1
|
Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev 2023; 200:115044. [PMID: 37541623 DOI: 10.1016/j.addr.2023.115044] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yuxiu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
2
|
Wang Y, Liu Y, Song X, Feng Y, Jing C, Zhang G, Huang Y, Liu W. Dual-targetable fluorescent probe for mapping the fluctuation of peroxynitrite in drug-induced liver injury model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121892. [PMID: 36244156 DOI: 10.1016/j.saa.2022.121892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions which can cause acute liver failure or even death in severe cases. With the incidence rate increasing over the years, DILI has became a frequent clinical liver disease and a global public health problem. As a biomarker of DILI, the detection of peroxynitrite (ONOO-) has became a powerful tool for the early diagnosis of liver injury. Here, we synthesized five mitochondria-targetable probes, 1-5, for detecting endogenous ONOO-. Through dye-screening, probe 5 was stood out by its excellent performance. In the presence of ONOO-, the fluorescence signal of probe 5 reduced 40-fold in 19 s with a low detection limit (9.36 nM). At the same time, the transformation can be observed with the naked eye under sunlight or UV lamp without being affected by the other reactive species. Even better, with low toxicity and high biocompatibility, probe 5 could successfully detect endogenous ONOO- in the mitochondrion of cells. Finally, probe 5 could specifically target the liver, and can be employed for monitoring the therapeutic effect of hepatoprotective medicine after drug-induced hepatotoxicity in vivo. In brief, probe 5 has the practical application capability for diagnosing the severity of the liver injury and researching the therapeutic effect of antidote in complex bio-systems.
Collapse
Affiliation(s)
- Yingzhe Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Laboratory for Nanomedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, PR China
| | - Yu Liu
- Laboratory for Nanomedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, PR China
| | - Xuerui Song
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yan Feng
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Chunlin Jing
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Guolin Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yongwei Huang
- Laboratory for Nanomedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, PR China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
3
|
Sibiya T, Ghazi T, Mohan J, Nagiah S, Chuturgoon AA. Spirulina platensis Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 12:119. [PMID: 36616248 PMCID: PMC9824462 DOI: 10.3390/plants12010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The introduction of highly active antiretroviral therapy (HAART) in the treatment of HIV/AIDS has recently gained popularity. In addition, the significant role of microRNA expression in HIV pathogenesis cannot be overlooked; hence the need to explore the mechanisms of microRNA expression in the presence of HAART and Spirulina platensis (SP) in HepG2 cells. This study investigates the biochemical mechanisms of microRNA expression in HepG2 cells in the presence of HAART, SP, and the potential synergistic effect of HAART−SP. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell viability following SP treatment. The cellular redox status was assessed using the quantification of intracellular reactive oxygen species (ROS), lipid peroxidation, and a lactate dehydrogenase (LDH) assay. The fluorometric JC-1 assay was used to determine mitochondrial polarisation. The quantitative polymerase chain reaction (qPCR) was also employed for micro-RNA and gene expressions. The results show that MiR-146a (p < 0.0001) and miR-155 (p < 0.0001) levels increased in SP-treated cells. However, only miR-146a (p < 0.0001) in HAART−SP indicated an increase, while miR-155 (p < 0.0001) in HAART−SP treatment indicated a significant decreased expression. Further inflammation analysis revealed that Cox-1 mRNA expression was reduced in SP-treated cells (p = 0.4129). However, Cox-1 expression was significantly increased in HAART−SP-treated cells (p < 0.0001). The investigation revealed that HepG2 cells exposed to HAART−SP treatment showed a significant decrease in Cox-2 (p < 0.0001) expression. mRNA expression also decreased in SP-treated cells (p < 0.0001); therefore, SP potentially controls inflammation by regulating microRNA expressions. Moreover, the positive synergistic effect is indicated by normalised intracellular ROS levels (p < 0.0001) in the HAART−SP treatment. We hereby recommend further investigation on the synergistic roles of SP and HAART in the expression of microRNA with more focus on inflammatory and oxidative pathways.
Collapse
Affiliation(s)
- Thabani Sibiya
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| | - Terisha Ghazi
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| | - Jivanka Mohan
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| | - Savania Nagiah
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
- Department of Human Biology, Medical Programme, Faculty of Health Sciences, Nelson Mandela University Missionvale, Bethelsdorp, Port Elizabeth 6059, South Africa
| | - Anil A. Chuturgoon
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| |
Collapse
|
4
|
The role of the microbiome and psychosocial stress in the expression and activity of drug metabolizing enzymes in mice. Sci Rep 2020; 10:8529. [PMID: 32444678 PMCID: PMC7244717 DOI: 10.1038/s41598-020-65595-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
The gut microbiota is involved in a number of different metabolic processes of the host organism, including the metabolism of xenobiotics. In our study, we focused on liver cytochromes P450 (CYPs), which can metabolize a wide range of exo- and endogenous molecules. We studied changes in mRNA expression and CYP enzyme activities, as well as the mRNA expression of transcription factors that have an important role in CYP expression, all in stressed germ-free (GF) and stressed specific-pathogen-free (SPF) mice. Besides the presence of the gut microbiota, we looked at the difference between acute and chronic stress. Our results show that stress has an impact on CYP mRNA expression, but it is mainly chronic stress that has a significant effect on enzyme activities along with the gut microbiome. In acutely stressed mice, we observed significant changes at the mRNA level, however, the corresponding enzyme activities were not influenced. Our study suggests an important role of the gut microbiota along with chronic psychosocial stress in the expression and activity of CYPs, which can potentially lead to less effective drug metabolism and, as a result, a harmful impact on the organism.
Collapse
|
5
|
Elmes MW, Prentis LE, McGoldrick LL, Giuliano CJ, Sweeney JM, Joseph OM, Che J, Carbonetti GS, Studholme K, Deutsch DG, Rizzo RC, Glynn SE, Kaczocha M. FABP1 controls hepatic transport and biotransformation of Δ 9-THC. Sci Rep 2019; 9:7588. [PMID: 31110286 PMCID: PMC6527858 DOI: 10.1038/s41598-019-44108-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/09/2019] [Indexed: 12/04/2022] Open
Abstract
The increasing use of medical marijuana highlights the importance of developing a better understanding of cannabinoid metabolism. Phytocannabinoids, including ∆9-tetrahydrocannabinol (THC), are metabolized and inactivated by cytochrome P450 enzymes primarily within the liver. The lipophilic nature of cannabinoids necessitates mechanism(s) to facilitate their intracellular transport to metabolic enzymes. Here, we test the central hypothesis that liver-type fatty acid binding protein (FABP1) mediates phytocannabinoid transport and subsequent inactivation. Using X-ray crystallography, molecular modeling, and in vitro binding approaches we demonstrate that FABP1 accommodates one molecule of THC within its ligand binding pocket. Consistent with its role as a THC carrier, biotransformation of THC was reduced in primary hepatocytes obtained from FABP1-knockout (FABP1-KO) mice. Compared to their wild-type littermates, administration of THC to male and female FABP1-KO mice potentiated the physiological and behavioral effects of THC. The stark pharmacodynamic differences were confirmed upon pharmacokinetic analyses which revealed that FABP1-KO mice exhibit reduced rates of THC biotransformation. Collectively, these data position FABP1 as a hepatic THC transport protein and a critical mediator of cannabinoid inactivation. Since commonly used medications bind to FABP1 with comparable affinities to THC, our results further suggest that FABP1 could serve a previously unrecognized site of drug-drug interactions.
Collapse
Affiliation(s)
- Matthew W Elmes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA. .,Department of Anesthesiology, Stony Brook University, Stony Brook, New York, 11794, USA. .,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, 11794, USA.
| | - Lauren E Prentis
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Luke L McGoldrick
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Christopher J Giuliano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Joseph M Sweeney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Olivia M Joseph
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Joyce Che
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Gregory S Carbonetti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA.,Department of Anesthesiology, Stony Brook University, Stony Brook, New York, 11794, USA.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Keith Studholme
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Dale G Deutsch
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Robert C Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA. .,Department of Anesthesiology, Stony Brook University, Stony Brook, New York, 11794, USA.
| |
Collapse
|
6
|
Chung M, Cho SY, Lee YS. Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells. Biomol Ther (Seoul) 2018; 26:290-297. [PMID: 29401570 PMCID: PMC5933896 DOI: 10.4062/biomolther.2017.240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022] Open
Abstract
We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.
Collapse
Affiliation(s)
- Myungguen Chung
- Division of Molecular and Life Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Soo Young Cho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Young Seek Lee
- Division of Molecular and Life Sciences, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
7
|
Martínez-Rodríguez H, Donkor K, Brewer S, Galar-Martínez M, SanJuan-Reyes N, Islas-Flores H, Sánchez-Aceves L, Elizalde-Velázquez A, Gómez-Oliván LM. Metoprolol induces oxidative damage in common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:122-135. [PMID: 29482075 DOI: 10.1016/j.aquatox.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
During the last decade, β-blockers such as metoprolol (MTP) have been frequently detected in surface water, aquatic systems and municipal water at concentrations of ng/L to μg/L. Only a small number of studies exist on the toxic effects induced by this group of pharmaceuticals on aquatic organisms. Therefore, the present study aimed to evaluate the oxidative damage induced by MTP in the common carp Cyprinus carpio, using oxidative stress biomarkers. To this end, indicators of cellular oxidation such as hydroperoxide content (HPC), lipid peroxidation (LPX) and protein carbonyl content (PCC) were determined, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Also, concentrations of MTP and its metabolite O-desmethyl metoprolol were determined in water as well as carp gill, liver, kidney, brain and blood, along with the partial uptake pattern of these compounds. Results show that carp takes up MTP and its metabolite in the different organs evaluated, particularly liver and gill. The oxidative stress biomarkers, HPC, LPX, and PCC, as well as SOD and CAT activity all increased significantly at most exposure times in all organs evaluated. Results indicate that MTP and its metabolite induce oxidative stress on the teleost C. carpio and that the presence of these compounds may constitute a risk in water bodies for aquatic species.
Collapse
Affiliation(s)
- Héctor Martínez-Rodríguez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Kingsley Donkor
- Department of Chemistry, Faculty of Science, Thompson Rivers University, 805 TRU way, Kamloops, BC, V2C 0C8, Canada
| | - Sharon Brewer
- Department of Chemistry, Faculty of Science, Thompson Rivers University, 805 TRU way, Kamloops, BC, V2C 0C8, Canada
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo a. Madero. México, DF, C.P. 07738, México
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Livier Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Armando Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México.
| |
Collapse
|
8
|
Xu J, Oda S, Yokoi T. Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicol In Vitro 2018; 48:286-301. [PMID: 29407385 DOI: 10.1016/j.tiv.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Immortalized liver cells have been used for evaluating the toxicity of compounds; however, excessive glutathione is considered to lessen cytotoxicity. In this study, we compared the effects of glutathione depletion on cytotoxicities of drugs using HepaRG and HepG2 cells, which express and lack drug-metabolizing enzymes, respectively, for predicting drug-induced liver injury (DILI) risks. These cells were pre-incubated with L-buthionine-S,R-sulfoximine (BSO) and then exposed to 34 test compounds with various DILI risks for 24 h. ATP level exhibited the highest predictability of DILI among tested parameters. BSO treatment rendered cells susceptible to drug-induced cytotoxicity when evaluated by cell viability and caspase 3/7 activity with the sensitivity of cell viability from 50% in non-treated HepaRG cells to 71% in BSO-treated HepaRG cells. These results indicate that cytotoxicity assays using GSH-depleted HepaRG cells improve the predictability of DILI risks. However, HepaRG cells were not always superior to HepG2 cells when assessed by ATP level. The combination of HepG2 and HepaRG cells index produced the best prediction in the cases of caspase 3/7 acitivity and ATP level. In conclusions, the developed highly sensitive cell-based assay using GSH-reduced cells would be useful for predicting potential DILI risks at an early stage of drug development.
Collapse
Affiliation(s)
- Jieyu Xu
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
9
|
Wang DD, Liu Y, Li N, Zhang Y, Jin Q, Hao DC, Piao HL, Dai ZR, Ge GB, Yang L. Induction of CYP1A1 increases gefitinib-induced oxidative stress and apoptosis in A549 cells. Toxicol In Vitro 2017; 44:36-43. [PMID: 28652202 DOI: 10.1016/j.tiv.2017.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
As the first selective EGFR tyrosine kinase inhibitor, gefitinib has been clinically demonstrated to be effective for certain cancer cell types with EGFR-active gene mutations. However, a number of gefitinib-associated adverse pulmonary events have been reported, which could lead to the discontinuation of gefitinib therapy. Although previous reports have implicated that CYP1A1-mediated bioactivation of gefitinib maybe a major reason for the pulmonary toxicity, the roles of CYP1A1 in gefitinib-associated toxicity and the related molecular mechanism have not been well-characterized. This study aimed to reveal whether the induction of CYP1A1 would contribute to the toxic effect of gefitinib in living cells and to investigate the underlying molecular mechanism. The results demonstrated that gefitinib led to the enhancement of the dose-dependent cytotoxicity and the percentage of gefitinib-induced apoptosis was significantly increased on CYP1A1-overexpressed A549 cells, which was accompanied with a substantial increase in the intracellular reactive oxygen species and a remarkable decrease in the mitochondrial membrane potential. These findings strongly suggest that CYP1A1 can enhance the cytotoxicity of gefitinib and gefitinib-induced oxidative stress, which may partially explain the occurrence of pulmonary toxicity in some patients administered with gefitinib.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Yong Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Na Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Yi Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 4500052, China
| | - Qiang Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou 4500052, China
| | - Da-Cheng Hao
- Dalian Jiaotong University, Dalian 116028, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Zi-Ru Dai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China.
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Bovard D, Iskandar A, Luettich K, Hoeng J, Peitsch MC. Organs-on-a-chip. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317726351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last few years, considerable attention has been given to in vitro models in an attempt to reduce the use of animals and to decrease the rate of preclinical failure associated with the development of new drugs. Simple two-dimensional cultures grown in a dish are now frequently replaced by organotypic cultures with three-dimensional (3-D) architecture, which enables interactions between cells, promoting their differentiation and increasing their in vivo likeness. Microengineering now enables the incorporation of small devices into 3-D culture models to reproduce the complex microenvironment of the modeled organ, often referred to as organs-on-a-chip (OoCs). This review describes various OoCs developed to mimic liver, brain, kidney, and lung tissues. Current challenges encountered in attempts to recreate the in vivo environment are described, as well as some examples of OoCs. Finally, attention is given to the ongoing evolution of OoCs with the aim of solving one of the major limitations in that they can only represent a single organ. Multi-organ-on-a-chip (MOC) systems mimic organ interactions observed in the human body and aim to provide the features of compound uptake, metabolism, and excretion, while simultaneously allowing for insights into biological effects. MOCs might therefore represent a new paradigm in drug development, providing a better understanding of dose responses and mechanisms of toxicity, enabling the detection of drug resistance and supporting the evaluation of pharmacokinetic–pharmacodynamics parameters.
Collapse
Affiliation(s)
- David Bovard
- Philip Morris Products SA, Neuchatel, Switzerland
| | | | | | - Julia Hoeng
- Philip Morris Products SA, Neuchatel, Switzerland
| | | |
Collapse
|
11
|
Inhibition and inactivation of human CYP2J2: Implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol 2017; 135:12-21. [PMID: 28237650 DOI: 10.1016/j.bcp.2017.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Extrahepatic cytochrome P450 enzymes (CYP450) are pivotal in the metabolism of endogenous substrates and xenobiotics. CYP2J2 is a major cardiac CYP450 and primarily metabolizes polyunsaturated fatty acids such as arachidonic acid to cardioactive epoxyeicosatrienoic acids. Due to its role in endobiotic metabolism, CYP2J2 has been actively studied in recent years with the focus on its biological functions in cardiac pathophysiology. Additionally, CYP2J2 metabolizes a number of xenobiotics such as astemizole and terfenadine and is potently inhibited by danazol and telmisartan. Notably, CYP2J2 is found to be upregulated in multiple cancers. Hence a number of specific CYP2J2 inhibitors have been developed and their efficacy in inhibiting tumor progression has been actively studied. CYP2J2 inhibitor such as C26 (1-[4-(vinyl)phenyl]-4-[4-(diphenyl-hydroxymethyl)-piperidinyl]-butanone hydrochloride) caused marked reduction in tumor proliferation and migration as well as promoted apoptosis in cancer cells. In this review, we discuss the role of CYP2J2 in cardiac pathophysiology and cancer therapeutics. Additionally, we provide an update on the substrates, reversible inhibitors and irreversible inhibitors of CYP2J2. Finally, we discuss the current gaps and future directions in CYP2J2 research.
Collapse
|
12
|
Identification of aberrant DNA methylation involved in chemoradiation-resistant HCT116 cells via methylation-specific microarray. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Abstract
INTRODUCTION Understanding the mechanism of DILI with MTA, and how to avoid and manage these toxicities is essential for minimising inferior cancer treatment outcomes. An organised and comprehensive overview of MTA-associated hepatotoxicity is lacking; this review aims to fill the gap. AREAS COVERED A literature review was performed based on published case reports and relevant studies or articles pertaining to the topics on PubMed. Food and Drug Administration drug information documents and search on the US National Library of Medicine LiverTox database was performed for all relevant MTA. EXPERT OPINION MTA-associated hepatotoxicity is common but rarely fatal. The pattern of hepatotoxicity is predominantly idiosyncratic. Pharmacogenomics show potential in predicting patients at risk of poorly metabolising or developing immunoallergic responses to MTA, but prospective data is scant. Preventing reactivation of viral hepatitis using anti-viral drugs, and avoidance of drug combinations at high risk of negative interactions are the most readily preventable measures for DILI.
Collapse
Affiliation(s)
- Kirsty Wai-Chung Lee
- a Sir YK Pao Center for Cancer, Department of Clinical Oncology, State Key Laboratory in Oncology in South China , The Chinese University of Hong Kong, Hong Kong Cancer Institute and Prince of Wales Hospital , Shatin , Hong Kong
| | - Stephen Lam Chan
- a Sir YK Pao Center for Cancer, Department of Clinical Oncology, State Key Laboratory in Oncology in South China , The Chinese University of Hong Kong, Hong Kong Cancer Institute and Prince of Wales Hospital , Shatin , Hong Kong.,b Institute of Digestive Disease , The Chinese University of Hong Kong , Shatin , Hong Kong
| |
Collapse
|
14
|
Multiple modes of inhibition of human cytochrome P450 2J2 by dronedarone, amiodarone and their active metabolites. Biochem Pharmacol 2016; 107:67-80. [DOI: 10.1016/j.bcp.2016.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
|
15
|
Li XX, Wang Y, Zheng QC, Zhang HX. Detoxification of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by cytochrome P450 enzymes: A theoretical investigation. J Inorg Biochem 2015; 154:21-8. [PMID: 26544505 DOI: 10.1016/j.jinorgbio.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022]
Abstract
Two types of detoxification routes, N-demethylation to form 4-phenyl-1,2,3,6-tetrahydropyridine (PTP) and aromatic hydroxylation to generate 4-(4'-hydroxyphenyl)-1-methyl-1,2,3,6-tetrahydropyridine (MPTP-OH), for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mediated by Compound I (Cpd I) of cytochrome P450 are investigated theoretically using hybrid density functional calculations. Quantum chemical results reveal that for the N-demethylation, the initial C-H bond activation is achieved via a hydrogen atom transfer (HAT) mechanism. This is followed by a subsequent O-rebound to yield the carbinolamine intermediate. Due to the nature of pericyclic reaction, the generated carbinolamine decomposes in a non-enzymatic aqueous environment with the assistance of water molecules, forming amine and hydrated formaldehyde. For the aromatic hydroxylation, an initial addition of Cpd I to the substrate occurs mainly through a side-on approach with a subsequent proton shuttle to form the phenol product. A comparison of the energy barriers for both routes indicates that the N-demethylation (7.5/5.7kcal/mol for the quartet/doublet state in solvent) is thermodynamically more favorable than the aromatic hydroxylation process (14.9/14.8kcal/mol for the quartet/doublet state in solvent). This trend is in good agreement with the experimental product distribution, viz., the N-demethylation product PTP is more than the aromatic hydroxylation product MPTP-OH. Taken together, these observations not only enrich our knowledge on the mechanistic details of the N-dealkylation and the aromatic hydroxylation by P450s, but also provide certain insights into the metabolism of other analogous toxins.
Collapse
Affiliation(s)
- Xiao-Xi Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Qing-Chuan Zheng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, People's Republic of China; State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Hong-Xing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
16
|
Li X, Luthra R, Morrow PK, Fisher MD, Reiner M, Barron RL, Langeberg WJ. Comorbidities among patients with cancer who do and do not develop febrile neutropenia during the first chemotherapy cycle. J Oncol Pharm Pract 2015; 22:679-89. [PMID: 26378158 DOI: 10.1177/1078155215603229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patients receiving myelosuppressive chemotherapy with certain comorbidities are at increased risk of febrile neutropenia. A comprehensive evaluation of febrile neutropenia-related comorbidities across cancers is needed. This study compared comorbidity prevalence among patients with cancer who did and did not develop febrile neutropenia during the first chemotherapy cycle. This case-control study used administrative claims from adult patients with non-Hodgkin lymphoma or breast, lung, colorectal, ovarian, or gastric cancer who received chemotherapy between 2007 and 2012. Each patient who developed febrile neutropenia (case) was matched with up to four patients without febrile neutropenia (controls) by cancer type, metastasis, chemotherapy regimen, age group, and sex. For each comorbidity (identified in the year before chemotherapy began), the adjusted odds ratio (aOR) for febrile neutropenia by cancer type was evaluated using conditional logistic regression models adjusted for potential confounding factors. Of 31,331 eligible patients, 672 developed febrile neutropenia in the first chemotherapy cycle. A total of 3312 febrile neutropenia cases and matched controls were analyzed. Across tumor types, comorbidity prevalence was higher in patients who developed febrile neutropenia than in those without febrile neutropenia. Among patients with breast cancer, osteoarthritis was more prevalent in patients with febrile neutropenia (aOR, 1.85; 95% CI, 1.07 to 3.18). Among patients with non-Hodgkin lymphoma, renal disease was more prevalent in patients with febrile neutropenia (aOR, 2.25; 95% CI, 1.23 to 4.11). Patients who developed febrile neutropenia in the first chemotherapy cycle presented with comorbidities more often than otherwise similar patients who did not develop febrile neutropenia. These findings warrant further investigation and support the inclusion of comorbidities into febrile neutropenia risk models.
Collapse
Affiliation(s)
- Xiaoyan Li
- Amgen Inc., Thousand Oaks, California, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
OPINION STATEMENT Managing inflammatory bowel disease (IBD) in a world of immunomodulators and biologics is complex enough, but managing the elderly IBD patient is further confounded by multiple comorbidities, polypharmacy with drug-drug interactions, and cognitive mobility/motility disturbances. Social and insurance coverage issues also always lurk in the background. All of these factors summate into a daunting challenge for the clinician. In this review, we aim to describe important considerations when prescribing to an elderly patient with IBD, taking into account costs of medications, drug interactions, the aging body's effect on pharmacokinetics, and the effect of aging on the immune system. Adverse effects and drug-drug interactions are expounded upon in detail specific for the aging adult with IBD in an effort to assist the clinician in the decision-making process.
Collapse
Affiliation(s)
- Marina Kim
- Department of Internal Medicine, Albany Medical Center, 47 New Scotland Ave, Albany, NY, 12208, USA,
| | | | | |
Collapse
|
18
|
Al-Abbasi FA. In vitro activation of dibromoacetonitrile to cyanide by myeloperoxidase. Toxicol Ind Health 2015; 32:1478-1485. [DOI: 10.1177/0748233714567184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dibromoacetonitrile (DBAN) is a disinfection by-product classified as a potential human and animal carcinogen. This study aimed at investigating the ability of myeloperoxidase (MPO) to oxidize DBAN to cyanide (CN−) in vitro. Detection of CN− served as a marker for the possible generation of free radical intermediates implicated in DBAN-induced toxicity. Optimum conditions for the oxidation of DBAN to CN− were characterized with respect to pH, temperature, and time of incubation as well as DBAN, MPO, potassium chloride, and hydrogen peroxide (H2O2) concentrations in incubation mixtures. Maximum reaction velocity and Michaelis–Menten constant were assessed. Addition of sodium hypochlorite to the reaction mixtures significantly enhanced the rate of the reaction. Addition of the MPO inhibitors, sodium azide, 4-amino benzoic acid hydrazine, or indomethacin to the reaction mixtures significantly decreased the rate of DBAN oxidation. Inclusion of the antioxidant enzyme superoxide dismutase in the incubation mixtures significantly decreased the rate of reaction. Inclusion of the sulfhydryl compounds as reduced glutathione, N-acetylcysteine, d-penicillamine, or l-cysteine enhanced the rate of DBAN oxidation. These results demonstrate the ability of MPO/H2O2/chloride ion system to oxidize DBAN to CN− and provide insight for the elucidation of DBAN chronic toxicity.
Collapse
Affiliation(s)
- Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Mueller D, Krämer L, Hoffmann E, Klein S, Noor F. 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies. Toxicol In Vitro 2014; 28:104-12. [DOI: 10.1016/j.tiv.2013.06.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/25/2022]
|
20
|
Pelkonen O, Ahokas JT, Hakkola J, Turpeinen M. Consideration of Metabolism in In Vitro Cellular Systems. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014:501-519. [DOI: 10.1007/978-1-4939-0521-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Kia R, Sison RLC, Heslop J, Kitteringham NR, Hanley N, Mills JS, Park BK, Goldring CEP. Stem cell-derived hepatocytes as a predictive model for drug-induced liver injury: are we there yet? Br J Clin Pharmacol 2013; 75:885-96. [PMID: 22703588 DOI: 10.1111/j.1365-2125.2012.04360.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/10/2012] [Indexed: 12/22/2022] Open
Abstract
Amongst the different types of adverse drug reactions, drug-induced liver injury is the most prominent cause of patient morbidity and mortality. However, the current available hepatic model systems developed for evaluating safety have limited utility and relevance as they do not fully recapitulate a fully functional hepatocyte, and do not sufficiently represent the genetic polymorphisms present in the population. The rapidly advancing research in stem cells raises the possibility of using human pluripotent stem cells in bridging this gap. The generation of human induced pluripotent stem cells via reprogramming of mature human somatic cells may also allow for disease modelling in vitro for the purposes of assessing drug safety and toxicology. This would also allow for better understanding of disease processes and thus facilitate in the potential identification of novel therapeutic targets. This review will focus on the current state of effort to derive hepatocytes from human pluripotent stem cells for potential use in hepatotoxicity evaluation and aims to provide an insight as to where the future of the field may lie.
Collapse
Affiliation(s)
- Richard Kia
- Department of Molecular and Clinical Pharmacology, University of Liverpool, MRC Centre for Drug Safety Science, Liverpool, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Horita N, Miyazawa N, Yoshiyama T, Tsukahara T, Takahashi R, Tsukiji J, Kato H, Kaneko T, Ishigatsubo Y. Decreased activities of daily living is a strong risk factor for liver injury by anti-tuberculosis drugs. Respirology 2013; 18:474-9. [DOI: 10.1111/resp.12008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/13/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023]
Affiliation(s)
- Nobuyuki Horita
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Naoki Miyazawa
- Department of Respiratory Medicine; Saiseikai Yokohamashi Nanbu Hospital; Yokohama; Japan
| | | | - Toshinori Tsukahara
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Ryohei Takahashi
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Jun Tsukiji
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Hideaki Kato
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Takeshi Kaneko
- Respiratory Disease Center; Yokohama City University Medical Center; Yokohama; Japan
| | - Yoshiaki Ishigatsubo
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| |
Collapse
|
23
|
In Vitro Testing for the Diagnosis of Anticonvulsant Hypersensitivity Syndrome. Mol Diagn Ther 2012; 13:313-30. [DOI: 10.1007/bf03256336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Al-Abbasi FA. Acrylonitrile-induced gastric toxicity in rats: the role of xanthine oxidase. Med Sci Monit 2012; 18:BR208-14. [PMID: 22648241 PMCID: PMC3560737 DOI: 10.12659/msm.882896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/08/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Acrylonitrile (ACN) is an extensively produced aliphatic nitrile. The gastrointestinal tract is an important target organ for ACN toxicity. The objective of the present study was to investigate the role of xanthine oxidase (XO) in ACN-induced gastric toxicity in rats. MATERIAL/METHODS We assessed the effect of ACN on oxidative stress parameters as xanthine oxidase (XO) and total xanthine dehydrogenase (XD)/ XO activity, superoxide anion (O(2)(.-)) production, reduced glutathione (GSH) levels and lipid peroxidation in gastric tissues. RESULTS A single oral dose of ACN (25 mg/kg) caused a significant enhancement in XO activity. ACN also caused a significant depletion of GSH levels, enhanced O(2)(.-) production and increased lipid peroxidation in the time-course experiment. In the dose-response experiment, ACN accelerated the conversion of XD to XO, with a significant depletion of gastric GSH in a dose-related manner. A strong negative correlation existed between the levels of GSH and the percentage enhancement in XO activity (r =-0.997). (O(2)(.-)) production and malondialdehyde (MDA) formation were significantly elevated in a dose-related manner. Pretreatment with allopurinol (50 mg/kg) significantly protected against ACN-induced rise in XO activity, depletion of GSH, and elevated production of (O(2)(.-)). However, pretreatment with diethyl maleate (DEM; 100 mg/kg) significantly aggravated the ACN-induced GSH depletion and rise in XO activity. Furthermore, DEM significantly enhanced (O(2)(.-)) and MDA production. CONCLUSIONS The present study indicates that enhancement of XO activity could be implicated in ACN-induced gastric damage in rats.
Collapse
Affiliation(s)
- Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
25
|
Assaf N, Salem NA, Khalil WK, Ahmed HH. Evaluation of the potential toxicity of dibromoacetonitrile-induced apoptosis and tumor-initiating activity in rat liver. Food Chem Toxicol 2011; 49:3055-62. [DOI: 10.1016/j.fct.2011.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/27/2011] [Accepted: 09/22/2011] [Indexed: 11/16/2022]
|
26
|
Hamdy NM, Al-Abbasi FA, Alghamdi HA, Tolba MF, Esmat A, Abdel-Naim AB. Role of neutrophils in acrylonitrile-induced gastric mucosal damage. Toxicol Lett 2011; 208:108-14. [PMID: 22062130 DOI: 10.1016/j.toxlet.2011.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
Abstract
Acrylonitrile (ACN) is a widely used intermediate in the manufacture of plastics, acrylic fibers, synthetic rubbers and resins that are used in a variety of products including food containers and medical devices. ACN is a possible human carcinogen and a documented animal carcinogen, with the stomach being an important target of its toxicity. ACN has been previously reported to require metabolic activation to reactive intermediates and finally to cyanide (CN⁻). The current study aimed at exploring the potential role of neutrophils in ACN-induced gastric damage in rats. Experimental neutropenia was attained by injecting rats with methotrexate. This significantly ameliorated gastric mucosal injury induced by ACN. This is evidenced by protection against the increase in gastric ulcer index, myeloperoxidase (MPO) activity and CN⁻ level. Also, neutropenia guarded against the decrease in prostaglandin E2 (PGE2), induction of oxidative stress and reduction of total nitrites and alleviated histopathological alterations in rat stomachs. These data indicate that neutrophil infiltration is, at least partly, involved in ACN-induced gastric damage in rats.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
27
|
Uramaru N, Shigematsu H, Toda A, Eyanagi R, Kitamura S, Ohta S. Design, Synthesis, and Pharmacological Activity of Nonallergenic Pyrazolone-Type Antipyretic Analgesics. J Med Chem 2010; 53:8727-33. [DOI: 10.1021/jm101208x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naoto Uramaru
- Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Hidenari Shigematsu
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Akihisa Toda
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Reiko Eyanagi
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
28
|
Robbins MG, Hauder J, Somoza V, Eshelman BD, Barnes DM, Hanlon PR. Induction of Detoxification Enzymes by Feeding Unblanched Brussels Sprouts Containing Active Myrosinase to Mice for 2 Wk. J Food Sci 2010; 75:H190-9. [DOI: 10.1111/j.1750-3841.2010.01713.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Tsubokura M, Miura Y, Itokawa T, Takei N, Higaki T, Amaki T, Ishida Y, Kusama M, Ono S, Narimatsu H, Kami M, Komatsu T. Failure of liver function tests in predicting drug clearance of chemotherapeutic agents in a patient who had recovered from hepatic congestion. Br J Clin Pharmacol 2010; 70:277-9. [PMID: 20653682 DOI: 10.1111/j.1365-2125.2010.03693.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Ellero S, Chakhtoura G, Barreau C, Langouët S, Benelli C, Penicaud L, Beaune P, de Waziers I. Xenobiotic-metabolizing cytochromes p450 in human white adipose tissue: expression and induction. Drug Metab Dispos 2010; 38:679-86. [PMID: 20035023 DOI: 10.1124/dmd.109.029249] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipophilic pollutants can accumulate in human white adipose tissue (WAT), and the consequences of this accumulation are still poorly understood. Cytochromes P450 (P450s) have recently been found in rat WAT and shown to be inducible through mechanisms similar to those in the liver. The aim of our study was to describe the cytochrome P450 pattern and their induction mechanisms in human WAT. Explants of subcutaneous and visceral WAT and primary culture of subcutaneous adipocytes were used as WAT models, and liver biopsies and primary culture of hepatocytes were used as liver models to characterize P450 expression in both tissues. The WAT and liver models were then treated with typical P450 inducers (rifampicin, phenobarbital, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) and lipophilic pollutants (lindane, prochloraz, and chlorpyrifos), and the effects on P450 expression were studied. P450 expression was considerably lower in WAT than in the liver, except for CYP1B1 and CYP2U1, which were the most highly expressed adipose P450s in all individuals. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and prochloraz induced CYP1A1 and CYP1B1 expression in both tissues. The aryl hydrocarbon receptor was also present in WAT. In contrast, neither phenobarbital nor rifampicin treatment induced CYP2 or CYP3 mRNA in WAT, and constitutive androstane receptor and pregnane X receptor were almost undetectable. These results suggest that the mechanisms by which P450s of family 1 are regulated in the liver are also functional in human WAT, but those regulating CYP2 and CYP3 expression are not.
Collapse
MESH Headings
- Adipocytes, White/metabolism
- Adipose Tissue, White/enzymology
- Adipose Tissue, White/metabolism
- Adult
- Aryl Hydrocarbon Hydroxylases/metabolism
- Blotting, Western
- Cells, Cultured
- Cytochrome P-450 CYP1B1
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P450 Family 2
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Enzyme Induction/drug effects
- Enzyme Induction/physiology
- Female
- Humans
- In Vitro Techniques
- Male
- Middle Aged
- Pregnane X Receptor
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Steroid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/metabolism
- Xenobiotics/metabolism
Collapse
Affiliation(s)
- Sandrine Ellero
- Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Interdisciplinary Institute of Life Sciences des Saints Péres, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Andersson H, Helmestam M, Zebrowska A, Olovsson M, Brittebo E. Tamoxifen-induced adduct formation and cell stress in human endometrial glands. Drug Metab Dispos 2010; 38:200-7. [PMID: 19812351 DOI: 10.1124/dmd.109.029488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The beneficial effects of tamoxifen in the prevention and treatment of breast cancer are compromised by an increased risk of endometrial polyps, hyperplasia, and cancer. Tamoxifen is metabolized to an array of metabolites with estrogenic effects but also to reactive intermediates that may form protein and DNA adducts. The aim of this study was to investigate cellular [(3)H]tamoxifen adduct formation by light microscopic autoradiography and cell stress by immunohistochemical analysis of glucose-regulating protein 78 (GRP78), nuclear factor kappaB (NF-kappaB), and caspase 3 in human endometrial explants after short-term incubation with tamoxifen. The cellular expression of tamoxifen-metabolizing enzymes in human endometrial biopsy samples was also determined by immunohistochemistry. The results showed selective [(3)H]tamoxifen adduct formation in glandular and surface epithelia after incubation with a nontoxic concentration of [(3)H]tamoxifen (6 nM). There was also a selective expression of the endoplasmic reticulum stress chaperone GRP78 and activated caspase 3 at these sites after incubation with cytotoxic concentrations of tamoxifen (10-100 microM). The cell stress was preferentially observed in samples from women in the proliferative menstrual phase. No treatment-related expression of NF-kappaB was observed. Constitutive expression of the tamoxifen-metabolizing enzymes CYP1B1, CYP2A6, CYP2B6, CYP2C8/9/19, CYP2D6, and SULT2A1 in glandular and surface epithelia was shown, but there was a large interindividual variation. The colocalization of [(3)H]tamoxifen adducts, expression of GRP78, caspase 3, and tamoxifen-metabolizing enzymes in human glandular and surface epithelia suggest a local bioactivation of tamoxifen at these sites and that epithelial cells are early target sites for tamoxifen-induced cell stress.
Collapse
Affiliation(s)
- Helén Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
32
|
Messina A, Nannelli A, Fiorio R, Longo V, Gervasi PG. Expression and inducibility of CYP1A1, 1A2, 1B1 by beta-naphthoflavone and CYP2B22, 3A22, 3A29, 3A46 by rifampicin in the respiratory and olfactory mucosa of pig. Toxicology 2009; 260:47-52. [PMID: 19464568 DOI: 10.1016/j.tox.2009.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/25/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
The presence and inducibility of specific CYPs (1A1, 1A2, 1B1, 2B22, 3A22, 3A29 and 3A46) and the related transcriptional factors (AhR, CAR, PXR, and HNF4alpha) were investigated, at activity and/or transcriptional level, in liver, respiratory and olfactory mucosa of control and beta-naphthoflavone (betaNF)-treated pigs an agonist of AhR, or rifampicin (RIF), an agonist of PXR. Experiments with real-time PCR showed that CYP1A1 mRNA was enhanced by betaNF, although at different extent, in liver, respiratory and olfactory tissues, whereas mRNAs of CYP1A2 and 1B1 were increased only in liver. Accordingly, in microsomes of both nasal tissues, the transcriptional activation of CYP1A1 was accompanied by an induction of ethoxyresorufin deethylase activity (a marker of this isoform) but not of methoxyresorufin demethylase activity (a marker of CYP1A2). The rifampicin treatment resulted in a transcriptional activation of CYP2B22 and CYP3As genes in liver but not in respiratory and olfactory mucosa. In parallel, the marker activity of CYP2B (ethoxy 4-(trifluoromethyl)coumarin deethylase) and CYP3As (6beta-testosterone hydroxylase and benzyloxyquinoline debenzylase) were induced in liver microsomes but not in the nasal ones. Considering the transcriptional factors, the basal expression of AhR mRNA was found to be as high in liver as in both nasal tissues but not susceptible to induction by betaNF. Also PXR mRNA was found, aside liver, well expressed in the nasal tissues, whereas CAR and HNF4alpha mRNAs were barely detected. In any case, these transcripts appeared to be enhanced by RIF treatment. Our results demonstrated that in the respiratory and olfactory mucosa of pig, although the presence of AhR, only CYP1A1, but not 1A2 and 1B1 resulted to be inducible by betaNF. Similarly, it was observed that in these nasal tissues, although the presence of PXR, neither CYP2B22 nor any CYP3A resulted to be inducible by RIF. Thus, the regulation mechanism of CYP1A2, 1B1, 2B22, 3A22, 3A29, and 3A46, in the nasal mucosa involves tissue-enriched transcriptional factors others than AhR, CAR, PXR, and HNF4alpha, which are fundamental in liver.
Collapse
Affiliation(s)
- A Messina
- Istituto di Fisiologia Clinica CNR, Area della Ricerca CNR, Pisa, Italy
| | | | | | | | | |
Collapse
|
33
|
Lu W, Uetrecht JP. Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin. Drug Metab Dispos 2008; 36:1624-36. [PMID: 18463199 DOI: 10.1124/dmd.107.019554] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Carbamazepine (CBZ) and phenytoin (PHN) are associated with a relatively high incidence of idiosyncratic drug reactions. Most such reactions are believed to be due to reactive metabolites. The reactions associated with these two drugs are similar, and if a patient has a reaction to one, he or she is at increased risk of having a reaction to the other, suggesting that a similar reactive metabolite may be involved. CBZ causes neutropenia in approximately 10% of patients; this suggests that reactive metabolites are formed by myeloperoxidase (MPO), the major oxidative enzyme in neutrophils. Major metabolites of CBZ are the 2- and 3-OH metabolites, and that of PHN is the 4-OH metabolite. We found that both 2-OH-CBZ and 3-OH-CBZ were further oxidized by MPO/H2O2, and the oxidation of 3-OH-CBZ was much faster than the oxidation of 2-OH-CBZ or CBZ itself. Oxidation by MPO formed dimers of 3-OH-CBZ and 4-OH-PHN and, in the presence of N-acetyltyrosine, cross dimers were formed. This strongly suggests free radical intermediates. Bioactivation of 3-OH-CBZ and 4-OH-PHN by MPO/H2O2 led to covalent binding to the tyrosine of a model protein. Free radicals usually generate reactive oxygen species (ROS). We also tested the ability of these metabolites to generate ROS and found that 3-OH-CBZ generated more ROS than 2-OH-CBZ, which was, in turn, greater than that generated by CBZ. These results suggest that bioactivation of 3-OH-CBZ and 4-OH-PHN to free radicals by peroxidases may play a role in the ability of these drugs to cause idiosyncratic drug reactions.
Collapse
Affiliation(s)
- Wei Lu
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, Canada
| | | |
Collapse
|
34
|
Grieco A, Miele L, Forgione A, Ragazzoni E, Vecchio FM, Gasbarrini G. Mild hepatitis at recommended doses of acetaminophen in patients with evidence of constitutionally enhanced cytochrome P450 system activity. J Clin Pharm Ther 2008; 33:315-20. [PMID: 18452419 DOI: 10.1111/j.1365-2710.2008.00918.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetaminophen (paracetamol) is used throughout the world for pain relief and antipyresis in both children and adults. In many countries, it can be purchased without a medical prescription and it is also a common component of a number of over-the-counter remedies for colds, influenza and the like. Fasting, malnutrition and use of alcohol and/or other drugs are thought to play causal roles in hepatotoxicity associated with recommended doses of acetaminophen although liver injury provoked by therapeutic doses has also been observed in the absence of these factors. We describe two patients who experienced subclinical hepatotoxic reactions after taking acetaminophen at therapeutic doses. The results of an antipyrine metabolism test suggest the presence of constitutional hyperactivity of the cytochrome P450-dependent mixed function oxidative system in both patients. We hypothesize that the latter contributed to the hepatotoxicity and that it may play a role in idiosyncratic reactions to this drug.
Collapse
Affiliation(s)
- A Grieco
- Institute of Internal Medicine, Policlinico Universitario "A.Gemelli", Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Kreke N, Dietrich DR. Physiological endpoints for potential SSRI interactions in fish. Crit Rev Toxicol 2008; 38:215-47. [PMID: 18324517 DOI: 10.1080/10408440801891057] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are among the pharmaceutical compounds frequently detected in sewage treatment plant effluents and surface waters, albeit at very low concentrations, and have therefore become a focus of interest as environmental pollutants. These neuroactive drugs are primarily used in the treatment of depression but have also found broader use as medication for other neurological dysfunctions, consequently resulting in a steady increase of prescriptions worldwide. SSRIs, via inhibition of the serotonin (5-hydroxytryptamine, 5-HT) reuptake mechanism, induce an increase in extracellular 5-HT concentration within the central nervous system of mammals. The phylogenetically ancient and highly conserved neurotransmitter and neurohormone 5-HT has been found in invertebrates and vertebrates, although its specific physiological role and mode of action is unknown for many species. Consequently, it is difficult to assess the impact of chronic SSRI exposure in the environment, especially in the aquatic ecosystem. In view of this, the current knowledge of the functions of 5-HT in fish physiology is reviewed and, via comparison to the physiological role and function of 5-HT in mammals, a characterization of the potential impact of chronic SSRI exposure on fish is provided. Moreover, the insight on the physiological function of 5-HT strongly suggests that the experimental approaches currently used are inadequate if not entirely improper for routine environmental risk assessment of pharmaceuticals (e.g., SSRIs), as relevant endpoints are not assessed or impossible to determine.
Collapse
Affiliation(s)
- N Kreke
- Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
36
|
Uetrecht JP. Section Review Pulmonary-Allergy, Dermatological, Gastrointestinal & Arthritis: Drug-induced lupus: Possible mechanisms and their implications for prediction of which new drugs may induce lupus. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.7.851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Purnapatre K, Khattar SK, Saini KS. Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett 2008; 259:1-15. [DOI: 10.1016/j.canlet.2007.10.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/16/2022]
|
38
|
Copple IM, Goldring CE, Kitteringham NR, Park BK. The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology 2007; 246:24-33. [PMID: 18083283 DOI: 10.1016/j.tox.2007.10.029] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 12/30/2022]
Abstract
The metabolic biotransformation of xenobiotics to chemically reactive metabolites can, in some instances, underlie the pathogenesis of certain adverse drug reactions, due to the development of chemical or oxidative stress. In order to guard against such stresses, mammalian cells have evolved multi-faceted, highly-regulated defence systems, one of the most important being that which is regulated by the transcription factor Nrf2. Through regulating the expression of numerous cytoprotective genes, Nrf2 serves as a critical determinant of a cell's capacity to survive, or succumb, to a toxic insult. The aim of this review is to summarise our current understanding of the biochemistry that underlies the Nrf2 defence pathway, and highlight the important role of this transcription factor in the protection against drug-induced toxicity, primarily through the examination of recent investigations that have demonstrated an increased vulnerability to various toxins in animals lacking Nrf2.
Collapse
Affiliation(s)
- Ian M Copple
- The Department of Pharmacology and Therapeutics, The University of Liverpool, Liverpool, Merseyside L69 3GE, UK
| | | | | | | |
Collapse
|
39
|
Bièche I, Narjoz C, Asselah T, Vacher S, Marcellin P, Lidereau R, Beaune P, de Waziers I. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics 2007; 17:731-42. [PMID: 17700362 DOI: 10.1097/fpc.0b013e32810f2e58] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this work was to study simultaneously the expression profile of the 23 CYP mRNAs of CYP1, CTP2 and CYP3 families in 22 different human tissues namely adrenal gland, bladder, bone marrow, colon, fetal liver, heart, kidney, liver, lung, mammary gland, ovary, placenta, prostate, salivary gland, skeletal muscle, small intestine, spleen, testis, thymus, thyroid, trachea and uterus. METHODS Analysis of the mRNA levels of each of these CYP isoforms was performed on total RNA from pooled specimens of human organs using reverse transcriptase-PCR-based CYP mRNA assays previously validated for their sensitivity and their specificity. RESULTS Our results confirmed previously reported data in the literature concerning isoforms expression in the most currently studied tissues. Moreover, they provided a great deal of new information, mainly about the expression of mRNA of little-known CYP isoforms. Among the 23 CYP isoforms studied, 12 were mainly hepatic (CYP1A2, 2A6, 2A7, 2A13, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4 and 3A43). Two CYP mRNAs were predominantly expressed in several extrahepatic tissues: CYP1B1 mRNA was the predominant CYP in seven extrahepatic tissues (bone marrow, kidney, mammary gland, prostate, spleen, thyroid and uterus) and CYP2J2 in four extrahepatic tissues (heart, placenta, salivary gland and skeletal muscle). Finally, some CYPs were nearly exclusively expressed in only one extrahepatic tissue. CYP2R1 was found in testis, CYP2U1 in the thymus and CYP2F1 in the respiratory tract (lung and trachea). CONCLUSION This description will broaden the understanding of the physiological functions of these CYPs.
Collapse
Affiliation(s)
- Ivan Bièche
- INSERM, UMR735, St-Cloud, F-92210 Centre Renè Huguenin, FNCLCC, St-Cloud, F-92211, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Acetaminophen is a commonly used antipyretic and analgesic agent. It is safe when taken at therapeutic doses; however, overdose can lead to serious and even fatal hepatotoxicity. The initial metabolic and biochemical events leading to toxicity have been well described, but the precise mechanism of cell injury and death is unknown. Prompt recognition of overdose, aggressive management, and administration of N-acetylcysteine can minimize hepatotoxicity and prevent liver failure and death. Liver transplantation can be lifesaving for those who develop acute liver failure.
Collapse
Affiliation(s)
- Anne M Larson
- Division of Gastroenterology, Hepatology Section, University of Washington, 1959 NE Pacific Street, Box 356174, Seattle, WA 98195-6174, USA.
| |
Collapse
|
41
|
Depondt C, Shorvon SD. Genetic association studies in epilepsy pharmacogenomics: lessons learnt and potential applications. Pharmacogenomics 2006; 7:731-45. [PMID: 16886898 DOI: 10.2217/14622416.7.5.731] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although epilepsy is one of the most common neurological disorders and genetic factors are well known to play a role in response to antiepileptic drug (AED) treatment, the study of the pharmacogenetics of epilepsy has received relatively little attention and has not resulted in clinical applications to date. Our improved understanding of the pathogenesis of epilepsy and the mechanism of action of AEDs, together with recent advances in genetics and decreasing genotyping costs, have now paved the way for a more systematic application of pharmacogenetics in the field of epilepsy. It is hoped that the resulting knowledge will lead to a more rational treatment of epilepsy, development of more efficacious AEDs, and facilitation of clinical trials of new AEDs. However, there are formidable practical, methodological and theoretical hurdles to overcome before pharmacogenomic information will have any major utility in the clinical setting. Here, we discuss the evidence for a genetic contribution to AED response, review current knowledge in epilepsy pharmacogenetics and discuss potential future avenues with their implications, both for the clinical treatment of epilepsy and new AED development.
Collapse
Affiliation(s)
- Chantal Depondt
- Université Libre de Bruxelles, Department of Neurology, Hôpital Erasme, Route de Lennik 808, 1070 Brussels, Belgium.
| | | |
Collapse
|
42
|
Depondt C. The potential of pharmacogenetics in the treatment of epilepsy. Eur J Paediatr Neurol 2006; 10:57-65. [PMID: 16531088 DOI: 10.1016/j.ejpn.2005.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 11/21/2005] [Indexed: 11/20/2022]
Abstract
Pharmacogenetics studies how genetic variants influence individual drug responses. Although pharmacogenetics is currently the subject of intensive research in several disease domains, it remains relatively unexplored in the field of epilepsy. Drug treatment of epilepsy is characterized by unpredictability of efficacy, adverse drug reactions and optimal doses in individual patients. Moreover, a substantial fraction of patients develop drug refractory epilepsy despite optimal treatment. Insights in the pathogenesis of epilepsy and the mechanisms of action of antiepileptic drugs (AEDs) have improved our understanding of the genetic determinants of AED response. The first reports in epilepsy pharmacogenetics are becoming available, and large-scale pharmacogenetic studies are now possible thanks to recent advances in genetics and decreasing genotyping costs. It is hoped that ultimately, findings in epilepsy pharmacogenetics will lead to a more efficacious and less harmful treatment of epilepsy, development of more effective AEDs and facilitation of clinical trials of new AEDs. However, although pharmacogenetics will undoubtedly improve our insight into the mechanisms underlying response to AEDs and perhaps into the pathogenesis of drug refractory epilepsy, clinical application of any findings is expected to be a long process, and considerable practical and theoretical hurdles need to be overcome before pharmacogenetic information will prove of any major utility in the clinical setting. This review addresses current knowledge on genetic factors contributing to AED response and discusses the potential of epilepsy pharmacogenetics in the clinical treatment of epilepsy and new AED development.
Collapse
Affiliation(s)
- Chantal Depondt
- Service de Neurologie, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Anderlecht, Belgium.
| |
Collapse
|
43
|
Opiate Addicted Patients: The Misconceptions of Chronic Acetaminophen Ingestion. ADDICTIVE DISORDERS & THEIR TREATMENT 2006. [DOI: 10.1097/01.adt.0000210705.64951.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Englander EW. Gene expression changes reveal patterns of aging in the rat digestive tract. Ageing Res Rev 2005; 4:564-78. [PMID: 16260189 DOI: 10.1016/j.arr.2005.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 06/17/2005] [Indexed: 02/05/2023]
Abstract
Similarly to other organs, the human digestive system is adversely affected by aging presenting physiologic manifestations that include compromised absorption and secretion, decreased motility, weakened mucosal barrier and as well as a high incidence of colon cancer. As biomedical advances enable the population to live longer, our understanding of molecular events that govern aging and disease states is enhanced through methodical analyses of temporal tissue-specific gene expression profiles. Recently, DNA microarray analyses have been employed to examine age-associated transcriptional profiles in the mammalian digestive tract. Gene expression patterns revealed that the magnitude and trend of age-associated changes differ in the rat colon and duodenum. Interestingly, the expression of genes involved in energy-generating metabolic pathways was decreased in the duodenum and increased in the colon. Microarray analyses detected modulations in expression of genes associated with compromised intestinal function and propensity for colon cancer in the aged population. Furthermore, altered expression was observed for certain genes implicated in governance of aging and lifespan in other organisms suggesting intriguing commonalities across species. Thus, these studies demonstrated feasibility and usefulness of DNA microarrays for identifying pathways involved in the molecular pathophysiology of the aging process and lifespan control in complex organisms.
Collapse
Affiliation(s)
- Ella W Englander
- Department of Surgery, Shriners Hospital for Children, 815 Market Street, Galveston, TX 77555, USA.
| |
Collapse
|
45
|
Scallet AC, Muskhelishvili L, Slikker W, Kadlubar FF. Sex differences in cytochrome P450 1B1, an estrogen-metabolizing enzyme, in the rhesus monkey telencephalon. J Chem Neuroanat 2005; 29:71-80. [PMID: 15589702 DOI: 10.1016/j.jchemneu.2004.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 09/21/2004] [Accepted: 09/23/2004] [Indexed: 11/27/2022]
Abstract
The metabolic enzyme CYP1B1 is a recently cloned member of the cytochrome P450 superfamily, expressed widely throughout primate tissue, including the CNS. Although CYP1B1 protein is known to metabolize estradiol to catecholestrogens in the uterus, its localization and function in brain have not yet been described. To better understand CYP1B1 distribution, we have combined in situ hybridization (ISH) for its mRNA with immunohistochemistry (IHC) for the CYP1B1 protein in selected brain regions of male and female adult rhesus monkeys (Macaca mulatta). Blocks of formalin-fixed tissue obtained from the frontal cortex, hippocampus, thalamus, and amygdala were processed and embedded in paraffin. They were then sectioned and stained as described for human tissue [Muskhelishvili, L., Thompson, P.A., Kusewitt, D.F., Wang, C., Kadlubar, F.F., 2001. In situ hybridization and immunohistochemical analysis of cytochrome P450 1B1 expression in human normal tissues. J. Histochem. Cytochem. 49, 229-236]. Results indicated widespread distribution of CYP1B1 mRNA in both male and female monkey frontal cortex, hippocampus, thalamus, and amygdala. In contrast, although CYP1B1 protein was co-localized with its mRNA in the female brains, it was primarily restricted to hippocampal pyramidal neurons in the male brains. These results suggest that CYP1B1 may subserve widespread metabolic functions in the female primate brain but have more restricted actions within the hippocampal pyramidal neurons of the male.
Collapse
Affiliation(s)
- Andrew C Scallet
- Division of Neurotoxicology, National Center for Toxicological Research, NCTR/FDA, 3900 NCTR Drive, Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|
46
|
Ueng YF, Kuo YH, Wang SY, Lin YL, Chen CF. Induction of CYP1A by a diterpene quinone tanshinone IIA isolated from a medicinal herb Salvia miltiorrhiza in C57BL/6J but not in DBA/2J mice. Life Sci 2004; 74:885-96. [PMID: 14659977 DOI: 10.1016/j.lfs.2003.07.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Effects of tanshinone IIA, an active diterpene quinone of the herbal medicine Salvia miltiorrhiza (Danshen), on cytochrome P450 (CYP), UDP-glucuronosyl transferase (UGT), and glutathione S-transferase (GST) were studied in the arylhydrocarbon (Ah)-responsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice. Oral treatment of tanshinone IIA caused a dose-dependent increase of liver microsomal 7-methoxyresorufin O-demethylation (MROD) activity in B6 but not in D2 mice. In B6 mice, tanshinone IIA increased hepatic benzo(a)pyrene hydroxylation (AHH), 7-ethoxyresorufin O-deethylation, MROD, and 7-ethoxycoumarin O-deethylation activities. The levels of Cyp1A2 protein and mRNA were elevated. On the contrary, in D2 mice, tanshinone IIA decreased hepatic AHH and nifedipine oxidation activities and the CYP3A protein level without affecting other activities determined. Cyp1A2 protein and mRNA levels were not affected by tanshinone IIA in D2 mice. Tanshinone IIA had no effects on UGT and GST activities in both B6 and D2 mice. These results demonstrated that induction of CYP1A2 by tanshinone IIA depended on the Ah-responsiveness and occurred at pre-translational level.
Collapse
MESH Headings
- Abietanes
- Administration, Oral
- Animals
- Cytochrome P-450 CYP1A2/biosynthesis
- Cytochrome P-450 CYP1A2/genetics
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal
- Enzyme Induction
- Gene Expression Regulation, Enzymologic/drug effects
- Glucuronosyltransferase/biosynthesis
- Glucuronosyltransferase/genetics
- Glutathione Transferase/biosynthesis
- Glutathione Transferase/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred Strains/metabolism
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Phenanthrenes/administration & dosage
- Phenanthrenes/pharmacology
- RNA, Messenger/metabolism
- Salvia miltiorrhiza/chemistry
- Species Specificity
Collapse
Affiliation(s)
- Yune-Fang Ueng
- National Research Institute of Chinese Medicine, 155-1, Li-Nong Street, Sec. 2, Taipei 112, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Chloroacetonitrile (CAN) is a disinfection by-product of chlorination of drinking water. Epidemiological studies indicate that it might present a potential hazard to human health. The present work provides an evidence for CAN activation to cyanide (CN-) by myeloperoxidase (MPO)/hydrogen peroxide (H2O2)/chloride (Cl-) system in vitro. Optimum conditions for the oxidation of CAN to CN- were characterized with respect to pH, temperature and time of incubation as well as CAN, MPO, H2O2 and KCl concentrations in incubation mixtures. The kinetic parameters governing the reaction; maximum velocity (Vmax) and Michaelis-Menten constant (Km) were assessed. Oxidation of CAN to CN- by NaOCl alone was shown. Addition of the MPO inhibitors; sodium azide (NaN3), 4-amino benzoic acid hydrazine (ABAH) or indomethacin to the reaction mixtures resulted in a significant decrease in the rate of CAN oxidation. Inclusion of the antioxidant enzyme catalase (CAT) in the incubation mixtures resulted in a significant decrease in the rate of CAN oxidation and CN- formation. Addition of the sulfhydryl compounds; glutathione (GSH), N-acetyl-L-cysteine (NAC), L-cysteine or D-penicillamine significantly enhanced the rate of CN- release. In conclusion, MPO/H2O2/Cl- system has the ability of oxidizing CAN to CN-. The present results represent a novel pathway for CAN activation and might be important in explaining CAN-induced toxicity.
Collapse
Affiliation(s)
- Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | |
Collapse
|
48
|
Shapiro L, Knowles S, Shear N. Drug interactions of clinical significance for the dermatologist: recognition and avoidance. Am J Clin Dermatol 2004; 4:623-39. [PMID: 12926981 DOI: 10.2165/00128071-200304090-00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
While it would be impossible for any dermatologist to remember all potential drug interactions, knowledge of the mechanisms of drug interactions can help reduce the risk of serious adverse outcomes. Most drugs are associated with interactions but the majority do not produce significant outcomes. Dealing with drug interactions is a challenge in all clinical practice, including dermatology. New information continues to appear, and dermatologists need to know about the drugs they use.This article focuses on the mechanisms of drug interactions. In particular, the life of a drug in terms of absorption, distribution, metabolism and excretion are reviewed with the focus on points of importance and relevance to drug interactions. The most clinically important drug interactions in dermatological practice are caused by alterations in drug metabolism. The contributions of P-glycoprotein, pharmacogenetic variation and genetic polymorphisms to drug interactions are highlighted, and the best evidence for drug interactions involving drug classes relevant to the dermatologist is presented. Since the initial evidence for clinically relevant drug interactions comes from case reports, prescribing physicians can have a major role in collating information on interactions. By understanding the mechanisms behind drug interactions and staying alert for toxicities, we can help make drug therapy safer and reduce the fear of drug interactions.
Collapse
Affiliation(s)
- Lori Shapiro
- Division of Clinical Pharmacology, Sunnybrook and Women's College Health Science Centre and the University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
49
|
Choi SJ, Kim M, Kim SI, Jeon JK. Microplate assay measurement of cytochrome p450-carbon monoxide complexes. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:332-5. [PMID: 12787491 DOI: 10.5483/bmbrep.2003.36.3.332] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 in microsomes can be quantitated using the characteristic 450 nm absorption peak of the CO adduct of reduced cytochrome P450. We developed a simple microplate assay method that is superior to previous methods. Our method is less laborious, suitable for analyzing many samples, and less sensitive to sample aggregation. Microsome samples in microplate wells were incubated in a CO chamber rather than bubbled with CO gas, and then reduced with sodium hydrosulfite solution. This modification allowed a reliable and reproducible assay by effectively eliminating variations between estimations.
Collapse
Affiliation(s)
- Suk-Jung Choi
- Department of Chemistry, Kangnung National University, Gangneung 210-702, Korea.
| | | | | | | |
Collapse
|
50
|
Manchanda T, Hess D, Dale L, Ferguson SG, Rieder MJ. Haptenation of sulfonamide reactive metabolites to cellular proteins. Mol Pharmacol 2002; 62:1011-26. [PMID: 12391263 DOI: 10.1124/mol.62.5.1011] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adverse drug reactions are a major problem complicating medical therapy. The pathogenesis of many severe adverse drug reactions, notably hypersensitivity reactions, is poorly understood. The sulfonamides are associated with severe hypersensitivity reactions. The initial pathogenesis seems to be caused by bioactivation of the parent drug to a reactive intermediate and subsequent propagation by the immune system. The determinants of the immune response are not known. We explored the formation of sulfonamide haptens in Molt-3 and HEPA 1C1C7 cells after incubation with sulfamethoxazole (SMX), the hydroxylamine of sulfamethoxazole (SMX-HA), or the nitroso of sulfamethoxazole (SMX-NO). Haptenation was demonstrated with SMX-HA and SMX-NO but not SMX; this occurred at concentrations below that associated with toxicity (significant haptenation was seen at 25 to 50 microM). Thus, haptenation occurred presumably onto viable cells. Haptenation occurred rapidly; haptenation of cell surface proteins was demonstrated within 5 min. This did not occur indiscriminately; confocal microscopy demonstrated haptenation onto specific sites on the cell membrane. We found that haptenation was significantly inhibited by thiols and other antioxidants (p < 0.05). Sulfonamide-specific haptens were rapidly internalized by what seemed to be a caveolae-dependent process. It seems that sulfonamide reactive metabolites haptenated specific cell surface proteins that are rapidly internalized. Understanding the specific protein target(s) for haptenation and how these haptens are processed will be important in understanding the immune mediation of sulfonamide hypersensitivity adverse drug reactions.
Collapse
Affiliation(s)
- Tarang Manchanda
- Section of Paediatric Clinical Pharmacology, Toxicology & Experimental Therapeutics, Department of Paediatrics, Faculty of Medicine & Dentistry, University of Western Ontario, Ontario, Canada
| | | | | | | | | |
Collapse
|