1
|
Rodríguez FD, Sánchez ML, Coveñas R. Neurotensin and Alcohol Use Disorders: Towards a Pharmacological Treatment. Int J Mol Sci 2023; 24:ijms24108656. [PMID: 37240004 DOI: 10.3390/ijms24108656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Harmful alcohol use is responsible for a group of disorders collectively named alcohol use disorders (AUDs), according to the DSM-5 classification. The damage induced by alcohol depends on the amount, time, and consumption patterns (continuous and heavy episodic drinking). It affects individual global well-being and social and familial environments with variable impact. Alcohol addiction manifests with different degrees of organ and mental health detriment for the individual, exhibiting two main traits: compulsive drinking and negative emotional states occurring at withdrawal, frequently causing relapse episodes. Numerous individual and living conditions, including the concomitant use of other psychoactive substances, lie in the complexity of AUD. Ethanol and its metabolites directly impact the tissues and may cause local damage or alter the homeostasis of brain neurotransmission, immunity scaffolding, or cell repair biochemical pathways. Brain modulator and neurotransmitter-assembled neurocircuitries govern reward, reinforcement, social interaction, and consumption of alcohol behaviors in an intertwined manner. Experimental evidence supports the participation of neurotensin (NT) in preclinical models of alcohol addiction. For example, NT neurons in the central nucleus of the amygdala projecting to the parabrachial nucleus strengthen alcohol consumption and preference. In addition, the levels of NT in the frontal cortex were found to be lower in rats bred to prefer alcohol to water in a free alcohol-water choice compared to wild-type animals. NT receptors 1 and 2 seem to be involved in alcohol consumption and alcohol effects in several models of knockout mice. This review aims to present an updated picture of the role of NT systems in alcohol addiction and the possible use of nonpeptide ligands modulating the activity of the NT system, applied to experimental animal models of harmful drinking behavior mimicking alcohol addiction leading to health ruin in humans.
Collapse
Affiliation(s)
- Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, C/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, C/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Sánchez ML, Coveñas R. The Neurotensinergic System: A Target for Cancer Treatment. Curr Med Chem 2021; 29:3231-3260. [PMID: 34711154 DOI: 10.2174/0929867328666211027124328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The scientific interest regarding the involvement of peptides in cancer has increased in the last years. In tumor cells the overexpression of peptides and their receptors is known and new therapeutic targets for the treatment of cancer have been suggested. The overexpression of the neurotensinergic system has been associated with poor prognosis, tumor size, higher tumor aggressiveness, increased relapse risk and worse sensitivity to chemotherapy agents. OBJECTIVE The aim of this review is to update the findings regarding the involvement of the neurotensinergic system in cancer to suggest anticancer therapeutic strategies targeting this system. The neurotensin (NT) precursor, NT and its receptors (NTR) and the involvement of the neurotensinergic system in lung, breast, prostate, gastric, colon, liver and pancreatic cancers, glioblastoma, neuroendocrine tumors and B-cell leukemia will be mentioned and discussed as well as the signaling pathways mediated by NT. Some research lines to be developed in the future will be suggested such as: molecules regulating the expression of the NT precursor, influence of the diet in the development of tumors, molecules and signaling pathways activated by NT and antitumor therapeutic strategies targeting the neurotensinergic system. CONCLUSION NT, via the NTR, exerts oncogenic (tumor cell proliferation, invasion, migration, angiogenesis) and antiapoptotic effects, whereas NTR antagonists inhibit these effects. NTR expression can be used as a diagnostic tool/therapeutic target and the administration of NTR antagonists as antitumor drugs could be a therapeutic strategy to treat tumors overexpressing NTR.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| | - Rafael Coveñas
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| |
Collapse
|
3
|
Woodworth HL, Brown JA, Batchelor HM, Bugescu R, Leinninger GM. Determination of neurotensin projections to the ventral tegmental area in mice. Neuropeptides 2018; 68:57-74. [PMID: 29478718 PMCID: PMC5906039 DOI: 10.1016/j.npep.2018.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/11/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022]
Abstract
Pharmacologic treatment with the neuropeptide neurotensin (Nts) modifies motivated behaviors such as feeding, locomotor activity, and reproduction. Dopamine (DA) neurons of the ventral tegmental area (VTA) control these behaviors, and Nts directly modulates the activity of DA neurons via Nts receptor-1. While Nts sources to the VTA have been described in starlings and rats, the endogenous sources of Nts to the VTA of mice remain incompletely understood, impeding determination of which Nts circuits orchestrate specific behaviors in this model. To overcome this obstacle we injected the retrograde tracer Fluoro-Gold into the VTA of mice that express GFP in Nts neurons. Identification of GFP-Nts cells that accumulate Fluoro-Gold revealed the Nts afferents to the VTA in mice. Similar to rats, most Nts afferents to the VTA of mice arise from the medial and lateral preoptic areas (POA) and the lateral hypothalamic area (LHA), brain regions that are critical for coordination of feeding and reproduction. Additionally, the VTA receives dense input from Nts neurons in the nucleus accumbens shell (NAsh) of mice, and minor Nts projections from the amygdala and periaqueductal gray area. Collectively, our data reveal multiple populations of Nts neurons that provide direct afferents to the VTA and which may regulate specific aspects of motivated behavior. This work lays the foundation for understanding endogenous Nts actions in the VTA, and how circuit-specific Nts modulation may be useful to correct motivational and affective deficits in neuropsychiatric disease.
Collapse
Affiliation(s)
| | - Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Kalafatakis K, Triantafyllou K. Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function. REGULATORY PEPTIDES 2011; 170:7-17. [PMID: 21549161 DOI: 10.1016/j.regpep.2011.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 03/22/2011] [Accepted: 04/16/2011] [Indexed: 12/19/2022]
Abstract
Among various hormones, which are synthesized by intestinal cells and influence enteric function, neurotensin (NT) has gained scientific attention the last three decades. This neuropeptide, mainly located in neuronal synaptic vesicles of hypothalamus and in neuroendocrine cells of the small bowel, participates in enteric digestive processes, gut motility and intestinal inflammatory mechanisms by cooperating with other regulators such as histamine, substance P and somatostatin. NT plays an important role mainly in intestinal lipid metabolism by cooperating with cholecystokinin and establishes a hormonal brain-gut-adipose tissue connection, which could adjust appetite, weight status and generally eating behavior with the amount and the content (particularly fat) of food intake. Moreover, NT achieves a multi-level control of intestinal motility by cooperating with the enteric- and central nervous system, and other enteric hormones (such as somatostatin). NT regulates motility patterns related to the efficiency of the digestive process, stool emptying, transition from the fasted to the postprandial state and reestablishment of the fasted status. In addition, NT possesses a long-term enteroprotective role towards the intestinal tract, despite the fact that under certain circumstances NT may participate in short-term subcellular pathways promoting an acute inflammatory response. The aim of this review is two-fold. First, is to provide an up-to-date synopsis of the available knowledge regarding the involvement of neurotensin in enteric functional status, and highlight its significance in physiological and pathological conditions. Second, is to propose new research directions concerning the role of neurotensin and other intestinal regulatory peptides in the establishment of the brain-gut axis and in the development of functional disorders of the abdominal tract. Conclusively, to clarify the areas, in which an experimental therapeutic intervention, based on NT analogs, may lead to encouraging results.
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
5
|
Stolakis V, Kalafatakis K, Botis J, Zarros A, Liapi C. The regulatory role of neurotensin on the hypothalamic-anterior pituitary axons: emphasis on the control of thyroid-related functions. Neuropeptides 2010; 44:1-7. [PMID: 19878995 DOI: 10.1016/j.npep.2009.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 12/14/2022]
Abstract
Neurotensin (NT) is a 13 amino acid neurohormone and/or neuromodulator, located in the synaptic vesicles and released from the neuronal terminals in a calcium-dependent manner. This peptide is present among mammalian and nonmammalian species, mainly in the central nervous system and the gastrointestinal tract. Due to its neuroendocrine activity, NT has been related to the pathophysiology of a series of disorders, such as schizophrenia, drug-abuse, Parkinson's disease, cancer, stroke, eating disorders and other neurodegenerative conditions. Moreover, NT participates in the physiology of pain-induction, central blood pressure control and inflammation. NT also plays an important interactive role in all components of the hypothalamic-anterior pituitary circuit, which is mediated by an endocrine, paracrine or/and autocrine manner, towards most of the anatomical regions that define this circuit. A considerable amount of data implicates NT in thyroid-related regulation through this circuit, the exact mechanisms of which should be further investigated for the potential development of more targeted approaches towards the treatment of thyroid-related endocrine diseases. The aim of this study was to provide an up-to-date review of the literature concerning the regulatory role of NT on the hypothalamic-anterior pituitary axons, with an emphasis on the control of thyroid-related functions.
Collapse
Affiliation(s)
- Vasileios Stolakis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Abstract
More than two decades of research indicate that the peptide neurotensin (NT) and its cognate receptors participate to a remarkable extent in the regulation of mammalian neuroendocrine systems, potentially at multiple levels in a given system. NT-synthesizing neurons appear to exert a direct or indirect stimulatory influence on neurosecretory cells that synthesize gonadotropin-releasing hormone, dopamine (DA), somatostatin, and corticotropin-releasing hormone (CRH). In addition, context-specific synthesis of NT occurs in hypothalamic neurosecretory cells located in the arcuate nucleus and parvocellular paraventricular nucleus, including distinct subsets of cells which release DA, CRH, or growth hormone-releasing hormone into the hypophysial portal circulation. At the level of the anterior pituitary, NT stimulates secretion of prolactin and occurs in subsets of gonadotropes and thyrotropes. Moreover, circulating hormones influence NT synthesis in the hypothalamus and anterior pituitary, raising the possibility that NT mediates certain feedback effects of the hormones on neuroendocrine cells. Gonadal steroids alter NT levels in the preoptic area, arcuate nucleus, and anterior pituitary; adrenal steroids alter NT levels in the hypothalamic periventricular nucleus and arcuate nucleus; and thyroid hormones alter NT levels in the hypothalamus and anterior pituitary. Finally, clarification of the specific neuroendocrine roles subserved by NT should be greatly facilitated by the use of newly developed agonists and antagonists of the peptide.
Collapse
Affiliation(s)
- W H Rostène
- INSERM U.339, Hôpital St. Antoine, Paris, France.
| | | |
Collapse
|
8
|
Li XM, Ferraro L, Tanganelli S, O'Connor WT, Hasselrot U, Ungerstedt U, Fuxe K. Neurotensin peptides antagonistically regulate postsynaptic dopamine D2 receptors in rat nucleus accumbens: a receptor binding and microdialysis study. J Neural Transm (Vienna) 1995; 102:125-37. [PMID: 8748677 DOI: 10.1007/bf01276508] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An in vitro receptor binding and in vivo microdialysis study was performed to further investigate the modulation of dopamine (DA) D2 receptors by neurotensin (NT) peptides. Saturation experiments with the D2 agonist [3H]NPA (N-propylnorapomorphine) showed that 10 nM of NT, 10 nM of neuromedin N (NN) and 1 nM of the C-terminal NT-(8-13) fragment significantly increased the KD values by 125%, 181%, and 194%, respectively without significantly affecting the Bmax value of the [3H]NPA binding sites in coronal sections of rat ventral forebrain mainly containing the nucleus accumbens (Acb) and the olfactory tubercle. In line with the previous findings that NT can increase GABA release in the Acb and that NT receptors are not found on DA terminals in this brain region, the present in vivo microdialysis study demonstrated that local perfusion of NT (1 nM) counteracted the D2 agonist pergolide (2 mu M) induced inhibition of GABA, but not of DA release in the rat Acb. This result indicates that NT counteracts the D2 agonist induced inhibition of GABA release in the rat Acb, via an antagonistic postsynaptic NT/D2 receptor interaction as also suggested by the inhibitory regulation of D2 receptor affinity in the Acb by the NT peptides demonstrated in the present receptor binding experiments. Thus, the neuroleptic and potential antipsychotic profile of the NT peptides may involve an antagonistic NT/D2 receptor regulation in the ventral striatum.
Collapse
Affiliation(s)
- X M Li
- Department of Neuroscience, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Alexander MJ, Leeman SE. Estrogen-inducible neurotensin immunoreactivity in the preoptic area of the female rat. J Comp Neurol 1994; 345:496-509. [PMID: 7962697 DOI: 10.1002/cne.903450403] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neurotensin (NT) neurons in the rat preoptic area are implicated in female-specific regulation of reproduction. Estrogen markedly increases expression of mRNA encoding the neurotensin/neuromedin N (NT/N) precursor in several cell groups of the preoptic area, including the anteroventral periventricular nucleus, periventricular preoptic nucleus, and medial preoptic nucleus. In the present study, immunohistochemistry was performed on tissue from ovariectomized females with or without estradiol treatment to test the hypothesis that increased levels of NT accompany hormonal induction of NT/N mRNA in these cell group. Since colchicine treatment is required for visualization of NT-immunoreactive cell bodies, an additional objective of this study was to determine whether colchicine alters expression of NT/N mRNA in this area. Estradiol caused a pronounced increase in the number of NT-immunoreactive cell bodies in the anteroventral periventricular nucleus, as well as adjacent parts of the periventricular preoptic nucleus and medial preoptic nucleus. In the absence of colchicine, estradiol increased the number of NT-immunoreactive fibers in these same regions. Surprisingly, NT-immunoreactive cell bodies with intense staining were abundant in certain parts of the medial preoptic nucleus regardless of hormonal condition. NT-immunoreactive cell bodies were also numerous in certain regions where NT/N mRNA-expressing cells are scarce, and in two of these regions, the median preoptic nucleus and vascular organ of the lamina terminalis, estradiol substantially reduced the number of immunoreactive cell bodies. Treatment of ovariectomized females with colchicine induced expression of NT/N mRNA in the same regions where NT-immunoreactive cell bodies were unexpectedly numerous, thus providing a compelling explanation for the discordant distributions of the mRNA and peptide. Together with previous findings, the present results indicate that increased levels of NT accompany hormonal induction of NT/N mRNA in the anteroventral periventricular nucleus, as well as adjacent parts of the periventricular preoptic nucleus and medial preoptic nucleus. In other regions of the preoptic area, colchicine-inducible expression of NT/N mRNA confounds assessment of hormonal influences on NT synthesis. Multiple populations of neurons capable of NT synthesis can be distinguished in the rostral preoptic area on the basis of differential responsiveness to estrogen or colchicine, thereby providing additional evidence for functional heterogeneity among NT-synthesizing neurons in this region.
Collapse
Affiliation(s)
- M J Alexander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Massachusetts 02118
| | | |
Collapse
|
10
|
Maher E, Bachoo B, Polosa C. In vitro and in vivo evidence of neurotensin release from preganglionic axon terminals in the stellate ganglion of the cat. Brain Res 1994; 640:131-5. [PMID: 8004441 DOI: 10.1016/0006-8993(94)91866-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously shown that the neurotensin (NT) store in preganglionic axon terminals of the cat stellate ganglion (SG) is reversibly depleted by prolonged preganglionic stimulation. The present study addresses the questions of whether the preganglionic axon terminals release NT in response to depolarizing stimuli in vitro and whether in vivo NT is released by the tonic firing of the sympathetic preganglionic neurons. Slices of the SG of the anaesthetized cat, maintained in oxygenated Ringer solution, released NT. The efflux increased when the K concentration was increased from 5 to 25 or 45 mM or when veratridine was added to the medium. In Ca-free medium, efflux was suppressed. The effect of veratridine was blocked by tetrodotoxin (TTX). In awake, freely moving cats, in which TTX was applied for 4 days to the preganglionic input of the right SG, the NT content of this ganglion doubled by comparison with the left SG. Since NT accumulates proximal to a ligature on the preganglionic input of the SG, the increased NT content is likely to result from suppression of action potential-dependent release while influx into the terminals persists. This result suggests that the steady state of the NT store in sympathetic preganglionic terminals is the result of a steady influx from the soma balanced by action potential-dependent loss, presumably release.
Collapse
Affiliation(s)
- E Maher
- Department of Physiology, McGill University, Montreal, Que., Canada
| | | | | |
Collapse
|
11
|
Keegan KD, Woodruff GN, Pinnock RD. The pharmacology of neurotensin analogues on neurones in the rat substantia nigra, pars compacta in vitro. Eur J Pharmacol 1994; 253:131-7. [PMID: 8013539 DOI: 10.1016/0014-2999(94)90767-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of neurotensin and neurotensin analogues on dopamine neurones were studied in an in vitro slice preparation of rat substantia nigra, pars compacta using extracellular and intracellular recording techniques. Neurotensin had an EC50 of 13 nM in these experiments. This study showed that the C-terminal 5 amino acids of neurorotensin in neurotensin-(9-13) retained agonist activity on substantia nigra neurones. The naturally occurring neurotensin analogues neuromedin N and avian neurotensin were also active whilst kinetensin was inactive. Kinetensin differs from the C-terminal neurotensin 5-amino acids by two amino acids. The difference between the activity of neurotensin and the inactivity of kinetensin was investigated using synthetic peptides which contained single amino acid substitutions. These results show that position 12 of neurotensin is important for agonist activity in the substantia nigra.
Collapse
Affiliation(s)
- K D Keegan
- Parke-Davis Neuroscience Research Centre, Addenbrookes Hospital Site, Cambridge, UK
| | | | | |
Collapse
|
12
|
Gaudriault G, Zsürger N, Vincent JP. Compared binding properties of 125I-labeled analogues of neurotensin and neuromedin N in rat and mouse brain. J Neurochem 1994; 62:361-8. [PMID: 8263537 DOI: 10.1046/j.1471-4159.1994.62010361.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurotensin and neuromedin N are two structurally related peptides that are synthesized by a common precursor. The purpose of the present work was to characterize neuromedin N receptors in rat and mouse brain and to compare these receptors with those of neurotensin. A radiolabeled analogue of neuromedin N has been prepared by acylation of the N-terminal amino group of the peptide with the 125I-labeled Bolton-Hunter reagent. This 125I-labeled derivative of neuromedin N bound to newborn mouse brain homogenate with high affinity (KD = 0.5 nM). Cross-competition experiments between radiolabeled and unlabeled neurotensin and neuromedin N indicated that each peptide was able to displace completely and specifically the other peptide from its interaction with its receptor. Independently of the radioligand used, the affinity of neurotensin was always better than that of neuromedin N. Quantitative radioautographic studies demonstrated that the ratio of labeling intensities obtained with 125I-labeled analogues of neurotensin and neuromedin N remained constant in all the brain areas. Our results do not support the existence of a specific neuromedin N receptor in rat and mouse brain and can be explained by the presence of a common receptor for both peptides.
Collapse
Affiliation(s)
- G Gaudriault
- Institut de Pharmacologic Moléculaire et Cellulaire, CNRS UPR 411, Université de Nice-Sophia Antipolis, Valbonne, France
| | | | | |
Collapse
|
13
|
Li XM, Finnman UB, von Euler G, Hedlund PB, Fuxe K. Neuromedin N is a potent modulator of dopamine D2 receptor agonist binding in rat neostriatal membranes. Neurosci Lett 1993; 155:121-4. [PMID: 8104321 DOI: 10.1016/0304-3940(93)90687-g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the concentration range of 1-10 nM, neuromedin N produced a significant concentration-related increase in the Kd values of [3H]L-(-)-N-propylnorapomorphine binding sites in rat neostriatal membranes with a peak action at 10 nM (36% increase versus the control group mean value). The Bmax values were not affected by neuromedin N. Neurotensin at 10 nM induced an increase in the Kd values, which was not affected by a threshold concentration of neuromedin N (0.1 nM). In view of the higher potency of neuromedin N versus neurotensin to modulate neostriatal D2 receptors in contrast to the higher potency of neurotensin versus neuromedin N to bind to the cloned neurotensin receptors, it seems possible that the neuromedin N activated neostriatal neurotensin receptors controlling the D2 receptors represent a distinct subtype of neurotensin receptors.
Collapse
Affiliation(s)
- X M Li
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
14
|
Bidard JN, de Nadai F, Rovere C, Moinier D, Laur J, Martinez J, Cuber JC, Kitabgi P. Immunological and biochemical characterization of processing products from the neurotensin/neuromedin N precursor in the rat medullary thyroid carcinoma 6-23 cell line. Biochem J 1993; 291 ( Pt 1):225-33. [PMID: 8471039 PMCID: PMC1132506 DOI: 10.1042/bj2910225] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurotensin (NT) and neuromedin N (NN) are two related biologically active peptides that are encoded in the same precursor molecule. In the rat, the precursor consists of a 169-residue polypeptide starting with an N-terminal signal peptide and containing in its C-terminal region one copy each of NT and NN. NN precedes NT and is separated from it by a Lys-Arg sequence. Two other Lys-Arg sequences flank the N-terminus of NN and the C-terminus of NT. A fourth Lys-Arg sequence occurs near the middle of the precursor and is followed by an NN-like sequence. Finally, an Arg-Arg pair is present within the NT moiety. The four Lys-Arg doublets represent putative processing sites in the precursor molecule. The present study was designed to investigate the post-translational processing of the NT/NN precursor in the rat medullary thyroid carcinoma (rMTC) 6-23 cell line, which synthesizes large amounts of NT upon dexamethasone treatment. Five region-specific antisera recognizing the free N- or C-termini of sequences adjacent to the basic doublets were produced, characterized and used for immunoblotting and radioimmunoassay studies in combination with gel filtration, reverse-phase h.p.l.c. and trypsin digestion of rMTC 6-23 cell extracts. Because two of the antigenic sequences, i.e. NN and the NN-like sequence, start with a lysine residue that is essential for recognition by their respective antisera, a micromethod by which trypsin specifically cleaves at arginine residues was developed. The results show that dexamethasone-treated rMTC 6-23 cells produced comparable amounts of NT, NN and a peptide corresponding to a large N-terminal precursor fragment lacking the NN and NT moieties. This large fragment was purified. N-Terminal sequencing revealed that it started at residue Ser23 of the prepro-NT/NN sequence, and thus established the Cys22-Ser23 bond as the cleavage site of the signal peptide. Two other large N-terminal fragments bearing respectively the NN and NT sequences at their C-termini were present in lower amounts. The NN-like sequence was internal to all the large fragments. There was no evidence for the presence of peptides with the NN-like sequence at their N-termini. This shows that, in rMTC 6-23 cells, the precursor is readily processed at the three Lys-Arg doublets that flank and separate the NT and NN sequences. In contrast, the Lys-Arg doublet that precedes the NN-like sequence is not processed in this system.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J N Bidard
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, Université de Nice-Sophia Antipolis, Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Malendowicz LK, Nussdorfer GG, Markowska A, Nowak KW, Torlinski L. Effects of neuromedin-N on the pituitary-adrenocortical axis of dexamethasone-suppressed rats. Neuropeptides 1993; 24:1-4. [PMID: 8381527 DOI: 10.1016/0143-4179(93)90034-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuromedin-N (NMN) (6 micrograms/100 g body weight for 2 d) partially reversed the dexamethasone (Dx)-induced inhibition of ACTH release and the consequent adrenal atrophy and decrease in glucocorticoid (corticosterone) plasma concentration in rats. Dx administration did not alter the level of circulating mineralocorticoid (aldosterone), but NMN (2 or 6 micrograms/100 g body weight for 2 d) significantly increased it. These findings suggest that the mechanism underlying the glucocorticoid (but not the mineralocorticoid) secretagogue action of NMN involves the stimulation of hypophyseal ACTH release. The hypothesis is advanced that the potent mineralocorticoid secretagogue effect of NMN may be mediated either by a direct action on zona glomerulosa cells or by the enhanced release of other regulatory peptides exerting aldosterone stimulating effect.
Collapse
Affiliation(s)
- L K Malendowicz
- Department of Histology and Embryology (School of Medicine), University of Poznan, Poland
| | | | | | | | | |
Collapse
|
16
|
Kitabgi P, De Nadai F, Rovère C, Bidard JN. Biosynthesis, maturation, release, and degradation of neurotensin and neuromedin N. Ann N Y Acad Sci 1992; 668:30-42. [PMID: 1463273 DOI: 10.1111/j.1749-6632.1992.tb27337.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Kitabgi
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, Université de Nice-Sophia Antipolis, Valbonne, France
| | | | | | | |
Collapse
|
17
|
Kitabgi P, Dubuc I, Nouel D, Costentin J, Cuber JC, Fulcrand H, Doulut S, Rodriguez M, Martinez J. Effects of thiorphan, bestatin and a novel metallopeptidase inhibitor JMV 390-1 on the recovery of neurotensin and neuromedin N released from mouse hypothalamus. Neurosci Lett 1992; 142:200-4. [PMID: 1454216 DOI: 10.1016/0304-3940(92)90373-f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of the endopeptidase 24.11 ('enkephalinase') inhibitor thiorphan, the aminopeptidase inhibitor bestatin and a novel metallopeptidase inhibitor JMV 390-1 on the K(+)-evoked release of immunoreactive neurotensin and neuromedin N (iNT and iNN) from mouse hypothalamic slices were examined. (JMV 390-1 inhibits several metallopeptidases including endopeptidases 24.11, 24.15 and 24.16, and aminopeptidase N equipotently with Ki values around 50 nM.) Thiorphan increased the recovery of released iNT nearly 2-fold and had no effect on iNN. Bestatin produced a 4-fold increase in iNN recovery and was inactive on iNT. Finally, iNT and iNN recoveries were increased up to 4- and 5-fold, respectively, by JMV 390-1. These results show that in the mouse hypothalamus endopeptidase 24.11 participates with other metalloendopeptidases to the degradation of endogenously released NT while endogenously released NN is principally degraded by aminopeptidase(s).
Collapse
Affiliation(s)
- P Kitabgi
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, Sophia Antipolis, Valbonne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Woulfe J, Beaudet A. Neurotensin terminals form synapses primarily with neurons lacking detectable tyrosine hydroxylase immunoreactivity in the rat substantia nigra and ventral tegmental area. J Comp Neurol 1992; 321:163-76. [PMID: 1351897 DOI: 10.1002/cne.903210114] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A light and electron microscopic double antigen localization technique was employed to examine the fine structural relationship between neurotensin-containing axon terminals and dopaminergic neurons in the substantia nigra and ventral tegmental area of the rat. At the light microscopic level, neurotensin-immunoreactive terminals were densely distributed throughout the substantia nigra pars compacta and ventral tegmental area in close proximity to tyrosine hydroxylase-immunoreactive somata and dendrites. On electron microscopic examination, direct synaptic connections were identified between neurotensin-immunoreactive axon terminals and tyrosine hydroxylase-immunopositive perikarya and dendrites. However, only 8.2% and 8.8% of the neurotensin-immunoreactive axonal profiles detected in the substantia nigra and ventral tegmental area, respectively, were found in direct apposition with tyrosine hydroxylase-immunostained elements. In turn, only 9.3% and 10.0% of tyrosine hydroxylase immunoreactive dendrites sampled from the substantia nigra and ventral tegmental area, respectively, were seen in contact with neurotensin immunopositive axon terminals. However, neurotensin-immunoreactive and tyrosine hydroxylase-immunolabelled elements were frequently identified in close anatomical proximity (less than 5 microns) to one another. These results are interpreted in light of the selective association of neurotensin receptors with dopaminergic neurons in the substantia nigra and ventral tegmental area to suggest a predominantly parasynaptic mechanism of action for neurotensin in the ventral midbrain.
Collapse
Affiliation(s)
- J Woulfe
- Montreal Neurological Institute, McGill University, Quebec, Canada
| | | |
Collapse
|
19
|
Kitabgi P, Masuo Y, Nicot A, Berod A, Cuber JC, Rostène W. Marked variations of the relative distributions of neurotensin and neuromedin N in micropunched rat brain areas suggest differential processing of their common precursor. Neurosci Lett 1991; 124:9-12. [PMID: 1857550 DOI: 10.1016/0304-3940(91)90810-g] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuromedin N (NN) is a hexapeptide that shares a four amino acid identity with the C-terminus of neurotensin (NT) and exhibits NT-like effects in the central nervous system. Both peptides were recently shown to be encoded in the same precursor molecule. By means of specific and sensitive radioimmunoassays, we compared the distribution of immunoreactive NT and NN (iNT and iNN) in micropunched rat brain structures. The data revealed marked regional variations in the ratio of iNT over iNN. For instance, the ratio value was 4.5 in the posterior hypothalamus and 0.8 in the mammillary bodies. Reverse phase HPLC analysis of extracts of several brain regions showed that iNT and iNN coeluted with synthetic NT and NN, respectively. The results suggest that differential processing of the common neurotensin/neuromedin N precursor occurs in various regions of the rat brain.
Collapse
Affiliation(s)
- P Kitabgi
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, Sophia Antipolis, Valbonne, France
| | | | | | | | | | | |
Collapse
|