1
|
Mohebbati R, Abbassian H, Shafei MN, Gorji A, Negah SS. The alteration of neuronal activities of the cuneiform nucleus in non-hypovolemic and hypovolemic hypotensive conditions. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:871-878. [PMID: 34706016 DOI: 10.1590/0004-282x-anp-2020-0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The cuneiform nucleus is located in the center of the circuit that mediates autonomic responses to stress. Hemorrhagic hypotension leads to chemoreceptor anoxia, which consequently results in the reduction of baroreceptor discharge and stimulation of the chemoreceptor. OBJECTIVE Using the single-unit recording technique, the neuronal activities of the cuneiform nucleus were investigated in hypotensive states induced by hemorrhage and administration of an anti-hypertensive drug (hydralazine). METHODS Thirty male rats were divided into the control, hemorrhage, and hydralazine groups. The femoral artery was cannulated for the recording of cardiovascular responses, including systolic blood pressure, mean arterial pressure, and heart rate. Hydralazine was administered via tail vein. The single-unit recording was performed from the cuneiform nucleus. RESULTS The maximal systolic blood pressure and the mean arterial pressure significantly decreased and heart rate significantly increased after the application of hydralazine as well as the following hemorrhage compared to the control group. Hypotension significantly increased the firing rate of the cuneiform nucleus in both the hemorrhage and hydralazine groups compared to the control group. CONCLUSIONS The present data indicate that the cuneiform nucleus activities following hypotension may play a crucial role in blood vessels and vasomotor tone.
Collapse
Affiliation(s)
- Reza Mohebbati
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Abbassian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Sleep Clinic, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Epilepsy Research Center, Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| |
Collapse
|
2
|
Mueller PJ, Fyk-Kolodziej BE, Azar TA, Llewellyn-Smith IJ. Subregional differences in GABA A receptor subunit expression in the rostral ventrolateral medulla of sedentary versus physically active rats. J Comp Neurol 2020; 528:1053-1075. [PMID: 31642070 PMCID: PMC7046220 DOI: 10.1002/cne.24798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
Neurons in the rostral ventrolateral medulla (RVLM) regulate blood pressure through direct projections to spinal sympathetic preganglionic neurons. Only some RVLM neurons are active under resting conditions due to significant, tonic inhibition by gamma-aminobutyric acid (GABA). Withdrawal of GABAA receptor-mediated inhibition of the RVLM increases sympathetic outflow and blood pressure substantially, providing a mechanism by which the RVLM could contribute chronically to cardiovascular disease (CVD). Here, we tested the hypothesis that sedentary conditions, a major risk factor for CVD, increase GABAA receptors in RVLM, including its rostral extension (RVLMRE ), both of which contain bulbospinal catecholamine (C1) and non-C1 neurons. We examined GABAA receptor subunits GABAAα1 and GABAAα2 in the RVLM/RVLMRE of sedentary or physically active (10-12 weeks of wheel running) rats. Western blot analyses indicated that sedentary rats had lower expression of GABAAα1 and GABAAα2 subunits in RVLM but only GABAAα2 was lower in the RVLMRE of sedentary rats. Sedentary rats had significantly reduced expression of the chloride transporter, KCC2, suggesting less effective GABA-mediated inhibition compared to active rats. Retrograde tracing plus triple-label immunofluorescence identified fewer bulbospinal non-C1 neurons immunoreactive for GABAAα1 but a higher percentage of bulbospinal C1 neurons immunoreactive for GABAAα1 in sedentary animals. Sedentary conditions did not significantly affect the number of bulbospinal C1 or non-C1 neurons immunoreactive for GABAAα2 . These results suggest a complex interplay between GABAA receptor expression by spinally projecting C1 and non-C1 neurons and sedentary versus physically active conditions. They also provide plausible mechanisms for both enhanced sympathoexcitatory and sympathoinhibitory responses following sedentary conditions.
Collapse
Affiliation(s)
- Patrick J. Mueller
- Department of Physiology, Wayne State University School of
Medicine, Detroit MI
| | | | - Toni A. Azar
- Department of Physiology, Wayne State University School of
Medicine, Detroit MI
| | - Ida J. Llewellyn-Smith
- Department of Physiology, Wayne State University School of
Medicine, Detroit MI
- Cardiovascular Medicine, Human Physiology and Centre for
Neuroscience, College of Medicine and Public Health, Flinders University, Bedford
Park SA, AUSTRALIA
| |
Collapse
|
3
|
Senthilkumaran M, Bobrovskaya L, Verberne AJM, Llewellyn-Smith IJ. Insulin-responsive autonomic neurons in rat medulla oblongata. J Comp Neurol 2018; 526:2665-2682. [PMID: 30136719 DOI: 10.1002/cne.24523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022]
Abstract
Low blood glucose activates brainstem adrenergic and cholinergic neurons, driving adrenaline secretion from the adrenal medulla and glucagon release from the pancreas. Despite their roles in maintaining glucose homeostasis, the distributions of insulin-responsive adrenergic and cholinergic neurons in the medulla are unknown. We fasted rats overnight and gave them insulin (10 U/kg i.p.) or saline after 2 weeks of handling. Blood samples were collected before injection and before perfusion at 90 min. We immunoperoxidase-stained transverse sections of perfused medulla to show Fos plus either phenylethanolamine N-methyltransferase (PNMT) or choline acetyltransferase (ChAT). Insulin injection lowered blood glucose from 4.9 ± 0.3 mmol/L to 1.7 ± 0.2 mmol/L (mean ± SEM; n = 6); saline injection had no effect. In insulin-treated rats, many PNMT-immunoreactive C1 neurons had Fos-immunoreactive nuclei, with the proportion of activated neurons being highest in the caudal part of the C1 column. In the rostral ventrolateral medulla, 33.3% ± 1.4% (n = 8) of C1 neurons were Fos-positive. Insulin also induced Fos in 47.2% ± 2.0% (n = 5) of dorsal medullary C3 neurons and in some C2 neurons. In the dorsal motor nucleus of the vagus (DMV), insulin evoked Fos in many ChAT-positive neurons. Activated neurons were concentrated in the medial and middle regions of the DMV beneath and just rostral to the area postrema. In control rats, very few C1, C2, or C3 neurons and no DMV neurons were Fos-positive. The high numbers of PNMT-immunoreactive and ChAT-immunoreactive neurons that express Fos after insulin treatment reinforce the importance of these neurons in the central response to a decrease in glucose bioavailability.
Collapse
Affiliation(s)
- M Senthilkumaran
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - L Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - A J M Verberne
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine-Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - I J Llewellyn-Smith
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
4
|
Tanida M, Zhang T, Sun L, Song J, Yang W, Kuda Y, Kurata Y, Shibamoto T. Anaphylactic hypotension causes renal and adrenal sympathoexcitaion and induces c-fos in the hypothalamus and medulla oblongata. Exp Physiol 2018. [PMID: 29524326 DOI: 10.1113/ep086809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the central question of this study? Whether anaphylaxis affects sympathetic outflows to the brown adipose tissue (BAT) and adrenal gland and whether anaphylaxis affects some brain areas in association with sympathetic regulation. What is the main finding and its importance? Sympathoexcitatory responses to anaphylaxis occurred regionally in the kidney and adrenal gland, but not in the thermogenesis-related BAT. Further, anaphylactic hypotension also caused increase in c-fos immunoreactivity in the hypothalamic and medullary areas. Moreover, catecholaminergic neurons of the brainstem cause adrenal sympathoexcitation in a baroreceptor-independent manner. ABSTRACT We previously reported that sympathetic nerve activity (SNA) to the kidney and the hindlimb increases during anaphylactic hypotension in anaesthetized rats. Based on this evidence, we examined effects of anaphylactic hypotension on SNA to the brown adipose tissue (BAT), and the adrenal gland and kidney in anaesthetized rats. We demonstrated that adrenal and renal SNA, but not BAT-SNA, were stimulated. In addition, the effects of anaphylaxis on neural activities of the hypothalamic and medullary nuclei, which are candidates for relaying efferent SNA to the peripheral organs, were investigated via immunohistochemical staining of c-fos. Anaphylaxis increased c-fos expression in the neurons of the paraventricular nucleus (PVN) of the hypothalamus and in those of the nucleus tractus solitarii (NTS) and rostral ventrolateral medulla (RVLM) of the medulla oblongata; c-fos was expressed in γ-aminobutyric acid (GABA)-ergic neurons of the NTS and in the catecholaminergic neurons of the RVLM. In addition, c-fos expression in the rostral NTS and mid NTS during anaphylaxis was reduced by sinoaortic baroreceptor denervation; however, increased c-fos expression in the caudal NTS and RVLM or adrenal sympathoexcitation were not affected by sinoaortic baroreceptor denervation. These results indicated that anaphylactic hypotension activates the hypothalamic PVN and the medullary NTS and RVLM independently of the baroreflex pathway. Further, it stimulated efferent SNA to the adrenal gland and kidney to restore blood pressure.
Collapse
Affiliation(s)
- Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Tao Zhang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.,Department of Colorectal and Hernia Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Lingling Sun
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.,Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jie Song
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.,Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Yang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.,Department of Infectious Disease, The Sheng Jing Hospital of China Medical University, Shenyang, 110009, China
| | - Yuichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Toshishige Shibamoto
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
5
|
Early oxytocin inhibition of salt intake after furosemide treatment in rats? Physiol Behav 2017; 173:34-41. [PMID: 28131863 DOI: 10.1016/j.physbeh.2017.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/23/2022]
Abstract
Body fluid homeostasis requires a complex suite of physiological and behavioral processes. Understanding of the role of the central nervous system (CNS) in integrating these processes has been advanced by research employing immunohistochemical techniques to assess responses to a variety of body fluid challenges. Such techniques have revealed sex/estrogen differences in CNS activation in response to hypotension and hypernatremia. In contrast, it has been difficult to conclusively identify specific CNS areas and neurotransmitter systems that are activated by hyponatremia using these techniques. In part, this difficulty is due to the temporal disconnect between the physiological effects of treatments commonly used to deplete body sodium and the behavioral response to such depletion. In some methods, sodium ingestion is delayed in association with increased oxytocin (OT), suggesting an inhibitory role for OT in sodium intake. Urinary sodium loss increases within an hour after treatment with furosemide, a natriuretic-diuretic, but sodium intake is delayed for 18-24h. Accordingly, we hypothesized that acute furosemide-induced sodium loss activates centrally-projecting OT neurons which provide an initial inhibition of sodium intake, and tested this hypothesis in ovariectomized Sprague-Dawley rats with or without estrogen using immunohistochemical methods. Neuronal activation in the hypothalamic paraventricular nuclei (PVN) after administration of furosemide corresponded to the timing of the physiological effects. The activation was not different in estrogen-treated rats, nor did estrogen alter the initial suppression of sodium intake. However, virtually no fos immunoreactive (fos-IR) neurons in the parvocellular PVN were also immunolabeled for OT. Thus, acute sodium loss after furosemide produces neural activation and an early inhibition of sodium intake that does not appear to involve activation of centrally-projecting OT neurons and is not influenced by estrogen.
Collapse
|
6
|
Parker LM, Le S, Wearne TA, Hardwick K, Kumar NN, Robinson KJ, McMullan S, Goodchild AK. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation? J Comp Neurol 2017; 525:2249-2264. [PMID: 28295336 DOI: 10.1002/cne.24203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed.
Collapse
Affiliation(s)
- Lindsay M Parker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.,ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, NSW, 2109, Australia
| | - Sheng Le
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Travis A Wearne
- Department of Psychology, Faculty of Human Sciences, Macquarie University, NSW, 2109, Australia
| | - Kate Hardwick
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Natasha N Kumar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.,Department of Pharmacology, School of Medical Science, University of New South Wales, NSW, 2052, Australia
| | - Katherine J Robinson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Simon McMullan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Ann K Goodchild
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| |
Collapse
|
7
|
Wood CS, Valentino RJ, Wood SK. Individual differences in the locus coeruleus-norepinephrine system: Relevance to stress-induced cardiovascular vulnerability. Physiol Behav 2016; 172:40-48. [PMID: 27423323 DOI: 10.1016/j.physbeh.2016.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Repeated exposure to psychosocial stress is a robust sympathomimetic stressor and as such has adverse effects on cardiovascular health. While the neurocircuitry involved remains unclear, the physiological and anatomical characteristics of the locus coeruleus (LC)-norepinephrine (NE) system suggest that it is poised to contribute to stress-induced cardiovascular vulnerability. A major theme throughout is to review studies that shed light on the role that the LC may play in individual differences in vulnerability to social stress-induced cardiovascular dysfunction. Recent findings are discussed that support a unique plasticity in afferent regulation of the LC, resulting in either excitatory or inhibitory input to the LC during establishment of different stress coping strategies. This contrasting regulation of the LC by either afferent regulation, or distinct differences in stress-induced neuroinflammation would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The goal of this review is to highlight recent developments in the interplay between the LC-NE and cardiovascular systems during repeated stress in an effort to advance therapeutic treatments for the development of stress-induced cardiovascular vulnerability.
Collapse
Affiliation(s)
- Christopher S Wood
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4399, United States
| | - Susan K Wood
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| |
Collapse
|
8
|
Microglial number is related to the number of tyrosine hydroxylase neurons in SHR and normotensive rats. Auton Neurosci 2016; 198:10-8. [PMID: 27260963 DOI: 10.1016/j.autneu.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 01/30/2023]
Abstract
Microglia are ubiquitously distributed throughout the central nervous system (CNS) and play a critical role in the maintenance of neuronal homeostasis. Recent advances have shown that microglia, never resting cells of the CNS, continuously monitor and influence neuronal/synaptic activity levels, by communicating with neurons with the aid of their dynamic processes. The brainstem contains many catecholaminergic nuclei that are key to many aspects of brain function. This includes C1 neurons of the ventrolateral medulla that are thought to play a critical role in control of the circulation. Despite the role of catecholaminergic brainstem neurons in normal physiology, the presence of microglia that surrounds them is poorly understood. Here, we investigate the spatial distribution and morphology of microglia in catecholaminergic nuclei of the brainstem in 3 strains of rat: Sprague-Dawley (SD), Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Our data reveal that microglia are heterogeneously distributed within and across different strains of rats. Interestingly, intra-strain comparison of tyrosine hydroxylase-immunoreactive (TH-ir) neuronal and microglial number reveals that microglial number varies with the TH-ir neuronal number in the brainstem. Even though microglial spatial distribution varies across brainstem nuclei, microglial morphology (% area covered, number of end point processes and branch length) does not differ significantly. This work provides the first evidence that even though microglia, in their surveilling state, do not vary appreciably in their morphology across brainstem areas, they do have a heterogeneous pattern of distribution that may be influenced by their local environment.
Collapse
|
9
|
Göktalay G, Millington WR. Hypovolemic hemorrhage induces Fos expression in the rat hypothalamus: Evidence for involvement of the lateral hypothalamus in the decompensatory phase of hemorrhage. Neuroscience 2016; 322:464-78. [PMID: 26947128 DOI: 10.1016/j.neuroscience.2016.02.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 02/10/2016] [Accepted: 02/27/2016] [Indexed: 01/02/2023]
Abstract
This study tested the hypothesis that the hypothalamus participates in the decompensatory phase of hemorrhage by measuring Fos immunoreactivity and by inhibiting neuronal activity in selected hypothalamic nuclei with lidocaine or cobalt chloride. Previously, we reported that inactivation of the arcuate nucleus inhibited, but did not fully prevent, the fall in arterial pressure evoked by hypotensive hemorrhage. Here, we report that hemorrhage (2.2 ml/100g body weight over 20 min) induced Fos expression in a high percentage of cells in the paraventricular, supraoptic and arcuate nuclei of the hypothalamus as shown previously. Lower densities of Fos immunoreactive cells were also found in the medial preoptic area (mPOA), anterior hypothalamus, lateral hypothalamus (LH), dorsomedial hypothalamus, ventromedial hypothalamus (VMH) and posterior hypothalamus. Bilateral injection of lidocaine (2%; 0.1 μl or 0.3 μl) or cobalt chloride (5mM; 0.3 μl) into the tuberal portion of the LH immediately before hemorrhage was initiated reduced the magnitude of hemorrhagic hypotension and bradycardia significantly. Lidocaine injection into the VMH also attenuated the fall in arterial pressure and heart rate evoked by hemorrhage although inactivation of the mPOA or rostral LH was ineffective. These findings indicate that hemorrhage activates neurons throughout much of the hypothalamus and that a relatively broad area of the hypothalamus, extending from the arcuate nucleus laterally through the caudal VMH and tuberal LH, plays an important role in the decompensatory phase of hemorrhage.
Collapse
Affiliation(s)
- G Göktalay
- Department of Medical Pharmacology, Uludag University, Faculty of Medicine, Bursa, Turkey
| | - W R Millington
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States.
| |
Collapse
|
10
|
Kapoor K, Bhandare AM, Nedoboy PE, Mohammed S, Farnham MMJ, Pilowsky PM. Dynamic changes in the relationship of microglia to cardiovascular neurons in response to increases and decreases in blood pressure. Neuroscience 2016; 329:12-29. [PMID: 27155147 DOI: 10.1016/j.neuroscience.2016.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023]
Abstract
Microglia are present throughout the central nervous system (CNS) and express receptors for every known neurotransmitter. During inflammation, microglia change into a state that either promotes removal of debris (M1), or into a state that promotes soothing (M2). Caudal- and rostral- ventrolateral medullary regions (CVLM and RVLM, respectively) of the brainstem are key nuclei involved in all aspects of the cardiovascular system. In this study, we investigate a novel role for microglia in cardiovascular control in the brainstem of adult male Sprague-Dawley (SD) rat. Here we show, that increases and decreases in blood pressure (BP) triggers alertness in the physiology of microglia in the brainstem region; inducing changes in microglial spatial distribution and the number of synapses in contact with microglial end processes. Following 6h of acute hypertension, the number of synapses in contact with microglia increased by ≈30% in both regions of the brainstem, CVLM and RVLM. Induction of acute hypotension for 6h causes microglia to reduce the number of synaptic contacts by >20% in both, CVLM and RVLM, nuclei of the brainstem. Our analysis of the morphological characteristics of microglia, and expression levels of M1 and M2, reveals that the changes induced in microglial behavior do not require any obvious dramatic changes in their morphology. Taken together, our findings suggest that microglia play a novel, unexpected, physiological role in the uninjured autonomic nuclei of CNS; we therefore speculate that microglia act cooperatively with brainstem cardiovascular neurons to maintain them in a physiologically receptive state.
Collapse
Affiliation(s)
- Komal Kapoor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Amol M Bhandare
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Suja Mohammed
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Melissa M J Farnham
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
11
|
Wood SK, Valentino RJ. The brain norepinephrine system, stress and cardiovascular vulnerability. Neurosci Biobehav Rev 2016; 74:393-400. [PMID: 27131968 DOI: 10.1016/j.neubiorev.2016.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
Chronic exposure to psychosocial stress has adverse effects on cardiovascular health, however the stress-sensitive neurocircuitry involved remains to be elucidated. The anatomical and physiological characteristics of the locus coeruleus (LC)-norepinephrine (NE) system position it to contribute to stress-induced cardiovascular disease. This review focuses on cardiovascular dysfunction produced by social stress and a major theme highlighted is that differences in coping strategy determine individual differences in social stress-induced cardiovascular vulnerability. The establishment of different coping strategies and cardiovascular vulnerability during repeated social stress has recently been shown to parallel a unique plasticity in LC afferent regulation, resulting in either excitatory or inhibitory input to the LC. This contrasting regulation of the LC would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The advances described suggest new directions for developing treatments and/or strategies for decreasing stress-induced cardiovascular vulnerability.
Collapse
Affiliation(s)
- Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4399, United States
| |
Collapse
|
12
|
David RB, Roncari CF, Lauar MR, Vendramini RC, Antunes-Rodrigues J, Menani JV, De Luca LA. Sodium intake, brain c-Fos protein and gastric emptying in cell-dehydrated rats treated with methysergide into the lateral parabrachial nucleus. Physiol Behav 2015; 151:111-20. [DOI: 10.1016/j.physbeh.2015.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/11/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
|
13
|
Abstract
Our dynamic environment regularly exposes us to potentially life-threatening challenges or stressors. To answer these challenges and maintain homeostasis, the stress response, an innate coordinated engagement of central and peripheral neural systems is initiated. Although essential for survival, the inappropriate initiation of the stress response or its continuation after the stressor is terminated has pathological consequences that have been linked to diverse neuropsychiatric and medical diseases. Substantial individual variability exists in the pathological consequences of stressors. A theme of this Special Issue is that elucidating the basis of individual differences in resilience or its flipside, vulnerability, will greatly advance our ability to prevent and treat stress-related diseases. This can be approached by studying individual differences in "pro-stress" mediators such as corticosteroids or the hypothalamic orchestrator of the stress response, corticotropin-releasing factor. More recently, the recognition of endogenous neuromodulators with "anti-stress" activity that have opposing actions or that restrain stress-response systems suggests additional bases for individual differences in stress pathology. These "anti-stress" neuromodulators offer alternative strategies for manipulating the stress response and its pathological consequences. This review uses the major brain norepinephrine system as a model stress-response system to demonstrate how co-regulation by opposing pro-stress (corticotropin-releasing factor) and anti-stress (enkephalin) neuromodulators must be fine-tuned to produce an adaptive response to stress. The clinical consequences of tipping this fine-tuned balance in the direction of either the pro- or anti-stress systems are emphasized. Finally, that each system provides multiple points at which individual differences could confer stress vulnerability or resilience is discussed.
Collapse
Affiliation(s)
- Rita J. Valentino
- Department of Anesthesia and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author. Department of Anesthesia and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
14
|
van Nieuwenhuijzen P, McGregor I, Chebib M, Hunt G. Regional Fos-expression induced by γ-hydroxybutyrate (GHB): Comparison with γ-butyrolactone (GBL) and effects of co-administration of the GABAB antagonist SCH 50911 and putative GHB antagonist NCS-382. Neuroscience 2014; 277:700-15. [DOI: 10.1016/j.neuroscience.2014.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
15
|
Urzedo-Rodrigues LS, Ferreira HS, Santana RC, Luz CP, Perrone CF, Fregoneze JB. Blockade of 5-Ht3 receptors in the septal area increases Fos expression in selected brain areas. Auton Neurosci 2014; 181:55-68. [DOI: 10.1016/j.autneu.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 12/02/2013] [Accepted: 01/08/2014] [Indexed: 02/07/2023]
|
16
|
Park J, Brureau A, Kernan K, Starks A, Gulati S, Ogunnaike B, Schwaber J, Vadigepalli R. Inputs drive cell phenotype variability. Genome Res 2014; 24:930-41. [PMID: 24671852 PMCID: PMC4032857 DOI: 10.1101/gr.161802.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
What is the significance of the extensive variability observed in individual members of a single-cell phenotype? This question is particularly relevant to the highly differentiated organization of the brain. In this study, for the first time, we analyze the in vivo variability within a neuronal phenotype in terms of input type. We developed a large-scale gene-expression data set from several hundred single brainstem neurons selected on the basis of their specific synaptic input types. The results show a surprising organizational structure in which neuronal variability aligned with input type along a continuum of sub-phenotypes and corresponding gene regulatory modules. Correlations between these regulatory modules and specific cellular states were stratified by synaptic input type. Moreover, we found that the phenotype gradient and correlated regulatory modules were maintained across subjects. As these specific cellular states are a function of the inputs received, the stability of these states represents “attractor”-like states along a dynamic landscape that is influenced and shaped by inputs, enabling distinct state-dependent functional responses. We interpret the phenotype gradient as arising from analog tuning of underlying regulatory networks driven by distinct inputs to individual cells. Our results change the way we understand how a phenotypic population supports robust biological function by integrating the environmental experience of individual cells. Our results provide an explanation of the functional significance of the pervasive variability observed within a cell type and are broadly applicable to understanding the relationship between cellular input history and cell phenotype within all tissues.
Collapse
Affiliation(s)
- James Park
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA; Department of Chemical and Biochemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Anthony Brureau
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Kate Kernan
- Department of Pediatrics, Washington University Saint Louis, Saint Louis, Missouri 63130, USA
| | - Alexandria Starks
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Sonali Gulati
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Babatunde Ogunnaike
- Department of Chemical and Biochemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - James Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA; Department of Chemical and Biochemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA; Department of Chemical and Biochemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
17
|
Guimaraes PS, Huber DA, Campagnole-Santos MJ, Schreihofer AM. Development of attenuated baroreflexes in obese Zucker rats coincides with impaired activation of nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 2014; 306:R681-92. [PMID: 24573182 DOI: 10.1152/ajpregu.00537.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult obese Zucker rats (OZR; >12 wk) develop elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) with impaired baroreflexes compared with adult lean Zucker rats (LZR) and juvenile OZR (6-7 wk). In adult OZR, baroreceptor afferent nerves respond normally to changes in MAP, whereas electrical stimulation of baroreceptor afferent fibers produces smaller reductions in SNA and MAP compared with LZR. We hypothesized that impaired baroreflexes in OZR are linked to reduced activation of brain stem sites that mediate baroreflexes. In conscious adult rats, a hydralazine (HDZ)-induced reduction in MAP evoked tachycardia that was initially blunted in OZR, but equivalent to LZR within 5 min. In agreement, HDZ-induced expression of c-Fos in the rostral ventrolateral medulla (RVLM) was comparable between groups. In contrast, phenylephrine (PE)-induced rise in MAP evoked markedly attenuated bradycardia with dramatically reduced c-Fos expression in the nucleus tractus solitarius (NTS) of adult OZR compared with LZR. However, in juvenile rats, PE-induced hypertension evoked comparable bradycardia in OZR and LZR with similar or augmented c-Fos expression in NTS of the OZR. In urethane-anesthetized rats, microinjections of glutamate into NTS evoked equivalent decreases in SNA, heart rate (HR), and MAP in juvenile OZR and LZR, but attenuated decreases in SNA and MAP in adult OZR. In contrast, microinjections of glutamate into the caudal ventrolateral medulla, a target of barosensitive NTS neurons, evoked comparable decreases in SNA, HR, and MAP in adult OZR and LZR. These data suggest that OZR develop impaired glutamatergic activation of the NTS, which likely contributes to attenuated baroreflexes in adult OZR.
Collapse
|
18
|
Ramachandran R, Bhatt DK, Ploug KB, Hay-Schmidt A, Jansen-Olesen I, Gupta S, Olesen J. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation. Cephalalgia 2013; 34:136-47. [PMID: 24000375 DOI: 10.1177/0333102413502735] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIM Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP) systems on the GTN-induced neuronal activation in this model. MATERIALS AND METHODS The femoral vein was catheterised in rats and GTN was infused (4 µg/kg/min, for 20 minutes, intravenously). Immunohistochemistry was performed to analyse Fos, nNOS and CGRP and Western blot for measuring nNOS protein expression. The effect of olcegepant, L-nitro-arginine methyl ester (L-NAME) and neurokinin (NK)-1 receptor antagonist L-733060 were analysed on Fos activation. RESULTS GTN-treated rats showed a significant increase of nNOS and CGRP in dura mater and CGRP in the trigeminal nucleus caudalis (TNC). Upregulation of Fos was observed in TNC four hours after the infusion. This activation was inhibited by pre-treatment with olcegepant. Pre-treatment with L-NAME and L-733060 also significantly inhibited GTN induced Fos expression. CONCLUSION The present study indicates that blockers of CGRP, NOS and NK-1 receptors all inhibit GTN induced Fos activation. These findings also predict that pre-treatment with olcegepant may be a better option than post-treatment to study its inhibitory effect in GTN migraine models.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Danish Headache Centre, Department of Neurology, Glostrup Research Institute, Glostrup Hospital, University of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
19
|
López-González MV, Díaz-Casares A, Peinado-Aragonés CA, Lara JP, Barbancho MA, Dawid-Milner MS. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats. Exp Physiol 2013; 98:1279-94. [DOI: 10.1113/expphysiol.2013.072538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Murphy MN, Mizuno M, Downey RM, Squiers JJ, Squiers KE, Smith SA. Neuronal nitric oxide synthase expression is lower in areas of the nucleus tractus solitarius excited by skeletal muscle reflexes in hypertensive rats. Am J Physiol Heart Circ Physiol 2013; 304:H1547-57. [PMID: 23564306 PMCID: PMC3680727 DOI: 10.1152/ajpheart.00235.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/08/2013] [Indexed: 11/22/2022]
Abstract
The functions of the skeletal muscle exercise pressor reflex (EPR) and its mechanically sensitive component are augmented in hypertension producing exaggerated increases in blood pressure during exercise. Afferent information from the EPR is processed in the nucleus tractus solitarius (NTS). Within the NT, nitric oxide (NO), produced via L-arginine oxidation by neuronal nitric oxide synthase (nNOS), buffers the pressor response to EPR activation. Therefore, EPR overactivity may manifest as a decrease in NO production due to reductions in nNOS. We hypothesized that nNOS protein expression is lower in the NTS of spontaneously hypertensive (SHR) compared with normotensive Wistar-Kyoto (WKY) rats. Further, we examined whether nNOS is expressed with FOS, a marker of neuronal excitation induced by EPR activation. The EPR and mechanoreflex were intermittently activated for 1 h via hindlimb static contraction or stretch, respectively. These maneuvers produced significantly greater pressor responses in SHR during the first 25 min of stimulation. Within the NTS, nNOS expression was lower from -14.9 to -13.4 bregma in SHR compared with WKY. For example, at -14.5 bregma the number of NTS nNOS-positive cells in SHR (13 ± 1) was significantly less than WKY (23 ± 2). However, the number of FOS-positive cells after muscle contraction in this area was not different (WKY = 82 ± 18; SHR = 75 ± 8). In both groups, FOS-expressing neurons were located within the same areas of the NTS as neurons containing nNOS. These findings demonstrate that nNOS protein expression is lower within NTS areas excited by skeletal muscle reflexes in hypertensive rats.
Collapse
Affiliation(s)
- Megan N Murphy
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Damanhuri HA, Burke PGR, Ong LK, Bobrovskaya L, Dickson PW, Dunkley PR, Goodchild AK. Tyrosine hydroxylase phosphorylation in catecholaminergic brain regions: a marker of activation following acute hypotension and glucoprivation. PLoS One 2012; 7:e50535. [PMID: 23209770 PMCID: PMC3510060 DOI: 10.1371/journal.pone.0050535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 10/26/2012] [Indexed: 02/05/2023] Open
Abstract
The expression of c-Fos defines brain regions activated by the stressors hypotension and glucoprivation however, whether this identifies all brain sites involved is unknown. Furthermore, the neurochemicals that delineate these regions, or are utilized in them when responding to these stressors remain undefined. Conscious rats were subjected to hypotension, glucoprivation or vehicle for 30, 60 or 120 min and changes in the phosphorylation of serine residues 19, 31 and 40 in the biosynthetic enzyme, tyrosine hydroxylase (TH), the activity of TH and/or, the expression of c-Fos were determined, in up to ten brain regions simultaneously that contain catecholaminergic cell bodies and/or terminals: A1, A2, caudal C1, rostral C1, A6, A8/9, A10, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Glucoprivation evoked phosphorylation changes in A1, caudal C1, rostral C1 and nucleus accumbens whereas hypotension evoked changes A1, caudal C1, rostral C1, A6, A8/9, A10 and medial prefrontal cortex 30 min post stimulus whereas few changes were evident at 60 min. Although increases in pSer19, indicative of depolarization, were seen in sites where c-Fos was evoked, phosphorylation changes were a sensitive measure of activation in A8/9 and A10 regions that did not express c-Fos and in the prefrontal cortex that contains only catecholaminergic terminals. Specific patterns of serine residue phosphorylation were detected, dependent upon the stimulus and brain region, suggesting activation of distinct signaling cascades. Hypotension evoked a reduction in phosphorylation in A1 suggestive of reduced kinase activity. TH activity was increased, indicating synthesis of TH, in regions where pSer31 alone was increased (prefrontal cortex) or in conjunction with pSer40 (caudal C1). Thus, changes in phosphorylation of serine residues in TH provide a highly sensitive measure of activity, cellular signaling and catecholamine utilization in catecholaminergic brain regions, in the short term, in response to hypotension and glucoprivation.
Collapse
Affiliation(s)
- Hanafi A. Damanhuri
- The Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales, Australia
- Biochemistry Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Peter G. R. Burke
- The Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales, Australia
| | - Lin K. Ong
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Phillip W. Dickson
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Peter R. Dunkley
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Ann K. Goodchild
- The Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales, Australia
- * E-mail:
| |
Collapse
|
22
|
Miller RL, Knuepfer MM, Wang MH, Denny GO, Gray PA, Loewy AD. Fos-activation of FoxP2 and Lmx1b neurons in the parabrachial nucleus evoked by hypotension and hypertension in conscious rats. Neuroscience 2012; 218:110-25. [PMID: 22641087 PMCID: PMC3405558 DOI: 10.1016/j.neuroscience.2012.05.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 02/07/2023]
Abstract
The parabrachial nucleus (PB) is a brainstem cell group that receives a strong input from the nucleus tractus solitarius regarding the physiological status of the internal organs and sends efferent projections throughout the forebrain. Since the neuroanatomical organization of the PB remains unclear, our first step was to use specific antibodies against two neural lineage transcription factors: Forkhead box protein2 (FoxP2) and LIM homeodomain transcription factor 1 beta (Lmx1b) to define the PB in adult rats. This allowed us to construct a cytoarchitectonic PB map based on the distribution of neurons that constitutively express these two transcription factors. Second, the in situ hybridization method combined with immunohistochemistry demonstrated that mRNA for glutamate vesicular transporter Vglut2 (Slc17a6) was present in most of the Lmx1b+ and FoxP2+ parabrachial neurons, indicating these neurons use glutamate as a transmitter. Third, conscious rats were maintained in a hypotensive or hypertensive state for 2h, and then, their brainstems were prepared by the standard c-Fos method which is a measure of neuronal activity. Both hypotension and hypertension resulted in c-Fos activation of Lmx1b+ neurons in the external lateral-outer subdivision of the PB (PBel-outer). Hypotension, but not hypertension, caused c-Fos activity in the FoxP2+ neurons of the central lateral PB (PBcl) subnucleus. The Kölliker-Fuse nucleus as well as the lateral crescent PB and rostral-most part of the PBcl contain neurons that co-express FoxP2+ and Lmx1b+, but none of these were activated after blood pressure changes. Salt-sensitive FoxP2 neurons in the pre-locus coeruleus and PBel-inner were not c-Fos activated following blood pressure changes. In summary, the present study shows that the PBel-outer and PBcl subnuclei originate from two different neural progenitors, contain glutamatergic neurons, and are affected by blood pressure changes, with the PBel-outer reacting to both hypo- and hypertension, and the PBcl signaling only hypotensive changes.
Collapse
Affiliation(s)
- Rebecca L. Miller
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark M. Knuepfer
- Department of Pharmacological & Physiological Science, St. Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA
| | - Michelle H. Wang
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George O. Denny
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul A. Gray
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arthur D. Loewy
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Estradiol selectively reduces central neural activation induced by hypertonic NaCl infusion in ovariectomized rats. Physiol Behav 2012; 107:192-200. [PMID: 22763321 DOI: 10.1016/j.physbeh.2012.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/16/2012] [Accepted: 06/23/2012] [Indexed: 02/02/2023]
Abstract
We recently reported that the latency to begin drinking water during slow, intravenous infusion of a concentrated NaCl solution was shorter in estradiol-treated ovariectomized rats compared to oil vehicle-treated rats, despite comparably elevated plasma osmolality. To test the hypothesis that the decreased latency to begin drinking is attributable to enhanced detection of increased plasma osmolality by osmoreceptors located in the CNS, the present study used immunocytochemical methods to label fos, a marker of neural activation. Increased plasma osmolality did not activate the subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), or the nucleus of the solitary tract (NTS) in either oil vehicle-treated rats or estradiol-treated rats. In contrast, hyperosmolality increased fos labeling in the area postrema (AP), the paraventricular nucleus of the hypothalamus (PVN) and the rostral ventrolateral medulla (RVLM) in both groups; however, the increase was blunted in estradiol-treated rats. These results suggest that estradiol has selective effects on the sensitivity of a population of osmo-/Na(+)-receptors located in the AP, which, in turn, alters activity in other central areas associated with responses to increased osmolality. In conjunction with previous reports that hyperosmolality increases blood pressure and that elevated blood pressure inhibits drinking, the current findings of reduced activation in AP, PVN, and RVLM-areas involved in sympathetic nerve activity-raise the possibility that estradiol blunts HS-induced blood pressure changes. Thus, estradiol may eliminate or reduce the initial inhibition of water intake that occurs during increased osmolality, and facilitate a more rapid behavioral response, as we observed in our recent study.
Collapse
|
24
|
Panneton WM, Gan Q, Le J, Livergood RS, Clerc P, Juric R. Activation of brainstem neurons by underwater diving in the rat. Front Physiol 2012; 3:111. [PMID: 22563319 PMCID: PMC3342523 DOI: 10.3389/fphys.2012.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/04/2012] [Indexed: 01/10/2023] Open
Abstract
The mammalian diving response is a powerful autonomic adjustment to underwater submersion greatly affecting heart rate, arterial blood pressure, and ventilation. The bradycardia is mediated by the parasympathetic nervous system, arterial blood pressure is mediated via the sympathetic system and still other circuits mediate the respiratory changes. In the present study we investigate the cardiorespiratory responses and the brainstem neurons activated by voluntary diving of trained rats, and, compare them to control and swimming animals which did not dive. We show that the bradycardia and increase in arterial blood pressure induced by diving were significantly different than that induced by swimming. Neuronal activation was calculated after immunohistochemical processing of brainstem sections for Fos protein. Labeled neurons were counted in the caudal pressor area, the medullary dorsal horn, subnuclei of the nucleus tractus solitarii (NTS), the nucleus raphe pallidus (RPa), the rostroventrolateral medulla, the A5 area, the nucleus locus coeruleus, the Kölliker–Fuse area, and the external lateral and superior lateral subnuclei of the parabrachial nucleus. All these areas showed significant increases in Fos labeling when data from voluntary diving rats were compared to control rats and all but the commissural subnucleus of the NTS, A5 area, and RPa were significantly different from swimming rats. These data provide a substrate for more precise experiments to determine the role of these nuclei in the reflex circuits driving the diving response.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
25
|
Scopinho AA, Alves FHF, Resstel LBM, Correa FMA, Crestani CC. Lateral septal area α1- and α2-adrenoceptors differently modulate baroreflex activity in unanaesthetized rats. Exp Physiol 2012; 97:1018-29. [DOI: 10.1113/expphysiol.2011.062315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Tavares I, Almeida A, Albino-Teixeira A, Lima D. Lesions of the caudal ventrolateral medulla block the hypertension-induced inhibition of noxious-evoked c-fos expression in the rat spinal cord. Eur J Pain 2012; 1:149-60. [PMID: 15102416 DOI: 10.1016/s1090-3801(97)90073-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1997] [Accepted: 07/11/1997] [Indexed: 11/20/2022]
Abstract
The effect of lesioning the lateral portion of the caudal ventrolateral medullary reticular formation (VLMIat) on the noxious-evoked expression of the c-fos proto-oncogene in spinal neurons, was studied in short-term hypertensive rats. Occlusion of the renal artery for 96 h in unlesioned animals induced a 52% increase in blood pressure (BP) and a 66% decrease in the number of Fos-immunoreactive (Fos-IR) spinal cells following noxious cutaneous stimulation, as compared to values in normotensive controls. Lesioning the VLMIat in hypertensive rats by unilateral quinolinic acid (QA) injection (0.3 microl of a 180 nmol/microl solution) 24 h before noxious stimulation, prevented the Fos-IR cell decrease. In normotensive rats, lesioning the VLMIat produced no changes in c-fos expression. To investigate the role played by the VLMIat in cardiovascular control, BP and heart rate (HR) were measured during local injections of QA or glutamate (0.5 microl of a 100 nmol/microl solution) to normotensive animals. Injections of QA produced an immediate rise in BP and HR which reached maximal values (18 and 14% increase, respectively) 5 min after the administration onset, then returning gradually to baseline levels. Glutamate injections resulted in an immediate decrease of the same values, which reached 29 and 39%, respectively, 4 min after the beginning of injection, after which they decreased to baseline levels. These results suggest that VLMIat neurons inhibit nociceptive spinal neurons in response to rises in blood pressure, while exerting negative control of cardiovascular parameters. It is suggested that the VLMIat is involved in the genesis of hypoalgesia during hypertension.
Collapse
Affiliation(s)
- I Tavares
- Institute of Histology and Embryology, Faculty of Medicine and IBMC of the University of Oporto, Porto, Portugal
| | | | | | | |
Collapse
|
27
|
The role of the cholinergic system of the bed nucleus of the stria terminalis on the cardiovascular responses and the baroreflex modulation in rats. Brain Res 2011; 1386:81-8. [DOI: 10.1016/j.brainres.2011.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 02/13/2011] [Accepted: 02/17/2011] [Indexed: 02/05/2023]
|
28
|
Redina OE, Smolenskaya SE, Maslova LN, Markel AL. Genetic control of the corticosterone level at rest and under emotional stress in ISIAH rats with inherited stress-induced arterial hypertension. Clin Exp Hypertens 2011; 32:364-71. [PMID: 21029000 DOI: 10.3109/10641961003628502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The genetic background of the regulatory systems of the hypothalamic-pituitary-adrenal (HPA) axis in hypertension remains unclear. The inherited stress-induced arterial hypertension (ISIAH) and Wistar Albino Glaxo (WAG) normotensive rats were bred and their F(2) progeny were used in a quantitative trait loci (QTL) analysis to identify genomic regions for plasma basal and stress-induced corticosterone levels, and for absolute and relative adrenal gland weights. The significant loci were found for stress-induced corticosterone on chromosome 9 and for adrenal weight on chromosome 6. The results may help to identify the genes controlling the trait phenotypes in the ISIAH rats characterized by the enhanced responsiveness to stressful stimulation.
Collapse
Affiliation(s)
- Olga E Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
29
|
Song G, Xu H, Wang H, Macdonald SM, Poon CS. Hypoxia-excited neurons in NTS send axonal projections to Kölliker-Fuse/parabrachial complex in dorsolateral pons. Neuroscience 2011; 175:145-53. [PMID: 21130843 PMCID: PMC3035171 DOI: 10.1016/j.neuroscience.2010.11.065] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 11/23/2022]
Abstract
Hypoxic respiratory and cardiovascular responses in mammals are mediated by peripheral chemoreceptor afferents which are relayed centrally via the solitary tract nucleus (NTS) in dorsomedial medulla to other cardiorespiratory-related brainstem regions such as ventrolateral medulla (VLM). Here, we test the hypothesis that peripheral chemoafferents could also be relayed directly to the Kölliker-Fuse/parabrachial complex in dorsolateral pons, an area traditionally thought to subserve pneumotaxic and cardiovascular regulation. Experiments were performed on adult Sprague-Dawley rats. Brainstem neurons with axons projecting to the dorsolateral pons were retrogradely labeled by microinjection with choleras toxin subunit B (CTB). Neurons involved in peripheral chemoreflex were identified by hypoxia-induced c-Fos expression. We found that double-labeled neurons (i.e. immunopositive to both CTB and c-Fos) were localized mostly in the commissural and medial subnuclei of NTS and to a lesser extent in the ventrolateral NTS subnucleus, VLM and ventrolateral pontine A5 region. Extracellular recordings from the commissural and medial NTS subnuclei revealed that some hypoxia-excited NTS neurons could be antidromically activated by electrical stimulations at the dorsolateral pons. These findings demonstrate that hypoxia-activated afferent inputs are relayed to the Kölliker-Fuse/parabrachial complex directly via the commissural and medial NTS and indirectly via the ventrolateral NTS subnucleus, VLM and A5 region. These pontine-projecting peripheral chemoafferent inputs may play an important role in the modulation of cardiorespiratory regulation by dorsolateral pons.
Collapse
Affiliation(s)
- G Song
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
30
|
Crestani CC, Alves FH, Busnardo C, Resstel LB, Correa FM. N-Methyl-d-aspartate glutamate receptors in the hypothalamic paraventricular nucleus modulate cardiac component of the baroreflex in unanesthetized rats. Neurosci Res 2010; 67:317-26. [DOI: 10.1016/j.neures.2010.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/07/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
31
|
Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 2010; 6:235-53. [PMID: 19506723 PMCID: PMC2687936 DOI: 10.2174/157015908785777229] [Citation(s) in RCA: 505] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/25/2008] [Accepted: 06/06/2008] [Indexed: 01/09/2023] Open
Abstract
The locus coeruleus (LC) is the major noradrenergic nucleus of the brain, giving rise to fibres innervating extensive areas throughout the neuraxis. Recent advances in neuroscience have resulted in the unravelling of the neuronal circuits controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. The LC is a major wakefulness-promoting nucleus, resulting from dense excitatory projections to the majority of the cerebral cortex, cholinergic neurones of the basal forebrain, cortically-projecting neurones of the thalamus, serotoninergic neurones of the dorsal raphe and cholinergic neurones of the pedunculopontine and laterodorsal tegmental nucleus, and substantial inhibitory projections to sleep-promoting GABAergic neurones of the basal forebrain and ventrolateral preoptic area. Activation of the LC thus results in the enhancement of alertness through the innervation of these varied nuclei. The importance of the LC in controlling autonomic function results from both direct projections to the spinal cord and projections to autonomic nuclei including the dorsal motor nucleus of the vagus, the nucleus ambiguus, the rostroventrolateral medulla, the Edinger-Westphal nucleus, the caudal raphe, the salivatory nuclei, the paraventricular nucleus, and the amygdala. LC activation produces an increase in sympathetic activity and a decrease in parasympathetic activity via these projections. Alterations in LC activity therefore result in complex patterns of neuronal activity throughout the brain, observed as changes in measures of arousal and autonomic function.
Collapse
Affiliation(s)
- E R Samuels
- Psychopharmacology Section, University of Nottingham, Division of Psychiatry, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
32
|
Stengel A, Goebel M, Wang L, Taché Y. Abdominal surgery activates nesfatin-1 immunoreactive brain nuclei in rats. Peptides 2010; 31:263-70. [PMID: 19944727 PMCID: PMC3166548 DOI: 10.1016/j.peptides.2009.11.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 02/06/2023]
Abstract
Abdominal surgery-induced postoperative gastric ileus is well established to induce Fos expression in specific brain nuclei in rats within 2-h after surgery. However, the phenotype of activated neurons has not been thoroughly characterized. Nesfatin-1 was recently discovered in the rat hypothalamus as a new anorexigenic peptide that also inhibits gastric emptying and is widely distributed in rat brain autonomic nuclei suggesting an involvement in stress responses. Therefore, we investigated whether abdominal surgery activates nesfatin-1-immunoreactive (ir) neurons in the rat brain. Two hours after abdominal surgery with cecal palpation under short isoflurane anesthesia or anesthesia alone, rats were transcardially perfused and brains processed for double immunohistochemical labeling of Fos and nesfatin-1. Abdominal surgery, compared to anesthesia alone, induced Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus (PVN), locus coeruleus (LC), Edinger-Westphal nucleus (EW), rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). Double Fos/nesfatin-1 labeling showed that of the activated cells, 99% were nesfatin-1-immunoreactive in the SON, 91% in the LC, 82% in the rRPa, 74% in the EW and VLM, 71% in the anterior parvicellular PVN, 47% in the lateral magnocellular PVN, 41% in the medial magnocellular PVN, 14% in the NTS and 9% in the medial parvicellular PVN. These data established nesfatin-1 immunoreactive neurons in specific nuclei of the hypothalamus and brainstem as part of the neuronal response to abdominal surgery and suggest a possible implication of nesfatin-1 in the alterations of food intake and gastric transit associated with such a stressor.
Collapse
Affiliation(s)
- Andreas Stengel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles & Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | | | |
Collapse
|
33
|
Léger L, Goutagny R, Sapin E, Salvert D, Fort P, Luppi PH. Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. J Chem Neuroanat 2008; 37:149-57. [PMID: 19152834 DOI: 10.1016/j.jchemneu.2008.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/30/2008] [Accepted: 12/16/2008] [Indexed: 11/28/2022]
Abstract
Noradrenaline is known to induce waking (W) and to inhibit paradoxical sleep (PS or REM). Both roles have been exclusively attributed to the noradrenergic neurons of the locus coeruleus (LC, A6), shown to be active during W and inactive during PS. However, the A1, A2, A5 and A7 noradrenergic neurons could also be responsible. Therefore, to determine the contribution of each of the noradrenergic groups in W and in PS inhibition, rats were maintained in continuous W for 3h in a novel environment or specifically deprived of PS for 3 days, with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. Thirty percent of the LC noradrenergic cells were found to be Fos-positive after exposure to the novel environment and less than 2% after PS deprivation. In contrast, a significant number of double-labeled neurons (up to 40% of the noradrenergic neurons) were observed in the A1/C1, A2 and A5 groups, after both novel environment and PS deprivation. After PS recovery and in control condition, less than 1% of the noradrenergic neurons were Fos-immunoreactive, regardless of the noradrenergic group. These results indicate that the brainstem noradrenergic cell groups are activated during W and silent during PS. They further suggest that the inhibitory effect of noradrenaline on PS may be due to the A1/C1, A2 and to a lesser degree to A5 neurons but not from those of the LC as previously hypothesized.
Collapse
|
34
|
Crestani CC, Alves FH, Resstel LB, Correa FM. Bed nucleus of the stria terminalis α1-adrenoceptor modulates baroreflex cardiac component in unanesthetized rats. Brain Res 2008; 1245:108-15. [DOI: 10.1016/j.brainres.2008.09.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/24/2008] [Accepted: 09/28/2008] [Indexed: 02/05/2023]
|
35
|
Cruz JC, Bonagamba LGH, Machado BH, Biancardi VC, Stern JE. Intermittent activation of peripheral chemoreceptors in awake rats induces Fos expression in rostral ventrolateral medulla-projecting neurons in the paraventricular nucleus of the hypothalamus. Neuroscience 2008; 157:463-72. [PMID: 18838112 PMCID: PMC2700055 DOI: 10.1016/j.neuroscience.2008.08.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/20/2008] [Accepted: 08/22/2008] [Indexed: 11/21/2022]
Abstract
Despite the well-established sympathoexcitation evoked by chemoreflex activation, the specific sub-regions of the CNS underlying such sympathetic responses remain to be fully characterized. In the present study we examined the effects of intermittent chemoreflex activation in awake rats on Fos-immunoreactivity (Fos-ir) in various subnuclei of the paraventricular nucleus of the hypothalamus (PVN), as well as in identified neurosecretory preautonomic PVN neurons. In response to intermittent chemoreflex activation, a significant increase in the number of Fos-ir cells was found in autonomic-related PVN subnuclei, including the posterior parvocellular, ventromedial parvocellular and dorsal-cap, but not in the neurosecretory magnocellular-containing lateral magnocellular subnucleus. No changes in Fos-ir following chemoreflex activation were observed in the anterior PVN subnucleus. Experiments combining Fos immunohistochemistry and neuronal tract tracing techniques showed a significant increase in Fos-ir in rostral ventrolateral medulla (RVLM)-projecting (PVN-RVLM), but not in nucleus of solitarii tract (NTS)-projecting PVN neurons. In summary, our results support the involvement of the PVN in the central neuronal circuitry activated in response to chemoreflex activation, and indicate that PVN-RVLM neurons constitute a neuronal substrate contributing to the sympathoexcitatory component of the chemoreflex.
Collapse
Affiliation(s)
- J C Cruz
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
36
|
Kibayashi K, Nakao KI, Shojo H. Hyperthermia combined with ethanol administration induces c-fos expression in the central amygdaloid nucleus of the mouse brain. A possible mechanism of heatstroke under the influence of ethanol intake. Int J Legal Med 2008; 123:371-9. [PMID: 18685859 DOI: 10.1007/s00414-008-0278-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/18/2008] [Indexed: 01/06/2023]
Abstract
Heatstroke is defined as a core body temperature that rises above 40.6 degrees C and is accompanied by mental status abnormalities such as delirium, convulsions, or coma resulting from exposure to environmental heat. There is fairly wide agreement that ethanol intake is a predisposing factor in heatstroke. This study was performed to identify the brain changes induced by heatstroke, using a mouse hyperthermia model with and without preceding ethanol administration. Exposure to heat of 42 degrees C until the core temperature reached to 43 degrees C followed by exposure to 37 degrees C for 15 min decreased the levels of partial pressures of O(2) in blood. Preceding ethanol administration and heat exposure induced hypotension, severe metabolic acidosis and respiratory failure, and, accordingly, produced heatstroke. Immunohistochemistry of the brains showed that preceding ethanol administration increased the number of c-fos-immunoreactive neurons, as a marker of neuronal activation, in the central amygdaloid nucleus, which is involved in thermoregulation. These results indicate that combined effects of ethanol and heat exposure induce heatstroke that is associated with activation of the central amygdaloid nucleus, implicating the pathophysiology and mechanisms of heatstroke under the influence of ethanol intake.
Collapse
Affiliation(s)
- Kazuhiko Kibayashi
- Department of Legal Medicine, Faculty of Medicine, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, 162-8666, Japan.
| | | | | |
Collapse
|
37
|
Rukhadze I, Fenik VB, Branconi JL, Kubin L. Fos expression in pontomedullary catecholaminergic cells following rapid eye movement sleep-like episodes elicited by pontine carbachol in urethane-anesthetized rats. Neuroscience 2008; 152:208-22. [PMID: 18155849 DOI: 10.1016/j.neuroscience.2007.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 02/07/2023]
Abstract
Pontine noradrenergic neurons of the locus coeruleus (LC) and sub-coeruleus (SubC) region cease firing during rapid eye movement sleep (REMS). This plays a permissive role in the generation of REMS and may contribute to state-dependent modulation of transmission in the CNS. Whether all pontomedullary catecholaminergic neurons, including those in the A1/C1, A2/C2 and A7 groups, have REMS-related suppression of activity has not been tested. We used Fos protein expression as an indirect marker of the level of neuronal activity and linear regression analysis to determine whether pontomedullary cells identified by tyrosine hydroxylase (TH) immunohistochemistry have reduced Fos expression following REMS-like state induced by pontine microinjections of a cholinergic agonist, carbachol in urethane-anesthetized rats. The percentage of Fos-positive TH cells was negatively correlated with the cumulative duration of REMS-like episodes induced during 140 min prior to brain harvesting in the A7 and rostral A5 groups bilaterally (P < 0.01 for both), and in SubC neurons on the side opposite to carbachol injection (P < 0.05). Dorsal medullary A2/C2 neurons did not exhibit such correlation, but their Fos expression (and that in A7, rostral A5 and SubC neurons) was positively correlated with the duration of the interval between the last REMS-like episode and the time of perfusion (P < 0.05). In contrast, neither of these correlations was significant for A1 /C1 or caudal A5 neurons. These findings suggest that, similar to the prototypic LC neurons, neurons of the A7, rostral A5 and A2/C2 groups have reduced or abolished activity during REMS, whereas A1 /IC1 and caudal A5 neurons do not have this feature. The reduced activity of A2/C2, A5 and A7 neurons during REMS, and the associated decrements in norepinephrine release, may cause state-dependent modulation of.transmission in brain somato- and viscerosensory, somatomotor, and cardiorespiratory pathways.
Collapse
Affiliation(s)
- I Rukhadze
- Department of Animal Biology 209E/VET, School of Veterinary Medicine and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA.
| | | | | | | |
Collapse
|
38
|
Haley GE, Flynn FW. Blockade of NK3R signaling in the PVN decreases vasopressin and oxytocin release and c-Fos expression in the magnocellular neurons in response to hypotension. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1158-67. [PMID: 18650316 DOI: 10.1152/ajpregu.90402.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tachykinin neurokinin 3 receptor (NK3R) signaling has a broad role in vasopressin (VP) and oxytocin (OT) release. Hydralazine (HDZ)-induced hypotension activates NK3R expressed by magnocellular neurons, increases plasma VP and OT levels, and induces c-Fos expression in VP and OT neurons. Intraventricular pretreatment with the specific NK3R antagonist, SB-222200, eliminates the HDZ-stimulated VP and OT release. NK3R are distributed in the central pathways conveying hypotension information to the magnocellular neurons, and the NK3R antagonist could act anywhere in the pathways. Alternatively, the antagonist could act at the NK3R expressed by the magnocellular neurons. To determine whether blockade of NK3R on magnocellular neurons impairs VP and OT release to HDZ, rats were pretreated with a unilateral PVN injection of 0.15 M NaCl or SB-222200 prior to an intravenous injection of 0.15 M NaCl or HDZ. Blood samples were taken, and brains were processed for VP/c-Fos and OT/c-Fos immunohistochemistry. Intravenous injection of 0.15 M NaCl did not alter plasma hormone levels, and little c-Fos immunoreactivity was present in the PVN. Conversely, intravenous injection of HDZ increased plasma VP and OT levels and c-Fos expression in VP and OT magnocellular neurons. Intra-PVN injection of SB-222200 prior to an intravenous injection of HDZ significantly decreased c-Fos expression in both VP and OT neurons by approximately 70% and attenuated plasma VP and OT levels by 33% and 35%, respectively. Therefore, NK3R signaling in magnocellular neurons has a critical role for the release of VP and OT in response to hypotension.
Collapse
Affiliation(s)
- Gwendolen E Haley
- Graduate Neuroscience Program, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
39
|
Maliszewska-Scislo M, Chen H, Augustyniak RA, Seth D, Rossi NF. Subfornical organ differentially modulates baroreflex function in normotensive and two-kidney, one-clip hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2008; 295:R741-50. [PMID: 18775902 DOI: 10.1152/ajpregu.00157.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During activation of the renin-angiotensin system, hindbrain circumventricular organs such as the area postrema have been implicated in modulating the arterial baroreflex. This study was undertaken to test the hypothesis that the subfornical organ (SFO), a forebrain circumventricular structure, may also modulate the baroreflex. Studies were performed in rats with two-kidney, one-clip (2K,1C) hypertension as a model of endogenously activated renin-angiotensin system. Baroreflex function was ascertained during ramp infusions of phenylephrine and nitroprusside in conscious sham-clipped and 5-wk 2K,1C rats with either a sham or electrolytically lesioned SFO. Lesioning significantly decreased mean arterial pressure in 2K,1C rats from 158 +/- 7 to 131 +/- 4 mmHg but not in sham-clipped rats. SFO-lesioned, sham-clipped rats had a significantly higher upper plateau and range of the renal sympathetic nerve activity-mean arterial pressure relationship compared with sham-clipped rats with SFO ablation. In contrast, lesioning the SFO in 2K,1C rats significantly decreased both the upper plateau and range of the baroreflex control of renal sympathetic nerve activity, but only the range of the baroreflex response of heart rate decreased. Thus, during unloading of the baroreceptors, the SFO differentially modulates the baroreflex responses in sham-clipped vs. 2K,1C rats. Since lesioning the SFO did not influence plasma angiotensin II (ANG II), the effects of the SFO lesion are not caused by changes in circulating levels of ANG II. These findings support a pivotal role for the SFO in the sympathoexcitation observed in renovascular hypertension and in baroreflex regulation of sympathetic activity in both normal and hypertensive states.
Collapse
Affiliation(s)
- Maria Maliszewska-Scislo
- Dept. of Internal Medicine, Wayne State Univ. School of Medicine, 4160 John R. St., Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
40
|
Wei S, Lei M, Tong M, Ding J, Han Q, Xiao M. Acute baroreceptor unloading evokes Fos expression in anesthetized rat brain. Brain Res Bull 2008; 76:63-9. [DOI: 10.1016/j.brainresbull.2007.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 11/04/2007] [Accepted: 12/06/2007] [Indexed: 12/31/2022]
|
41
|
Valentino RJ, Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 2008; 583:194-203. [PMID: 18255055 DOI: 10.1016/j.ejphar.2007.11.062] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/01/2007] [Accepted: 11/14/2007] [Indexed: 11/26/2022]
Abstract
Although hypothalamic-pituitary-adrenal axis activation is generally considered to be the hallmark of the stress response, many of the same stimuli that initiate this response also activate the locus coeruleus-norepinephrine system. Given its functional attributes, the parallel engagement of the locus coeruleus-norepinephrine system with the hypothalamic-pituitary-adrenal axis serves to coordinate endocrine and cognitive limbs of the stress response. The elucidation of stress-related afferents to the locus coeruleus and the electrophysiological characterization of these inputs are revealing how the activity of this system is fine-tuned by stressors to facilitate adaptive cognitive responses. Emerging from these studies, is a picture of complex interactions between the stress-related neuropeptide, corticotropin-releasing factor (CRF), endogenous opioids and the excitatory amino acid neurotransmitter, glutamate. The net effect of these interactions is to adjust the activity and reactivity of the locus coeruleus-norepinephrine system such that state of arousal and processing of sensory stimuli are modified to facilitate adaptive behavioral responses to stressors. This review begins with an introduction to the basic anatomical and physiological characteristics of locus coeruleus neurons. The concept that locus coeruleus neurons operate through two activity modes, i.e., tonic vs. phasic, that determine distinct behavioral strategies is emphasized in light of its relevance to stress. Anatomical and physiological evidence are then presented suggesting that interactions between stress-related neurotransmitters that converge on locus coeruleus neurons regulate shifts between these modes of discharge in response to the challenge of a stressor. This review focuses specifically on the locus coeruleus because it is the major source of norepinephrine to the forebrain and has been implicated in behavioral and cognitive aspects of stress responses.
Collapse
Affiliation(s)
- Rita J Valentino
- The Children's Hospital of Philadelphia, 402C Abramson Building, Osler Cr., Philadelphia, PA 19104, United States.
| | | |
Collapse
|
42
|
Krause EG, Curtis KS, Markle JP, Contreras RJ. Oestrogen affects the cardiovascular and central responses to isoproterenol of female rats. J Physiol 2007; 582:435-47. [PMID: 17430989 PMCID: PMC2075287 DOI: 10.1113/jphysiol.2007.131151] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study examined the influence of oestrogen on cardiovascular responses to hypotension produced by administration of isoproterenol (Isop) and on neural activation in hindbrain nuclei mediating these responses. We first measured mean arterial pressure (MAP) and heart rate (HR) after administration of isoproterenol, a beta-adrenergic agonist that increases circulating levels of AngII, in ovariectomized (OVX) rats treated with oestradiol benzoate (EB). We then evaluated EB effects on Isop-induced Fos immunoreactivity (Fos-IR) in the hindbrain baroreflex circuit. To control for weight loss associated with oestrogen replacement in OVX rats, we food restricted a separate group of OVX rats and evaluated Isop-induced changes in MAP, HR and Fos-IR. The depressor response to Isop was significantly attenuated by EB, which also produced a disproportionate increase in HR. These effects were not secondary to loss of body weight after EB treatment, because cardiovascular responses to Isop in food restricted rats were similar to those in OVX rats treated with the oil vehicle. Isop significantly increased Fos-IR in the nucleus of the solitary tract (NTS), area postrema (AP), rostral ventrolateral medulla (RVLM), and lateral parabrachial nucleus (lPBN); however, EB significantly attenuated the increase in the AP and in the lPBN. Again, these effects were not secondary to body weight loss, because food restricted rats had the same pattern of Fos-IR as did rats treated with the oil vehicle. These results suggest that EB modifies cardiovascular responses to Isop, possibly by decreasing activation of the AP and lPBN.
Collapse
Affiliation(s)
- Eric G Krause
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270 USA
| | | | | | | |
Collapse
|
43
|
Ahlgren J, Porter K, Hayward LF. Hemodynamic responses and c-Fos changes associated with hypotensive hemorrhage: standardizing a protocol for severe hemorrhage in conscious rats. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1862-71. [PMID: 17218446 DOI: 10.1152/ajpregu.00325.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central mechanisms underlying the transition from compensation to decompensation during severe hemorrhage (HEM) are poorly understood. Furthermore, a lack of consistency in HEM protocols exists in the current literature. This study assessed the cardiovascular response and Fos-like immunoreactivity (FLI) in specific brain regions following severe HEM at three rates (2, 1, or 0.5 ml.kg(-1).min(-1)) in conscious rats. Heart rate (HR) and arterial pressure were recorded during the withdrawal of 30% of total blood volume (TBV). Data from animals hemorrhaged at the fast (F-HEM, n = 6), intermediate (I-HEM, n = 7), or slow (S-HEM, n = 7) rates were compared with saline (SAL, n = 5) and hypotensive (hydrazaline-induced, HYDRAZ, n = 5) controls. All HEM rates produced similar degrees of hypotension at the time of 30% TBV withdrawal. All HEM rates also produced bradycardia, but the change in HR was only significant in the F-HEM and I-HEM groups. Associated with I-HEM and F-HEM, but not HYDRAZ treatment were significant increases in FLI in the caudal ventrolateral periaqueductal gray (PAG), the central lateral nucleus of the rostral parabrachial nucleus, and locus coeruleus compared with SAL treatment. I-HEM also induced significant increases in FLI in the dorsomedial PAG, A7 region, and the cuneiform nucleus compared with SAL. S-HEM did not induce any significant change in FLI. Our results suggest that HEM at a rate of 1 ml.kg(-1).min(-1) may be most useful for investigating the potential role of the rostral brainstem regions in mediating hemorrhagic decompensation in conscious rats.
Collapse
Affiliation(s)
- Joslyn Ahlgren
- Dept of Physiological Sciences, HSC, Univ of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
44
|
Cunningham JT, Herrera-Rosales M, Martinez MA, Mifflin S. Identification of active central nervous system sites in renal wrap hypertensive rats. Hypertension 2006; 49:653-8. [PMID: 17190876 DOI: 10.1161/01.hyp.0000254481.94570.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To identify central neurons participating in cardiovascular regulation in hypertension, we studied Fos staining, a marker for synaptically activated neurons, in adult male normotensive and hypertensive (HT) rats. At 1 and 4 weeks after induction of unilateral nephrectomy, renal wrap hypertension mean arterial pressure was 138+/-4 mm Hg (n=6) in 1-week HT rats and 159+/-6 mm Hg (n=6) in 4-week HT rats. Mean arterial pressure was 103+/-2 mm Hg (n=6) in sham-operated, normotensive rats. Mean arterial pressure was greater in both HT groups compared with normotensive rats, and the mean arterial pressure in 4-week HT rats was greater than that in 1-week HT rats. Rats were anesthetized and perfused, brains sectioned and processed using a Fos antibody, and the number of Fos immunoreactive neurons counted in sections through various brain regions. Hypertension of 1 or 4 weeks did not alter the number of Fos immunoreactive neurons in the area postrema, the supraoptic nucleus, and the median preoptic nucleus. The number of Fos immunoreactive neurons was increased after 1 and 4 weeks in the nucleus of the solitary tract, both the caudal and ventral lateral medulla, and the organum vasculosum of the lamina terminalis. In addition, after 4 weeks of HT, the number of Fos immunoreactive neurons was increased in the parabrachial nucleus and the paraventricular nucleus of the hypothalamus. The results indicate central regions active in acute and chronic HT rats and suggest certain areas that may be differentially activated depending on the duration of the hypertension.
Collapse
Affiliation(s)
- J Thomas Cunningham
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | |
Collapse
|
45
|
Pecoraro N, Dallman MF, Warne JP, Ginsberg AB, Laugero KD, la Fleur SE, Houshyar H, Gomez F, Bhargava A, Akana SF. From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 2006; 79:247-340. [PMID: 16982128 DOI: 10.1016/j.pneurobio.2006.07.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 07/17/2006] [Accepted: 07/24/2006] [Indexed: 01/28/2023]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis is the critical mediator of the vertebrate stress response system, responding to environmental stressors by maintaining internal homeostasis and coupling the needs of the body to the wants of the mind. The HPA axis has numerous complex drivers and highly flexible operating characterisitics. Major drivers include two circadian drivers, two extra-hypothalamic networks controlling top-down (psychogenic) and bottom-up (systemic) threats, and two intra-hypothalamic networks coordinating behavioral, autonomic, and neuroendocrine outflows. These various networks jointly and flexibly control HPA axis output of periodic (oscillatory) functions and a range of adventitious systemic or psychological threats, including predictable daily cycles of energy flow, actual metabolic deficits over many time scales, predicted metabolic deficits, and the state-dependent management of post-prandial responses to feeding. Evidence is provided that reparation of metabolic derangement by either food or glucocorticoids results in a metabolic signal that inhibits HPA activity. In short, the HPA axis is intimately involved in managing and remodeling peripheral energy fluxes, which appear to provide an unidentified metabolic inhibitory feedback signal to the HPA axis via glucocorticoids. In a complementary and perhaps a less appreciated role, adrenocortical hormones also act on brain to provide not only feedback, but feedforward control over the HPA axis itself and its various drivers, as well as coordinating behavioral and autonomic outflows, and mounting central incentive and memorial networks that are adaptive in both appetitive and aversive motivational modes. By centrally remodeling the phenotype, the HPA axis provides ballistic and predictive control over motor outflows relevant to the type of stressor. Evidence is examined concerning the global hypothesis that the HPA axis comprehensively induces integrative phenotypic plasticity, thus remodeling the body and its governor, the brain, to yoke the needs of the body to the wants of the mind. Adverse side effects of this yoking under conditions of glucocorticoid excess are discussed.
Collapse
Affiliation(s)
- Norman Pecoraro
- Department of Physiology, University of California, San Francisco, CA 94143-0444, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Viltart O, Sartor DM, Verberne AJM. Chemical stimulation of visceral afferents activates medullary neurones projecting to the central amygdala and periaqueductal grey. Brain Res Bull 2006; 71:51-9. [PMID: 17113928 DOI: 10.1016/j.brainresbull.2006.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 12/12/2022]
Abstract
Cholecystokinin (CCK) stimulates gastrointestinal vagal afferent neurones that signal visceral sensations. We wished to determine whether neurones of the nucleus of the solitary tract (NTS) or ventrolateral medulla (VLM) convey visceral afferent information to the central nucleus of the amygdala (CeA) or periaqueductal grey region (PAG), structures that play a key role in adaptive autonomic responses triggered by stress or fear. Male Sprague-Dawley rats received a unilateral microinjection of the tracer cholera toxin subunit B (CTB, 1%) into the CeA or PAG followed, 7 days later, by an injection of CCK (100 microg/kg, i.p.) or saline. Brains were processed for detection of Fos protein (Fos-IR) and CTB. CCK induced increased expression of Fos-IR in the NTS and the VLM, relative to control. When CTB was injected into the CeA, CTB-immunoreactive (CTB-IR) neurones were more numerous in the rostral NTS ipsilateral to the injection site, whereas they were homogeneously distributed throughout the VLM. Double-labelled neurones (Fos-IR+CTB-IR) were most numerous in the ipsilateral NTS and caudal VLM. The NTS contained the higher percentage of CTB-IR neurones activated by CCK. When CTB was injected into the PAG, CTB-IR neurones were more numerous in the ipsilateral NTS whereas they were distributed relatively evenly bilaterally in the rostral VLM. Double-labelled neurones were not differentially distributed along the rostrocaudal axis of the NTS but were more numerous in this structure when compared with the VLM. NTS and VLM neurones may convey visceral afferent information to the CeA and the PAG.
Collapse
Affiliation(s)
- Odile Viltart
- Laboratoire Stress Perinatal, JE2365, Université de Lille I, 59655 Villeneuve d'Ascq, France
| | | | | |
Collapse
|
47
|
Göktalay G, Cavun S, Levendusky MC, Resch GE, Veno PA, Millington WR. Hemorrhage activates proopiomelanocortin neurons in the rat hypothalamus. Brain Res 2006; 1070:45-55. [PMID: 16403465 DOI: 10.1016/j.brainres.2005.11.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 11/11/2005] [Accepted: 11/12/2005] [Indexed: 11/29/2022]
Abstract
Severe blood loss lowers arterial pressure through a central mechanism that is thought to include opioid neurons. In this study, we investigated whether hemorrhage activates proopiomelanocortin (POMC) neurons by measuring Fos immunoreactivity and POMC mRNA levels in the medial basal hypothalamus. Hemorrhage (2.2 ml/100 g body weight over 20 min) increased the number of Fos immunoreactive neurons throughout the rostral-caudal extent of the arcuate nucleus, the retrochiasmatic area and the peri-arcuate region lateral to the arcuate nucleus where POMC neurons are located. Double label immunohistochemistry revealed that hemorrhage increased Fos expression by beta-endorphin immunoreactive neurons significantly. The proportion of beta-endorphin immunoreactive neurons that expressed Fos immunoreactivity increased approximately four-fold, from 11.7+/-1.4% in sham-operated control animals to 42.0+/-5.2% in hemorrhaged animals. Hemorrhage also increased POMC mRNA levels in the medial basal hypothalamus significantly, consistent with the hypothesis that blood loss activates POMC neurons. To test whether activation of arcuate neurons contributes to the fall in arterial pressure evoked by hemorrhage, we inhibited neuronal activity in the caudal arcuate nucleus by microinjecting the local anesthetic lidocaine (2%; 0.1 or 0.3 microl) bilaterally 2 min before hemorrhage was initiated. Lidocaine injection inhibited hemorrhagic hypotension and bradycardia significantly although it did not influence arterial pressure or heart rate in non-hemorrhaged rats. These results demonstrate that hemorrhage activates POMC neurons and provide evidence that activation of neurons in the arcuate nucleus plays an important role in the hemodynamic response to hemorrhage.
Collapse
Affiliation(s)
- Gökhan Göktalay
- Department of Basic and Pharmaceutical Sciences, Albany College of Pharmacy, Union University, 106 New Scotland Avenue, Albany, NY 12208-3492, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hagiwara Y, Kubo T. Cholinergic systems in the posterior hypothalamic nucleus are involved in blood pressure decrease-induced excitation of anterior hypothalamic area neurons in rats. Neurosci Lett 2005; 390:61-5. [PMID: 16118037 DOI: 10.1016/j.neulet.2005.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 07/29/2005] [Accepted: 07/30/2005] [Indexed: 11/28/2022]
Abstract
Previously, we have demonstrated that decreases in blood pressure induced by intravenous nitroprusside increase the firing rate of angiotensin II-sensitive neurons in the anterior hypothalamic area (AHA) of rats and that this increase of neural firing rate is blocked by the pressure application of losartan onto the same neurons. It has been suggested that acetylcholine in the posterior hypothalamic nucleus (PHN) serves as a neurotransmitter in a pathway which can modulate baroreceptor reflexes. In the present study, we examined whether acetylcholine in the PHN is involved in the nitroprusside-induced increase of the firing of angiotensin II-sensitive neurons in the AHA of rats. Male Wistar rats were anesthetized and artificially ventilated. Extracellular potentials were recorded from single neurons in the AHA. Decreases in blood pressure induced by intravenous nitroprusside (100 ug/kg) increased the firing rate of AHA angiotensin II-sensitive neurons. The nitroprusside-induced increase of firing rate of AHA neurons was inhibited by PHN microinjection of the cholinoceptor antagonist scopolamine and potentiated by PHN microinjection of the cholinesterase inhibitor physostigmine. Microinjections of carbachol and glutamate into the PHN caused increases of firing rate of AHA neurons. The carbachol-induced but not glutamate-induced increase of unit firing was abolished by the pre-microinjection of scopolamine into the same sites of the PHN. These findings suggest that the nitroprusside-induced increase of firing of AHA neurons is mediated via acetylcholine at the level of the PHN.
Collapse
Affiliation(s)
- Yukihiko Hagiwara
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | |
Collapse
|
49
|
Stratford TR. Activation of feeding-related neural circuitry after unilateral injections of muscimol into the nucleus accumbens shell. Brain Res 2005; 1048:241-50. [PMID: 15921658 DOI: 10.1016/j.brainres.2005.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 05/02/2005] [Accepted: 05/03/2005] [Indexed: 11/23/2022]
Abstract
Chemical inhibition of neurons in the nucleus accumbens shell (AcbSh) elicits intense, behaviorally specific, feeding in satiated rats. We have demonstrated previously that this treatment activates a number of brain regions, most significantly the lateral hypothalamus (LH). This activation could be elicited through a direct neural connection with the AcbSh or secondarily through changes in autonomic activity, stress, or circulating levels of orexigenic or satiety factors. In the present study, we used the immunohistochemical localization of Fos protein to map neuronal activation after unilateral muscimol injections into the AcbSh to determine whether AcbSh-mediated Fos expression remains lateralized in the circuit and whether secondary systemic changes in the rat can be excluded as primary factors in the activation of downstream component nuclei. Rats receiving only saline injections exhibited very little Fos immunoreactivity. In contrast, unilateral injections of muscimol into the AcbSh consistently increased Fos expression in several brain regions. Three distinct patterns of expression were observed. Fos synthesis in the LH was increased only on the side of the brain ipsilateral to the muscimol injection. Fos expression remained primarily ipsilateral to the injection site in the septohypothalamic, paraventricular hypothalamic (PVN), paratenial thalamic, and lateral habenular nuclei, and medial substantia nigra, but was increased bilaterally in the piriform cortex, supraoptic nucleus, central nucleus of the amygdala, and nucleus of the solitary tract. Smaller numbers of Fos-immunoreactive cells were seen unilaterally in the bed nucleus of the stria terminalis, medial ventral pallidum, arcuate nucleus, and ventral tegmental area and bilaterally in the supraoptic and tuberomammillary nuclei. The labeling in the LH, PVN, and other unilaterally labeled structures provides evidence that these brain regions are components of an AcbSh-mediated neural circuit and suggests that they may be involved in the expression of AcbSh-mediated feeding behavior.
Collapse
Affiliation(s)
- Thomas R Stratford
- Laboratory of Integrative Neuroscience, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607-7137, USA.
| |
Collapse
|
50
|
Hagiwara Y, Kubo T. Anterior hypothalamic neurons respond to blood pressure changes via γ-aminobutyric acid and angiotensins in rats. Neurosci Lett 2005; 384:250-3. [PMID: 15908116 DOI: 10.1016/j.neulet.2005.04.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 04/27/2005] [Accepted: 04/28/2005] [Indexed: 11/22/2022]
Abstract
It has been suggested that neurons in the hypothalamus respond to baroreflex activation and deactivation. In this study, we examined whether angiotensin II-sensitive neurons in the anterior hypothalamic area (AHA) respond to baroreflex activation and deactivation, and which neurotransmitters are involved in mediating the baroreflex responses. Male Wistar rats were anesthetized and artificially ventilated. Extracellular potentials were recorded from single neurons in the AHA. Increases in blood pressure induced by intravenous phenylephrine completely inhibited the firing of AHA angiotensin II-sensitive neurons. The phenylephrine-induced inhibition of neuronal firing was blocked and enhanced by the pressure application of bicuculline and nipecotic acid, respectively, onto the same neurons. In contrast, decreases in blood pressure induced by intravenous nitroprusside increased the firing of angiotensin II-sensitive neurons. The nitroprusside-induced increase of neuronal firing was blocked by the pressure application of losartan onto the same neurons. These findings suggest that angiotensin II-sensitive neurons in the AHA respond to blood pressure changes via gamma-aminobutyric acid and angiotensins in rats.
Collapse
Affiliation(s)
- Yukihiko Hagiwara
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | |
Collapse
|