1
|
Rozo JA, Martínez-Gallego I, Rodríguez-Moreno A. Cajal, the neuronal theory and the idea of brain plasticity. Front Neuroanat 2024; 18:1331666. [PMID: 38440067 PMCID: PMC10910026 DOI: 10.3389/fnana.2024.1331666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
This paper reviews the importance of Cajal's neuronal theory (the Neuron Doctrine) and the origin and importance of the idea of brain plasticity that emerges from this theory. We first comment on the main Cajal's discoveries that gave rise and confirmed his Neuron Doctrine: the improvement of staining techniques, his approach to morphological laws, the concepts of dynamic polarisation, neurogenesis and neurotrophic theory, his first discoveries of the nerve cell as an independent cell, his research on degeneration and regeneration and his fight against reticularism. Second, we review Cajal's ideas on brain plasticity and the years in which they were published, to finally focus on the debate on the origin of the term plasticity and its conceptual meaning, and the originality of Cajal's proposal compared to those of other authors of the time.
Collapse
Affiliation(s)
- Jairo A. Rozo
- Laboratory of Cellular Neuroscience and Plasticity, Universidad Pablo de Olavide, Seville, Spain
- Iván Pávlov Laboratory, Faculty of Psychology, Los Libertadores University Foundation, Bogotá, Colombia
| | - Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
2
|
Sajid N. Topography and mechanical measurements of primary Schwann cells and neuronal cells with atomic force microscope for understanding and controlling nerve growth. Micron 2023; 167:103427. [PMID: 36805164 DOI: 10.1016/j.micron.2023.103427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Peripheral nerve injuries require a piece of substantial information for a satisfactory treatment. The prior peripheral nerve injury knowledge, can improve nerve repair, and its growth at molecular and cellular level. In this study, we employed an atomic force microscope (AFM) to investigate the topography and mechanical properties of the primary Schwann cells and neuronal cells. Tapping mode images and contact points force-volume maps provide the cells topography. Two different probes were used to acquire the micro and nanomechanical properties of the primary Schwann cells, NG-108-15 neuronal cells, and growth cones. Moreover, the sharp probe was only used to investigate neurites nanomechanics. A significant difference in the elastic moduli found between primary Schwann cells, and neuronal cells, with both probes, with consistent results. The elastic moduli of the growth cones were found higher, than the neuronal cells and primary Schwann cells, with both probes. Furthermore, the modulus variations were also found between neurites. These results have significant implications for a better understanding of the peripheral nerve system (PNS) in terms of defining the optimal pattern surface and nerve guidance conduits.
Collapse
Affiliation(s)
- Nusrat Sajid
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| |
Collapse
|
3
|
Control of Synapse Structure and Function by Actin and Its Regulators. Cells 2022; 11:cells11040603. [PMID: 35203254 PMCID: PMC8869895 DOI: 10.3390/cells11040603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023] Open
Abstract
Neurons transmit and receive information at specialized junctions called synapses. Excitatory synapses form at the junction between a presynaptic axon terminal and a postsynaptic dendritic spine. Supporting the shape and function of these junctions is a complex network of actin filaments and its regulators. Advances in microscopic techniques have enabled studies of the organization of actin at synapses and its dynamic regulation. In addition to highlighting recent advances in the field, we will provide a brief historical perspective of the understanding of synaptic actin at the synapse. We will also highlight key neuronal functions regulated by actin, including organization of proteins in the pre- and post- synaptic compartments and endocytosis of ion channels. We review the evidence that synapses contain distinct actin pools that differ in their localization and dynamic behaviors and discuss key functions for these actin pools. Finally, whole exome sequencing of humans with neurodevelopmental and psychiatric disorders has identified synaptic actin regulators as key disease risk genes. We briefly summarize how genetic variants in these genes impact neurotransmission via their impact on synaptic actin.
Collapse
|
4
|
Leterrier C. A Pictorial History of the Neuronal Cytoskeleton. J Neurosci 2021; 41:11-27. [PMID: 33408133 PMCID: PMC7786211 DOI: 10.1523/jneurosci.2872-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Christophe Leterrier
- Aix Marseille Université, Centre National de la Recherche Scientifique, INP Unité Mixte de Recherche 7051, NeuroCyto, Marseille 13005, France
| |
Collapse
|
5
|
Venkatesh K, Mathew A, Koushika SP. Role of actin in organelle trafficking in neurons. Cytoskeleton (Hoboken) 2020; 77:97-109. [DOI: 10.1002/cm.21580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Keertana Venkatesh
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| | - Amal Mathew
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| | - Sandhya P. Koushika
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| |
Collapse
|
6
|
Kim M, Jeong Y, Chang YC. Extracellular matrix protein reelin regulate dendritic spine density through CaMKIIβ. Neurosci Lett 2015; 599:97-101. [PMID: 26003447 DOI: 10.1016/j.neulet.2015.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/17/2023]
Abstract
Reelin, an extracellular matrix protein, plays an important role in brain development as well as synaptic plasticity. Interestingly, several recent studies have found that Reelin is important for dendritic spine formation in vitro and in vivo. However, the molecular mechanism by which Reelin regulates the dendritic spine density has not been studied well yet. In this study, we found that exogenous Reelin treatment was significantly increased the dendritic spine density in the primary hippocampal neurons. In addition, Reelin was increased the puncta numbers of synaptophysin and PSD-95. Moreover, we found that Reelin modulated the levels of CaMKIIβ, and CaMKIIβ siRNA prevented Reelin's effect on the dendritic spine density. Overall, our results are the first to demonstrate that CaMKIIβ might be required to enable Reelin to alter the dendritic spine density.
Collapse
Affiliation(s)
- Mihyun Kim
- Department of Physical Therapy, Inje University, Gimhae, 621-749, Republic of Korea
| | - Yun Jeong
- Department of Physical Therapy, Inje University, Gimhae, 621-749, Republic of Korea; Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea.
| |
Collapse
|
7
|
Gentil BJ, Tibshirani M, Durham HD. Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res 2015; 360:609-20. [PMID: 25567110 DOI: 10.1007/s00441-014-2082-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
Abstract
Neurons are extremely polarised cells in which the cytoskeleton, composed of microtubules, microfilaments and neurofilaments, plays a crucial role in maintaining structure and function. Neurofilaments, the 10-nm intermediate filaments of neurons, provide structure and mechanoresistance but also provide a scaffolding for the organization of the nucleus and organelles such as mitochondria and ER. Disruption of neurofilament organization and expression or metabolism of neurofilament proteins is characteristic of certain neurological syndromes including Amyotrophic Lateral Sclerosis, Charcot-Marie-Tooth sensorimotor neuropathies and Giant Axonal Neuropathy. Microfluorometric live imaging techniques have been instrumental in revealing the dynamics of neurofilament assembly and transport and their functions in organizing intracellular organelle networks. The insolubility of neurofilament proteins has limited identifying interactors by conventional biochemical techniques but yeast two-hybrid experiments have revealed new roles for oligomeric, nonfilamentous structures including vesicular trafficking. Although having long half-lives, new evidence points to degradation of subunits by the ubiquitin-proteasome system as a mechanism of normal turnover. Although certain E3-ligases ubiquitinating neurofilament proteins have been identified, the overall process of neurofilament degradation is not well understood. We review these mechanisms of neurofilament homeostasis and abnormalities in motor neuron and peripheral nerve disorders. Much remains to discover about the disruption of processes that leads to their pathological aggregation and accumulation and the relevance to pathogenesis. Understanding these mechanisms is crucial for identifying novel therapeutic strategies.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada,
| | | | | |
Collapse
|
8
|
Rácz B, Weinberg RJ. Microdomains in forebrain spines: an ultrastructural perspective. Mol Neurobiol 2013; 47:77-89. [PMID: 22983912 PMCID: PMC3538892 DOI: 10.1007/s12035-012-8345-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
Abstract
Glutamatergic axons in the mammalian forebrain terminate predominantly onto dendritic spines. Long-term changes in the efficacy of these excitatory synapses are tightly coupled to changes in spine morphology. The reorganization of the actin cytoskeleton underlying this spine "morphing" involves numerous proteins that provide the machinery needed for adaptive cytoskeletal remodeling. Here, we review recent literature addressing the chemical architecture of the spine, focusing mainly on actin-binding proteins (ABPs). Accumulating evidence suggests that ABPs are organized into functionally distinct microdomains within the spine cytoplasm. This functional compartmentalization provides a structural basis for regulation of the spinoskeleton, offering a novel window into mechanisms underlying synaptic plasticity.
Collapse
Affiliation(s)
- Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, 1078, Budapest, Hungary.
| | | |
Collapse
|
9
|
Gentil BJ, Cooper L. Molecular basis of axonal dysfunction and traffic impairments in CMT. Brain Res Bull 2012; 88:444-53. [PMID: 22595495 DOI: 10.1016/j.brainresbull.2012.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/01/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders. It comprises a group of diseases caused by mutations in genes involved in Schwann cells homeostasis and neuronal function that affect the peripheral nerves. So far mutations in more than 33 genes have been identified causing either the demyelinating form (CMT1) or the axonal form (CMT2). Genes involving a large variety of unrelated functions may lead to the same phenotype when mutated. Our review will focus on the common link between genes causing axonal phenotypes like MFN2, KIF1B, DYNC1H1, Rab7, TRPV4, ARSs, NEFL, HSPB1, MPZ, and HSPB8. While KIF1B and DYNC1H1, two genes coding for molecular motors, are directly linked to axonal transport, the involvement of the other CMT2-causing genes in this function is less obvious. However, the last years have seen a growing list of evidence demonstrating that intracellular trafficking and mitochondrial dynamics might be dysfunctional in CMT2, and these mechanisms might present a common link between dissimilar CMT2-causing genes. The involvement of impaired transport in the pathogenesis of other rare neurological diseases or recessive CMT2 is also discussed.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada.
| | | |
Collapse
|
10
|
Dendritic spines and development: towards a unifying model of spinogenesis--a present day review of Cajal's histological slides and drawings. Neural Plast 2011; 2010:769207. [PMID: 21584262 PMCID: PMC3091278 DOI: 10.1155/2010/769207] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/14/2010] [Indexed: 12/21/2022] Open
Abstract
Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC), obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development.
Collapse
|
11
|
Nestor MW, Cai X, Stone MR, Bloch RJ, Thompson SM. The actin binding domain of βI-spectrin regulates the morphological and functional dynamics of dendritic spines. PLoS One 2011; 6:e16197. [PMID: 21297961 PMCID: PMC3031527 DOI: 10.1371/journal.pone.0016197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/07/2010] [Indexed: 01/30/2023] Open
Abstract
Actin microfilaments regulate the size, shape and mobility of dendritic spines and are in turn regulated by actin binding proteins and small GTPases. The βI isoform of spectrin, a protein that links the actin cytoskeleton to membrane proteins, is present in spines. To understand its function, we expressed its actin-binding domain (ABD) in CA1 pyramidal neurons in hippocampal slice cultures. The ABD of βI-spectrin bundled actin in principal dendrites and was concentrated in dendritic spines, where it significantly increased the size of the spine head. These effects were not observed after expression of homologous ABDs of utrophin, dystrophin, and α-actinin. Treatment of slice cultures with latrunculin-B significantly decreased spine head size and decreased actin-GFP fluorescence in cells expressing the ABD of α-actinin, but not the ABD of βI-spectrin, suggesting that its presence inhibits actin depolymerization. We also observed an increase in the area of GFP-tagged PSD-95 in the spine head and an increase in the amplitude of mEPSCs at spines expressing the ABD of βI-spectrin. The effects of the βI-spectrin ABD on spine size and mEPSC amplitude were mimicked by expressing wild-type Rac3, a small GTPase that co-immunoprecipitates specifically with βI-spectrin in extracts of cultured cortical neurons. Spine size was normal in cells co-expressing a dominant negative Rac3 construct with the βI-spectrin ABD. We suggest that βI-spectrin is a synaptic protein that can modulate both the morphological and functional dynamics of dendritic spines, perhaps via interaction with actin and Rac3.
Collapse
Affiliation(s)
- Michael W. Nestor
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xiang Cai
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michele R. Stone
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Scott M. Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Nikolakopoulou AM, Meynard MM, Marshak S, Cohen-Cory S. Synaptic maturation of the Xenopus retinotectal system: effects of brain-derived neurotrophic factor on synapse ultrastructure. J Comp Neurol 2010; 518:972-89. [PMID: 20127801 DOI: 10.1002/cne.22258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Synaptogenesis is a dynamic process that involves structural changes in developing axons and dendrites as synapses form and mature. The visual system of Xenopus laevis has been used as a model to study dynamic changes in axons and dendrites as synapses form in the living brain and the molecular mechanisms that control these processes. Brain-derived neurotrophic factor (BDNF) contributes to the establishment and refinement of visual connectivity by modulating retinal ganglion cell (RGC) axon arborization and presynaptic differentiation. Here, we have analyzed the ultrastructural organization of the Xenopus retinotectal system to understand better the maturation of this synaptic circuit and the relation between synapse ultrastructure and the structural changes in connectivity that take place in response to BDNF. Expression of yellow fluorescent protein (YFP) followed by preembedding immunoelectron microscopy was used to identify RGC axons specifically in living tadpoles. Injection of recombinant BDNF was used to alter endogenous BDNF levels acutely in the optic tectum. Our studies reveal a rapid transition from a relatively immature synaptic circuit in which retinotectal synapses are formed on developing filopodial-like processes to a circuit in which RGC axon terminals establish synapses with dendritic shafts and spines. Moreover, our studies reveal that BDNF treatment increases the number of spine synapses and docked vesicle number at YFP-identified synaptic sites within 24 hours of treatment. These fine structural changes at retinotectal synapses are consistent with the role that BDNF plays in the functional maturation of synaptic circuits and with dynamic, rapid changes in synaptic connectivity during development.
Collapse
|
13
|
Korobova F, Svitkina T. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 2009; 21:165-76. [PMID: 19889835 PMCID: PMC2801710 DOI: 10.1091/mbc.e09-07-0596] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.
Collapse
Affiliation(s)
- Farida Korobova
- Department of Biology, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
14
|
Dietz DM, Dietz KC, Nestler EJ, Russo SJ. Molecular mechanisms of psychostimulant-induced structural plasticity. PHARMACOPSYCHIATRY 2009; 42 Suppl 1:S69-78. [PMID: 19434558 PMCID: PMC2734446 DOI: 10.1055/s-0029-1202847] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug addiction is characterized by persistent behavioral and cellular plasticity throughout the brain's reward regions. Among the many neuroadaptations that occur following repeated drug administration are alterations in cell morphology including changes in dendritic spines. While this phenomenon has been well documented, the underlying molecular mechanisms are poorly understood. Here, within the context of drug abuse, we review and integrate several of the established pathways known to regulate synaptic remodeling, and discuss the contributions of neurotrophic and dopamine signaling in mediating this structural plasticity. Finally, we discuss how such upstream mechanisms could regulate actin dynamics, the common endpoint involved in structural remodeling in neurons.
Collapse
Affiliation(s)
- D M Dietz
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York 10029, USA
| | | | | | | |
Collapse
|
15
|
Abstract
SynGAP, a prominent Ras/Rap GTPase-activating protein in the postsynaptic density, regulates the timing of spine formation and trafficking of glutamate receptors in cultured neurons. However, the molecular mechanisms by which it does this are unknown. Here, we show that synGAP is a key regulator of spine morphology in adult mice. Heterozygous deletion of synGAP was sufficient to cause an excess of mushroom spines in adult brains, indicating that synGAP is involved in steady-state regulation of actin in mature spines. Both Ras- and Rac-GTP levels were elevated in forebrains from adult synGAP(+/-) mice. Rac is a well known regulator of actin polymerization and spine morphology. The steady-state level of phosphorylation of cofilin was also elevated in synGAP(+/-) mice. Cofilin, an F-actin severing protein that is inactivated by phosphorylation, is a downstream target of a pathway regulated by Rac. We show that transient regulation of cofilin by treatment with NMDA is also disrupted in synGAP mutant neurons. Treatment of wild-type neurons with 25 mum NMDA triggered transient dephosphorylation and activation of cofilin within 15 s. In contrast, neurons cultured from mice with a homozygous or heterozygous deletion of synGAP lacked the transient regulation by the NMDA receptor. Depression of EPSPs induced by a similar treatment of hippocampal slices with NMDA was disrupted in slices from synGAP(+/-) mice. Our data show that synGAP mediates a rate-limiting step in steady-state regulation of spine morphology and in transient NMDA-receptor-dependent regulation of the spine cytoskeleton.
Collapse
|
16
|
Leemhuis J, Henle F, Meyer DK. VIP induces the elongation of dendrites and axons in cultured hippocampal neurons: role of microtubules. Peptides 2007; 28:1700-5. [PMID: 17681403 DOI: 10.1016/j.peptides.2007.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/09/2007] [Accepted: 06/14/2007] [Indexed: 02/01/2023]
Abstract
In neurons from rat hippocampus, VIP induces the elongation of dendrites. In the present study, we have investigated in cultured hippocampal neurons whether VIP changed the actin and tubulin cytoskeleton in dendrites. VIP caused the elongation of dendrites and induced the outgrowth of microtubules, so that they extended up to the tips. In contrast, VIP reduced the F-actin content measured as total pixel after phalloidin staining in dendritic tips. These results suggest that VIP causes dendrite elongation by facilitating the outgrowth of microtubules into the newly formed extensions.
Collapse
Affiliation(s)
- J Leemhuis
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-University, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
17
|
Ding Q, Vaynman S, Souda P, Whitelegge JP, Gomez-Pinilla F. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci 2006; 24:1265-76. [PMID: 16987214 DOI: 10.1111/j.1460-9568.2006.05026.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies were conducted to evaluate the effect of a brief voluntary exercise period on the expression pattern and post-translational modification of multiple protein classes in the rat hippocampus using proteomics. An analysis of 80 protein spots of relative high abundance on two-dimensional gels revealed that approximately 90% of the proteins identified were associated with energy metabolism and synaptic plasticity. Exercise up-regulated proteins involved in four aspects of energy metabolism, i.e. glycolysis, ATP synthesis, ATP transduction and glutamate turnover. Specifically, we found increases in fructose-bisphosphate aldolase C, phosphoglycerate kinase 1, mitochondrial ATP synthase, ubiquitous mitochondrial creatine kinase and glutamate dehydrogenase 1. Exercise also up-regulated specific synaptic-plasticity-related proteins, the cytoskeletal protein alpha-internexin and molecular chaperones (chaperonin-containing TCP-1, neuronal protein 22, heat shock 60-kDa protein 1 and heat shock protein 8). Western blot was used to confirm the direction and magnitude of change in ubiquitous mitochondrial creatine kinase, an enzyme essential for transducing mitochondrial-derived ATP to sites of high-energy demand such as the synapse. Protein phosphorylation visualized by Pro-Q Diamond fluorescent staining showed that neurofilament light polypeptide, glial fibrillary acidic protein, heat shock protein 8 and transcriptional activator protein pur-alpha were more intensely phosphorylated with exercise as compared with sedentary control levels. Our results, together with the fact that most of the proteins that we found to be up-regulated have been implicated in cognitive function, support a mechanism by which exercise uses processes of energy metabolism and synaptic plasticity to promote brain health.
Collapse
Affiliation(s)
- Qinxue Ding
- Department of Neurosurgery, Brain Injury Research Centre, UCLA, 621 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
18
|
Depaz IM, Wilce PA. The novel cytoskeleton-associated protein Neuronal protein 22: Elevated expression in the developing rat brain. Brain Res 2006; 1081:59-64. [PMID: 16542643 DOI: 10.1016/j.brainres.2006.01.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/16/2006] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
Neuronal development and process targeting is mediated by proteins of the cytoskeleton. However, the signaling pathways underlying these mechanisms are complex and have not yet been fully elucidated. Neuronal protein 22 (NP22) has been identified as a cytoskeleton-associated protein. It colocalizes with microtubules and actin, the two major components of the cytoskeleton. It contains numerous signaling motifs and induces process formation in non-neuronal cells. Expression of rat NP22 (rNP22) rises incrementally at specific time points during brain development, with the greatest elevation occurring during synaptogenesis in the rat brain. Its neuronal localization is primarily at the plasma membrane of the soma in the embryonic brain and progresses into homogeneous expression in the postnatal rat brain. Data suggest that NP22 may play a role in mediating the molecular events governing development of the neuronal architecture. Furthermore, its sustained expression in postnatal brain implies a function in the maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Iris M Depaz
- Alcohol Research Unit, Department of Biochemistry, School of Molecular and Microbial Sciences, Faculty of Biological and Medical Sciences, University of Queensland, St. Lucia Campus, Brisbane, Queensland, 4072, Australia.
| | | |
Collapse
|
19
|
Depaz IM, de Las Heras R, Kroon PA, Wilce PA. Changes in neuronal protein 22 expression and cytoskeletal association in the alcohol-dependent and withdrawn rat brain. J Neurosci Res 2005; 81:253-60. [PMID: 15948156 DOI: 10.1002/jnr.20563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The action of alcohol on neuronal pathways has been an issue of increasing research focus, with numerous findings contradicting the previously accepted idea that its effect is nonspecific. The human NP22 (hNP22) gene was revealed by its elevated expression in the frontal cortex of the human alcoholic. The sequences of hNP22 and the rat orthologue rNP22 contain a number of domains consistent with those of cytoskeletal-interacting proteins. Localization of rNP22 is restricted to the cytoplasm and processes of neurons and it colocalizes with elements of the microfilament and microtubule matrices including filamentous actin (F-actin), alpha-tubulin, tau, and microtubule-associated protein 2 (MAP2). Withdrawal of Wistar rats after alcohol dependence induced by alcohol vapor produced elevated levels of rNP22 mRNA and protein in the cortex, CA2, and dentate gyrus regions of the hippocampus. In contrast, there was decreased rNP22 expression in the striatum after chronic ethanol exposure. Chronic ethanol exposure did not markedly alter rNP22 colocalization with F-actin, alpha-tubulin, or MAP2, although colocalization at the periphery of the neuronal soma with F-actin was observed only after chronic ethanol exposure and withdrawal. Rat NP22 colocalization with MAP2 was reduced during withdrawal, whereas association with alpha-tubulin and actin was maintained. These findings suggest that the effect of chronic ethanol exposure and withdrawal on rNP22 expression is region selective. Rat NP22 may affect microtubule or microfilament function, thereby regulating the neuroplastic changes associated with the development of alcohol dependence and physical withdrawal.
Collapse
Affiliation(s)
- Iris M Depaz
- Alcohol Research Unit, Department of Biochemistry and Molecular Biosciences, School of Molecular and Microbial Sciences, University of Queensland, Australia
| | | | | | | |
Collapse
|
20
|
Newey SE, Velamoor V, Govek EE, Van Aelst L. Rho GTPases, dendritic structure, and mental retardation. ACTA ACUST UNITED AC 2005; 64:58-74. [PMID: 15884002 DOI: 10.1002/neu.20153] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A consistent feature of neurons in patients with mental retardation is abnormal dendritic structure and/or alterations in dendritic spine morphology. Deficits in the regulation of the dendritic cytoskeleton affect both the structure and function of dendrites and synapses and are believed to underlie mental retardation in some instances. In support of this, there is good evidence that alterations in signaling pathways involving the Rho family of small GTPases, key regulators of the actin and microtubule cytoskeletons, contribute to both syndromic and nonsyndromic mental retardation disorders. Because the Rho GTPases have been shown to play increasingly well-defined roles in determining dendrite and dendritic spine development and morphology, Rho signaling has been suggested to be important for normal cognition. The purpose of this review is to summarize recent data on the Rho GTPases pertaining to dendrite and dendritic spine morphogenesis, as well as to highlight their involvement in mental retardation resulting from a variety of genetic mutations within regulators and effectors of these molecules.
Collapse
|
21
|
Leemhuis J, Boutillier S, Barth H, Feuerstein TJ, Brock C, Nürnberg B, Aktories K, Meyer DK. Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites. J Biol Chem 2003; 279:585-96. [PMID: 14578357 DOI: 10.1074/jbc.m307066200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neurons receive information from other neurons via their dendritic tree. Dendrites and their branches result from alternating outgrowth and retraction. The Rho GTPases Rac and Cdc42 (cell division cycle 42) facilitate the outgrowth of branches, whereas Rho attenuates it. The mechanism of neurite retraction is unknown. Because the adenylyl cyclase activator forskolin causes numerous branched extensions in NG108-15 cells, we have investigated the underlying mechanism in this cell line. In additional studies, we used cultured hippocampal neurons in which forskolin induces branched dendrites. In both cell types, forskolin enhanced the activity of Cdc42, but not that of Rac, although both GTPases were necessary for the formation of branched extensions. Time lapse microscopy showed that forskolin did not increase the rate of addition of new extensions or branches, but it reduced the rate of the retraction so that more branched extensions persisted. Inhibition of phosphoinositide 3-kinase activity by wortmannin or LY294002 also reduced the rate of retraction and thus facilitated dendritic arborization. Forskolin diminished the activity of phosphoinositide 3-kinases. Inhibitors of phosphoinositide 3-kinases not only reduced the retraction but also the addition of new dendrites and branches. This reduction was no longer present when Rho kinase was simultaneously inactivated, suggesting an interaction of phosphoinositide 3-kinases and Rho kinase. The present results show a central role of phosphoinositide 3-kinases in dendrite formation. In neuronal cells, increased levels of cAMP can support dendritic arborization by modulating the activity of the lipid kinase.
Collapse
Affiliation(s)
- Jost Leemhuis
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Keith CH, Wilson MT. Factors controlling axonal and dendritic arbors. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:77-147. [PMID: 11336394 DOI: 10.1016/s0074-7696(01)05003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sculpting and maintenance of axonal and dendritic arbors is largely under the control of molecules external to the cell. These factors include both substratum-associated and soluble factors that can enhance or inhibit the outgrowth of axons and dendrites. A large number of factors that modulate axonal outgrowth have been identified, and the first stages of the intracellular signaling pathways by which they modify process outgrowth have been characterized. Relatively fewer factors and pathways that affect dendritic outgrowth have been described. The factors that affect axonal arbors form an incompletely overlapping set with those that affect dendritic arbors, allowing selective control of the development and maintenance of these critical aspects of neuronal morphology.
Collapse
Affiliation(s)
- C H Keith
- Department of Cellular Biology. University of Georgia, Athens, 30605, USA
| | | |
Collapse
|
23
|
Abstract
There has been an explosion of new information on the neurobiology of dendritic spines in synaptic signaling, integration, and plasticity. Novel imaging and analytical techniques have provided important new insights into dendritic spine structure and function. Results are accumulating across many disciplines, and a step toward consolidating some of this work has resulted in Dendritic Spines of the Hippocampus. Leaders in the field provide a discussion at the level of advanced under-graduates, with sufficient detail to be a contemporary resource for research scientists. Critical reviews are presented on topics ranging from spine structure, formation, and maintenance, to molecular composition, plasticity, and the role of spines in learning and memory. Dendritic Spines of the Hippocampus provides a timely discussion of our current understanding of form and function at these excitatory synapses. We asked authors to include areas of controversy in their papers so as to distinguish results that are generally agreed upon from those where multiple interpretations are possible. We thank the contributors for their insights and thoughtful discussions. In this paper we provide background on the structure, composition, function, development, plasticity, and pathology of hippocampal dendritic spines. In addition, we highlight where each of these subjects will be elaborated upon in subsequent papers of this special issue of Hippocampus.
Collapse
Affiliation(s)
- K E Sorra
- Department of Biology, Boston University, Massachusetts 02215, USA
| | | |
Collapse
|
24
|
Abstract
The dendritic spine may be considered a fusion of a specialized actin-based structure akin to filopodia and lamellopodia, with an excitatory postsynaptic density containing glutamate receptors and signal-transducing machinery. This specialized neuronal microdomain is the site of the majority of excitatory synaptic contacts in the mammalian brain. Regulation of spine morphology, composition, and stability are likely to contribute to long-lasting changes in synaptic efficacy. Thus, understanding the function and regulation of dendritic spines is a fundamental problem ranging from molecular through behavioral neurobiology. A complete understanding of dendritic spines will require a knowledge of all the molecular components and how these components interact. Here we wish to accomplish two goals: to catalog many of the known components of hippocampal dendritic spines and suggest how these may contribute to spine function; and to compare dendritic spines with other actin-based structures, namely lamellopodia, filopodia, microvilli, and stereocilia, to gain some insight into possible common vs. specialized mechanisms of regulation of the shape, motility, and longevity of these actin-based structures.
Collapse
Affiliation(s)
- A Rao
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
25
|
Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J Neurosci 2000. [PMID: 10864960 DOI: 10.1523/jneurosci.20-13-05024.2000] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate that within the intact and spontaneously active retina, dendritic processes of ganglion cells exhibit rapid and extensive movements during the period of synaptogenesis. Marked restructuring occurs in seconds, but structural changes are relatively balanced across the dendritic arbor, maintaining overall arbor size and complexity over hours. Dendritic motility is regulated by spontaneous glutamatergic transmission. Both the rate and extent of the movements are decreased by antagonists to NMDA and non-NMDA glutamate receptors but are unaffected by tetrodotoxin, a sodium channel blocker. The dendritic movements are actin dependent and are controlled by the Rho family of small GTPases. Transfection of dominant-negative and constitutively active mutants into ganglion cells showed that Rac and Rho exert reciprocal effects on motility. We suggest that the Rho family of small GTPases could integrate activity-dependent and -independent signals from afferents, thereby adjusting target motility and maximizing the chance for initial contact and subsequent synaptogenesis.
Collapse
|
26
|
Abstract
Major technical advances in the imaging of live cells have led to a recent flurry of studies demonstrating how dendrites remodel dynamically during development. Taken together with our current understanding of axonal development, these studies help provide a more unified picture of how neural circuits might be formed altered or maintained throughout life.
Collapse
Affiliation(s)
- W T Wong
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
27
|
Abstract
The role of actin filaments in synaptic function has been studied in the CA1 region of the rat hippocampal slice. Bath application (2 hr) of the actin polymerization inhibitor latrunculin B did not substantially affect the shape of dendrites or spines. However, this and other drugs that affect actin did affect synaptic function. Bath-applied latrunculin B reduced the synaptic response. Several lines of evidence indicate that a component of this effect is presynaptic. To specifically test for a postsynaptic role for actin, latrunculin B or phalloidin, an actin filament stabilizer, was perfused into the postsynaptic neuron. The magnitude of long-term potentiation (LTP) was decreased at times when baseline transmission was not yet affected. Longer applications produced a decrease in baseline AMPA receptor (AMPAR)-mediated transmission. The magnitude of the NMDA receptor-mediated transmission was unaffected, indicating a specific effect on the AMPAR. These results suggest that postsynaptic actin filaments are involved in a dynamic process required to maintain AMPAR-mediated transmission and to enhance it during LTP.
Collapse
|
28
|
Abstract
To determine the role of dendritic filopodia in the genesis of excitatory synaptic contacts and dendritic spines in hippocampal area CA1, serial section electron microscopy and three-dimensional analysis of 16 volumes of neuropil from nine male rat pups, aged postnatal day 1 (P1) through P12, were performed. The analysis revealed that numerous dendritic filopodia formed asymmetric synaptic contacts with axons and with filopodia extending from axons, especially during the first postnatal week. At P1, 22 +/- 5.5% of synapses occurred on dendritic filopodia, with 19 +/- 5.9% on filopodia at P4, 20 +/- 8.0% at P6, decreasing to 7.2 +/- 4.7% at P12 (p < 0.02). Synapses were found at the base and along the entire length of filopodia, with many filopodia exhibiting multiple synaptic contacts. In all, 162 completely traceable dendritic filopodia received 255 asymmetric synaptic contacts. These synapses were found at all parts of filopodia with equal frequency, usually occurring on fusiform swellings of the diameter. Most synaptic contacts (53 +/- 11%) occurred directly on dendritic shafts during the first postnatal week. A smaller but still substantial portion (32 +/- 12%) of synapses were on shafts at P12 (p < 0.036). There was a highly significant (p < 0.0002) increase in the proportion of dendritic spine synapses with age, rising from just 4.9 +/- 4.3% at P1 to 37 +/- 14% at P12. The concurrence of primarily shaft and filopodial synapses in the first postnatal week suggests that filopodia recruit shaft synapses that later give rise to spines through a process of outgrowth.
Collapse
|
29
|
Abstract
Dendritic spines contain high concentrations of actin, but neither the isoforms involved nor the mechanism of accumulation is known. In situ hybridization with specific probes established that beta- and gamma-cytoplasmic actins are selectively expressed at high levels by spine-bearing neurons. Transfecting cultured hippocampal neurons with epitope-tagged actin isoforms showed that cytoplasmic beta- and gamma-cytoplasmic actins are correctly targeted to spines, whereas alpha-cardiac muscle actin, which is normally absent from neurons, formed aggregates in dendrites. The transfected actin cDNAs contained only coding domains, suggesting that spine targeting involves amino acid sequences in the proteins, an interpretation supported by experiments with chimeric cDNAs in which C-terminal actin sequences were found to be determinative in spine targeting. By contrast to actin, microtubule components, including tubulin and MAP2, were restricted to the dendritic shaft domain. The close association of cytoplasmic actins with spines together with their general involvement in cell surface motility further supports the idea that actin motility-based changes in spine shape may contribute to synaptic plasticity.
Collapse
|
30
|
Gelot A, Moreau J, Ben Ari Y, Pollard H. Alpha-brain spectrin mRNA belongs to the population of intradendritically transported mRNAs. Neuroreport 1996; 8:113-6. [PMID: 9051763 DOI: 10.1097/00001756-199612200-00023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Brain spectrin is a cytoskeletal protein involved in neuronal polarization and differentiation. We have studied the intraneuronal expression of non-erythroid (NE) alpha-spectrin mRNA in the rat brain during the development of the CA3 pyramidal cells, and compared it with alpha-tubulin mRNA expression. In contrast to alpha-tubulin expression, which remains located in the neuronal somata, NE alpha-spectrin mRNA was present in the dendritic compartment during the first 2 weeks of life. NE alpha-Brain spectrin mRNA transport into the dendrites coincides with critical development events, including dendritic arborization, growth and synaptogenesis, and could be dependent on the appearance of synaptic activity at the mossy fibre/CA3 synapse.
Collapse
|
31
|
Paul S, Das S, Poddar R, Sarkar PK. Role of thyroid hormone in the morphological differentiation and maturation of astrocytes: temporal correlation with synthesis and organization of actin. Eur J Neurosci 1996; 8:2361-70. [PMID: 8950100 DOI: 10.1111/j.1460-9568.1996.tb01199.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphological changes and the molecular mechanisms associated with the maturation of astrocytes were studied under normal and thyroid hormone-deficient conditions using long-term (30 days) primary cultures derived from the neonatal rat brain. Immunocytochemical staining of cells with a monoclonal antibody specific to glial fibrillary acidic protein demonstrated for the first time that, similar to their maturation in vivo, astrocytes maintained in normal serum-containing medium can undergo complete maturation involving two distinct stages of morphological differentiation (from radial glia to flat polygonal cells with epithelioid morphology and then to mature process-bearing cells with stellate morphology). Deficiency of thyroid hormone delays the first step and totally blocks the second stage of differentiation in the maturation process. Comparative staining of normal and thyroid hormone-deficient astrocytes with filamentous actin-specific fluorescein isothiocyanate-phalloidin and quantitation of the various forms of intracellular actin using an improved DNase I assay demonstrated that maturation of astroglial cells is associated with characteristic alterations in the level of cytoskeletal and noncytoskeletal filamentous (F) actin. In particular, the maintenance of the epithelioid form of the hypothyroid astrocytes is associated with a progressive increase in the level of cytoskeletal F-actin and a concomitant decline in the level of non-cytoskeletal F-actin. Quantitation of actin mRNA by Northern blot analysis and studies on the rate of actin synthesis at various stages of differentiation showed that the initial transformation into the epithelioid form is associated with an increase in the rate of synthesis of actin and the expression of its mRNA, while the final transformation into the nature process-bearing form is correlated with a decline in these parameters. The results indicates that thyroid hormone plays an obligatory role in promoting the differentiation and maturation of astrocytes, and that during this process the hormone regulates the expression of actin and its intracellular organization in a way conducive to morphological differentiation.
Collapse
Affiliation(s)
- S Paul
- Division of Neurobiology, Indian Institute of Chemical Biology, Jadavpur, Calcutta, India
| | | | | | | |
Collapse
|
32
|
Had L, Faivre-Sarrailh C, Legrand C, Méry J, Brugidou J, Rabié A. Tropomyosin isoforms in rat neurons: the different developmental profiles and distributions of TM-4 and TMBr-3 are consistent with different functions. J Cell Sci 1994; 107 ( Pt 10):2961-73. [PMID: 7876361 DOI: 10.1242/jcs.107.10.2961] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Antipeptide antisera specific for TM-4 and TMBr-3, the two tropomyosin isoforms in neurons, were used to investigate the concentrations and distributions of these F-actin-binding proteins in neurons in vitro and in vivo. TM-4 and TMBr-3 tropomyosins had different developmental profiles. TM-4 was found mainly in immature stages, while the concentration of TMBr-3 increased with maturation. The two isoforms also had different subcellular distributions. TM-4 was concentrated in the growth cones of cultured neurons and, in vivo, in areas where neurites were growing. Later, when development was complete, TM-4 was restricted to postsynaptic sites in the cerebellar cortex, whereas TMBr-3 was found in the presynaptic terminals. These data suggest that the tropomyosin isoforms have different functions, through their interaction with the actin cytoskeleton. TM-4 may be involved in the motile events of neurite growth and synaptic plasticity, while TMBr-3 could play a role in stabilizing neuronal networks and synaptic functioning.
Collapse
Affiliation(s)
- L Had
- Laboratoire de Neurobiologie Endocrinologique, URA 1197 CNRS, Université Montpellier II, France
| | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- C H Horner
- Department of Anatomy, Trinity College, Dublin, Ireland
| |
Collapse
|
34
|
Had L, Faivre-Sarrailh C, Legrand C, Rabié A. The expression of tropomyosin genes in pure cultures of rat neurons, astrocytes and oligodendrocytes is highly cell-type specific and strongly regulated during development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 18:77-86. [PMID: 8479292 DOI: 10.1016/0169-328x(93)90175-o] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transcripts from the alpha-, beta- and delta-tropomyosin genes were studied during development of pure cultures of rat neurons, astrocytes and oligodendrocytes. The three cell types contained five alpha-tropomyosin messengers, produced using both alternative promoters and splicing; one was specific for mature neurons. The beta-tropomyosin gene is expressed only in astrocytes and the delta-tropomyosin gene in all three cell types, especially in immature cells. Most of the tropomyosin isoforms are highly cell-specific. Their developmental regulation involves either differential expression of genes, in neurons and oligodendrocytes, and/or changes in alternative splicing, in astrocytes, delta-Tropomyosin (TM-4) may be important during the growth of neuronal and glial cell processes, while specialized isoforms such as the neuron-specific alpha-tropomyosin TMBr-3 may be involved in the function or plasticity of the mature cells.
Collapse
Affiliation(s)
- L Had
- Laboratoire de Neurobiologie Endocrinologique, URA 1197 CNRS, Université Montpellier II, Sciences et Techniques du Languedoc, France
| | | | | | | |
Collapse
|
35
|
Paul S, Das S, Sarkar PK. Effect of hypothyroidism on different forms of actin in rat cerebral neuronal cultures studied by an improved DNase I inhibition assay. J Neurochem 1992; 59:701-7. [PMID: 1629739 DOI: 10.1111/j.1471-4159.1992.tb09425.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An improved DNase I inhibition assay for the filamentous actin (F-actin) and monomeric actin (G-actin) in brain cells has been developed. Unlike other methods, the cell lysis conditions and postlysis treatments, established by us, inhibited the temporal inactivation of actin in the cell lysate and maintained a stable F-actin/G-actin ratio for at least 4-5 h after lysis. The new procedure allowed separate quantitation of the noncytoskeletal F-actin in the Triton-soluble fraction (12,000 g, 10 min supernatant) that did not readily sediment with the Triton-insoluble cytoskeletal F-actin (12,000 g, 10 min pellet). We have applied this modified assay system to study the effect of hypothyroidism on different forms of actin using primary cultures of neurons derived from cerebra of neonatal normal and hypothyroid rats. Our results showed a 20% increase in the Triton-insoluble cytoskeletal F-actin in cultures from hypothyroid brain relative to normal controls. In the Triton-soluble fraction, containing the G-actin and the noncytoskeletal F-actin, cultures from hypothyroid brain showed a 15% increase in G-actin, whereas the F-actin remained unaltered. The 10% increase in total actin observed in this fraction from hypothyroid brain could be totally accounted for by the enhancement of G-actin. The mean F-actin/G-actin ratio in this fraction was about 30% higher in the cultures from normal brain compared to that of the hypothyroid system, which indicates that hypothyroidism tends to decrease the proportion of noncytoskeletal F-actin relative to G-actin.
Collapse
Affiliation(s)
- S Paul
- Department of Cell Biology, Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
36
|
Fifková E, Morales M. Actin matrix of dendritic spines, synaptic plasticity, and long-term potentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 139:267-307. [PMID: 1428678 DOI: 10.1016/s0074-7696(08)61414-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- E Fifková
- Department of Psychology, University of Colorado, Boulder 80309
| | | |
Collapse
|
37
|
Léna JY, Bamburg JR, Rabié A, Faivre-Sarrailh C. Actin-depolymerizing factor (ADF) in the cerebellum of the developing rat: a quantitative and immunocytochemical study. J Neurosci Res 1991; 30:18-27. [PMID: 1795402 DOI: 10.1002/jnr.490300104] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A specific antiserum against actin-depolymerizing factor (ADF) was used in a quantitative and immunocytochemical study of ADF in the cerebellum of developing rats. The Triton-soluble ADF concentration remained stable throughout development. Light and electron microscopic immunocytochemistry showed that ADF was not detected in all cerebellar cells. ADF immunoreactivity was found in Purkinje cells, but not in granule cells. It was found in the Bergmann astrocytes and the astrocytes of the white matter, but not in the oligodendrocytes. The cell bodies and dendrites of Purkinje cells were immunoreactive for ADF but the axons were not. In contrast, the other axons of the white matter (mossy and climbing fibres) were labeled. Thus, ADF was not restricted to either the dendritic or axonal compartments. However, dendritic spines and postsynaptic densities were immunoreactive, whereas presynaptic varicosities were unlabeled. The immunoreactivities for ADF and actin were compared. ADF staining was uniformly distributed throughout the entire dendritic arborization of the Purkinje cell, while filamentous actin is highly concentrated in the dendritic spines, indicating that ADF activity might vary according to its cellular localization.
Collapse
Affiliation(s)
- J Y Léna
- Laboratoire de Neurobiologie Endocrinologique, URA 1197 CNRS, Université Montpellier II, Sciences et Techniques du Languedoc, France
| | | | | | | |
Collapse
|
38
|
Jones DG, Calverley RK. Perforated and non-perforated synapses in rat neocortex: three-dimensional reconstructions. Brain Res 1991; 556:247-58. [PMID: 1933359 DOI: 10.1016/0006-8993(91)90312-j] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Perforated and non-perforated synapses in the molecular layer of rat parietal cortex have been assessed morphologically and quantitatively using three-dimensional reconstructions of the postsynaptic terminal. Perforated synapses were analyzed at nine ages, ranging from 0.5 to 22 months of age, and non-perforated synapses at three ages--0.5, 12, and 22 months. Examination of the reconstructions shows that perforated synapses increase in size and complexity with increasing age. This increasing complexity is reflected in a break-up of the postsynaptic density, which is punctuated by larger, branched perforations. In the most extreme cases the result is the appearance of isolated islands of postsynaptic density separated by, and also surrounded by, a synaptic contact zone. Spinules are especially prominent at around 12 months of age in perforated synapses, and the overall negative curvature of the young junctions is replaced by positively curved junctions from 4 months onwards. The non-perforated synapses are relatively small and show few changes with increasing age. Using the measurement option in the reconstruction program, the following trends emerged. All parameters of perforated synapses increased in size with increasing age, whereas the corresponding parameters of non-perforated synapses remained relatively unchanged over this age range. In addition, the percentage of the synaptic contact zone surface area occupied by the postsynaptic density decreased with increasing age in perforated synapses, but increased in non-perforated synapses. The total postsynaptic density surface area of non-perforated synapses per unit volume of molecular layer was double that of perforated synapses at 0.5 months, but the situation was reversed at 12 months. This parameter was similar in the 2 populations at 22 months. This suggests that perforated synapses contribute more to the total surface area of the postsynaptic density in mid- to late-adulthood than do non-perforated synapses, despite non-perforated synapses outnumbering perforated by 2-3:1 at these ages. These data provide more specific evidence that perforated and non-perforated synapses constitute separate synaptic populations from early in development, and that perforated synapses are responsible for the maintenance of neuronal postsynaptic density surface area from mid-adulthood onwards.
Collapse
Affiliation(s)
- D G Jones
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
39
|
Cameron HA, Kaliszewski CK, Greer CA. Organization of mitochondria in olfactory bulb granule cell dendritic spines. Synapse 1991; 8:107-18. [PMID: 1715612 DOI: 10.1002/syn.890080205] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In contrast to dendritic spines with only postsynaptic functions, the spines of olfactory bulb granule cells subserve both pre- and postsynaptic roles. In single sections these spines were previously seen to contain mitochondria, most likely needed to provide energy for presynaptic functions, but their frequency and distribution were unknown. In order to understand the organization of mitochondria in these specialized dendritic appendages, we have studied the geometry and cytoplasmic organization of granule cell spines with computer-assisted reconstructions of serial electron micrographs. The spine heads were seen to be elliptical in shape with a single pair of reciprocal synapses on the concave face apposed to the mitral/tufted cell dendrite. Mitochondria were found localized in the spine neck as well as the spine head and often extended between the two compartments. Based on their variable distribution it seems reasonable to suggest that these mitochondria are motile and move in and out of spine compartments from the parent dendrite. Spine apparatus was apparent in most of the spines as membrane bound cisterns of smooth endoplasmic reticulum located close to mitochondria. The possible role of spine apparatus in facilitating the movement of mitochondria in the necks and heads of granule cell spines in the absence of microtubules is discussed.
Collapse
Affiliation(s)
- H A Cameron
- Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | |
Collapse
|
40
|
Calverley RK, Jones DG. Contributions of dendritic spines and perforated synapses to synaptic plasticity. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1990; 15:215-49. [PMID: 2289086 DOI: 10.1016/0165-0173(90)90002-6] [Citation(s) in RCA: 238] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dynamic nature of synaptic connections has presented morphologists with considerable problems which, from a structural perspective, have frustrated the development of ideas on synaptic plasticity. Gradually, however, progress has been made on concepts such as the structural remodelling and turnover of synapses. This has been considerably helped by the recent elaboration of unbiased stereological procedures. The major emphasis of this review is on naturally occurring synaptic plasticity, which is regarded as an ongoing process in the postdevelopmental CNS. The focus of attention are PSs, with their characteristically discontinuous synaptic active zone, since there is mounting evidence that this synaptic type is indicative of synaptic remodelling and turnover in the mature CNS. Since the majority of CNS synapses can only be considered in terms of their relationship to dendritic spines, the contribution of these spines to synaptic plasticity is discussed initially. Changes in the configuration of these spines appears to be crucial for the plasticity, and these can be viewed in terms of the significance of the cytoskeleton, of various dendritic organelles, and also of the biophysical properties of spines. Of the synaptic characteristics that may play a role in synaptic plasticity, the PSD, synaptic curvature, the spinule, coated vesicles, polyribosomes, and the spine apparatus have all been implicated. Each of these is assessed. Special emphasis is placed on PSs because of their ever-increasing significance in discussions of synaptic plasticity. The possibility of their being artefacts is dismissed on a number of grounds, including consideration of the results of serial section studies. Various roles, other than one in synaptic plasticity have been put forward in discussing PSs. Although relevant to synaptic plasticity, these include a role in increasing synaptic efficacy, as a more permanent type of synaptic connection, or as a route for the intercellular exchange of metabolites or membrane components. The consideration of many estimates of synaptic density, and of PS frequency, have proved misleading, since studies have reported diverse and sometimes low figures. A recent reassessment of PS frequency, using unbiased stereological procedures, has provided evidence that in some brain regions PSs may account for up to 40% of all synapses. All ideas that have been put forward to date regarding the role of PSs are examined, with particular attention being devoted to the major models of Nieto-Sampedro and co-workers.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R K Calverley
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
41
|
Faivre-Sarrailh C, Had L, Ferraz C, Sri Widada JS, Liautard JP, Rabié A. Expression of tropomyosin genes during the development of the rat cerebellum. J Neurochem 1990; 55:899-906. [PMID: 2384759 DOI: 10.1111/j.1471-4159.1990.tb04576.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The expression of the tropomyosin genes in the rat nervous system was examined during the postnatal development of the cerebellum, using human-specific alpha-, beta-, gamma-, and delta-tropomyosin cDNA probes and rat-specific alpha-, beta-, and delta-tropomyosin oligonucleotide probes. The beta- and gamma-genes do not seem to be expressed in the rat brain. The delta-tropomyosin gene produces two mRNAs: a major one of 2.4 kb, which is highly concentrated during the first postnatal week and then decreases fourfold in level until the age of 35 days, and a minor one of 2 kb, with the same developmental profile as the 2.4-kb mRNA. A 3-kb mRNA is expressed by the alpha-tropomyosin gene and is characteristic of the mature rat. The expression of the tropomyosin genes during the development of the rat cerebellum does not seem to be regulated through alternative splicing but rather implies the differential expression of two different isogenes. The multiple isoforms of tropomyosin produced during neuronal differentiation may be intimately involved in the regulation of the organization and function of actin microfilaments.
Collapse
Affiliation(s)
- C Faivre-Sarrailh
- Laboratoire de Neurobiologie Endocrinologique, URA 1197 CNRS, Université de Montpellier II, France
| | | | | | | | | | | |
Collapse
|
42
|
Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol Cell Biol 1990. [PMID: 2320008 DOI: 10.1128/mcb.10.4.1729] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
cDNA clones encoding three novel tropomyosins, termed TMBr-1, TMBr-2, and TMBr-3, were isolated and characterized from a rat brain cDNA library. All are derived from a single gene, which was previously found to express striated muscle alpha-tropomyosin and a number of other tropomyosin isoforms via an alternative splicing mechanism (N. Ruiz-Opazo and B. Nadal-Ginard, J. Biol. Chem. 262:4755-4765, 1987; D. F. Wieczorek, C. W. J. Smith, and B. Nadal-Ginard, Mol. Cell. Biol. 8:679-694, 1988). The derived amino acid sequences revealed that TMBr-1 contains 281 amino acids, TMBr-2 contains 251 amino acids, and TMBr-3 contains 245 amino acids. All three proteins contain a region that is identical to amino acids 81 through 258 of skeletal muscle alpha-tropomyosin. TMBr-1 is identical to striated muscle alpha-tropomyosin from amino acids 1 through 258 but contains a novel COOH-terminal region from amino acids 259 through 281. TMBr-2 and TMBr-3 both contain identical NH2-terminal sequences from amino acids 1 through 44 which were found to be expressed from a novel promoter. TMBr-3 contains the same COOH-terminal region as TMBr-1, whereas TMBr-2 contains a second novel COOH-terminal region. The genomic organization of the exons encoding TMBr-1, TMBr-2, and TMBr-3 were determined. These studies revealed a previously uncharacterized promoter located in the internal region of the alpha-TM gene as well as two novel COOH-terminal coding exons. The alpha-TM gene is a complex transcription unit containing 15 exons including two alternative promoters, two internal mutually exclusive exon cassettes, and four alternatively spliced 3' exons that encode four different COOH-terminal coding regions. A total of nine distinct mRNAs are known to be expressed from the alpha-TM gene in a cell type-specific manner in tissues such as striated muscle, smooth muscle, kidney, liver, brain, and fibroblasts. The mRNAs encoding TMBr-1, TMBr-2, and TMBr-3 were found to be expressed only in brain tissue, with TMBr-3 being expressed at much greater levels than TMBr-1 and TMBr-2. The individual structural characteristics of each brain alpha-tropomyosin isoform and their possible functions are discussed.
Collapse
|
43
|
Lees-Miller JP, Goodwin LO, Helfman DM. Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol Cell Biol 1990; 10:1729-42. [PMID: 2320008 PMCID: PMC362279 DOI: 10.1128/mcb.10.4.1729-1742.1990] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
cDNA clones encoding three novel tropomyosins, termed TMBr-1, TMBr-2, and TMBr-3, were isolated and characterized from a rat brain cDNA library. All are derived from a single gene, which was previously found to express striated muscle alpha-tropomyosin and a number of other tropomyosin isoforms via an alternative splicing mechanism (N. Ruiz-Opazo and B. Nadal-Ginard, J. Biol. Chem. 262:4755-4765, 1987; D. F. Wieczorek, C. W. J. Smith, and B. Nadal-Ginard, Mol. Cell. Biol. 8:679-694, 1988). The derived amino acid sequences revealed that TMBr-1 contains 281 amino acids, TMBr-2 contains 251 amino acids, and TMBr-3 contains 245 amino acids. All three proteins contain a region that is identical to amino acids 81 through 258 of skeletal muscle alpha-tropomyosin. TMBr-1 is identical to striated muscle alpha-tropomyosin from amino acids 1 through 258 but contains a novel COOH-terminal region from amino acids 259 through 281. TMBr-2 and TMBr-3 both contain identical NH2-terminal sequences from amino acids 1 through 44 which were found to be expressed from a novel promoter. TMBr-3 contains the same COOH-terminal region as TMBr-1, whereas TMBr-2 contains a second novel COOH-terminal region. The genomic organization of the exons encoding TMBr-1, TMBr-2, and TMBr-3 were determined. These studies revealed a previously uncharacterized promoter located in the internal region of the alpha-TM gene as well as two novel COOH-terminal coding exons. The alpha-TM gene is a complex transcription unit containing 15 exons including two alternative promoters, two internal mutually exclusive exon cassettes, and four alternatively spliced 3' exons that encode four different COOH-terminal coding regions. A total of nine distinct mRNAs are known to be expressed from the alpha-TM gene in a cell type-specific manner in tissues such as striated muscle, smooth muscle, kidney, liver, brain, and fibroblasts. The mRNAs encoding TMBr-1, TMBr-2, and TMBr-3 were found to be expressed only in brain tissue, with TMBr-3 being expressed at much greater levels than TMBr-1 and TMBr-2. The individual structural characteristics of each brain alpha-tropomyosin isoform and their possible functions are discussed.
Collapse
|
44
|
Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)34121-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Faivre-Sarrailh C, Ferraz C, Liautard JP, Rabié A. Effect of thyroid deficiency on actin mRNA content in the developing rat cerebellum. Int J Dev Neurosci 1990; 8:99-106. [PMID: 2296851 DOI: 10.1016/0736-5748(90)90026-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The actin mRNA content of the cerebellum was determined in normal and hypothyroid developing rats using RNA dot hybridization with a beta-actin cDNA probe. The decline in actin mRNA content occurring during the second postnatal week in normal development was delayed by about 1 week in hypothyroid rats. Since this effect coincides exactly with the delay in actin filament formation recently reported in thyroid-deficient rats, it strengthens the hypothesis of an inverse relationship in the developing brain between the polymerization state of actin and the production of actin mRNA.
Collapse
Affiliation(s)
- C Faivre-Sarrailh
- CNRS URA 1197, Université des Sciences et Techniques du Languedoc, Montpellier, France
| | | | | | | |
Collapse
|
46
|
Fifková E, Morales M. Calcium-regulated contractile and cytoskeletal proteins in dendritic spines may control synaptic plasticity. Ann N Y Acad Sci 1989; 568:131-7. [PMID: 2629582 DOI: 10.1111/j.1749-6632.1989.tb12500.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- E Fifková
- Department of Psychology, University of Colorado, Boulder 80309
| | | |
Collapse
|
47
|
Butcher LL, Woolf NJ. Neurotrophic agents may exacerbate the pathologic cascade of Alzheimer's disease. Neurobiol Aging 1989; 10:557-70. [PMID: 2682328 DOI: 10.1016/0197-4580(89)90130-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The thesis is advanced that Alzheimer's disease is triggered by alterations in the regulatory mechanisms governing the patterns of cytoskeletal protein expression in structurally plastic neurons in the mature nervous system. As a consequence, polypeptide species acting to stabilize the cytoskeleton are preferentially affected, and neuronal architecture becomes increasingly determined by proteins involved in labile structural states. A cascade of interdigitating pathologies is then postulated to develop characterized by nerve terminal aberrancies, subsequent extrusion of atypical polypeptide species and their conjugates, reactive gliosis, abnormal neuronal growth, and degeneration. Within this context, growth factors promote and accelerate the pathologic cascade. Based on this model, a treatment strategy is suggested that the most effective management of Alzheimer's disease, particularly during earlier stages, is to delay its projected normal onset and to control the aberrant neuronal growth that is a hallmark of the malady.
Collapse
Affiliation(s)
- L L Butcher
- Department of Psychology, University of California, Los Angeles 90024-1563
| | | |
Collapse
|
48
|
Morales M, Fifková E. In situ localization of myosin and actin in dendritic spines with the immunogold technique. J Comp Neurol 1989; 279:666-74. [PMID: 2918091 DOI: 10.1002/cne.902790412] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The in situ detection of macromolecules by means of immunoelectron microscopy provides information about their ultrastructural localization in cellular compartments. With this technique, we have demonstrated that the contractile proteins actin and myosin are both localized in dendritic spines at densities exceeding those of other neuronal compartments. Myosin was associated with actin filaments, with spine plasma membrane, and with membranes of the spine apparatus. Given the dynamic properties of actin and myosin, these data suggest that these proteins may be involved in the mechanism of synaptic plasticity in general and in morphometric change resulting from intense synaptic activation in particular.
Collapse
Affiliation(s)
- M Morales
- Department of Psychology, University of Colorado, Boulder 80309
| | | |
Collapse
|
49
|
Abstract
Recent research has indicated that synaptic curvature is an important and potentially critical plastic feature of the synapse. Alterations in synaptic shape are related to synaptic function, being found both during maturation and in adulthood following neuronal activation. In this paper we review the evidence supporting synaptic shape as a plastic feature of synaptic structure. We also propose several mechanisms which might underlie these changes in shape. Finally, we suggest the possible functional role of alterations in synaptic curvature, including its potential in altering synaptic transmission efficacy.
Collapse
Affiliation(s)
- E J Markus
- Department of Psychology, University of Toronto, Scarborough, Canada
| | | |
Collapse
|
50
|
Benshalom G. Structural alterations of dendritic spines induced by neural degeneration of their presynaptic afferents. Synapse 1989; 4:210-22. [PMID: 2609251 DOI: 10.1002/syn.890040306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Morphological parameters were compared for dendritic spines of spiny stellate neurons in layer IV of the barrel region of mouse somatosensory cortex, which synapse with degenerated thalamocortical afferents (TC spines) and with intact, unidentified axon terminals (UI spines). Spiny stellate neurons were labeled for light and electron microscopic identification by Golgi impregnation and gold toning. Dendritic spines were examined in series of thin sections, and TC spines were ultrastructurally detectable because of the degeneration-induced characteristic appearance of the TC axon terminals. Results show that the means of the width of the spine head and of the length of the spine stalk were significantly higher in TC spines than in UI spines by about 11 and 25%, respectively. The variability of these two morphological parameters was significantly lower for TC spines. The mean of the spine stalk width at the narrowest cross section of the stalk was about 0.12 microns, with no significant difference observed between the two spine groups. No specific relationship was found in either the TC or the UI groups of spines between the length of the spine stalk and the width of the spine stalk at its narrowest profile. As structural features typifying transneuronal degeneration were not observed along the dendritic spines examined, it is speculated that the morphological differences encountered between the TC and UI spines may result, at least in part, from the degeneration-induced synaptic inactivity of the TC axospinous synapses, rather than exclusively from any direct effects of the degeneration process.
Collapse
Affiliation(s)
- G Benshalom
- Department of Morphology, Corob Center for Health Sciences, Faculty of Health Sciences, Ben-Gurion University of Negev, Beer Sheva, Israel
| |
Collapse
|