 60 min that indicates destabilisation of lysosomal membranes. Both effects were reduced in a Ca(2+)-free medium, suggesting a cause-effect relationship. Exposure to Cu2+ produced the same effects, but with an intensity of about 50% respect to Hg2+. Metal-induced lysosomal destabilisation was also reduced in cells pre-exposed to a specific Ca(2+)-dependent cPLA2 inhibitor (AACOCF3). Conversely, haemocyte pretreatment with a Ca(2+)-independent PLA2 inhibitor (bromoenol-lactone (BEL)) did not prevent the destabilizing effect of heavy metals on lysosomes. Exposure to heavy metals also produced an increase in lysosomal volume of 1.8-2-folds, that was prevented by pre-incubation with AACOCF3 but not with BEL. These data indicate an involvement of cPLA2 in lysosomal membrane destabilisation induced by heavy metals.
Collapse
Affiliation(s)
- B Marchi
- Dipartimento di Biologia Sperimentale Ambientale e Applicata, Università di Genova, Viale Benedetto XV 5, 16132 Genova, Italy.
| | | | | | | |
Collapse
|
10
|
Burlando B, Bonomo M, Fabbri E, Dondero F, Viarengo A. Hg2+ signaling in trout hepatoma (RTH-149) cells: involvement of Ca2+-induced Ca2+ release. Cell Calcium 2003; 34:285-93. [PMID: 12887976 DOI: 10.1016/s0143-4160(03)00123-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mercury is a non-essential heavy metal affecting intracellular Ca2+ dynamics. We studied the effects of Hg2+ on [Ca2+]i in trout hepatoma cells (RTH-149). Confocal imaging of fluo-3-loaded cells showed that Hg2+ induced dose-dependent, sustained [Ca2+]i transient, triggered intracellular Ca2+ waves, stimulated Ca2+-ATPase activity, and promoted InsP3 production. The effect of Hg2+ was reduced by the Ca2+ channel blocker verapamil and totally abolished by extracellular GSH, but was almost unaffected by cell loading with the heavy metal chelator TPEN or esterified GSH. In a Ca2+-free medium, Hg2+ induced a smaller [Ca2+]i transient, that was unaffected by TPEN, but was abolished by U73122, a PLC inhibitor, and by cell loading with GDP-betaS, a G protein inhibitor, or heparin, a blocker of intracellular Ca2+ release. Data indicate that Hg2+ induces Ca2+ entry through verapamil-sensitive channels, and intracellular Ca2+ release via a G protein-PLC-InsP3 mechanism. However, in cells loaded with heparin and exposed to Hg2+ in the presence of external Ca2+, the [Ca2+]i rise was maximally reduced, indicating that the global effect of Hg2+ is not a mere sum of Ca2+ entry plus Ca2+ release, but involves an amplification of Ca2+ release operated by Ca2+ entry through a CICR mechanism.
Collapse
MESH Headings
- Aniline Compounds/analysis
- Aniline Compounds/pharmacokinetics
- Animals
- Ca(2+) Mg(2+)-ATPase/metabolism
- Calcium/analysis
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/physiopathology
- Cell Line, Tumor/drug effects
- Cytosol/chemistry
- Cytosol/drug effects
- Cytosol/metabolism
- Estrenes/pharmacology
- Ethylenediamines/pharmacology
- GTP-Binding Proteins/metabolism
- Glutathione/analogs & derivatives
- Glutathione/pharmacology
- Guanosine Diphosphate/analogs & derivatives
- Guanosine Diphosphate/pharmacology
- Heparin/pharmacology
- Histocytochemistry
- Inositol 1,4,5-Trisphosphate/analysis
- Inositol 1,4,5-Trisphosphate/metabolism
- Kinetics
- Mercury/pharmacology
- Mercury/toxicity
- Microscopy, Confocal
- Microscopy, Fluorescence
- Phospholipases/metabolism
- Pyrrolidinones/pharmacology
- Thionucleotides/pharmacology
- Trout
- Verapamil/pharmacology
- Xanthenes/analysis
- Xanthenes/pharmacokinetics
Collapse
Affiliation(s)
- Bruno Burlando
- Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale Amedeo Avogadro, Corso Borsalino 54, 15100 Alessandria, Italy.
| | | | | | | | | |
Collapse
|
11
|
Fabbri E, Caselli F, Piano A, Sartor G, Capuzzo A. Cd2+ and Hg2+ affect glucose release and cAMP-dependent transduction pathway in isolated eel hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2003; 62:55-65. [PMID: 12413794 DOI: 10.1016/s0166-445x(02)00063-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Isolated hepatocytes of the European eel (Anguilla anguilla) have been used as experimental model to characterize the effects of Cd(2+) and Hg(2+) on either basal or epinephrine-stimulated glucose release. Cd(2+) strongly reduced glucose output from cells perifused in BioGel P4 columns and challenged with epinephrine, with a maximum inhibition of 95% reached at 10 microM (IC(50) 0.04 microM). The epinephrine-stimulated glucose output was also reduced by Hg(2+), although a significant inhibition of about 60% was achieved only at 10 microM (IC(50) 5 microM). The possible influence of Cd(2+) and Hg(2+) on adenylyl cyclase/cAMP transduction pathway has been investigated, since this system is known to play a pivotal role in the regulation of fish liver glycogen breakdown and consequent glucose release. Micromolar concentrations of both heavy metals significantly reduced the epinephrine-modulated cAMP levels in isolated eel hepatocytes, in good agreement with the reduction of glucose output. Cd(2+) and Hg(2+) also significantly reduced basal and epinephrine-stimulated adenylyl cyclase activity in liver membrane preparations. A competitive inhibition with respect to Mg(2+) was shown by Cd(2+) and Hg(2+), which significantly reduced the affinity of the allosteric activator for the adenylyl cyclase system. Apparent Km for Mg(2+) was 4.35 mM in basal conditions, and increased to 9.1 and 7.1 mM in the presence of 10 microM Cd(2+) and Hg(2+), respectively. These results indicate that Cd(2+) and Hg(2+) may impair a crucial intracellular transduction pathway involved in the adrenergic control of glucose metabolism, but also in several other routes of hormonal regulation of liver functions.
Collapse
Affiliation(s)
- Elena Fabbri
- Interdepartment Centre for Research in Environmental Science, University of Bologna, via Tombesi dall'Ova 55, 48 100, Ravenna, Italy.
| | | | | | | | | |
Collapse
|
12
|
Goudeau M, Goudeau H. Hg(2+) affects the intracellular free Ca(2+) oscillatory pattern and the correlated membrane conductance changes in Mg(2+)-stimulated oocytes of the prawn Palaemon serratus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:1-11. [PMID: 12115914 DOI: 10.1002/jez.10112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The impact of mercuric ions (Hg(2+)) on prawn oocytes was examined. Prawn oocytes constitute an unusual system in that they are activated at spawning by seawater Mg(2+), which mediates correlated dynamic changes in intracellular free calcium concentration [(Ca(2+))(i)] and membrane conductance associated with the meiosis resumption. Using a voltage clamp technique and intracellular calcium measurements, we observed that treatment with Hg(2+) (5, 10, and 20 microM) resulted in simultaneous impairments of both (Ca(2+))(i) and membrane current responses to external Mg(2+). Treatment with Hg(2+) also resulted in a gradual dose-dependent slow increase in the baseline level of both (Ca(2+))(i) and membrane conductance, independent of stimulation with external Mg(2+). The effect of Hg(2+) on (Ca(2+))(i) and membrane conductance changes resulted from a block of the signal transduction pathway at some point before the InsP(3) receptor channel involved in Ca(2+) release from the endoplasmic reticulum (ER) stocks. The Hg(2+)-dependent gradual increase in both (Ca(2+))(i) and membrane conductance baseline levels may potentially result from a slow permeabilization of the ER membrane, resulting in Ca(2+) leaking into the cytosol. Indeed, this effect could be blocked with the cell permeable Hg(2+) competitor dithiothreitol, which was able to displace Hg(2+) from its intracellular target regardless of whether external Ca(2+) was present or not.
Collapse
Affiliation(s)
- Marie Goudeau
- Observatoire Océanographique et de Biologie marine, CNRS and Université Pierre et Marie Curie, Station biologique de Roscoff, 29682 Roscoss, cedex, France
| | | |
Collapse
|
13
|
Marchi B, Burlando B, Panfoli I, Viarengo A. Interference of heavy metal cations with fluorescent Ca2+ probes does not affect Ca2+ measurements in living cells. Cell Calcium 2000; 28:225-31. [PMID: 11032778 DOI: 10.1054/ceca.2000.0155] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In studies about the effects of heavy metals on intracellular Ca2+, the use of fluorescent probes is debated, as metal cations are known to affect the probe signal. In this study, spectrofluorimetric experiments in free solution, using Fluo-3 and Fura-2, showed that Zn2+ and Cd2+ enhanced the probe signal, Cu2+ quenched it, and Hg2+ had no effect. Addition of GSH prevented most of these effects, suggesting the occurrence of a similar protective role in living cells. Digital imaging of living mussel haemocytes loaded with Fura-2/AM or Fluo-3/AM showed that Hg2+, Cu2+ and Cd2+ induced a rise in probe fluorescence, whereas up to 200 microM Zn2+ had no effect. In particular, Cd2+ produced the strongest probe signal rise in free solution, but the lowest fluorescence increase in cells. Probe calibration yielded [Ca2+]i values characteristic of resting levels in control and Zn2+-exposed cells, and, as expected, indicated Ca2+ homeostasis impairment in cells exposed to Cd2+, Cu2+ and Hg2+. Our results show that Ca2+ probe responses to heavy metals in living cells are completely different from those obtained in free solution, indicating that fluorescent probes can be a suitable tool to record the effects of heavy metals on [Ca2+]i.
Collapse
Affiliation(s)
- B Marchi
- Dip. di Biologia Sperimentale Applicata e Ambientale, Università di Genova, Genova, Italy
| | | | | | | |
Collapse
|
14
|
Nathanson MH, O'Neill AF, Burgstahler AD. Primitive organization of cytosolic Ca(2+) signals in hepatocytes from the little skate Raja erinacea. J Exp Biol 1999; 202:3049-56. [PMID: 10539953 DOI: 10.1242/jeb.202.22.3049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytosolic Ca(2+) (Ca(i)(2+)) signals begin as polarized, inositol 1, 4,5-trisphosphate (InsP3)-mediated Ca(i)(2+) waves in mammalian epithelia, and this signaling pattern directs secretion together with other cell functions. To investigate whether Ca(i)(2+) signaling is similarly organized in elasmobranch epithelia, we examined Ca(i)(2+) signaling patterns and InsP3 receptor (InsP3R) expression in hepatocytes isolated from the little skate, Raja erinacea. Ca(i)(2+) signaling was examined by confocal microscopy, InsP3R expression by immunoblot, and the subcellular distribution of InsP3Rs by immunochemistry. ATP induced a rapid increase in Ca(i)(2+) in skate hepatocytes, as it does in mammalian hepatocytes. Unlike in mammalian hepatocytes, however, the Ca(i)(2+) increase in skate hepatocytes began randomly throughout the cell rather than in the apical region. In cells loaded with heparin ATP-induced Ca(i)(2+) signals were inhibited, but de-N-sulfated heparin was not inhibitory, suggesting that the increases in Ca(i)(2+) were mediated by InsP3. Immunoblot analysis showed that the type I but not the types II or III InsP3R was expressed in skate liver. Confocal immunofluorescence revealed that the InsP3R was distributed throughout the hepatocyte, rather than concentrated apically as in mammalian epithelia. These findings demonstrate that ATP-induced Ca(i)(2+) signals are mediated by InsP3 in skate hepatocytes, as they are in mammalian hepatocytes. However, in skate hepatocytes Ca(i)(2+) signals begin at loci throughout the cell rather than as an organized apical-to-basal Ca(i)(2+) wave, which is probably because the InsP3R is distributed throughout these cells. This primitive organization of Ca(i)(2+) signaling may in part explain the observation that Ca(2+)-mediated events such as secretion occur much less efficiently in elasmobranchs than in mammals.
Collapse
Affiliation(s)
- M H Nathanson
- Mount Desert Island Biological Laboratory, Salsbury Cove, ME 04672, USA.
| | | | | |
Collapse
|
15
|
Affiliation(s)
- F C Mooren
- Medizinische Klinik und Poliklinik B, Westfälische Wilhelm-Universität, Münster, Germany
| | | |
Collapse
|
16
|
Abstract
Changes in the concentration of free Zn2+ were monitored in isolated rat hepatocytes using the fluorescent indicator zinquin (ethyl[2-methyl-8-p-toluenesulphonamido-6-quinolyloxy]acetat e). The concentration of Zn2+ in freshly isolated hepatocytes was 1.3 x 10(-6) M (range 0.61-2.7 x 10[-6] M). This value decreased by about 10%-15% during incubation in the absence of zinc and increased in a time- and concentration-dependent manner in the presence of exogenous zinc (Km approximately 10 microM). IIb group metal ions led to a concentration-dependent increase in zinquin fluorescence. The rank of efficacy was Hg approximately Cd > Pb (IVa) >> Cu (Ib) >>> Ni (VIII). This rank resembles their ability to mobilize zinc from metallothioneins. 8-Br-3',5'-cAMP (10[-4]M) caused a rapid decrease in Zn2+ epifluorescence which was apparent within 10 min and was sustained throughout the experiment. This effect was gradually obliterated in the presence of external ZnCl2. The effect was specific for cAMP (or cAMP generating hormones) as the calcium-dependent hormone [arg8]vasopressin (5 x 10[-8] M) did not affect intracellular Zn2+. An integrated role of zinc as a possible mediator in signal transduction is discussed.
Collapse
Affiliation(s)
- J W Kleineke
- Abteilung Klinische Biochemie, Zentrum Innere Medizin Universität Göttingen, Germany.
| | | |
Collapse
|