1
|
Liu X, Zhang T, Li X, Zhao G, Xie F. Effects of 2-amino-9H-pyrido[2,3-b]indole (AαC) metabolic bio-activation on oxidative DNA damage in human hepatoma G2 (HepG2) cells. Toxicol Mech Methods 2017; 28:230-237. [DOI: 10.1080/15376516.2017.1391363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xianjun Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Tingting Zhang
- Technology Center of Henan Tobacco Industrial Co., Ltd, Zhengzhou, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ge Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
2
|
Rothfuss A, O'Donovan M, De Boeck M, Brault D, Czich A, Custer L, Hamada S, Plappert-Helbig U, Hayashi M, Howe J, Kraynak AR, van der Leede BJ, Nakajima M, Priestley C, Thybaud V, Saigo K, Sawant S, Shi J, Storer R, Struwe M, Vock E, Galloway S. Collaborative study on fifteen compounds in the rat-liver Comet assay integrated into 2- and 4-week repeat-dose studies. Mutat Res 2010; 702:40-69. [PMID: 20656055 DOI: 10.1016/j.mrgentox.2010.07.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/14/2010] [Accepted: 06/24/2010] [Indexed: 11/28/2022]
Abstract
A collaborative trial was conducted to evaluate the possibility of integrating the rat-liver Comet assay into repeat-dose toxicity studies. Fourteen laboratories from Europe, Japan and the USA tested fifteen chemicals. Two chemicals had been previously shown to induce micronuclei in an acute protocol, but were found negative in a 4-week Micronucleus (MN) Assay (benzo[a]pyrene and 1,2-dimethylhydrazine; Hamada et al., 2001); four genotoxic rat-liver carcinogens that were negative in the MN assay in bone marrow or blood (2,6-dinitrotoluene, dimethylnitrosamine, 1,2-dibromomethane, and 2-amino-3-methylimidazo[4,5-f]quinoline); three compounds used in the ongoing JaCVAM (Japanese Center for the Validation of Alternative Methods) validation study of the acute liver Comet assay (2,4-diaminotoluene, 2,6-diaminotoluene and acrylamide); three pharmaceutical-like compounds (chlordiazepoxide, pyrimethamine and gemifloxacin), and three non-genotoxic rodent liver carcinogens (methapyrilene, clofibrate and phenobarbital). Male rats received oral administrations of the test compounds, daily for two or four weeks. The top dose was meant to be the highest dose producing clinical signs or histopathological effects without causing mortality, i.e. the 28-day maximum tolerated dose. The liver Comet assay was performed according to published recommendations and following the protocol for the ongoing JaCVAM validation trial. Laboratories provided liver Comet assay data obtained at the end of the long-term (2- or 4-week) studies together with an evaluation of liver histology. Most of the test compounds were also investigated in the liver Comet assay after short-term (1-3 daily) administration to compare the sensitivity of the two study designs. MN analyses were conducted in bone marrow or peripheral blood for most of the compounds to determine whether the liver Comet assay could complement the MN assay for the detection of genotoxins after long-term treatment. Most of the liver genotoxins were positive and the three non-genotoxic carcinogens gave negative result in the liver Comet assay after long-term administration. There was a high concordance between short- and long-term Comet assay results. Most compounds when tested up to the maximum tolerated dose were correctly detected in both short- and long-term studies. Discrepant results were obtained with 2,6 diaminotoluene (negative in the short-term, but positive in the long-term study), phenobarbital (positive in the short-term, but negative in the long-term study) and gemifloxacin (positive in the short-term, but negative in the long-term study). The overall results indicate that the liver Comet assay can be integrated within repeat-dose toxicity studies and efficiently complements the MN assay in detecting genotoxins. Practical aspects of integrating genotoxicity endpoints into repeat-dose studies were evaluated, e.g. by investigating the effect of blood sampling, as typically performed during toxicity studies, on the Comet and MN assays. The bleeding protocols used here did not affect the conclusions of the Comet assay or of the MN assays in blood and bone marrow. Although bleeding generally increased reticulocyte frequencies, the sensitivity of the response in the MN assay was not altered. These findings indicate that all animals in a toxicity study (main-study animals as well as toxicokinetic (TK) satellite animals) could be used for evaluating genotoxicity. However, possible logistical issues with scheduling of the necropsies and the need to conduct electrophoresis promptly after tissue sampling suggest that the use of TK animals could be simpler. The data so far do not indicate that liver proliferation or toxicity confound the results of the liver Comet assay. As was also true for other genotoxicity assays, criteria for evaluation of Comet assay results and statistical analyses differed among laboratories. Whereas comprehensive advice on statistical analysis is available in the literature, agreement is needed on applying consistent criteria.
Collapse
Affiliation(s)
- Andreas Rothfuss
- Bayer Schering Pharma AG, Nonclinical Drug Safety, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 654:114-32. [DOI: 10.1016/j.mrgentox.2008.05.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/03/2008] [Accepted: 05/09/2008] [Indexed: 11/24/2022]
|
4
|
Final report of the safety assessment of Acacia catechu gum, Acacia concinna fruit extract, Acacia dealbata leaf extract, Acacia dealbata leaf wax, Acacia decurrens extract, Acacia farnesiana extract, Acacia farnesiana flower wax, Acacia farnesiana gum, Acacia senegal extract, Acacia senegal gum, and Acacia senegal gum extract. Int J Toxicol 2006; 24 Suppl 3:75-118. [PMID: 16422266 DOI: 10.1080/10915810500257170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
These ingredients are derived from various species of the acacia plant. Only material derived from Acacia senegal are in current use according to industry data. The concentration at which these ingredients are reported to be used ranges from 9% in mascara to 0.0001% in tonics, dressings, and other hair-grooming aids. Gum arabic is a technical name for Acacia Senegal Gum. Gum arabic is comprised of various sugars and glucuronic acid residues in a long chain of galactosyl units with branched oligosaccharides. Gum arabic is generally recognized as safe as a direct food additive. Little information is available to characterize the extracts of other Acacia plant parts or material from other species. Acacia Concinna Fruit Extract was generally described as containing saponins, alkaloids, and malic acid with parabens and potassium sorbate added as preservatives. Cosmetic ingredient functions have been reported for Acacia Decurrens Extract (astringent; skin-conditioning agent--occlusive) and Acacia Farnesiana Extract (astringent), but not for the other Acacias included in this review. Toxicity data on gum arabic indicates little or no acute, short-term, or subchronic toxicity. Gum arabic is negative in several genotoxicity assays, is not a reproductive or developmental toxin, and is not carcinogenic when given intraperitoneally or orally. Clinical testing indicated some evidence of skin sensitization with gum arabic. The extensive safety test data on gum arabic supports the safety of Acacia Senegal Gum and Acacia Senegal Gum Extract, and it was concluded that these two ingredients are safe as used in cosmetic formulations. It was not possible, however, to relate the data on gum arabic to the crude Acacias and their extracts from species other than Acacia senegal. Therefore, the available data were considered insufficient to support the safety of Acacia Catechu Gum, Acacia Concinna Fruit Extract, Acacia Dealbata Leaf Extract, Acacia Dealbata Leaf Wax, Acacia Decurrens Extract, Acacia Farnesiana Extract, Acacia Farnesiana Flower Wax, Acacia Farnesiana Gum, and Acacia Senegal Extract in cosmetic products. The additional data needed to complete the safety assessment for these ingredients include (1) concentration of use; (2) identify the specific chemical constituents, and clarify the relationship between crude Acacias and their extracts and the Acacias and their extracts that are used as cosmetic ingredients; (3) data on contaminants, particularly relating to the presence of pesticide residues, and a determination of whether Acacia melanoxylon is used in cosmetics and whether acamelin (a quinone) and melacacidin (a flavin) are present in the Acacias that are being used; (4) skin sensitization study (i.e., dose response to be determined); (5) contact urticaria study at use concentration; and (6) ultraviolet (UV) absorption spectrum; if there is significant absorbance in the UVA or UVB range, then a photosensitization study may be needed. It was also noted that other data may be needed after clarification of the chemical constituents of the Acacia-derived ingredients.
Collapse
|
5
|
Wahnschaffe U, Bitsch A, Kielhorn J, Mangelsdorf I. Mutagenicity testing with transgenic mice. Part II: Comparison with the mouse spot test. J Carcinog 2005; 4:4. [PMID: 15676065 PMCID: PMC548508 DOI: 10.1186/1477-3163-4-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 01/27/2005] [Indexed: 11/20/2022] Open
Abstract
The mouse spot test, an in vivo mutation assay, has been used to assess a number of chemicals. It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484). It is however rather insensitive, animal consuming and expensive type of test. More recently several assays using transgenic animals have been developed. From data in the literature, the present study compares the results of in vivo testing of over twenty chemicals using the mouse spot test and compares them with results from the two transgenic mouse models with the best data base available, the lacI model (commercially available as the Big Blue(R) mouse), and the lacZ model (commercially available as the Mutatrade mark Mouse). There was agreement in the results from the majority of substances. No differences were found in the predictability of the transgenic animal assays and the mouse spot test for carcinogenicity. However, from the limited data available, it seems that the transgenic mouse assay has several advantages over the mouse spot test and may be a suitable test system replacing the mouse spot test for detection of gene but not chromosome mutations in vivo.
Collapse
Affiliation(s)
- Ulrich Wahnschaffe
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Annette Bitsch
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Janet Kielhorn
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Inge Mangelsdorf
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Wahnschaffe U, Bitsch A, Kielhorn J, Mangelsdorf I. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test. J Carcinog 2005; 4:3. [PMID: 15655069 PMCID: PMC548135 DOI: 10.1186/1477-3163-4-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 01/17/2005] [Indexed: 11/20/2022] Open
Abstract
As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue(R) mouse, and the lacZ model; commercially available as the Mutatrade markMouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects.
Collapse
Affiliation(s)
- U Wahnschaffe
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - A Bitsch
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - J Kielhorn
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - I Mangelsdorf
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Inhibitory Effect of Methanol Extracts and Solvent Fractions from Doenjang on Mutagenicity Using in vitro SOS Chromotest and in vivo Drosophila Mutagenic System. ACTA ACUST UNITED AC 2004. [DOI: 10.3746/jkfn.2004.33.9.1432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Dingley KH, Ubick EA, Chiarappa-Zucca ML, Nowell S, Abel S, Ebeler SE, Mitchell AE, Burns SA, Steinberg FM, Clifford AJ. Effect of Dietary Constituents With Chemopreventive Potential on Adduct Formation of a Low Dose of the Heterocyclic Amines PhIP and IQ and Phase II Hepatic Enzymes. Nutr Cancer 2003; 46:212-21. [PMID: 14690798 DOI: 10.1207/s15327914nc4602_15] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We conducted a study to evaluate dietary chemopreventive strategies to reduce genotoxic effects of the carcinogens 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). PhIP and IQ are heterocyclic amines (HCAs) that are found in cooked meat and may be risk factors for cancer. Typical chemoprevention studies have used carcinogen doses many thousand-fold higher than usual human daily intake. Therefore, we administered a low dose of [14C]PhIP and [3H]IQ and utilized accelerator mass spectrometry to quantify PhIP adducts in the liver, colon, prostate, and blood plasma and IQ adducts in the liver and blood plasma with high sensitivity. Diets supplemented with phenethylisothiocyanate (PEITC), genistein, chlorophyllin, or lycopene were evaluated for their ability to decrease adduct formation of [14C]PhIP and [3H]IQ in rats. We also examined the effect of treatments on the activity of the phase II detoxification enzymes glutathione S-transferase (GST), UDP-glucuronyltransferase (UGT), phenol sulfotransferase (SULT) and quinone reductase (QR). PEITC and chlorophyllin significantly decreased PhIP-DNA adduct levels in all tissues examined, which was reflected by similar changes in PhIP binding to albumin in the blood. In contrast, genistein and lycopene tended to increase PhIP adduct levels. The treatments did not significantly alter the level of IQ-DNA or -protein adducts in the liver. With the exception of lycopene, the treatments had some effect on the activity of one or more hepatic phase II detoxification enzymes. We conclude that PEITC and chlorophyllin are protective of PhIP-induced genotoxicity after a low exposure dose of carcinogen, possibly through modification of HCA metabolism.
Collapse
Affiliation(s)
- Karen H Dingley
- Biology and Biotechnology Research Program and Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schwab CE, Huber WW, Parzefall W, Hietsch G, Kassie F, Schulte-Hermann R, Knasmuller S. Search for compounds that inhibit the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Crit Rev Toxicol 2000; 30:1-69. [PMID: 10680768 DOI: 10.1080/10408440091159167] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Over the last 30 years approximately 160 reports have been published on dietary compounds that protect from the mutagenic and carcinogenic effects of heterocyclic aromatic amines (HAAs). In the first section of this review, the current state of knowledge is briefly summarized. Based on the evaluation of the available data, various protective mechanisms are described, and the use of different methodologies for the detection of protective effects is critically discussed. In most antimutagenicity studies (>70%) bacterial indicators (predominantly Salmonella strain TA98) were used, and about 600 individual compounds and complex mixtures have been identified that attenuate the effects of HAAs. The most frequently used in vivo method to detect protective effects are adduct measurements; anticarcinogenic dietary factors were identified by aberrant crypt foci assays and liver foci tests with rats. The mechanisms of protection include inactivation of HAAs and their metabolites by direct binding, inhibition of enzymes involved in the metabolic activation of the amines, induction of detoxifying enzymes, and interaction with DNA repair processes. The detection spectrum of conventional in vitro mutagenicity assays with metabolically incompetent indicator cells is limited. These procedures reflect only simple mechanisms such as direct binding of the HAAs to pyrroles and fibers. It has been shown that these compounds are also effective in rodents. More complex mechanisms, namely, interactions with metabolic activation reactions are not adequately represented in in vitro assays with exogenous enzyme homogenates, and false-negative as well as false-positive results may be obtained. More appropriate approaches for the detection of protective effects are recently developed test systems with metabolically competent cells such as the human Hep G2 line or primary hepatocytes. SCGE tests and DNA adduct measurements with laboratory rodents enable the detection of antigenotoxic effects in different organs, including those that are targets for tumor induction by the amines. Medium term assays based on aberrant crypt foci in colon and liver foci tests have been used to prove that certain compounds that prevented DNA damage by HAAs also reduced their carcinogenic effects. These experiments are costly and time consuming and, due to the weak induction capacity of the amines, only pronounced anticarcinogenic effects can be detected. Over the years, a large bulk of data on HAA protective compounds has accumulated, but only for a few (e.g., fibers, pyrroles, constituents of teas, and lactic acid bacteria) is there sufficient evidence to support the assumption that they are protective in humans as well.
Collapse
Affiliation(s)
- C E Schwab
- Institute of Cancer Research, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
10
|
Knasmüller S, Schwab CE, Land SJ, Wang CY, Sanyal R, Kundi M, Parzefall W, Darroudi F. Genotoxic effects of heterocyclic aromatic amines in human derived hepatoma (HepG2) cells. Mutagenesis 1999; 14:533-40. [PMID: 10567027 DOI: 10.1093/mutage/14.6.533] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to study the mutagenic effects of heterocyclic aromatic amines (HAAs) in cells of human origin, five compounds, namely 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ), 2-amino-3, 4-dimethyl-imidazo[4,5-f]quinoline (MeIQ), 2-amino-3, 8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), the pyridoimidazo derivative 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), were tested in micronucleus (MN) assays with a human derived hepatoma (HepG2) cell line. All HAAs caused significant, dose-dependent effects. The activities of IQ, MeIQ, MeIQx and PhIP were similar (lowest effective concentrations 25-50 microM), whereas Trp-P-1 was effective at a dose of >/=2.1 microM. In addition, the HAAs were tested in MN assays with Chinese hamster ovary (CHO) cells and in Salmonella strain YG1024 using HepG2 cell homogenates as an activation mix. In the CHO experiments, positive results were obtained with Trp-P-1 and PhIP, whereas the other compounds were devoid of activity under all experimental conditions. The discrepancy in the responsivity of the two cell lines is probably due to differences in their acetylation capacity: enzyme measurements with 2-aminofluorene as a substrate revealed that the cytosolic acetyltransferase activity in the HepG2 cells is approximately 40-fold higher than that of the CHO cells. In the bacterial assays all five HAAs gave positive results but the ranking order was completely different from that seen in the HepG2/MN experiments (IQ > MeIQ > Trp-P-1 >/= MeIQx >> PhIP) and the mutagenic potencies of the various compounds varied over several orders of magnitude. The order obtained in bacterial tests with rat liver S9 mix was more or less identical to that seen in the tests with HepG2 cell homogenates but the concentrations of the amines required to give positive results were in general substantially lower (10(-5)-10(-1) microM). Overall, the results of the present study indicate that MN/HepG2 tests might reflect the mutagenic effects of HAAs more adequately than other in vitro mammalian cell systems due to the presence of enzymes involved in the metabolic conversion of the amines.
Collapse
Affiliation(s)
- S Knasmüller
- Institute of Cancer Research, University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 1998; 402:185-202. [PMID: 9675276 DOI: 10.1016/s0027-5107(97)00297-2] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human hepatoma line (Hep G2) has retained the activities of various phase I and phase II enzymes which play a crucial role in the activation/detoxification of genotoxic procarcinogens and reflect the metabolism of such compounds in vivo better than experimental models with metabolically incompetent cells and exogenous activation mixtures. In the last years, methodologies have been developed which enable the detection of genotoxic effects in Hep G2 cells. Appropriate endpoints are the induction of 6-TGr mutants, of micronuclei and of comets (single cell gel electrophoresis assay). It has been demonstrated that various classes of environmental carcinogens such as nitrosamines, aflatoxins, aromatic and heterocyclic amines and polycyclic aromatic hydrocarbons can be detected in genotoxicity assays with Hep G2 cells. Furthermore, it has been shown that these assays can distinguish between structurally related carcinogens and non-carcinogens, and positive results have been obtained with rodent carcinogens (such as safrole and hexamethylphosphoramide) which give false negative results in conventional in vitro assays with rat liver homogenates. Hep G2 cells have also been used in antimutagenicity studies and can identify mechanisms not detected in conventional in vitro systems such as induction of detoxifying enzymes, inactivation of endogenously formed DNA-reactive metabolites and intracellular inhibition of activating enzymes.
Collapse
Affiliation(s)
- S Knasmüller
- Institute of Tumor Biology and Cancer Research, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sasaki YF, Saga A, Yoshida K, Su YQ, Ohta T, Matsusaka N, Tsuda S. Colon-specific genotoxicity of heterocyclic amines detected by the modified alkaline single cell gel electrophoresis assay of multiple mouse organs. Mutat Res 1998; 414:9-14. [PMID: 9630478 DOI: 10.1016/s1383-5718(98)00033-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The in vivo genotoxicity of five heterocyclic amines-Trp-P-2 (13 mg/kg), IQ (13 mg/kg), MeIQ (13 mg/kg), MeIQx (13 mg/kg), and PhIP (40 mg/kg)-in the mucosa of gastrointestinal and urinary tract organs (stomach, duodenum, jejunum, ileum, colon, and bladder) was studied by the alkaline single cell gel electrophoresis (SCG) (Comet) assay. Male CD-1 mice were sacrificed 1, 3, and 8 h after intraperitoneal injection. All the heterocyclic amines studied yielded statistically significant DNA damage in the colon but not the small intestine (duodenum, jejunum, and ileum) or urinary bladder. In this study, five heterocyclic amines were injected intraperitoneally to avoid the consequences of ingestion. Thus, the extensive damage to colon DNA was concluded to be due, at least in part, to a systemic effect.
Collapse
Affiliation(s)
- Y F Sasaki
- Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Tamonoki Uwanotai 16-1, Hachinohe, Aomori 039-11, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sasaki YF, Saga A, Akasaka M, Nishidate E, Watanabe-Akanuma M, Ohta T, Matsusaka N, Tsuda S. In vivo genotoxicity of heterocyclic amines detected by a modified alkaline single cell gel electrophoresis assay in a multiple organ study in the mouse. Mutat Res 1997; 395:57-73. [PMID: 9465914 DOI: 10.1016/s1383-5718(97)00142-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We used a modification of the alkaline single cell gel electrophoresis (SCG) (Comet) assay to test the in vivo genotoxicity of 6 heterocyclic amines, Trp-P-1 (25 mg/kg), Trp-P-2 (13 mg/kg), IQ (13 mg/kg), MeIQ (13 mg/kg), MeIQx (13 mg/kg) and PhIP (40 mg/kg), in mouse liver, lung, kidney, brain, spleen, bone marrow and stomach mucosa. Mice were sacrificed 1, 3, and 24 h after intraperitoneal injection. Trp-P-2, IQ, MeIQ, and MeIQx yielded statistically significant DNA damage in the stomach, liver, kidney, lung and brain; Trp-P-1 in the stomach, liver and lung; and PhIP in the liver, kidney and brain. None of the heterocyclic amines induced DNA damage in the spleen and bone marrow. Our results suggest that the alkaline SCG assay applied to multiple organs is a good way to detect organ-specific genotoxicity of heterocyclic amines in mammals.
Collapse
Affiliation(s)
- Y F Sasaki
- Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Aomori, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Salamone MF, Mavournin KH. Bone marrow micronucleus assay: a review of the mouse stocks used and their published mean spontaneous micronucleus frequencies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1994; 23:239-273. [PMID: 8013472 DOI: 10.1002/em.2850230402] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have examined published negative control data from 581 papers on micronucleated bone marrow polychromatic erythrocytes (mnPCE) for differences in mean frequency and the frequency distribution profile among the mouse stocks used with the bone marrow micronucleus assay. For the 55 mouse stocks with published micronucleus assay data, the overall mean frequency is 1.95 mnPCE/1,000 PCE (1.95 mnPCE/1,000); for the 13 stocks most commonly used in the assay, it is 1.88 mnPCE/1,000. During the last 5 years, the mnPCE rate for these 13 major stocks has been 1.74 mnPCE/1,000. This current mean frequency is a substantial decrease from the mean of 3.07 mnPCE/1,000 observed for these 13 stocks for data published prior to 1981. Of the major stocks, the highest mean mnPCE negative control frequencies were observed for MS/Ae > BALB/c > C57Bl/6, and the lowest for CD-1 < Swiss Webster. We note that hybrid mouse stocks appear to have lower and less variable negative control frequencies than either of their parent strains and that the negative control frequency for some progeny stocks have diverged significantly from that of the parent stocks. Overall mean negative control frequencies appear to be correlated with breadth of the frequency distribution profile of published mean negative control values. Furthermore, a possible correlation between negative control frequency in the micronucleus assay and sensitivity to clastogens of different mouse strains may be indicated. The databases generated here allow us to define a range of norms for both the historical mean frequency and individual experimental mean frequencies for most stocks, but in particular, for the more commonly used mouse stocks. Our analysis, for the most part, bears out the recommendation of the first Gene-Tox Report on the micronucleus assay that the historical negative control frequency for a mouse stock should fall between 1 and 3 mnPCE/1,000. Eighty-six percent of the most commonly used mouse stocks have historical mean frequencies within this range. Though individual experimental mean values would not necessarily be expected to fall within the 1-3.00 mnPCE/1,000 range, 65.3% of the 2,327 published negative control values do, and 83.5% are < 3 mnPCE/1,000. The frequency with which an individual experimental mean value lies outside the 1.00 to 3.00 mnPCE/1,000 range differs among stocks and appears related to the mouse mean frequency. We suggest that the recommended range for historical mean frequency be extended slightly, to approximately 3.4 mnPCE/1,000, to accommodate some commonly used strains with overall mean negative control frequencies just above 3.00 mnPCE/1,000.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M F Salamone
- Biohazard Laboratory, Ontario Ministry of the Environment and Energy, Toronto, Canada
| | | |
Collapse
|
15
|
Eisenbrand G, Tang W. Food-borne heterocyclic amines. Chemistry, formation, occurrence and biological activities. A literature review. Toxicology 1993; 84:1-82. [PMID: 8266331 DOI: 10.1016/0300-483x(93)90109-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review summarizes the abundant literature on food-borne heterocyclic amines, their chemistry and formation, their occurrence in food, their biological activities including mutagenicity, induction of DNA damage and carcinogenicity. Pharmacokinetics and biotransformation are also discussed. Factors that influence these effects are given consideration, with special emphasis on dietary factors that might counteract detrimental biological effects. The annual per capita intake of heterocyclic amines via food is estimated. Risk extrapolations that have been published suggest that food-borne heterocyclic amines are relevant for human cancer etiology.
Collapse
Affiliation(s)
- G Eisenbrand
- Department of Chemistry, Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Germany
| | | |
Collapse
|
16
|
Morrison LD, Eling TE, Josephy PD. Prostaglandin H synthase-dependent formation of the direct-acting mutagen 2-nitro-3-methylimidazo[4,5-f]quinoline (nitro-IQ) from IQ. Mutat Res 1993; 302:45-52. [PMID: 7683106 DOI: 10.1016/0165-7992(93)90089-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mutagenic effects of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) following activation by ram seminal vesicle microsomes (RSVM, a source of prostaglandin H synthase, PHS) were studied in Salmonella typhimurium tester strains possessing elevated levels of acetyl-CoA: arylamine N-acetyltransferase (NAT). The metabolites formed by RSVM were extracted and fractionated by high pressure liquid chromatography (HPLC). One isolable product accounted for most of the direct-acting mutagenicity observed in the extracts. The metabolite was identified as 2-nitro-3-methylimidazo[4,5-f]quinoline (nitro-IQ). Since nitro-IQ is a potent direct-acting mutagen, its role in IQ genotoxicity warrants further study.
Collapse
Affiliation(s)
- L D Morrison
- Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry and Biochemistry, University of Guelph, Ont. Canada
| | | | | |
Collapse
|
17
|
Assessment of mutagenic potential in a series of compounds structurally related to 2-amino-3-methylimidazo [4,5-f]quinoline (IQ). Eur J Med Chem 1993. [DOI: 10.1016/0223-5234(93)90085-s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Loprieno N, Boncristiani G, Loprieno G. An experimental approach to identifying the genotoxic risk from cooked meat mutagens. Food Chem Toxicol 1991; 29:377-86. [PMID: 1874465 DOI: 10.1016/0278-6915(91)90077-k] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to define the toxicological risk to the human population from the chemical compounds formed during the process of cooking animal meat, which have been described as possessing mutagenic, genotoxic and carcinogenic activities, an extensive study was undertaken of cooked meat extract and two cooked meat mutagens, 2-amino-3-methylimidazo(4,5-f)quinoline (IQ) and 2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline (MeIQx). The study involved toxicokinetics and mouse-tissue distribution studies of the two chemicals, in vitro and in vivo mutagenicity/genotoxicity analyses (i.e. the detection of gene mutations, chromosome aberrations and micronuclei in mouse bone marrow cells, and mouse urine and faeces mutagenicity tests), as well as in vivo protein and DNA binding assays. IQ and MeIQx were found to be positive for the induction of gene mutations in Salmonella typhimurium TA98, but not in Chinese hamster V79 cells; IQ only was found to be positive for the induction of chromosome aberrations in Chinese hamster ovary cells and cultured human lymphocytes. IQ and MeIQx were negative for the induction of micronuclei in mice treated with 40 mg chemical/kg body weight; the lowest effective dose administered to the mice that produced mutagenic urine was 0.4 mg IQ/kg body weight and 0.04 mg MeIQx/kg. A dose of 40 mg IQ/kg, given orally by gavage to mice, produced an excretion of 1-4% of the applied dose in the urine and 0.1-2% of the applied dose in the faeces, when evaluated chemically or mutagenically. The number of DNA adducts in the liver correlated with the dose of IQ or MeIQx administered to the mice. All the data have been used for defining a possible risk estimate to the human population as a consequence of a cooked meat diet.
Collapse
Affiliation(s)
- N Loprieno
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Pisa, Italy
| | | | | |
Collapse
|
19
|
Aeschbacher HU, Turesky RJ. Mammalian cell mutagenicity and metabolism of heterocyclic aromatic amines. Mutat Res 1991; 259:235-50. [PMID: 2017210 DOI: 10.1016/0165-1218(91)90120-b] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heterocyclic aromatic amines are bacterial mutagens which also induce DNA damage in mammalian cells. Damage has been demonstrated using a number of endpoints, including gene mutation, chromosome aberrations, sister-chromatid exchange, DNA-strand breaks, DNA repair and oncogene activation. Although the responses in mammalian cells are weak when compared to bacterial mutagenicity, heterocyclic aromatic amines are rodent carcinogens. Metabolic N-oxidation by cytochrome P450 is an initial activation step with subsequent transformation of the N-hydroxy metabolites to the ultimate mutagenic species by O-acetyltransferase or sulfotransferase. Major routes of detoxification include cytochrome P450-mediated ring oxidation followed by conjugation to glucuronic or sulfuric acid. Direct conjugation to the exocyclic amine group also occurs. Major reactions include N-glucuronidation and sulfamate formation.
Collapse
|
20
|
Loprieno N, Boncristiani G, Loprieno G. An experimental approach to identifying the genotoxic risk by cooked meat mutagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 289:115-31. [PMID: 1897387 DOI: 10.1007/978-1-4899-2626-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to define the toxicological risk for the human population derived from the chemical compounds formed during the process of cooking animal meat, which have been described to possess a mutagenic, genotoxic, and carcinogenic activity, an extensive study has been developed on cooked meat extract and two cooked meat mutagens, IQ and MeIQx. The study has been based on toxicokinetics and mouse tissue distribution of the two chemicals, on in vitro and in vivo mutagenicity/genotoxicity analyses (gene mutation, chromosome aberration, micronuclea in mouse bone marrow cells, mice urine and faeces mutagenicity test), as well as in vivo protein and DNA binding. The two chemicals have been found positive for the induction of gene mutation on Salmonella, but not in V-79 Chinese hamster cells; IQ only has been found positive for the induction of chromosome aberrations on CHO cells and cultured human lymphocytes. IQ and MeIQx were negative for the induction of micronuclea in mice treated with 40 mg/kg of the chemicals; the lowest effective administered dose to the mice which produced mutagenic urine was 0.4 mg/kg of IQ and 0.04 mg/kg of MeIQx. A dose of 40 mg/kg of IQ given by gavage to mice produced an excretion of 1-4% of the applied dose in the urine and 0.1-2% of the applied dose in the faeces, when evaluated chemically or mutagenically. The DNA adducts for the liver were correlated with the dose of the IQ and MeIQx administered to the mice. All the data have been used for defining a possible risk estimate derived to the human population as a consequence of a cooked meat diet.
Collapse
Affiliation(s)
- N Loprieno
- Dipartimento di Scienze dell'Ambiente e del Territorio dell'Università di Pisa, Italy
| | | | | |
Collapse
|
21
|
Mavournin KH, Blakey DH, Cimino MC, Salamone MF, Heddle JA. The in vivo micronucleus assay in mammalian bone marrow and peripheral blood. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 1990; 239:29-80. [PMID: 2195332 DOI: 10.1016/0165-1110(90)90030-f] [Citation(s) in RCA: 307] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The protocol recommended for the micronucleus assay in mammalian bone marrow has been revised and simplified. The number of sample times has been reduced to one or two, depending upon the dosing protocol. The minimum number of cells to be scored per treatment group has been increased to 20,000 to increase the ability of the assay to detect a doubling of the control micronucleus frequency. Use of both male and female animals is recommended. Scoring of micronuclei in polychromatic erythrocytes of peripheral blood is included as a variation of the bone marrow assay. Published data on chemicals tested by the micronucleus assay have been reviewed and are summarized.
Collapse
Affiliation(s)
- K H Mavournin
- Biomedical and Environmental Information Analysis Section, Oak Ridge National Laboratory, TN 37831-6050
| | | | | | | | | |
Collapse
|
22
|
Weisburger JH, Jones RC. Prevention of formation of important mutagens/carcinogens in the human food chain. BASIC LIFE SCIENCES 1990; 52:105-18. [PMID: 2183763 DOI: 10.1007/978-1-4615-9561-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Etiological factors for gastric cancer, among others, involve consumption of smoked, salted, and pickled fish of certain types. Their chemical nature is not yet fully established but probably involves diazo phenols, and their formation can be prevented either by omitting the salting and pickling process, or by using vitamins C and E on the food prior to salting, pickling, or smoking. Both preventive approaches would limit the formation of mutagenic and carcinogenic diazo phenols. Sugimura and associates discovered new types of mutagens as heterocyclic amines that are formed during frying or broiling of meats and fish. In rats, these amines induce cancer specifically in organs such as breast, colon, or pancreas, associated with Western-type nutrition where promotional elements such as dietary fat play an enhancing role. Thus, inhibition of the formation of these new carcinogens during cooking would remove the genotoxic components from the diet. Mixing 10% soy protein with ground meat prior to frying prevents the formation of these mutagens presumably by affording a lower surface temperature. More effective is the addition of tryptophan, proline, or mixtures thereof, which specifically blocks the formation of these mutagens/carcinogens, probably by competing for reactive intermediary aldehydes, so that these cannot interact with the normal essential target, creatinine. Thus, we have available practical, yet science-based, mechanistically understood procedures to prevent the formation of carcinogens associated with important types of cancer prevalent in many countries.
Collapse
|
23
|
Affiliation(s)
- C de Meester
- Université Catholique de Louvain, Département de Pharmacie, Brussels, Belgium
| |
Collapse
|
24
|
Rodrigues AD, Ayrton AD, Williams EJ, Lewis DF, Walker R, Ioannides C. Preferential induction of the rat hepatic P450 I proteins by the food carcinogen 2-amino-3-methyl-imidazo[4,5-f]quinoline. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:627-31. [PMID: 2731541 DOI: 10.1111/j.1432-1033.1989.tb14769.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Administration of the food carcinogen, 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ) to rats gave rise to significant dose-dependent increases in the microsomal O-deethylations of ethoxycoumarin and ethoxyresorufin but had no effect on the O-dealkylation of pentoxyresorufin and the NADPH-dependent reduction of cytochrome c, and decreased the N-demethylation of dimethylnitrosamine. Microsomal cytochrome b5 and total cytochrome P-450 levels decreased following the administration of the carcinogen. 2. Hepatic microsomal preparations from IQ-treated animals were much more efficient than control in activating the premutagen 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole to mutagenic intermediates in the Ames test. 3. Immunoquantification of two of the major families of cytochrome P-450, namely P450 I and P450 II B, using ELISA techniques showed that treatment with IQ induced the apoprotein levels of the P450 I family but not of P450 II B. 4. Immunoblot analysis employing polyclonal antibodies against P450 I revealed that IQ induced both isoenzymes of this family, namely P450 I A1 and A2. 5. It is concluded that IQ is an inducer of the rat hepatic monooxygenases, selectively inducing the P450 I family as predicted by a computer-graphic analysis of its dimensions which showed that it is a large, essentially planar, molecule.
Collapse
Affiliation(s)
- A D Rodrigues
- Department of Biochemistry, University of Surrey, Guildford, UK
| | | | | | | | | | | |
Collapse
|
25
|
Alexander J, Holme JA, Wallin H, Becher G. Characterisation of metabolites of the food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline formed after incubation with isolated rat liver cells. Chem Biol Interact 1989; 72:125-42. [PMID: 2510946 DOI: 10.1016/0009-2797(89)90023-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The metabolism of 14C-labelled 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) was studied in suspensions of hepatocytes isolated from PCB-pretreated rats. The metabolites found after incubation of IQ/MeIQ (0.1 mM) with PCB-pretreated hepatocytes for 3 h were separated into three principal groups: ethyl acetate-extractable metabolites (2-4%), water soluble metabolites (94-98%) and covalently bound metabolites (0.4-0.5%). The water soluble metabolites were separated by HPLC. The metabolites were evaluated by beta-glucuronidase lability, sulphate incorporation and compared with glucuronides formed by microsomes. Mass spectroscopy and proton NMR were also run. The major metabolites formed were a N2-sulphamate, an O-sulphate in position 5 for IQ and 5 for MeIQ and an O-glucuronide in the same position. The MeIQ N2-sulphamate was much less abundant than the IQ N2-sulphamate. When compared with hepatocytes from uninduced rats, it was found that primarily the formation of ring-hydroxylated conjugates increased after PCB-pretreatment. The major ethyl acetate-extractable metabolites were the N2-acetyl derivatives and an unidentified metabolite. A small peak representing the 5-hydroxy-IQ or 5-hydroxy-MeIQ could also be seen in the HPLC chromatogram of the ethyl acetate extractable metabolites. All major water soluble products described in hepatocytes were also found in urine and bile of uninduced rats exposed to IQ/MeIQ in vivo.
Collapse
Affiliation(s)
- J Alexander
- Department of Toxicology, National Institute of Public Health, Oslo, Norway
| | | | | | | |
Collapse
|
26
|
Schmuck G, Lieb G, Wild D, Schiffmann D, Henschler D. Characterization of an in vitro micronucleus assay with Syrian hamster embryo fibroblasts. Mutat Res 1988; 203:397-404. [PMID: 3193973 DOI: 10.1016/0165-1161(88)90012-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of Syrian hamster embryo cells for assessing genotoxicity provides the unique opportunity to determine 5 different end-points (gene mutations, DNA-strand breaks, aneuploidy, DNA repair (unscheduled DNA synthesis, UDS) and neoplastic transformation) in the one cell system. This approach allows direct comparisons of results produced under identical conditions of dose at target, metabolism and bioavailability. We report here on the characterization of an additional end-point in the same cell system: the formation of micronuclei indicating chromosomal changes induced by chemicals. For a preliminary validation of this new test system we have investigated 14 carcinogens and 3 non-carcinogenic structural analogues in order to evaluate the significance of micronucleus induction for carcinogenic properties. All tested carcinogens induced micronuclei in a dose-dependent manner; all non-carcinogens yielded negative results. Correlations between the formation of micronuclei and the Ames test, induction of UDS, cell transformation and the in vivo bone marrow micronucleus test are demonstrated.
Collapse
Affiliation(s)
- G Schmuck
- Institute of Toxicology, University of Würzburg, F.R.G
| | | | | | | | | |
Collapse
|
27
|
McManus ME, Burgess W, Stupans I, Trainor KJ, Fenech M, Robson RA, Morley AA, Snyderwine EG. Activation of the food-derived mutagen 2-amino-3-methylimidazo[4, 5-f]quinoline by human-liver microsomes. Mutat Res 1988; 204:185-93. [PMID: 3278209 DOI: 10.1016/0165-1218(88)90088-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability of human-liver microsomes to metabolically activate the food-derived heterocyclic amine, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and the model mutagen, 2-aminofluorene (AF), has been investigated using Salmonella typhimurium TA98. In 6 subjects tested the number of revertants produced by 0.1 micrograms IQ per mg microsomal protein varied from 11, 830 +/- 320 to 42, 830 +/- 290 (mean +/- SD). With the same livers and a dose of 10 micrograms AF per plate the number of revertants varied from 15,770 +/- 1600 to 29,380 +/- 810 per mg microsomal protein. Metyrapone and alpha-naphthoflavone caused differential inhibition of the mutagenesis of both IQ and AF indicating the involvement of different forms of cytochrome P450 in the metabolic activation of these amines in human-liver microsomes. In presence of human-liver microsomes IQ produced no detectable increase in mutations at the hypoxanthine phosphoribosyl transferase locus in lymphocytes and caused no increase in micronuclei formation at realistic exposure levels.
Collapse
Affiliation(s)
- M E McManus
- Department of Clinical Pharmacology, School of Medicine, Flinders University of South Australia, Bedford Park
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yoshimi N, Sugie S, Iwata H, Mori H, Williams GM. Species and sex differences in genotoxicity of heterocyclic amine pyrolysis and cooking products in the hepatocyte primary culture/DNA repair test using rat, mouse, and hamster hepatocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1988; 12:53-64. [PMID: 3383840 DOI: 10.1002/em.2860120108] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Eleven mutagenic heterocyclic amines, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]-indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3]indole (Trp-P-2), 2-amino-6-methyl-dipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), 2-aminodipyrido[1,2-a:3',2'-d]imidazole (Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole (A alpha C), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo [4,5-f]quinoline (MeIQX), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-diMeIQX), and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-diMeIQX), were studied for genotoxicity in the hepatocyte/DNA repair test employing hepatocytes of male rats, male and female mice, and male hamsters. In these four assay systems, all compounds elicited DNA repair in at least three systems, except Trp-P-2, which was uniformly inactive. However, there were several significant differences in the responses of different systems. Rat and hamster hepatocytes responded to nine of the ten genotoxic compounds with the exception of Glu-P-2. Male and female mouse hepatocytes responded to Glu-P-2, whereas female, but not male, mouse hepatocytes responded to MeIQX and 4,8-diMeIQX. These results illustrate species and sex differences in response to these heterocyclic amines and suggest that a number of these compounds are carcinogenic in hamsters, as they have been in rats and mice.
Collapse
Affiliation(s)
- N Yoshimi
- Department of Pathology, Gifu University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
29
|
Holme JA, Brunborg G, Alexander J, Trygg B, Bjørnstad C. Modulation of the mutagenic effects of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) in bacteria with rat-liver 9000 x g supernatant or monolayers of rat hepatocytes as an activation system. Mutat Res 1988; 197:39-49. [PMID: 3275882 DOI: 10.1016/0027-5107(88)90138-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An in vitro protocol was designed to separate the process of metabolic activation from the mutational events. Cultured rat hepatocytes were first incubated with the food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) or 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ). After the incubation period the medium was removed and further incubated with Salmonella typhimurium TA98. A high direct mutagenic activity of the culture medium was then measured. The half-lives of the mutagenic metabolites formed from IQ and MeIQ were in the order of 45 min. The presence of the cytochrome P450 inhibitors alpha-naphthoflavone and metyrapone during the pre-incubation period reduced the accumulation of mutagenic metabolites. No effects of ascorbate on the mutagenic effects of IQ and MeIQ were seen. (+)-Catechin, another antioxidant and free-radical scavenger, markedly enhanced the number of IQ/MeIQ-induced revertants when added to the hepatocytes. In contrast, (+)-catechin clearly decreased the number of revertants when 9000 X g supernatant from rat liver (S9) was used as an activation system. No marked effect of pentachlorophenol, an inhibitor of hepatocyte sulfation and bacterial O-acetylation, was seen using hepatocytes as an activation system, while the mutagenic activity of both IQ and MeIQ was reduced by 90% in the S9/Salmonella system. The addition of an inhibitor of glucuronidation, galactosamine, or the nucleophile glutathione caused no or only minor decreases in the genotoxic effects of the IQ compounds. With both S9 and hepatocytes as activation systems the relative mutagenic effects observed in the S. typhimurium strains TA98 and TA98 NR were in the same order of magnitude, while a large decrease was seen with TA98/1,8-DNP6. The results show that this in vitro test protocol may be useful as a tool to study mechanisms involved in the formation of mutagenic metabolites.
Collapse
Affiliation(s)
- J A Holme
- Department of Toxicology, National Institute of Public Health, Oslo, Norway
| | | | | | | | | |
Collapse
|
30
|
Holme JA, Hongslo JK, Søderlund E, Brunborg G, Christensen T, Alexander J, Dybing E. Comparative genotoxic effects of IQ and MeIQ in Salmonella typhimurium and cultured mammalian cells. Mutat Res 1987; 187:181-90. [PMID: 3550445 DOI: 10.1016/0165-1218(87)90035-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) were studied for their genotoxic potential using hepatocytes isolated from untreated and Aroclor 1254 (PCB) pretreated rats as an activation system. Monolayers of hepatocytes co-incubated with Salmonella typhimurium TA98 activated IQ and MeIQ to bacterial mutagens, with MeIQ being about twice as potent as IQ. The mutagenic activities of IQ and MeIQ were increased by using hepatocytes from PCB-pretreated rats. IQ and MeIQ also caused primary DNA damage in the hepatocytes as determined by increases in the rate of alkaline elution of DNA, as well as increases in DNA-repair synthesis. Furthermore, exposure of V79 cells co-cultured with PCB-pretreated hepatocytes to IQ and MeIQ showed evidence of increased sister-chromatid exchanges and a low and variable increase in the number of 6-thioguanine-resistant mutants. The genotoxic potency of IQ and MeIQ in mammalian cells was low or virtually absent compared to their extreme potency in bacteria. This could be due to a lower capacity of mammalian cells to further metabolize the so-called directly acting bacterial mutagens, formed by a cytochrome P-450 dependent N-hydroxylation, to their ultimate reactive forms.
Collapse
|
31
|
Holme JA, Alexander J, Dybing E. Mutagenic activation of 2-amino-3-methylimidazo[4,5-f]-quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]-quinoline (MeIQ) by subcellular fractions and cells isolated from small intestine, kidney and liver of the rat. Cell Biol Toxicol 1987; 3:51-61. [PMID: 3148360 DOI: 10.1007/bf00117825] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mutagenic activity of the pyrolysis products 2-amino-3-methyl-imidazo[4,5-f]-quinoline 2-amino-3,4-dimethylimidazo[4,5-f]-quinoline in Salmonella typhimurium TA98 using rat intestinal and renal subcellular fractions as activation systems was approximately 1 and 5 revertants per nmol, respectively. This was 1,000 times less than the activity with a subcellular fraction from rat liver. The mutagenic activity of both compounds was considerably increased using intestinal, renal and hepatic preparations isolated from PCB (Aroclor 1254)-pretreated rats, compared to preparations from control animals. In addition, both compounds displayed a moderate direct-acting mutagenic activity at concentrations above 10(-5) M. Isolated cells from small intestine, kidney and liver incubated in nucleopore chambers were able to convert both compounds into products which mutated bacteria outside the chambers. The concentrations of chemicals required to yield responses of a similar magnitude were approximately 3 orders of magnitude higher in the intestinal and renal systems compared to the hepatic system. The formation of metabolites mutagenic for Salmonella typhimurium by hepatic subcellular and cellular systems was shown to be superior to the respective intestinal and renal systems.
Collapse
Affiliation(s)
- J A Holme
- Department of Toxicology, National Institute of Public Health, Oslo, Norway
| | | | | |
Collapse
|
32
|
Teelmann K, Hohbach C, Lehmann H. Preclinical safety testing of species-specific proteins produced with recombinant DNA-techniques. An attempt to transfer current experience into future testing strategies. Arch Toxicol 1986; 59:195-200. [PMID: 3548648 DOI: 10.1007/bf00290537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Preclinical toxicity studies in animals with species-specific recombinant DNA products have now been performed for several years. An interim statement on the significance of these animal tests and their ability to predict adverse effects in humans therefore appears indicated, with the aim of deducing future testing strategies. The experience accumulated so far shows that the animal models have failed to predict adverse effects subsequently observed in man. Immunogenicity of these proteins further restricted the usefulness of standard toxicity tests. There is also increasing evidence that animal tests on the toxic potential of impurities contained in the products are markedly inferior in sensitivity to analytical and quality control methods. Thus, modified testing programs are proposed to demonstrate safety rather than target organ toxicity using rodents and small non-rodent species and restricted dosing; furthermore the study duration should be limited by the detection of immunogenic responses.
Collapse
|
33
|
Abstract
The feasibility of mutagenicity assays with the Cobas Bact Automatic analyser was explored using selected model mutagens. The reduction of the latency period (the period until the growth of the mutant cells becomes optically measurable) was found to be a valid measure for the mutagenic activity of strong mutagens. For weaker mutagens an evaluation analogous to the fluctuation test seemed the more appropriate approach. The influence of various variables, such as concentration of histidine, size of inoculum, medium composition and S9 concentration, is described. Adaptation of the Cobas Bact system to the differential growth inhibition test is also mentioned.
Collapse
|
34
|
Ashby J, Mohammed R. Slide preparation and sampling as a major source of variability in the mouse micronucleus assay. Mutat Res 1986; 164:217-35. [PMID: 3748060 DOI: 10.1016/0165-1161(86)90056-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper describes the results of a study in which mouse bone marrow micronucleus assay slides were assessed for homogeneity of micronucleated polychromatic erythrocytes (MPE) among polychromatic erythrocytes (PE). The slides were prepared by 3 distinct methods and several methods of slide reading were assessed. Observations made using our slides were confirmed by re-analysis of slides from 3 independent laboratories. It is concluded that the method of slide preparation and assessment can significantly influence the variability of data obtained from a study. The extent of this variability casts doubt upon the validity of certain assumptions concerning this assay--such as sex differences in MPE incidence, responder variability, etc. Results are discussed within the context of the very recent literature for this assay. Some laboratories appear to have adequate methods of slide preparation and data accumulation, while others do not. Methods to improve the sensitivity of this assay are suggested within the context of the recommendations made by the Gene-Tox review group. In particular, it is suggested that individual investigators present evidence of the adequacy of their data accumulation techniques in order to enhance the value of future studies.
Collapse
|
35
|
Kaiser G, Harnasch D, King MT, Wild D. Chemical structure and mutagenic activity of aminoimidazoquinolines and aminonaphthimidazoles related to 2-amino-3-methylimidazo[4,5-f]quinoline. Chem Biol Interact 1986; 57:97-106. [PMID: 3512112 DOI: 10.1016/0009-2797(86)90052-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have synthesized 11 heterocyclic aromatic amines with chemical structures related to that of 2-amino-3-methylimidazo [4,5-f] quinoline (IQ), a potent mutagen occurring in broiled sardines, fried beef and beef extract. The mutagenic activity of these IQ analogs was studied and compared with that of IQ using the Ames test with strain TA98 of Salmonella typhimurium in presence of a metabolic activation system (S9 mix) derived from rat liver. The mutagenic activities of the IQ analogs vary over a million-fold; structure-activity comparisons indicate major contributions of the methyl substitution in the imidazole ring and of the quinoline-N, and significant contributions of methylation of the exocyclic amino group and of the geometry of the entire ring system.
Collapse
|
36
|
Hatch FT, MacGregor JT, Zeiger E. Review: Putative mutagens and carcinogens in food. VII. Genetic toxicology of the diet. A summary of a satellite symposium of the Fourth International Conference on Environmental Mutagens. Copenhagen, June 19-22, 1985. Abstracts. ENVIRONMENTAL MUTAGENESIS 1986; 8:467-84. [PMID: 3519200 DOI: 10.1002/em.2860080315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|