1
|
Chung KP. Cytoplasmic inheritance: The transmission of plastid and mitochondrial genomes across cells and generations. PLANT PHYSIOLOGY 2025; 198:kiaf168. [PMID: 40304456 PMCID: PMC12079397 DOI: 10.1093/plphys/kiaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
In photosynthetic organisms, genetic material is stored in the nucleus and the two cytoplasmic organelles: plastids and mitochondria. While both the nuclear and cytoplasmic genomes are essential for survival, the inheritance of these genomes is subject to distinct laws. Cytoplasmic inheritance differs fundamentally from nuclear inheritance through two unique processes: vegetative segregation and uniparental inheritance. To illustrate the significance of these processes in shaping cytoplasmic inheritance, I will trace the journey of plastid and mitochondrial genomes, following their transmission from parents to progeny. The cellular and molecular mechanisms regulating their transmission along the path are explored. By providing a framework that encompasses the inheritance of both plastid and mitochondrial genomes across cells and generations, I aim to present a comprehensive overview of cytoplasmic inheritance and highlight the intricate interplay of cellular processes that determine inheritance patterns. I will conclude this review by summarizing recent breakthroughs in the field that have significantly advanced our understanding of cytoplasmic inheritance. This knowledge has paved the way for achieving the first instance of controlled cytoplasmic inheritance in plants, unlocking the potential to harness cytoplasmic genetics for crop improvement.
Collapse
Affiliation(s)
- Kin Pan Chung
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
2
|
Jiang LJ, Zhao J, Wang JG, Landrein S, Shi JP, Huang CJ, Luo M, Zhou XM, Niu HB, He ZR. Deciphering the evolution and biogeography of ant-ferns Lecanopteris s.s. Mol Phylogenet Evol 2024; 201:108199. [PMID: 39278383 DOI: 10.1016/j.ympev.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris s.s., attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris s.s. first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris s.s.. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.
Collapse
Affiliation(s)
- Li-Ju Jiang
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Sven Landrein
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong Special Administrative Region of China
| | - Ji-Pu Shi
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Miao Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Hong-Bin Niu
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China.
| |
Collapse
|
3
|
Zhao J, Huang CJ, Jiang LJ, He ZR, Yang S, Zhu ZM, Zhang L, Yu H, Zhou XM, Wang JG. Phylogenomic analyses of the pantropical Platycerium Desv. (Platycerioideae) reveal their complex evolution and historical biogeography. Mol Phylogenet Evol 2024; 201:108213. [PMID: 39393764 DOI: 10.1016/j.ympev.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Platycerium is a genus of pantropical epiphytic ferns consisting of ca. 18 species and are highly sought after by horticultural enthusiasts. Although the monophyly of this genus has been well supported in previous molecular studies, as an intercontinentally disjunct genus, the origin and distribution pattern of Platycerium were elusive and controversial. This is mainly due to limited taxon sampling, a plastid representing only a single coalescent history, the lack of fossil evidence, and so on. Here, by utilizing genome-skimming sequencing, transcriptome sequencing, and flow cytometry, we integrated chloroplast genomes, data of single-copy nuclear genes, ploidy levels, morphology, and geographic distribution to understand the species phylogeny and the evolutionary and biogeographic history of Platycerium. Our major results include: (1) based on both plastid and nuclear datasets, Platycerium is consistently resolved into three fully supported clades: the Afro-American (AA) clade, the Javan-Australian (JA) clade, and the Malayan-Asian (MA) clade. The AA clade and MA clade are further divided into three and two subclades, respectively; (2) a large amount of gene tree conflict, as well as cytonuclear discordance, was found and can be explained by hybridization and incomplete lineage sorting, and most of the hybridization hypotheses represented ancient hybridization events; (3) through molecular dating, the crown age of Platycerium is determined to be at approximately 32.79 Ma based on the plastid dataset or 29.08 Ma based on the nuclear dataset in the Middle Oligocene; (4) ancestral area reconstruction analysis from different datasets showed that Platycerium most likely originated from Indochina; (5) current distribution patterns are resultant from long-distance dispersals, ancient orogeny, and an ancient climate event; and (6) species diversification was driven by polyploidization, dispersal, and hybridization. This study presented here will help understand the evolution of tropical plant flora and provide a reference for the cultivation and breeding of staghorn ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Li-Ju Jiang
- Gardening and Horticulture Center, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Shuai Yang
- Plant Fairyland, Boda Road, Chenggong District, Kunming 650503, Yunnan, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
4
|
Togashi T, Parker GA, Horinouchi Y. Mitochondrial uniparental inheritance achieved after fertilization challenges the nuclear-cytoplasmic conflict hypothesis for anisogamy evolution. Biol Lett 2023; 19:20230352. [PMID: 37752851 PMCID: PMC10523090 DOI: 10.1098/rsbl.2023.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
In eukaryotes, a fundamental phenomenon underlying sexual selection is the evolution of gamete size dimorphism between the sexes (anisogamy) from an ancestral gametic system with gametes of the same size in both mating types (isogamy). The nuclear-cytoplasmic conflict hypothesis has been one of the major theoretical hypotheses for the evolution of anisogamy. It proposes that anisogamy evolved as an adaptation for preventing nuclear-cytoplasmic conflict by minimizing male gamete size to inherit organelles uniparentally. In ulvophycean green algae, biparental inheritance of organelles is observed in isogamous species, as the hypothesis assumes. So we tested the hypothesis by examining whether cytoplasmic inheritance is biparental in Monostroma angicava, a slightly anisogamous ulvophycean that produces large male gametes. We tracked the fates of mitochondria in intraspecific crosses with PCR-RFLP markers. We confirmed that mitochondria are maternally inherited. However, paternal mitochondria enter the zygote, where their DNA can be detected for over 14 days. This indicates that uniparental inheritance is enforced by eliminating paternal mitochondrial DNA in the zygote, rather than by decreasing male gamete size to the minimum. Thus, uniparental cytoplasmic inheritance is achieved by an entirely different mechanism, and is unlikely to drive the evolution of anisogamy in ulvophyceans.
Collapse
Affiliation(s)
- Tatsuya Togashi
- Marine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Japan
| | - Geoff A. Parker
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Yusuke Horinouchi
- Marine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Japan
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Japan
| |
Collapse
|
5
|
Norizuki T, Minamino N, Sato M, Ueda T. Autophagy regulates plastid reorganization during spermatogenesis in the liverwort Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2023; 14:1101983. [PMID: 36844055 PMCID: PMC9947651 DOI: 10.3389/fpls.2023.1101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Autophagy is a highly conserved system that delivers cytoplasmic components to lysosomes/vacuoles. Plastids are also degraded through autophagy for nutrient recycling and quality control; however, the involvement of autophagic degradation of plastids in plant cellular differentiation remains unclear. Here, we investigated whether spermiogenesis, the differentiation of spermatids into spermatozoids, in the liverwort Marchantia polymorpha involves autophagic degradation of plastids. Spermatozoids of M. polymorpha possess one cylindrical plastid at the posterior end of the cell body. By fluorescently labeling and visualizing plastids, we detected dynamic morphological changes during spermiogenesis. We found that a portion of the plastid was degraded in the vacuole in an autophagy-dependent manner during spermiogenesis, and impaired autophagy resulted in defective morphological transformation and starch accumulation in the plastid. Furthermore, we found that autophagy was dispensable for the reduction in plastid number and plastid DNA elimination. These results demonstrate a critical but selective role of autophagy in plastid reorganization during spermiogenesis in M. polymorpha.
Collapse
Affiliation(s)
- Takuya Norizuki
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
6
|
Shestibratov KA, Baranov OY, Mescherova EN, Kiryanov PS, Panteleev SV, Mozharovskaya LV, Krutovsky KV, Padutov VE. Structure and Phylogeny of the Curly Birch Chloroplast Genome. Front Genet 2021; 12:625764. [PMID: 34671379 PMCID: PMC8521055 DOI: 10.3389/fgene.2021.625764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Curly birch [Betula pendula var. carelica (Merckl.) Hämet-Ahti] is a relatively rare variety of silver birch (B. pendula Roth) that occurs mainly in Northern Europe and northwest part of Russia (Karelia). It is famous for the beautiful decorative texture of wood. Abnormal xylogenesis underlying this trait is heritable, but its genetic mechanism has not yet been fully understood. The high number of potentially informative genetic markers can be identified through sequencing nuclear and organelle genomes. Here, the de novo assembly, complete nucleotide sequence, and annotation of the chloroplast genome (plastome) of curly birch are presented for the first time. The complete plastome length is 160,523 bp. It contains 82 genes encoding structural and enzymatic proteins, 37 transfer RNAs (tRNAs), and eight ribosomal RNAs (rRNAs). The chloroplast DNA (cpDNA) is AT-rich containing 31.5% of A and 32.5% of T nucleotides. The GC-rich regions represent inverted repeats IR1 and IR2 containing genes of rRNAs (5S, 4.5S, 23S, and 16S) and tRNAs (trnV, trnI, and trnA). A high content of GC was found in rRNA (55.2%) and tRNA (53.2%) genes, but only 37.0% in protein-coding genes. In total, 384 microsatellite or simple sequence repeat (SSR) loci were found, mostly with mononucleotide motifs (92% of all loci) and predominantly A or T motifs (94% of all mononucleotide motifs). Comparative analysis of cpDNA in different plant species revealed high structural and functional conservatism in organization of the angiosperm plastomes, while the level of differences depends on the phylogenetic relationship. The structural and functional organization of plastome in curly birch was similar to cpDNA in other species of woody plants. Finally, the identified cpDNA sequence variation will allow to develop useful genetic markers.
Collapse
Affiliation(s)
- Konstantin A Shestibratov
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia.,Forestry Faculty, G. F. Morozov Voronezh State University of Forestry and Technologies, Voronezh, Russia
| | - Oleg Yu Baranov
- Laboratory of Genomics and Bioinformatics, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| | - Eugenia N Mescherova
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Pavel S Kiryanov
- Laboratory of Genomics and Bioinformatics, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| | - Stanislav V Panteleev
- Laboratory of Genomics and Bioinformatics, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| | - Ludmila V Mozharovskaya
- Laboratory of Genomics and Bioinformatics, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| | - Konstantin V Krutovsky
- Forestry Faculty, G. F. Morozov Voronezh State University of Forestry and Technologies, Voronezh, Russia.,Department of Forest Genetics and Forest Tree Breeding, George-August University of Göttingen, Göttingen, Germany.,Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Vladimir E Padutov
- Department of Genetics, Tree Breeding and Biotechnology, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| |
Collapse
|
7
|
Clade-Specific Plastid Inheritance Patterns Including Frequent Biparental Inheritance in Passiflora Interspecific Crosses. Int J Mol Sci 2021; 22:ijms22052278. [PMID: 33668897 PMCID: PMC7975985 DOI: 10.3390/ijms22052278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Plastid inheritance in angiosperms is presumed to be largely maternal, with the potential to inherit plastids biparentally estimated for about 20% of species. In Passiflora, maternal, paternal and biparental inheritance has been reported; however, these studies were limited in the number of crosses and progeny examined. To improve the understanding of plastid transmission in Passiflora, the progeny of 45 interspecific crosses were analyzed in the three subgenera: Passiflora, Decaloba and Astrophea. Plastid types were assessed following restriction digestion of PCR amplified plastid DNA in hybrid embryos, cotyledons and leaves at different developmental stages. Clade-specific patterns of inheritance were detected such that hybrid progeny from subgenera Passiflora and Astrophea predominantly inherited paternal plastids with occasional incidences of maternal inheritance, whereas subgenus Decaloba showed predominantly maternal and biparental inheritance. Biparental plastid inheritance was also detected in some hybrids from subgenus Passiflora. Heteroplasmy due to biparental inheritance was restricted to hybrid cotyledons and first leaves with a single parental plastid type detectable in mature plants. This indicates that in Passiflora, plastid retention at later stages of plant development may not reflect the plastid inheritance patterns in embryos. Passiflora exhibits diverse patterns of plastid inheritance, providing an excellent system to investigate underlying mechanisms in angiosperms.
Collapse
|
8
|
Cruzan MB, Hendrickson EC. Landscape Genetics of Plants: Challenges and Opportunities. PLANT COMMUNICATIONS 2020; 1:100100. [PMID: 33367263 PMCID: PMC7748010 DOI: 10.1016/j.xplc.2020.100100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 07/17/2020] [Indexed: 05/06/2023]
Abstract
Dispersal is one of the most important but least understood processes in plant ecology and evolutionary biology. Dispersal of seeds maintains and establishes populations, and pollen and seed dispersal are responsible for gene flow within and among populations. Traditional views of dispersal and gene flow assume models that are governed solely by geographic distance and do not account for variation in dispersal vector behavior in response to heterogenous landscapes. Landscape genetics integrates population genetics with Geographic Information Systems (GIS) to evaluate the effects of landscape features on gene flow patterns (effective dispersal). Surprisingly, relatively few landscape genetic studies have been conducted on plants. Plants present advantages because their populations are stationary, allowing more reliable estimates of the effects of landscape features on effective dispersal rates. On the other hand, plant dispersal is intrinsically complex because it depends on the habitat preferences of the plant and its pollen and seed dispersal vectors. We discuss strategies to assess the separate contributions of pollen and seed movement to effective dispersal and to delineate the effects of plant habitat quality from those of landscape features that affect vector behavior. Preliminary analyses of seed dispersal for three species indicate that isolation by landscape resistance is a better predictor of the rates and patterns of dispersal than geographic distance. Rates of effective dispersal are lower in areas of high plant habitat quality, which may be due to the effects of the shape of the dispersal kernel or to movement behaviors of biotic vectors. Landscape genetic studies in plants have the potential to provide novel insights into the process of gene flow among populations and to improve our understanding of the behavior of biotic and abiotic dispersal vectors in response to heterogeneous landscapes.
Collapse
|
9
|
Li C, Zheng Y, Huang P. Molecular markers from the chloroplast genome of rose provide a complementary tool for variety discrimination and profiling. Sci Rep 2020; 10:12188. [PMID: 32699274 PMCID: PMC7376030 DOI: 10.1038/s41598-020-68092-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
The rose is one of the most important ornamental woody plants because of its extensive use and high economic value. Herein, we sequenced a complete chloroplast genome of the miniature rose variety Rosa 'Margo Koster' and performed comparative analyses with sequences previously published for other species in the Rosaceae family. The chloroplast genome of Rosa 'Margo Koster', with a size of 157,395 bp, has a circular quadripartite structure typical of angiosperm chloroplast genomes and contains a total of 81 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Conjunction regions in the chloroplast genome of Rosa 'Margo Koster' were verified and manually corrected by Sanger sequencing. Comparative genome analysis showed that the IR contraction and expansion events resulted in rps19 and ycf1 pseudogenes. The phylogenetic analysis within the Rosa genus showed that Rosa 'Margo Koster' is closer to Rosa odorata than to other Rosa species. Additionally, we identified and screened highly divergent sequences and cpSSRs and compared their power to discriminate rose varieties by Sanger sequencing and capillary electrophoresis. The results showed that 15 cpSSRs are polymorphic, but their discriminating power is only moderate among a set of rose varieties. However, more than 150 single nucleotide variations (SNVs) were discovered in the flanking region of cpSSRs, and the results indicated that these SNVs have a higher divergence and stronger power for profiling rose varieties. These findings suggest that nucleotide mutations in the chloroplast genome may be an effective and powerful tool for rose variety discrimination and DNA profiling. These molecular markers in the chloroplast genome sequence of Rosa spp. will facilitate population and phylogenetic studies and other related studies of this species.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
10
|
Isolation of Intact Chloroplast for Sequencing Plastid Genomes of Five Festuca Species. PLANTS 2019; 8:plants8120606. [PMID: 31847311 PMCID: PMC6963596 DOI: 10.3390/plants8120606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 12/02/2022]
Abstract
Isolation of good quality chloroplast DNA (cpDNA) is a challenge in different plant species, although several methods for isolation are known. Attempts were undertaken to isolate cpDNA from Festuca grass species by using available standard protocols; however, they failed due to difficulties separating intact chloroplasts from the polysaccharides, oleoresin, and contaminated nuclear DNA that are present in the crude homogenate. In this study, we present a quick and inexpensive protocol for isolating intact chloroplasts from seven grass varieties/accessions of five Festuca species using a single layer of 30% Percoll solution. This protocol was successful in isolating high quality cpDNA with the least amount of contamination of other DNA. We performed Illumina MiSeq paired-end sequencing (2 × 300 bp) using 200 ng of cpDNA of each variety/accession. Chloroplast genome mapping showed that 0.28%–11.37% were chloroplast reads, which covered 94%–96% of the reference plastid genomes of the closely related grass species. This improved method delivered high quality cpDNA from seven grass varieties/accessions of five Festuca species and could be useful for other grass species with similar genome complexity.
Collapse
|
11
|
Adhikari B, Caruso CM, Case AL. Beyond balancing selection: frequent mitochondrial recombination contributes to high-female frequencies in gynodioecious Lobelia siphilitica (Campanulaceae). THE NEW PHYTOLOGIST 2019; 224:1381-1393. [PMID: 31442304 DOI: 10.1111/nph.16136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Gynodioecy is a sexual system in which females and hermaphrodites co-occur. In most gynodioecious angiosperms, sex is determined by an interaction between mitochondrial male-sterility genes (CMS) that arise via recombination and nuclear restorer alleles that evolve to suppress them. In theory, gynodioecy occurs when multiple CMS types are maintained at equilibrium frequencies by balancing selection. However, some gynodioecious populations contain very high frequencies of females. High female frequencies are not expected under balancing selection, but could be explained by the repeated introduction of novel CMS types. To test for balancing selection and/or the repeated introduction of novel CMS, we characterised cytoplasmic haplotypes from 61 populations of Lobelia siphilitica that vary widely in female frequency. We confirmed that mitotype diversity and female frequency were positively correlated across populations, consistent with balancing selection. However, while low-female populations hosted mostly common mitotypes, high-female populations and female plants hosted mostly rare, recombinant mitotypes likely to carry novel CMS types. Our results suggest that balancing selection maintains established CMS types across this species, but extreme female frequencies result from frequent invasion by novel CMS types. We conclude that balancing selection alone cannot account for extreme population sex-ratio variation within a gynodioecious species.
Collapse
Affiliation(s)
- Binaya Adhikari
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, 23909, USA
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andrea L Case
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
12
|
Marciniec R, Zięba E, Winiarczyk K. Distribution of plastids and mitochondria during male gametophyte formation in Tinantia erecta (Jacq.) Fenzl. PROTOPLASMA 2019; 256:1051-1063. [PMID: 30852672 PMCID: PMC6579867 DOI: 10.1007/s00709-019-01363-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 05/27/2023]
Abstract
During meiosis in microsporogenesis, autonomous cellular organelles, i.e., plastids and mitochondria, move and separate into daughter cells according to a specific pattern. This process called chondriokinesis is characteristic for a given plant species. The key criterion for classification of the chondriokinesis types was the arrangement of cell organelles during two meiosis phases: metaphase I and telophase I. The autonomous organelles participate in cytoplasmic inheritance; therefore, their precise distribution to daughter cells determines formation of identical viable microspores. In this study, the course of chondriokinesis during the development of the male gametophyte in Tinantia erecta was analyzed. The study was conducted using optical and transmission electron microscopes. During microsporogenesis in T. erecta, autonomous cell organelles moved in a manner defined as a neutral-equatorial type of chondriokinesis. Therefore, metaphase I plastids and mitochondria were evenly dispersed around the metaphase plate and formed an equatorial plate between the daughter nuclei in early telophase I. Changes in the ultrastructure of plastids and mitochondria during pollen microsporogenesis were also observed.
Collapse
Affiliation(s)
- Rafał Marciniec
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Emil Zięba
- Confocal and Electron Microscopy Laboratory, Centre for Interdisciplinary Research, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718, Lublin, Poland
| | - Krystyna Winiarczyk
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
13
|
|
14
|
Pérez‐Alquicira J, Weller SG, Domínguez CA, Molina‐Freaner FE, Tsyusko OV. Different patterns of colonization of Oxalis alpina in the Sky Islands of the Sonoran desert via pollen and seed flow. Ecol Evol 2018; 8:5661-5673. [PMID: 29938082 PMCID: PMC6010862 DOI: 10.1002/ece3.4096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/08/2022] Open
Abstract
Historical factors such as climatic oscillations during the Pleistocene epoch have dramatically impacted species distributions. Studies of the patterns of genetic structure in angiosperm species using molecular markers with different modes of inheritance contribute to a better understanding of potential differences in colonization and patterns of gene flow via pollen and seeds. These markers may also provide insights into the evolution of reproductive systems in plants. Oxalis alpina is a tetraploid, herbaceous species inhabiting the Sky Island region of the southwestern United States and northern Mexico. Our main objective in this study was to analyze the influence of climatic oscillations on the genetic structure of O. alpina and the impact of these oscillations on the evolutionary transition from tristylous to distylous reproductive systems. We used microsatellite markers and compared our results to a previous study using chloroplast genetic markers. The phylogeographic structure inferred by both markers was different, suggesting that intrinsic characteristics including the pollination system and seed dispersal have influenced patterns of gene flow. Microsatellites exhibited low genetic structure, showed no significant association between geographic and genetic distances, and all individual genotypes were assigned to two main groups. In contrast, chloroplast markers exhibited a strong association between geographic and genetic distance, had higher levels of genetic differentiation, and were assigned to five groups. Both types of DNA markers showed evidence of a northward expansion as a consequence of climate warming occurring in the last 10,000 years. The data from both types of markers support the hypothesis for several independent transitions from tristyly to distyly.
Collapse
Affiliation(s)
- Jessica Pérez‐Alquicira
- Departamento de Botánica y ZoologíaCONACYT – Laboratorio Nacional de Identificación y Caracterización VegetalCentro Universitario de Ciencias Biológicas y AgropecuariasUniversidad de GuadalajaraZapopanMexico
| | - Stephen G. Weller
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia
| | - César A. Domínguez
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Francisco E. Molina‐Freaner
- Departamento de Ecología de la Biodiversidad, Estación Regional del NoroesteInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoHermosilloMéxico
| | - Olga V. Tsyusko
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKentucky
| |
Collapse
|
15
|
Androsiuk P, Jastrzębski JP, Paukszto Ł, Okorski A, Pszczółkowska A, Chwedorzewska KJ, Koc J, Górecki R, Giełwanowska I. The complete chloroplast genome of Colobanthus apetalus (Labill.) Druce: genome organization and comparison with related species. PeerJ 2018; 6:e4723. [PMID: 29844954 PMCID: PMC5970550 DOI: 10.7717/peerj.4723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/17/2018] [Indexed: 02/02/2023] Open
Abstract
Colobanthus apetalus is a member of the genus Colobanthus, one of the 86 genera of the large family Caryophyllaceae which groups annual and perennial herbs (rarely shrubs) that are widely distributed around the globe, mainly in the Holarctic. The genus Colobanthus consists of 25 species, including Colobanthus quitensis, an extremophile plant native to the maritime Antarctic. Complete chloroplast (cp) genomes are useful for phylogenetic studies and species identification. In this study, next-generation sequencing (NGS) was used to identify the cp genome of C. apetalus. The complete cp genome of C. apetalus has the length of 151,228 bp, 36.65% GC content, and a quadripartite structure with a large single copy (LSC) of 83,380 bp and a small single copy (SSC) of 17,206 bp separated by inverted repeats (IRs) of 25,321 bp. The cp genome contains 131 genes, including 112 unique genes and 19 genes which are duplicated in the IRs. The group of 112 unique genes features 73 protein-coding genes, 30 tRNA genes, four rRNA genes and five conserved chloroplast open reading frames (ORFs). A total of 12 forward repeats, 10 palindromic repeats, five reverse repeats and three complementary repeats were detected. In addition, a simple sequence repeat (SSR) analysis revealed 41 (mono-, di-, tri-, tetra-, penta- and hexanucleotide) SSRs, most of which were AT-rich. A detailed comparison of C. apetalus and C. quitensis cp genomes revealed identical gene content and order. A phylogenetic tree was built based on the sequences of 76 protein-coding genes that are shared by the eleven sequenced representatives of Caryophyllaceae and C. apetalus, and it revealed that C. apetalus and C. quitensis form a clade that is closely related to Silene species and Agrostemma githago. Moreover, the genus Silene appeared as a polymorphic taxon. The results of this study expand our knowledge about the evolution and molecular biology of Caryophyllaceae.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Justyna Koc
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ryszard Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
16
|
Tchórzewska D. Chondriokinesis during microsporogenesis in plants. PLANTA 2017; 246:1-18. [PMID: 28484865 PMCID: PMC5486550 DOI: 10.1007/s00425-017-2706-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/29/2017] [Indexed: 05/07/2023]
Abstract
MAIN CONCLUSION Chondriokinesis represents a highly orchestrated process of organelle rearrangement in all dividing plant and animal cells, ensuring a proper course of karyokinesis and cytokinesis. This process plays a key role in male gametophyte formation. Chondriokinesis is a regular rearrangement of cell organelles, assuring their regular inheritance, during both mitotic and meiotic divisions in plant and animal cells. The universal occurrence of the process implies its high conservatism and its probable origin at an early stage of plant evolution. The role of chondriokinesis is not only limited to segregation of cell organelles into daughter cells, but also prevention of fusion of karyokinetic spindles and delineation of the cell division plane. Thus, chondriokinesis plays an indispensable role in mitosis and meiosis as one of the various factors in harmonised cell division, being a key process in the formation of viable cells. Therefore, disturbances in this process often result in development of abnormal daughter cells. This has far-reaching consequences for the meiotic division, as emergence of abnormal generative cells impedes sexual reproduction in plants. This review is focused on microsporogenesis, because various plants exhibit a problem with sexual reproduction caused by male sterility. In this paper for the first time in almost 100 years, it is presented a compilation of data on chondriokinesis proceeding during microsporogenesis in plants, and providing view of the role, mechanism, and classification of this process in male gametophyte formation.
Collapse
Affiliation(s)
- Dorota Tchórzewska
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033, Lublin, Poland.
| |
Collapse
|
17
|
Sytsma KJ, Gottlieb LD. CHLOROPLAST DNA EVOLUTION AND PHYLOGENETIC RELATIONSHIPS IN
CLARKIA
SECT.
PERIPETASMA
(ONAGRACEAE). Evolution 2017; 40:1248-1261. [DOI: 10.1111/j.1558-5646.1986.tb05748.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1986] [Accepted: 07/15/1986] [Indexed: 11/29/2022]
|
18
|
Lacey EP. PARENTAL EFFECTS IN PLANTAGO LANCEOLATA L. I.: A GROWTH CHAMBER EXPERIMENT TO EXAMINE PRE- AND POSTZYGOTIC TEMPERATURE EFFECTS. Evolution 2017; 50:865-878. [PMID: 28568933 DOI: 10.1111/j.1558-5646.1996.tb03895.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/1994] [Accepted: 02/06/1995] [Indexed: 11/30/2022]
Abstract
In spite of the potential evolutionary importance of parental effects, many aspects of these effects remain inadequately explained. This paper explores both their causes and potential consequences for the evolution of life-history traits in plants. In a growth chamber experiment, I manipulated the pre- and postzygotic temperatures of both parents of controlled crosses of Plantago lanceolata. All offspring traits were affected by parental temperature. On average, low parental temperature increased seed weight, reduced germination and offspring growth rate, and accelerated onset of reproduction by 7%, 50%, 5%, and 47%, respectively, when compared to the effects of high parental temperature. Both pre- and postzygotic parental temperatures (i.e., prior to fertilization vs. during fertilization and seed set, respectively) influenced offspring traits but not always in the same direction. In all cases, however, the postzygotic effect was stronger. The prezygotic effects were more often transmitted paternally than maternally. Growth and onset of reproduction were influenced both directly by parental temperature as well as indirectly via the effects of parental temperature on seed weight and germination. Significant interactions between parental genotypes and prezygotic temperature treatment (G × E interactions) show that genotypes differ in their intergenerational responses to temperature with respect to germination and growth. The data suggest that temperature is involved in both genetically based and environmentally induced parental effects and that parental temperature may accelerate the rate of evolutionary change in flowering time in natural populations of P. lanceolata. The environmentally induced temperature effects, as mediated through G × (prezygotic) E interactions are not likely to affect the rate or direction of evolutionary change in the traits examined because postzygotic temperature effects greatly exceed prezygotic effects.
Collapse
Affiliation(s)
- Elizabeth P Lacey
- Department of Biology, Eberhart Building, University of North Carolina, Greensboro, North Carolina, 27412
| |
Collapse
|
19
|
Barnard-Kubow KB, McCoy MA, Galloway LF. Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility. THE NEW PHYTOLOGIST 2017; 213:1466-1476. [PMID: 27686577 DOI: 10.1111/nph.14222] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Although organelle inheritance is predominantly maternal across animals and plants, biparental chloroplast inheritance has arisen multiple times in the angiosperms. Biparental inheritance has the potential to impact the evolutionary dynamics of cytonuclear incompatibility, interactions between nuclear and organelle genomes that are proposed to be among the earliest types of genetic incompatibility to arise in speciation. We examine the interplay between biparental inheritance and cytonuclear incompatibility in Campanulastrum americanum, a plant species exhibiting both traits. We first determine patterns of chloroplast inheritance in genetically similar and divergent crosses, and then associate inheritance with hybrid survival across multiple generations. There is substantial biparental inheritance in C. americanum. The frequency of biparental inheritance is greater in divergent crosses and in the presence of cytonuclear incompatibility. Biparental inheritance helps to mitigate cytonuclear incompatibility, leading to increased fitness of F1 hybrids and recovery in the F2 generation. This study demonstrates the potential for biparental chloroplast inheritance to rescue cytonuclear compatibility, reducing cytonuclear incompatibility's contribution to reproductive isolation and potentially slowing speciation. The efficacy of rescue depended upon the strength of incompatibility, with a greater persistence of weak incompatibilities in later generations. These findings suggest that incompatible plastids may lead to selection for biparental inheritance.
Collapse
Affiliation(s)
| | - Morgan A McCoy
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| |
Collapse
|
20
|
Silliker ME, Liles JL, Monroe JA. Patterns of mitochondrial inheritance in the myxogastridDidymium iridis. Mycologia 2017. [DOI: 10.1080/15572536.2003.11833152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Margaret E. Silliker
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614-3207
| | | | - Jason A. Monroe
- Developmental Systems Biology Program, Children's Memorial Hospital, 2300 Children's Plaza M/C 225, Chicago, Illinois 60614
| |
Collapse
|
21
|
Egamberdiev SS, Saha S, Salakhutdinov I, Jenkins JN, Deng D, Y Abdurakhmonov I. Comparative assessment of genetic diversity in cytoplasmic and nuclear genome of upland cotton. Genetica 2016; 144:289-306. [PMID: 27155886 DOI: 10.1007/s10709-016-9898-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/07/2016] [Indexed: 02/05/2023]
Abstract
The importance of the cytoplasmic genome for many economically important traits is well documented in several crop species, including cotton. There is no report on application of cotton chloroplast specific SSR markers as a diagnostic tool to study genetic diversity among improved Upland cotton lines. The complete plastome sequence information in GenBank provided us an opportunity to report on 17 chloroplast specific SSR markers using a cost-effective data mining strategy. Here we report the comparative analysis of genetic diversity among a set of 42 improved Upland cotton lines using SSR markers specific to chloroplast and nuclear genome, respectively. Our results revealed that low to moderate level of genetic diversity existed in both nuclear and cytoplasm genome among this set of cotton lines. However, the specific estimation suggested that genetic diversity is lower in cytoplasmic genome compared to the nuclear genome among this set of Upland cotton lines. In summary, this research is important from several perspectives. We detected a set of cytoplasm genome specific SSR primer pairs by using a cost-effective data mining strategy. We reported for the first time the genetic diversity in the cytoplasmic genome within a set of improved Upland cotton accessions. Results revealed that the genetic diversity in cytoplasmic genome is narrow, compared to the nuclear genome within this set of Upland cotton accessions. Our results suggested that most of these polymorphic chloroplast SSRs would be a valuable complementary tool in addition to the nuclear SSR in the study of evolution, gene flow and genetic diversity in Upland cotton.
Collapse
Affiliation(s)
- Sharof S Egamberdiev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan, 111215
| | - Sukumar Saha
- Crop Science Research Laboratory, Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS, 39762, USA.
| | - Ilkhom Salakhutdinov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan, 111215
| | - Johnie N Jenkins
- Crop Science Research Laboratory, Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS, 39762, USA
| | - Dewayne Deng
- Crop Science Research Laboratory, Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS, 39762, USA
| | - Ibrokhim Y Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan, 111215
| |
Collapse
|
22
|
Ma Q, Li S, Bi C, Hao Z, Sun C, Ye N. Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae). Curr Genet 2016; 63:117-129. [PMID: 27206980 DOI: 10.1007/s00294-016-0612-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/29/2022]
Abstract
Ziziphus jujuba is an important woody plant with high economic and medicinal value. Here, we analyzed and characterized the complete chloroplast (cp) genome of Z. jujuba, the first member of the Rhamnaceae family for which the chloroplast genome sequence has been reported. We also built a web browser for navigating the cp genome of Z. jujuba ( http://bio.njfu.edu.cn/gb2/gbrowse/Ziziphus_jujuba_cp/ ). Sequence analysis showed that this cp genome is 161,466 bp long and has a typical quadripartite structure of large (LSC, 89,120 bp) and small (SSC, 19,348 bp) single-copy regions separated by a pair of inverted repeats (IRs, 26,499 bp). The sequence contained 112 unique genes, including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The genome structure, gene order, GC content, and codon usage are similar to other typical angiosperm cp genomes. A total of 38 tandem repeats, two forward repeats, and three palindromic repeats were detected in the Z. jujuba cp genome. Simple sequence repeat (SSR) analysis revealed that most SSRs were AT-rich. The homopolymer regions in the cp genome of Z. jujuba were verified and manually corrected by Sanger sequencing. One-third of mononucleotide repeats were found to be erroneously sequenced by the 454 pyrosequencing, which resulted in sequences of 1-4 bases shorter than that by the Sanger sequencing. Analyzing the cp genome of Z. jujuba revealed that the IR contraction and expansion events resulted in ycf1 and rps19 pseudogenes. A phylogenetic analysis based on 64 protein-coding genes showed that Z. jujuba was closely related to members of the Elaeagnaceae family, which will be helpful for phylogenetic studies of other Rosales species. The complete cp genome sequence of Z. jujuba will facilitate population, phylogenetic, and cp genetic engineering studies of this economic plant.
Collapse
Affiliation(s)
- Qiuyue Ma
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuxian Li
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Changwei Bi
- The College of Information Science and Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zhaodong Hao
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Congrui Sun
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Ning Ye
- The College of Information Science and Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
23
|
Potokina EK, Kiseleva AA, Nikolaeva MA, Ivanov SA, Ulianich PS, Potokin AF. Analysis of the polymorphism of organelle DNA to elucidate the phylogeography of Norway spruce in the East European Plain. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s2079059715040176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Abstract
Why the DNA-containing organelles, chloroplasts, and mitochondria, are inherited maternally is a long standing and unsolved question. However, recent years have seen a paradigm shift, in that the absoluteness of uniparental inheritance is increasingly questioned. Here, we review the field and propose a unifying model for organelle inheritance. We argue that the predominance of the maternal mode is a result of higher mutational load in the paternal gamete. Uniparental inheritance evolved from relaxed organelle inheritance patterns because it avoids the spread of selfish cytoplasmic elements. However, on evolutionary timescales, uniparentally inherited organelles are susceptible to mutational meltdown (Muller's ratchet). To prevent this, fall-back to relaxed inheritance patterns occurs, allowing low levels of sexual organelle recombination. Since sexual organelle recombination is insufficient to mitigate the effects of selfish cytoplasmic elements, various mechanisms for uniparental inheritance then evolve again independently. Organelle inheritance must therefore be seen as an evolutionary unstable trait, with a strong general bias to the uniparental, maternal, mode.
Collapse
Affiliation(s)
- Stephan Greiner
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Johanna Sobanski
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
25
|
Dulieu H, Derepas A, Cornu A. Le rôle du pollen dans la transmission des chloroplastes et des mitochondries. Etude d'un cas particulier chezPetunia. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/01811789.1990.10826999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Abstract
BACKGROUND AND AIMS Throughout the history of fern classification, familial and generic concepts have been highly labile. Many classifications and evolutionary schemes have been proposed during the last two centuries, reflecting different interpretations of the available evidence. Knowledge of fern structure and life histories has increased through time, providing more evidence on which to base ideas of possible relationships, and classification has changed accordingly. This paper reviews previous classifications of ferns and presents ideas on how to achieve a more stable consensus. SCOPE An historical overview is provided from the first to the most recent fern classifications, from which conclusions are drawn on past changes and future trends. The problematic concept of family in ferns is discussed, with a particular focus on how this has changed over time. The history of molecular studies and the most recent findings are also presented. KEY RESULTS Fern classification generally shows a trend from highly artificial, based on an interpretation of a few extrinsic characters, via natural classifications derived from a multitude of intrinsic characters, towards more evolutionary circumscriptions of groups that do not in general align well with the distribution of these previously used characters. It also shows a progression from a few broad family concepts to systems that recognized many more narrowly and highly controversially circumscribed families; currently, the number of families recognized is stabilizing somewhere between these extremes. Placement of many genera was uncertain until the arrival of molecular phylogenetics, which has rapidly been improving our understanding of fern relationships. As a collective category, the so-called 'fern allies' (e.g. Lycopodiales, Psilotaceae, Equisetaceae) were unsurprisingly found to be polyphyletic, and the term should be abandoned. Lycopodiaceae, Selaginellaceae and Isoëtaceae form a clade (the lycopods) that is sister to all other vascular plants, whereas the whisk ferns (Psilotaceae), often included in the lycopods or believed to be associated with the first vascular plants, are sister to Ophioglossaceae and thus belong to the fern clade. The horsetails (Equisetaceae) are also members of the fern clade (sometimes inappropriately called 'monilophytes'), but, within that clade, their placement is still uncertain. Leptosporangiate ferns are better understood, although deep relationships within this group are still unresolved. Earlier, almost all leptosporangiate ferns were placed in a single family (Polypodiaceae or Dennstaedtiaceae), but these families have been redefined to narrower more natural entities. CONCLUSIONS Concluding this paper, a classification is presented based on our current understanding of relationships of fern and lycopod clades. Major changes in our understanding of these families are highlighted, illustrating issues of classification in relation to convergent evolution and false homologies. Problems with the current classification and groups that still need study are pointed out. A summary phylogenetic tree is also presented. A new classification in which Aspleniaceae, Cyatheaceae, Polypodiaceae and Schizaeaceae are expanded in comparison with the most recent classifications is presented, which is a modification of those proposed by Smith et al. (2006, 2008) and Christenhusz et al. (2011). These classifications are now finding a wider acceptance and use, and even though a few amendments are made based on recently published results from molecular analyses, we have aimed for a stable family and generic classification of ferns.
Collapse
Affiliation(s)
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
27
|
Bendich AJ. DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts. Chromosome Res 2014; 21:287-96. [PMID: 23681660 DOI: 10.1007/s10577-013-9349-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For most eukaryotic organisms, the nuclear genomes of both parents are transmitted to the progeny following biparental inheritance. For mitochondria and chloroplasts, however, uniparental inheritance (UPI) is frequently observed. The maternal mode of inheritance for mitochondria in animals can be nearly absolute, suggesting an adaptive advantage for UPI. In other organisms, however, the mode of inheritance for mitochondria and chloroplasts can vary greatly even among strains of a species. Here, I review the data on the transmission of organellar DNA (orgDNA) from parent to progeny and the structure, copy number, and stability of orgDNA molecules. I propose that UPI is an incidental by-product of DNA abandonment, a process that lowers the metabolic cost of orgDNA repair.
Collapse
Affiliation(s)
- Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Sun Y, Abbott RJ, Li L, Li L, Zou J, Liu J. Evolutionary history of Purple cone spruce (Picea purpurea) in the Qinghai-Tibet Plateau: homoploid hybrid origin and Pleistocene expansion. Mol Ecol 2013; 23:343-59. [PMID: 26010556 DOI: 10.1111/mec.12599] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 01/29/2023]
Abstract
Hybridization and introgression can play an important role in speciation. Here, we examine their roles in the origin and evolution of Picea purpurea, a diploid spruce species occurring on the Qinghai-Tibet Plateau (QTP). Phylogenetic relationships and ecological differences between this species and its relatives, P. schrenkiana, P. likiangensis and P. wilsonii, are unclear. To clarify them, we surveyed sequence variation within and between them for 11 nuclear loci, three chloroplast (cp) and two mitochondrial (mt) DNA fragments, and examined their ecological requirements using ecological niche modelling. Initial analyses based on 11 nuclear loci rejected a close relationship between P. schrenkiana and P. purpurea. BP&P tests and ecological niche modelling indicated substantial divergence between the remaining three species and supported the species status of P. purpurea, which contained many private alleles as expected for a well-established species. Sequence variation for cpDNA and mtDNA suggested a close relationship between P. purpurea and P. wilsonii, while variation at the nuclear se1364 gene suggested P. purpurea was more closely related to P. likiangensis. Analyses of genetic divergence, Bayesian clustering and model comparison using approximate Bayesian computation (ABC) of nuclear (nr) DNA variation all supported the hypothesis that P. purpurea originated by homoploid hybrid speciation from P. wilsonii and P. likiangensis. The ABC analysis dated the origin of P. purpurea at the Pleistocene, and the estimated hybrid parameter indicated that 69% of its nuclear composition was contributed by P. likiangensis and 31% by P. wilsonii. Our results further suggested that during or immediately following its formation, P. purpurea was subject to organelle DNA introgression from P. wilsonii such that it came to possess both mtDNA and cpDNA of P. wilsonii. The estimated parameters indicated that following its origin, P. purpurea underwent an expansion during/after the largest Pleistocene glaciation recorded for the QTP.
Collapse
Affiliation(s)
- Yongshuai Sun
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.,Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Richard J Abbott
- School of Biology, University of St Andrews, Mitchell Building, St Andrews, Fife, KY16 9TH, UK
| | - Lili Li
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Long Li
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Jiabin Zou
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
29
|
Cséplő A, Maliga P. Lincomycin resistance, a new type of maternally inherited mutation in Nicotiana plumbaginifolia. Curr Genet 2013; 6:105-9. [PMID: 24186475 DOI: 10.1007/bf00435208] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1982] [Indexed: 11/24/2022]
Abstract
Lincomycin resistant cell lines were screened in monoploid (X = 10 chromosomes) protoplast cultures of Nicotiana plumbaginifolia. Lincomycin is an inhibitor of protein synthesis on plastid ribosomes and normally inhibits greening of cultured cells on RMOP medium. The LR400 line was isolated by its ability to form a green callus on selective medium (RMOP medium containing 1,000 µg ml(-1) lincomycin hydrochloride). Diploid plants regenerated from this line inherited the resistance maternally. The LR400 line is cross-resistant to cleocin (clindamycin), but is sensitive to streptomycin.
Collapse
Affiliation(s)
- A Cséplő
- Institute of Plant Physiology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | | |
Collapse
|
30
|
Maternal inheritance of mitochondrial genomes and complex inheritance of chloroplast genomes in Actinidia Lind.: evidences from interspecific crosses. Mol Genet Genomics 2013; 288:101-10. [PMID: 23337924 DOI: 10.1007/s00438-012-0732-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
The inheritance pattern of chloroplast and mitochondria is a critical determinant in studying plant phylogenetics, biogeography and hybridization. To better understand chloroplast and mitochondrial inheritance patterns in Actinidia (traditionally called kiwifruit), we performed 11 artificial interspecific crosses and studied the ploidy levels, morphology, and sequence polymorphisms of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of parents and progenies. Sequence analysis showed that the mtDNA haplotypes of F1 hybrids entirely matched those of the female parents, indicating strictly maternal inheritance of Actinidia mtDNA. However, the cpDNA haplotypes of F1 hybrids, which were predominantly derived from the male parent (9 crosses), could also originate from the mother (1 cross) or both parents (1 cross), demonstrating paternal, maternal, and biparental inheritance of Actinidia cpDNA. The inheritance patterns of the cpDNA in Actinidia hybrids differed according to the species and genotypes chosen to be the parents, rather than the ploidy levels of the parent selected. The multiple inheritance modes of Actinidia cpDNA contradicted the strictly paternal inheritance patterns observed in previous studies, and provided new insights into the use of cpDNA markers in studies of phylogenetics, biogeography and introgression in Actinidia and other angiosperms.
Collapse
|
31
|
|
32
|
Clarke JL, Daniell H. Plastid biotechnology for crop production: present status and future perspectives. PLANT MOLECULAR BIOLOGY 2011; 76:211-20. [PMID: 21437683 PMCID: PMC3482339 DOI: 10.1007/s11103-011-9767-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 03/07/2011] [Indexed: 05/19/2023]
Abstract
The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed.
Collapse
Affiliation(s)
- Jihong Liu Clarke
- Plant Health and Protection Division, Bioforsk- Norwegian, Institute for Agricultural and Environmental Research, Hoegskoleveien 7, 1432 Aas, Norway
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, 336 Biomolecular Science Building, Orlando, FL 32816-2364, USA
| |
Collapse
|
33
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 915] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
34
|
GREINER STEPHAN, RAUWOLF UWE, MEURER JÖRG, HERRMANN REINHOLDG. The role of plastids in plant speciation. Mol Ecol 2011; 20:671-91. [DOI: 10.1111/j.1365-294x.2010.04984.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Selection for male-enforced uniparental cytoplasmic inheritance. Theory Biosci 2010; 129:295-306. [DOI: 10.1007/s12064-010-0113-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
|
36
|
Neale DB, Marshall KA, Sederoff RR. Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl. Proc Natl Acad Sci U S A 2010; 86:9347-9. [PMID: 16594091 PMCID: PMC298492 DOI: 10.1073/pnas.86.23.9347] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Restriction fragment length polymorphisms in controlled crosses were used to infer the mode of inheritance of chloroplast DNA and mitochondrial DNA in coast redwood (Sequoia sempervirens D. Don Endl.). Chloroplast DNA was paternally inherited, as is true for all other conifers studied thus far. Surprisingly, a restriction fragment length polymorphism detected by a mitochondrial probe was paternally inherited as well. This polymorphism could not be detected in hybridizations with chloroplast probes covering the entire chloroplast genome, thus providing evidence that the mitochondrial probe had not hybridized to chloroplast DNA on the blot. We conclude that mitochondrial DNA is paternally inherited in coast redwood. To our knowledge, paternal inheritance of mitochondrial DNA in sexual crosses of a multicellular eukaryotic organism has not been previously reported.
Collapse
Affiliation(s)
- D B Neale
- Institute of Forest Genetics, Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Berkeley, CA 94701
| | | | | |
Collapse
|
37
|
Palmer JD, Zamir D. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci U S A 2010; 79:5006-10. [PMID: 16593219 PMCID: PMC346815 DOI: 10.1073/pnas.79.16.5006] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplast DNA was purified from 12 accessions that represent most of the species diversity in the genus Lycopersicon (family Solanaceae) and from 3 closely related species in the genus Solanum. Fragment patterns produced by digestion of these DNAs with 25 different restriction endonucleases were analyzed by agarose gel electrophoresis. In all 15 DNAs, a total of only 39 restriction site mutations were detected among 484 restriction sites surveyed, representing 2,800 base pairs of sequence information. This low rate of base sequence change is paralleled by an extremely low rate of convergent change in restriction sites; only 1 of the 39 mutations appears to have occurred independently in two different lineages. Parsimony analysis of shared mutations has allowed the construction of a maternal phylogeny for the 15 accessions. This phylogeny is generally consistent with relationships based on morphology and crossability but provides more detailed resolution at several places. All accessions within Lycopersicon form a coherent group, with two of the three species of Solanum as outside reference points. Chloroplast DNA analysis places S. pennellii firmly within Lycopersicon, confirming recent studies that have removed it from Solanum. Red-orange fruit color is shown to be a monophyletic trait in three species of Lycopersicon, including the cultivated tomato, L. esculentum. Analysis of six accessions within L. peruvianum reveals a limited amount of intraspecific polymorphism which, however, encompasses all the variation observed in L. chilense and L. chmielewskii. It is suggested that these latter two accessions be relegated to positions within the L. peruvianum complex.
Collapse
Affiliation(s)
- J D Palmer
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305
| | | |
Collapse
|
38
|
Abstract
New World tetraploid cottons (Gossypium spp.) originated through hybridization of ancestral diploid species that presently have allopatric ranges in Asia-Africa (the A genome) and the New World tropics and subtropics (the D genome). Despite intensive study, the identity of the parental diploids and the antiquity of polyploidization remain unresolved. In this study, variation in the maternally inherited chloroplast genome was assessed among species representing both of the parental genomes and the tetraploids. Approximately 560 restriction sites were assayed in each accession, representing sequence information for about 3200 nucleotides. The resulting maternal phylogeny has no convergent restriction site mutations and demonstrates that the cytoplasm donor for all tetraploid species was an A genome diploid with a chloroplast genome that is similar to Gossypium arboreum and Gossypium herbaceum. No mutational differences were detected between these two species, and few mutations distinguish the chloroplast genomes of A genome diploids from those of tetraploid taxa. In contrast to expectations based on extensive taxonomic, geographic, and genetic diversity, a surprisingly low level of sequence divergence has accumulated subsequent to polyploidization. Chloroplast genomes of tetraploid species are distinguished from each other by between one and six apparent point mutations. The data suggest that tetraploid cotton originated relatively recently, perhaps within the last 1-2 million years, with subsequent rapid evolution and diversification throughout the New World tropics.
Collapse
Affiliation(s)
- J F Wendel
- Department of Botany, Bessey Hall, Iowa State University, Ames, IA 50011
| |
Collapse
|
39
|
Kuroiwa T. Review of cytological studies on cellular and molecular mechanisms of uniparental (maternal or paternal) inheritance of plastid and mitochondrial genomes induced by active digestion of organelle nuclei (nucleoids). JOURNAL OF PLANT RESEARCH 2010; 123:207-230. [PMID: 20145972 DOI: 10.1007/s10265-009-0306-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 12/07/2009] [Indexed: 05/28/2023]
Abstract
In most sexual organisms, including isogamous, anisogamous and oogamous organisms, uniparental transmission is a striking and universal characteristic of the transmission of organelle (plastid and mitochondrial) genomes (DNA). Using genetic, biochemical and molecular biological techniques, mechanisms of uniparental (maternal and parental) and biparental transmission of organelle genomes have been studied and reviewed. Although to date there has been no cytological review of the transmission of organelle genomes, cytology offers advantages in terms of direct evidence and can enhance global studies of the transmission of organelle genomes. In this review, I focus on the cytological mechanism of uniparental inheritance by "active digestion of male or female organelle nuclei (nucleoids, DNA)" which is universal among isogamous, anisogamous, and oogamous organisms. The global existence of uniparental transmission since the evolution of sexual eukaryotes may imply that the cell nuclear genome continues to inhibit quantitative evolution of organelles by organelle recombination.
Collapse
Affiliation(s)
- Tsuneyoshi Kuroiwa
- Research Information Center for Extremophile, Graduate School of Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
40
|
Miyamura S. Cytoplasmic inheritance in green algae: patterns, mechanisms and relation to sex type. JOURNAL OF PLANT RESEARCH 2010; 123:171-184. [PMID: 20112126 DOI: 10.1007/s10265-010-0309-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
Cytological and genetic investigations of two major groups of green algae, chlorophyte and streptophyte green algae, show a predominance of uniparental inheritance of the plastid and mitochondrial genomes in most species. However, in some crosses of isogamous species of Ulva compressa, these genomes are transmitted from mt+, mt(-), and both parents. In species with uniparental organelle inheritance, various mechanisms can eliminate organelles and their DNA during male gametogenesis or after fertilization. Concerning plastid inheritance, two major mechanisms are widespread in green algae: (1) digestion of plastid DNA during male gametogenesis, during fertilization, or after fertilization; and (2) disintegration or fusion of the plastid in the zygote. The first mechanism also eliminates the mitochondrial DNA in anisogamous and oogamous species. These mechanisms would ensure the predominantly uniparental inheritance of organelle genomes in green algae. To trace the evolutionary history of cytoplasmic inheritance in green algae, the relations between uniparental inheritance and sex type were considered in isogamous, anisogamous, and oogamous species using sex-specific features that might be nearly universal among Chlorophyta.
Collapse
Affiliation(s)
- Shinichi Miyamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
41
|
Abstract
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.
Collapse
|
42
|
Chen Y, Asano T, Fujiwara MT, Yoshida S, Machida Y, Yoshioka Y. Plant Cells Without Detectable Plastids are Generated in the crumpled leaf Mutant of Arabidopsis thaliana. ACTA ACUST UNITED AC 2009; 50:956-69. [DOI: 10.1093/pcp/pcp047] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Ellis JR, Bentley KE, McCauley DE. Detection of rare paternal chloroplast inheritance in controlled crosses of the endangered sunflower Helianthus verticillatus. Heredity (Edinb) 2008; 100:574-80. [PMID: 18301440 DOI: 10.1038/hdy.2008.11] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A variety of questions in population and evolutionary biology are studied using chloroplast DNA (cpDNA). The presumed maternal inheritance in angiosperms allows for certain assumptions and calculations to be made when studying plant hybridization, phylogeography, molecular systematics and seed dispersal. Further, the placement of transgenes in the chloroplast to lessen the probability of 'escape' to weedy relatives has been proposed since such genes would not move through pollen. In many studies, however, strict maternal inheritance is assumed but not tested directly, and some studies may have sample sizes too small to be able to detect rare paternal leakage. Here, we study the inheritance of cpDNA simple sequence repeats in 323 offspring derived from greenhouse crosses of the rare sunflower Helianthus verticillatus Small. We found evidence for rare chloroplast paternal leakage and heteroplasmy in 1.86% of the offspring. We address the question of whether one can extrapolate the mode of chloroplast transmission within a genus by comparing our results to the findings of another sunflower species study. The findings of occasional paternal transmission of the chloroplast genome are discussed in the framework of using these markers in studies of population and evolutionary biology both in Helianthus and other angiosperms.
Collapse
Affiliation(s)
- J R Ellis
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
44
|
Sperm cell architecture, insemination, and fertilization in the model fern, Ceratopteris richardii. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00497-008-0068-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Matsushima R, Hu Y, Toyoda K, Sakamoto W. The model plant Medicago truncatula exhibits biparental plastid inheritance. PLANT & CELL PHYSIOLOGY 2008; 49:81-91. [PMID: 18065422 DOI: 10.1093/pcp/pcm170] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plastid, which originated from the endosymbiosis of a cyanobacterium, contains its own plastid DNA (ptDNA) that exhibits a unique mode of inheritance. Approximately 80% of angiosperms show maternal inheritance, whereas the remainder exhibit biparental inheritance of ptDNA. Here we studied ptDNA inheritance in the model legume, Medicago truncatula. Cytological analysis of mature pollen with DNA-specific fluorescent dyes suggested that M. truncatula is one of the few model plants potentially showing biparental inheritance of ptDNA. We further examined pollen by electron microscopy and revealed that the generative cell (a mother of sperm cells) indeed has many DNA-containing plastids. To confirm biparental inheritance genetically, we crossed two ecotypes (Jemalong A17 and A20), and the transmission mode of ptDNA was investigated by a PCR-assisted polymorphism. Consistent with the cytological observations, the majority of F(1) plants possessed ptDNAs from both parents. Interestingly, cotyledons of F(1) plants tended to retain a biparental ptDNA population, while later emergent leaves tended to be uniparental with either one of the parental plastid genotypes. Biparental transmission was obvious in the F(2) population, in which all plants showed homoplasmy with either a paternal or a maternal plastid genotype. Collectively, these data demonstrated that M. truncatula is biparental for ptDNA transmission and thus can be an excellent model to study plastid genetics in angiosperms.
Collapse
Affiliation(s)
- Ryo Matsushima
- Research Institute for Bioresources, Kurashiki University, Kurashiki, Okayama, 710-0046 Japan
| | | | | | | |
Collapse
|
46
|
McCauley DE, Sundby AK, Bailey MF, Welch ME. Inheritance of chloroplast DNA is not strictly maternal in Silene vulgaris (Caryophyllaceae): evidence from experimental crosses and natural populations. AMERICAN JOURNAL OF BOTANY 2007; 94:1333-7. [PMID: 21636500 DOI: 10.3732/ajb.94.8.1333] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chloroplast DNA (cpDNA) is maternally inherited in the majority, but not all, of angiosperm species. The mode of inheritance of cpDNA is a critical determinant of its molecular evolution and of its population genetic structure. Here, we present the results of investigations of the inheritance of cpDNA in Silene vulgaris, a plant used in a variety of studies in which cpDNA is an important component. PCR/RFLP markers were used to compare mother and offspring cpDNA genotypes sampled from two natural populations, and mother, father, and offspring genotypes obtained from controlled greenhouse crosses. Ten of 215 offspring cpDNA genotypes studied in the controlled crosses and three of 156 offspring from natural populations did not match that of the mother, demonstrating rare nonmaternal inheritance. That the chloroplast genome is occasionally transmitted through pollen is discussed in the context of using S. vulgaris cpDNA as a marker in studies of seed dispersal and when considering the joint evolution of the chloroplast and mitochondrial genomes.
Collapse
Affiliation(s)
- David E McCauley
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 USA
| | | | | | | |
Collapse
|
47
|
Hu Y, Zhang Q. Potential Cytoplasmic Inheritance in Wisteria sinensis and Robinia pseudoacacia (Leguminosae). ACTA ACUST UNITED AC 2005; 46:1029-35. [PMID: 15843369 DOI: 10.1093/pcp/pci110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We examined pollen cells of Wisteria sinensis and Robinia pseudoacacia (Leguminosae) to determine a possible mode for cytoplasmic inheritance in these species. Epifluorescence microscopy revealed distinct mature generative cells. Mature generative cells of W. sinensis were associated with large numbers of punctuated fluorescent signals corresponding to cytoplasmic DNA aggregates, but no fluorescent signals were observed in the generative cells of R. pseudoacacia. Closer examination showed that the punctate fluorescent signals corresponded to plastid but not mitochondrial DNA. These results suggest a strong potential for paternal transmission of the plastid genome in W. sinensis. Electron microscopy confirmed the presence of plastids in the generative cells of W. sinensis and the absence of plastids in R. pseudoacacia cells due to an unequal distribution of plastids during the first pollen mitosis. Mitochondria were present and intact in the mature generative cells of both species. The lack of fluoresced mitochondrial DNA suggests a very low level of mitochondrial DNA in the cells. Immunoelectron microscopy demonstrated that the labeling of mitochondrial DNA in these cells was reduced by nearly 90% during pollen development. Such a dramatic reduction suggests an active degradation of paternal mitochondrial DNA, which may contribute greatly to the maternal inheritance of mitochondria. In short, we found that W. sinensis exhibits a strong potential for paternal transmission of plastids and that both W. sinensis and R. pseudoacacia appear to share the same mechanism for maternal mitochondrial inheritance.
Collapse
Affiliation(s)
- Yufei Hu
- College of Life Sciences, Peking University, Beijing, 100871, PR China
| | | |
Collapse
|
48
|
Havey MJ, Park YH, Bartoszewski G. The Psm locus controls paternal sorting of the cucumber mitochondrial genome. ACTA ACUST UNITED AC 2004; 95:492-7. [PMID: 15475394 DOI: 10.1093/jhered/esh081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial genome of cucumber shows paternal transmission and there are no reports of variation for mitochondrial transmission in cucumber. We used a mitochondrially encoded mosaic (MSC) phenotype to reveal phenotypic variation for mitochondrial-genome transmission in cucumber. At least 10 random plants from each of 71 cucumber plant introductions (PIs) were crossed as the female with an inbred line (MSC16) possessing the MSC phenotype. Nonmosaic F1 progenies were observed at high frequencies (greater than 50%) in F1 families from 10 PIs, with the greatest proportions being from PI 401734. Polymorphisms near the mitochondrial cox1 gene and JLV5 region revealed that nonmosaic hybrid progenies from crosses of PI 401734 with MSC16 as the male possessed the nonmosaic-inducing mitochondrial DNA (mtDNA) from the paternal parent. F2) F3, and backcross progenies from nonmosaic F1 plants from PI 401734 x MSC16 were testcrossed with MSC16 as the male parent to reveal segregation of a nuclear locus (Psm for Paternal sorting of mitochondria) controlling sorting of mtDNA from the paternal parent. Psm is a unique locus at which the maternal genotype affects sorting of paternally transmitted mtDNA.
Collapse
Affiliation(s)
- M J Havey
- Vegetable Crops Unit, Agricultural Research Service, US Department of Agriculture, Department of Horticulture, 1575 Linden Dr., University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
49
|
Trapnell DW, Hamrick JL. Partitioning nuclear and chloroplast variation at multiple spatial scales in the neotropical epiphytic orchid, Laelia rubescens. Mol Ecol 2004; 13:2655-66. [PMID: 15315678 DOI: 10.1111/j.1365-294x.2004.02281.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insights into processes that lead to the distribution of genetic variation within plant species require recognition of the importance of both pollen and seed movement. Here we investigate the contributions of pollen and seed movement to overall gene flow in the Central American epiphytic orchid, Laelia rubescens. Genetic diversity and structure were examined at multiple spatial scales in the tropical dry forest of Costa Rica using nuclear (allozymes) and chloroplast restriction fragment length polymorphism (RFLP) markers, which were found to be diverse (allozymes, P = 73.3%; HE = 0.174; cpDNA, HE = 0.741). Nuclear genetic structure (FSTn) was low at every spatial scale (0.005-0.091). Chloroplast markers displayed more structure (0.073-0.254) but relatively similar patterns. Neither genome displayed significant isolation-by-distance. Pollen and seed dispersal rates did not differ significantly from one another (mp/ms = 1.40) at the broadest geographical scale, among sites throughout Costa Rica. However, relative contributions of pollen and seeds to gene flow were scale-dependent, with different mechanisms determining the dominant mode of gene flow at different spatial scales. Much seed dispersal is highly localized within the maternal population, while some seeds enter the air column and are dispersed over considerable distances. At the intermediate scale (10s to 100s of metres) pollinators are responsible for substantial pollen flow. This species appears capable of distributing its genes across the anthropogenically altered landscape that now characterizes its Costa Rican dry forest habitat.
Collapse
Affiliation(s)
- Dorset W Trapnell
- Department of Plant Biology, University of Georgia, Athens 30602, USA.
| | | |
Collapse
|
50
|
Liu Y, Cui H, Zhang Q. Divergent potentials for cytoplasmic inheritance within the genus Syringa. A new trait associated with speciogenesis. PLANT PHYSIOLOGY 2004; 136:2762-70. [PMID: 15361583 PMCID: PMC523339 DOI: 10.1104/pp.104.048298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Epifluorescence microscopic detection of organelle DNA in the mature generative cell is a rapid method for determining the potential for the mode of cytoplasmic inheritance. We used this method to examine 19 of the known 22 to 27 species in the genus Syringa. Organelle DNA was undetectable in seven species, all in the subgenus Syringa, but was detected in the 12 species examined of the subgenera Syringa and Ligustrina. Therefore, species within the genus Syringa display differences in the potential cytoplasmic inheritance. Closer examination revealed that the mature generative cells of the species in which organelle DNA was detected contained both mitochondria and plastids, but cells of the species lacking detectable organelle DNA contained only mitochondria, and the epifluorescent organelle DNA signals from the mature generative cells corresponded to plastid DNA. In addition, semiquantitative analysis was used to demonstrate that, during pollen development, the amount of mitochondrial DNA decreased greatly in the generative cells of the species examined, but the amount of plastid DNA increased remarkably in the species containing plastids in the generative cell. The results suggest that all Syringa species exhibit potential maternal mitochondrial inheritance, and a number of the species exhibit potential biparental plastid inheritance. The difference between the modes of potential plastid inheritance among the species suggests different phylogenies for the species; it also supports recent conclusions of molecular, systematic studies of the Syringa. In addition, the results provide new evidence for the mechanisms of maternal mitochondrial inheritance in angiosperms.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|