1
|
Tecuatl C, Herrrera-López G, Martín-Ávila A, Yin B, Weber S, Barrionuevo G, Galván EJ. TrkB-mediated activation of the phosphatidylinositol-3-kinase/Akt cascade reduces the damage inflicted by oxygen-glucose deprivation in area CA3 of the rat hippocampus. Eur J Neurosci 2018; 47:1096-1109. [PMID: 29480936 PMCID: PMC5938095 DOI: 10.1111/ejn.13880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of hippocampal area CA1 to ischemia-induced injury is a well-known phenomenon. However, the cellular mechanisms that confer resistance to area CA3 against ischemic damage remain elusive. Here, we show that oxygen-glucose deprivation-reperfusion (OGD-RP), an in vitro model that mimic the pathological conditions of the ischemic stroke, increases the phosphorylation level of tropomyosin receptor kinase B (TrkB) in area CA3. Slices preincubated with brain-derived neurotrophic factor (BDNF) or 7,8-dihydroxyflavone (7,8-DHF) exhibited reduced depression of the electrical activity triggered by OGD-RP. Consistently, blockade of TrkB suppressed the resistance of area CA3 to OGD-RP. The protective effect of TrkB activation was limited to area CA3, as OGD-RP caused permanent suppression of CA1 responses. At the cellular level, TrkB activation leads to phosphorylation of the accessory proteins SHC and Gab as well as the serine/threonine kinase Akt, members of the phosphoinositide 3-kinase/Akt (PI-3-K/Akt) pathway, a cascade involved in cell survival. Hence, acute slices pretreated with the Akt antagonist MK2206 in combination with BDNF lost the capability to resist the damage inflicted with OGD-RP. Consistently, with these results, CA3 pyramidal cells exhibited reduced propidium iodide uptake and caspase-3 activity in slices pretreated with BDNF and exposed to OGD-RP. We propose that PI-3-K/Akt downstream activation mediated by TrkB represents an endogenous mechanism responsible for the resistance of area CA3 to ischemic damage.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Gabriel Herrrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Alejandro Martín-Ávila
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Bocheng Yin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Germán Barrionuevo
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| |
Collapse
|
2
|
Lynch G, Kramár EA, Gall CM. Protein synthesis and consolidation of memory-related synaptic changes. Brain Res 2014; 1621:62-72. [PMID: 25485773 DOI: 10.1016/j.brainres.2014.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Although sometimes disputed, it has been assumed for several decades that new proteins synthesized following a learning event are required for consolidation of subsequent memory. Published findings and new results described here challenge this idea. Protein synthesis inhibitors did not prevent Theta Bust Stimulation (TBS) from producing extremely stable long-term potentiation (LTP) in experiments using standard hippocampal slice protocols. However, the inhibitors were effective under conditions that likely depleted protein levels prior to attempts to induce the potentiation effect. Experiments showed that induction of LTP at one input, and thus a prior episode of protein synthesis, eliminated the effects of inhibitors on potentiation of a second input even in depleted slices. These observations suggest that a primary role of translation and transcription processes initiated by learning events is to prepare neurons to support future learning. Other work has provided support for an alternative theory of consolidation. Specifically, if the synaptic changes that support memory are to endure, learning events/TBS must engage a complex set of signaling processes that reorganize and re-stabilize the spine actin cytoskeleton. This is accomplished in fast (10 min) and slow (50 min) stages with the first requiring integrin activation and the second a recovery of integrin functioning. These results align with, and provide mechanisms for, the long-held view that memories are established and consolidated over a set of temporally distinct phases. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | - Enikö A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Assaying the functional effects of demyelination and remyelination: revisiting field potential recordings. J Neurosci Methods 2009; 182:25-33. [PMID: 19481113 DOI: 10.1016/j.jneumeth.2009.05.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/12/2009] [Accepted: 05/20/2009] [Indexed: 11/23/2022]
Abstract
The occurrence and histopathological characteristics of demyelination and neurodegeneration have been well described in different demyelinating mouse models. However, histopathological analysis is limiting in that it is unable to describe the functional consequences of demyelination and recovery after remyelination. Establishing the functional correlates of axon demyelination and remyelination is an important goal and can be used to measure axon function and develop neuroprotective therapies. This report describes a previously established, simple, easily applied method of electrophysiological measurement that can characterize white matter axonal dysfunction following demyelination and potential recovery after remyelination. It is designed to study in vitro stimulated compound action potentials in the corpus callosum of superfused brain slices at various time points and can be similarly used on white matter tracts in the optic nerve, spinal cord and cerebellum. Since behavioral testing can be performed prior to the brain slice electrophysiology, and the recorded slices can be post-fixed and subjected to histological analysis, correlates between behavior, axon function, and pathology can be determined. A temporal pattern of white matter functional deterioration and recovery can also be established to study mechanisms of demyelination-induced white matter injury and repair.
Collapse
|
4
|
Kolesárová M, Pavel J, Lukáčová N, Kolesár D, Maršala J. Effect of ischemia in vivo and oxygen-glucose deprivation in vitro on NOS pools in the spinal cord: comparative study. Cell Mol Neurobiol 2006; 26:1281-94. [PMID: 16691443 PMCID: PMC11520762 DOI: 10.1007/s10571-006-9032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 12/23/2005] [Indexed: 11/30/2022]
Abstract
1. This study was performed to compare both the Ca(2+)-dependent nitric oxide synthase (NOS) activity and the neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the rabbit lumbosacral spinal cord after 15 min abdominal aorta occlusion (ischemia in vivo) and oxygen-glucose deprivation of the spinal cord slices for 45 and 60 min (ischemia in vitro). All ischemic periods were followed by 15, 30 and 60 min reoxygenation in vitro. 2. Catalytic nitric oxide synthase activity was determined by the conversion of (L)-[(14)C]arginine to (L)-[(14)C]citrulline. Neuronal nitric oxide synthase immunoreactivity in the spinal cord was detected by incubation of sections with polyclonal sheep-nNOS-primary antibody and biotinylated anti-sheep secondary antibody. 3. Our results show that ischemia in vivo and the oxygen-glucose deprivation of spinal cord slices in vitro result in a time-dependent loss of constitutive NOS activity with a partial restoration of enzyme activity during 15 and 45 min ischemia followed by 30 min of reoxygenation. A significant decrease of enzyme activity was found during 60 min ischemia alone, which persisted up to 1 h of oxygen-glucose restoration. The upregulation of neuronal nitric oxide synthase was observed in the ventral horn motoneurons after all ischemic periods. The remarkable changes in optical density of neuronal nitric oxide synthase immunoreactive motoneurons were observed after 45 and 60 min ischemia in vitro followed by 30 and 60 min reoxygenation. 4. Our results suggest that the oxygen-glucose deprivation followed by reoxygenation in the spinal cord is adequately sensitive to monitor ischemia/reperfusion changes. It seems that 15 min ischemia in vivo and 45 min ischemia in vitro cause reversible changes, while the decline of Ca(2+)-dependent nitric oxide synthase activity after 60 min ischemic insult suggests irreversible alterations.
Collapse
Affiliation(s)
- Mária Kolesárová
- Institute of Neurobiology, Slovak Academy of Science, Šoltésovej 4, 040 01 Košice, Slovak Republic
- Institute of Neurobiology, Slovak Academy of Science, Šoltésovej 4, 040 01 Košice, Slovak Republic
| | - Jaroslav Pavel
- Institute of Neurobiology, Slovak Academy of Science, Šoltésovej 4, 040 01 Košice, Slovak Republic
| | - Nadežda Lukáčová
- Institute of Neurobiology, Slovak Academy of Science, Šoltésovej 4, 040 01 Košice, Slovak Republic
| | - Dalibor Kolesár
- Institute of Neurobiology, Slovak Academy of Science, Šoltésovej 4, 040 01 Košice, Slovak Republic
| | - Jozef Maršala
- Institute of Neurobiology, Slovak Academy of Science, Šoltésovej 4, 040 01 Košice, Slovak Republic
| |
Collapse
|
5
|
Duntsch C, Divi MK, Jones T, Zhou Q, Krishnamurthy M, Boehm P, Wood G, Sills A, Moore BM. Safety and efficacy of a novel cannabinoid chemotherapeutic, KM-233, for the treatment of high-grade glioma. J Neurooncol 2005; 77:143-52. [PMID: 16314952 DOI: 10.1007/s11060-005-9031-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 08/16/2005] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To test in vitro and in vivo the safety and efficacy of a novel chemotherapeutic agent, KM-233, for the treatment of glioma. METHODS In vitro cell cytotoxicity assays were used to measure and compare the cytotoxic effects of KM-233, Delta(8)-tetrahydrocannabinol (THC), and bis-chloroethyl-nitrosurea (BCNU) against human U87 glioma cells. An organotypic brain slice culture model was used for safety and toxicity studies. A human glioma-SCID mouse side-pocket tumor model was used to test in vivo the safety and efficacy of KM-233 with intratumoral and intra-peritoneal administration. RESULTS KM-233 is a classical cannabinoid with good blood brain barrier penetration that possesses a selective affinity for the CB2 receptors relative to THC. KM-233 was as efficacious in its cytotoxicity against human U87 glioma as Delta(8)-tetrahydrocannabinol, and superior to the commonly used anti-glioma chemotherapeutic agent, BCNU. The cytotoxic effects of KM-233 against human glioma cells in vitro occur as early as two hours after administration, and dosing of KM-233 can be cycled without compromising cytotoxic efficacy and while improving safety. Cyclical dosing of KM-233 to treat U87 glioma in a SCID mouse xenograft side pocket model was effective at reducing the tumor burden with both systemic and intratumoral administration. CONCLUSION These studies provide both in vitro and in vivo evidence that KM-233 shows promising efficacy against human glioma cell lines in both in vitro and in vivo studies, minimal toxicity to healthy cultured brain tissue, and should be considered for definitive preclinical development in animal models of glioma.
Collapse
Affiliation(s)
- Christopher Duntsch
- Department of Neurosurgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Leutgeb JK, Frey JU, Behnisch T. Single cell analysis of activity-dependent cyclic AMP-responsive element-binding protein phosphorylation during long-lasting long-term potentiation in area CA1 of mature rat hippocampal-organotypic cultures. Neuroscience 2005; 131:601-10. [PMID: 15730866 DOI: 10.1016/j.neuroscience.2004.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
Phosphorylation of the transcription factor cyclic AMP (cAMP)-response element-binding protein (CREB) has been implicated in long-term synaptic plasticity and memory, and its activation has been proposed to be required for the maintenance of long-term potentiation (LTP). The previously described temporal dynamics of CREB phosphorylation during the maintenance of LTP showed differences between experimental models. In the present study the level of CREB phosphorylation was evaluated in organotypic hippocampal slices from young adult rats (P25-30) after long-lasting LTP was induced. Immunohistochemistry and confocal imaging were used to determine the ratio between non-phosphorylated and phosphorylated CREB at a single cell resolution, revealing not only the temporal dynamics but also the extent of CREB phosphorylation. The activation of CREB after LTP-induction was compared with cAMP-activation after bath application of forskolin. An increase in cAMP by forskolin resulted in a persistent, uniform increase of the phosphorylated CREB (pCREB/CREB immunofluorescence ratio) in all hippocampal principal neurons. In contrast, the induction of long-lasting LTP in CA1 was accompanied by a local increase in the pCREB/CREB ratio. Both CREB activation and LTP induction in mature cultured slices required N-methyl-D-aspartate (NMDA) receptor activation. CREB phosphorylation continued to increase for 4 h during LTP maintenance. This sustained activation is in contrast to previous observations in acutely prepared slices and supports the hypothesis that CREB plays an important role during the late phases of LTP.
Collapse
Affiliation(s)
- J K Leutgeb
- Department of Neurophysiology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | | | | |
Collapse
|
7
|
Ho OH, Delgado JY, O'Dell TJ. Phosphorylation of proteins involved in activity-dependent forms of synaptic plasticity is altered in hippocampal slices maintained in vitro. J Neurochem 2005; 91:1344-57. [PMID: 15584911 DOI: 10.1111/j.1471-4159.2004.02815.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The acute hippocampal slice preparation has been widely used to study the cellular mechanisms underlying activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although protein phosphorylation has a key role in LTP and LTD, little is known about how protein phosphorylation might be altered in hippocampal slices maintained in vitro. To begin to address this issue, we examined the effects of slicing and in vitro maintenance on phosphorylation of six proteins involved in LTP and/or LTD. We found that AMPA receptor (AMPAR) glutamate receptor 1 (GluR1) subunits are persistently dephosphorylated in slices maintained in vitro for up to 8 h. alpha calcium/calmodulin-dependent kinase II (alphaCamKII) was also strongly dephosphorylated during the first 3 h in vitro but thereafter recovered to near control levels. In contrast, phosphorylation of the extracellular signal-regulated kinase ERK2, the ERK kinase MEK, proline-rich tyrosine kinase 2 (Pyk2), and Src family kinases was significantly, but transiently, increased. Electrophysiological experiments revealed that the induction of LTD by low-frequency synaptic stimulation was sensitive to time in vitro. These findings indicate that phosphorylation of proteins involved in N-methyl-D-aspartate (NMDA) receptor-dependent forms of synaptic plasticity is altered in hippocampal slices and suggest that some of these changes can significantly influence the induction of LTD.
Collapse
Affiliation(s)
- Oanh H Ho
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
8
|
Kirov SA, Petrak LJ, Fiala JC, Harris KM. Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 2004; 127:69-80. [PMID: 15219670 DOI: 10.1016/j.neuroscience.2004.04.053] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 04/21/2004] [Accepted: 04/27/2004] [Indexed: 01/04/2023]
Abstract
More dendritic spine synapses occur on mature neurons in hippocampal slices by 2 h of incubation in vitro, than in perfusion-fixed hippocampus. What conditions initiate this spinogenesis and how rapidly do the spines begin to proliferate on mature neurons? To address these questions, CA1 field of the hippocampus neurons expressing green fluorescent protein in living slices from mature mice were imaged with two-photon microscopy. Spines disappeared and dendrites were varicose immediately after slice preparation in ice-cold artificial cerebrospinal fluid (ACSF). Electron microscopy (EM) revealed disrupted dendritic cytoplasm, enlarged or free-floating postsynaptic densities, and excessive axonal endocytosis. Upon warming dendritic varicosities shrank and spines rapidly reappeared within a few minutes illustrating the remarkable resilience of mature hippocampal neurons in slices. When membrane impermeant sucrose was substituted for NaCl in ACSF dendrites remained spiny at ice-cold temperatures and EM revealed less disruption. Nevertheless, spine number and length increased within 30 min in warm ACSF even when the extracellular calcium concentration was zero and synaptic transmission was blocked. When slices were first recovered for several hours and then chilled in 6 degrees C ACSF many spines disappeared and the dendrites became varicose. Upon re-warming varicosities shrank and spines reemerged in the same position from which they disappeared. In addition, new spines formed and spines were longer suggesting that chilling, not the initial injury from slicing, caused the spines to disappear while re-warming triggered the spine proliferation on mature neurons. The new spines might be a substrate for neuronal recovery of function, when neurons have been chilled or exposed to other traumatic conditions that disrupt ionic homeostasis.
Collapse
Affiliation(s)
- S A Kirov
- Department of Neurosurgery, Human Brain Laboratory, Medical College of Georgia, 1120 15th Street, CB-2607, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
9
|
Duntsch CD, Zhou Q, Jayakar HR, Weimar JD, Robertson JH, Pfeffer LM, Wang L, Xiang Z, Whitt MA. Recombinant vesicular stomatitis virus vectors as oncolytic agents in the treatment of high-grade gliomas in an organotypic brain tissue slice—glioma coculture model. J Neurosurg 2004; 100:1049-59. [PMID: 15200120 DOI: 10.3171/jns.2004.100.6.1049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Object. The purpose of this study was to evaluate both replication-competent and replication-restricted recombinant vesicular stomatitis virus (VSV) vectors as therapeutic agents for high-grade gliomas by using an organotypic brain tissue slice—glioma coculture system.
Methods. The coculture system involved growing different brain structures together to allow neurons from these tissues to develop synaptic connections similar to those found in vivo. Rat C6 or human U87 glioma cells were then introduced into the culture to evaluate VSV as an oncolytic therapy. The authors found that recombinant wild-type VSV (rVSV-wt) rapidly eliminated C6 glioma cells from the coculture, but also caused significant damage to neurons, as measured by a loss of microtubule-associated protein 2 immunoreactivity and a failure in electrophysiological responses from neurons in the tissue slice. Nonetheless, pretreatment with interferon beta (IFNβ) virtually eliminated VSV infection in healthy tissues without impeding any oncolytic effects on tumor cells. Despite the protective effects of the IFNβ pretreatment, the tissue slices still showed signs of cytopathology when exposed to rVSV-wt. In contrast, pretreatment with IFNβ and inoculation with a replication-restricted vector with its glycoprotein gene deleted (rVSV-ΔG) effectively destroyed rat C6 and human U87 glioma cells in the coculture, without causing detectable damage to the neuronal integrity and electrophysiological properties of the healthy tissue in the culture.
Conclusions. Data in this study provide in vitro proof-of-principle that rVSV-ΔG is an effective oncolytic agent that has minimal toxic side effects to neurons compared with rVSV-wt and therefore should be considered for development as an adjuvant to surgery in the treatment of glioma.
Collapse
Affiliation(s)
- Christopher D Duntsch
- Department of Neurosurgery, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM. Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 2003; 465:90-103. [PMID: 12926018 DOI: 10.1002/cne.10825] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hippocampal slices often have more synapses than perfusion-fixed hippocampus, but the cause of this synaptogenesis is unclear. Ultrastructural evidence for synaptogenic triggers during slice preparation was investigated in 21-day-old rats. Slices chopped under warm or chilled conditions and fixed after 0, 5, 25, 60, or 180 minutes of incubation in an interface chamber were compared with hippocampi fixed by perfusion or by immersion of the whole hippocampus. There was no significant synaptogenesis in these slices compared with perfusion-fixed hippocampus, but there were other structural changes during slice preparation and recovery in vitro. Whole hippocampus and slices prepared under warm conditions exhibited an increase in axonal coated vesicles, suggesting widespread neurotransmitter release. Glycogen granules were depleted from astrocytes and neurons in 0-min slices, began to reappear by 1 hour, and had fully recovered by 3 hours. Dendritic microtubules were initially disassembled in slices, but reassembled into normal axial arrays after 5 minutes. Microtubules were short at 5 minutes (12.3 +/- 1.1 microm) but had recovered normal lengths by 3 hours (84.6 +/- 20.0 microm) compared with perfusion-fixed hippocampus (91 +/- 22 microm). Microtubules appeared transiently in 15 +/- 3% and 9 +/- 4% of dendritic spines 5 and 25 minutes after incubation, respectively. Spine microtubules were absent from perfusion-fixed hippocampus and 3-hour slices. Ice-cold dissection and vibratomy in media that blocked activity initially produced less glycogen loss, coated vesicles, and microtubule disassembly. Submersing these slices in normal oxygenated media at 34 degrees C led to glycogen depletion, as well as increased coated vesicles and microtubule disassembly within 1 minute.
Collapse
Affiliation(s)
- John C Fiala
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Taubenfeld SM, Stevens KA, Pollonini G, Ruggiero J, Alberini CM. Profound molecular changes following hippocampal slice preparation: loss of AMPA receptor subunits and uncoupled mRNA/protein expression. J Neurochem 2002; 81:1348-60. [PMID: 12068082 DOI: 10.1046/j.1471-4159.2002.00936.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The acute hippocampal slice preparation is a convenient, in vitro model widely used to study the biological basis of synaptic plasticity. Although slices may preserve their electrophysiological properties for several hours, profound molecular changes in response to the injury caused by the slicing procedure are likely to occur. To determine the magnitude and duration of these changes we examined the post-slicing expression kinetics of three classes of genes known to be implicated in long-term synaptic plasticity: glutamate AMPA receptors (GluR), transcription factors and neurotrophins. Slicing resulted in a striking loss of GluR1 and GluR3, but not of GluR2 proteins suggesting that rapid changes in the composition of major neurotransmitter receptors may occur. Slicing caused a significant induction of the transcription factors c-fos, zif268, CCAAT enhancer binding protein (C/EBP ) beta and delta mRNAs and of the neurotrophin brain-derived neurothophic factor (BDNF ) mRNA. In contrast, there was no augmentation, and sometimes a decline, in the levels of the corresponding proteins. These data reveal that significant discrepancies exist between the slice preparation and the intact hippocampus in terms of the metabolism of molecular components known to be involved in synaptic plasticity.
Collapse
Affiliation(s)
- Stephen M Taubenfeld
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
12
|
Sasaki T, Senda M, Ohno T, Kojima S, Kubodera A. Effect of in vitro ischemic or hypoxic treatment on mitochondrial electron transfer activity in rat brain slices assessed by gas-tissue autoradiography using. Brain Res 2001; 890:100-9. [PMID: 11164772 DOI: 10.1016/s0006-8993(00)03143-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated the effect of in vitro ischemic or hypoxic treatment on mitochondrial electron transport function in brain slices using gas-tissue autoradiography technique with [15O]O2. Brain slices were preincubated in Krebs-Ringer phosphate medium bubbled with 100% O2 for 30 min at 37 degrees C. (1) Control culture was incubated in the same medium bubbled with 100% O2 for 5-40 min at 37 degrees C, then for another 30 min under the same conditions. (2) In vitro ischemia was induced by placing the culture in the medium deprived of glucose and bubbled with 100% N2 for 5-40 min, then returning it to control conditions and culturing for another 30 min. (3) In vitro hypoxia was induced by placing the culture in the medium with glucose and bubbled with 100% N2 for 5-40 min, then returning it to the control conditions for 30 min. After the three different treatments, the [15O]O2 fixation by brain slices reflect to mitochondrial electron transport function was determined using gas-tissue autoradiography technique with [15O]O2. The fixation of [15O]O2 by striatum, cerebral cortex and hippocampus was reduced dependent upon the period of in vitro ischemic treatment. In contrast, the [15O]O2 fixation by those brain regions was only slightly reduced by hypoxia treatment. The reduction in [15O]O2 fixation induced by ischemic treatment was prevented by an antioxidant: glutathione, glutathione monoethyl ester or acetylsalicylic acid. The preventive effect of antioxidants on the mitochondrial damage induced by ischemia was more remarkable in the striatum than in the cerebral cortex and hippocampus. In the comparison of [15O]O2 fixation between ischemia-treated young and senescent brain slices, reduction of 15O fixation by every brain region examined was more prominent in senescence than in the young. These results suggest that gas-tissue autoradiography using [15O]O2 is useful to assess mitochondrial electron transport dysfunction induced by ischemia treatment in brain slices and that the oxidative stress participates in the mechanism of ischemia-induced dysfunction in mitochondria.
Collapse
Affiliation(s)
- T Sasaki
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo, 173-0022 Japan.
| | | | | | | | | |
Collapse
|
13
|
Galeffi F, Sinnar S, Schwartz-Bloom RD. Diazepam promotes ATP recovery and prevents cytochrome c release in hippocampal slices after in vitro ischemia. J Neurochem 2000; 75:1242-9. [PMID: 10936207 DOI: 10.1046/j.1471-4159.2000.0751242.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Benzodiazepines protect hippocampal neurons when administered within the first few hours after transient cerebral ischemia. Here, we examined the ability of diazepam to prevent early signals of cell injury (before cell death) after in vitro ischemia. Ischemia in vitro or in vivo causes a rapid depletion of ATP and the generation of cell death signals, such as the release of cytochrome c from mitochondria. Hippocampal slices from adult rats were subjected to 7 min of oxygen-glucose deprivation (OGD) and assessed histologically 3 h after reoxygenation. At this time, area CA1 neurons appeared viable, although slight abnormalities in structure were evident. Immediately following OGD, ATP levels in hippocampus were decreased by 70%, and they recovered partially over the next 3 h of reoxygenation. When diazepam was included in the reoxygenation buffer, ATP levels recovered completely by 3 h after OGD. The effects of diazepam were blocked by picrotoxin, indicating that the protection was mediated by an influx of Cl(-) through the GABA(A) receptor. It is interesting that the benzodiazepine antagonist flumazenil did not prevent the action of diazepam, as has been shown in other studies using the hippocampus. Two hours after OGD, the partial recovery of ATP levels occurred simultaneously with an increase of cytochrome c (approximately 400%) in the cytosol. When diazepam was included in the reoxygenation buffer, it completely prevented the increase in cytosolic cytochrome c. Thus, complete recovery of ATP and prevention of cytochrome c release from mitochondria can be achieved when diazepam is given after the loss of ATP induced by OGD.
Collapse
Affiliation(s)
- F Galeffi
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
14
|
Abstract
This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell death occurs by a necrotic pathway characterized by either ischemic/homogenizing cell change or edematous cell change. Death also occurs via an apoptotic-like pathway that is characterized, minimally, by DNA laddering and a dependence on caspase activity and, optimally, by those properties, additional characteristic protein and phospholipid changes, and morphological attributes of apoptosis. Death may also occur by autophagocytosis. The cell death process has four major stages. The first, the induction stage, includes several changes initiated by ischemia and reperfusion that are very likely to play major roles in cell death. These include inhibition (and subsequent reactivation) of electron transport, decreased ATP, decreased pH, increased cell Ca(2+), release of glutamate, increased arachidonic acid, and also gene activation leading to cytokine synthesis, synthesis of enzymes involved in free radical production, and accumulation of leukocytes. These changes lead to the activation of five damaging events, termed perpetrators. These are the damaging actions of free radicals and their product peroxynitrite, the actions of the Ca(2+)-dependent protease calpain, the activity of phospholipases, the activity of poly-ADPribose polymerase (PARP), and the activation of the apoptotic pathway. The second stage of cell death involves the long-term changes in macromolecules or key metabolites that are caused by the perpetrators. The third stage of cell death involves long-term damaging effects of these macromolecular and metabolite changes, and of some of the induction processes, on critical cell functions and structures that lead to the defined end stages of cell damage. These targeted functions and structures include the plasmalemma, the mitochondria, the cytoskeleton, protein synthesis, and kinase activities. The fourth stage is the progression to the morphological and biochemical end stages of cell death. Of these four stages, the last two are the least well understood. Quite little is known of how the perpetrators affect the structures and functions and whether and how each of these changes contribute to cell death. According to this description, the key step in ischemic cell death is adequate activation of the perpetrators, and thus a major unifying thread of the review is a consideration of how the changes occurring during and after ischemia, including gene activation and synthesis of new proteins, conspire to produce damaging levels of free radicals and peroxynitrite, to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process. Although it is not fully established for all cases, the major driving force for the necrotic cell death process, and very possibly the other processes, appears to be the generation of free radicals and peroxynitrite. Effects of a large number of damaging changes can be explained on the basis of their ability to generate free radicals in early or late stages of damage. Several important issues are defined for future study. These include determining the triggers for apoptosis and autophagocytosis and establishing greater confidence in most of the cellular changes that are hypothesized to be involved in cell death. A very important outstanding issue is identifying the critical functional and structural changes caused by the perpetrators of cell death. These changes are responsible for cell death, and their identity and mechanisms of action are almost completely unknown.
Collapse
Affiliation(s)
- P Lipton
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Matthies H, Schulz S, Thiemann W, Siemer H, Schmidt H, Krug M, Höllt V. Design of a multiple slice interface chamber and application for resolving the temporal pattern of CREB phosphorylation in hippocampal long-term potentiation. J Neurosci Methods 1997; 78:173-9. [PMID: 9497014 DOI: 10.1016/s0165-0270(97)00149-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We describe an improved method for the investigation of time-dependent intracellular events giving rise to long-lasting changes in synaptic efficacy. A new interface chamber for the simultaneous superfusion of approximately 30 rat hippocampal slices was designed. The slice chamber contains an upper and a lower medium reservoir connected by a grooved incubation platform which is mounted at an angle of 7 degrees on a thermoregulation unit. Surface slices placed in the chamber are perfused with oxygenated medium at a rate of 1 ml/min and are maintained synaptically viable for at least 6 h. At different time points after induction of long-term potentiation by stimulation of the Schaffer collateral pathway, slices were either fixed in Zamboni's fixative or the CA1 region was excised and lysed in boiling SDS-sample buffer. Fixed 400 microm hippocampal slices were cut into 30 microm sections and immunocytochemically stained with an anti-serine 133 phosphorylated cAMP-responsive element binding protein (pCREB) antibody. Binding of primary antibody was detected with the avidin-biotinylated peroxidase complex method and enhanced using peroxidase-catalyzed deposition of biotinylated tyramine. Staining was visualized with streptavidin-cyanine 3.18 and observed under a confocal laser scanning microscope. CA1 lysates were electrophoresed and subjected to Western blot analysis. Both pCREB immunocytochemical staining and Western blotting showed that CREB is rapidly and transiently phosphorylated after induction of long-term potentiation. pCREB levels peaked within 30 min and declined back to control after 60 min. Immunocytochemistry also showed that pCREB was localized to the nuclei of CA1 pyramidal cells near the tetanization site.
Collapse
Affiliation(s)
- H Matthies
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|