1
|
Hasunuma I. Central regulation of reproduction in amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:219-229. [PMID: 38084833 DOI: 10.1002/jez.2769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024]
Abstract
This review article includes a literature review of synteny analysis of the amphibian gonadotropin-releasing hormone (GnRH) genes, the distribution of GnRH 1 and GnRH2 neurons in the central nervous system of amphibians, the function and regulation of hypophysiotropic GnRH1, and the function of GnRH1 in amphibian reproductive behaviors. It is generally accepted that GnRH is the key regulator of the hypothalamic-pituitary-gonadal axis. Three independent GnRH genes, GnRH1, GnRH2, and GnRH3, have been identified in vertebrates. Previous genome synteny analyses suggest that there are likely just two genes, gnrh1 and gnrh2, in amphibians. In three groups of amphibians: Anura, Urodela, and Gymnophiona, the distributions of GnRH1 and GnRH2 neurons in the central nervous system have also been previously reported. Moreover, these neuronal networks were determined to be structurally independent in all species examined. The somata of GnRH1 neurons are located in the terminal nerve, medial septum (MS), and preoptic area (POA), and some GnRH1 neurons in the MS and POA project into the median eminence. In contrast, the somata of GnRH2 neurons are located in the midbrain tegmentum. In amphibians, GnRH1 neurons originate from the embryonic olfactory placode, while GnRH2 neurons originate from the midbrain. The characterization and feedback regulation mechanisms of hypophysiotropic GnRH1 neurons in amphibians, the involvement of GnRH1 in amphibian reproductive behavior, and its possible mechanism of action should be elucidated in future.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
2
|
López-Ojeda W, Hurley RA. Cranial Nerve Zero (CN 0): Multiple Names and Often Discounted yet Clinically Significant. J Neuropsychiatry Clin Neurosci 2022; 34:A4-99. [PMID: 35491548 DOI: 10.1176/appi.neuropsych.22010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Departments of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Radiology (Hurley), Wake Forest School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Departments of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Radiology (Hurley), Wake Forest School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
3
|
Ogawa S, Yamamoto N, Hagio H, Oka Y, Parhar IS. Multiple gonadotropin-releasing hormone systems in non-mammalian vertebrates: Ontogeny, anatomy, and physiology. J Neuroendocrinol 2022; 34:e13068. [PMID: 34931380 DOI: 10.1111/jne.13068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/08/2023]
Abstract
Three paralogous genes for gonadotropin-releasing hormone (GnRH; gnrh1, gnrh2, and gnrh3) and GnRH receptors exist in non-mammalian vertebrates. However, there are some vertebrate species in which one or two of these paralogous genes have become non-functional during evolution. The developmental migration of GnRH neurons in the brain is evolutionarily conserved in mammals, reptiles, birds, amphibians, and jawed teleost fish. The three GnRH paralogs have specific expression patterns in the brain and originate from multiple sites. In acanthopterygian teleosts (medaka, cichlid, etc.), the preoptic area (POA)-GnRH1 and terminal nerve (TN)-GnRH3 neuronal types originate from the olfactory regions. In other fish species (zebrafish, goldfish and salmon) with only two GnRH paralogs (GnRH2 and GnRH3), the TN- and POA-GnRH3 neuronal types share the same olfactory origin. However, the developmental origin of midbrain (MB)-GnRH2 neurons is debatable between mesencephalic or neural crest site. Each GnRH system has distinctive anatomical and physiological characteristics, and functions differently. The POA-GnRH1 neurons are hypophysiotropic in nature and function in the neuroendocrine control of reproduction. The non-hypophysiotropic GnRH2/GnRH3 neurons probably play neuromodulatory roles in metabolism (MB-GnRH2) and the control of motivational state for sexual behavior (TN-GnRH3).
Collapse
Affiliation(s)
- Satoshi Ogawa
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hanako Hagio
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ishwar S Parhar
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
4
|
Abstract
Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.
Collapse
Affiliation(s)
- Guillaume Poncelet
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
5
|
Linscott ML, Chung WCJ. Epigenomic control of gonadotrophin-releasing hormone neurone development and hypogonadotrophic hypogonadism. J Neuroendocrinol 2020; 32:e12860. [PMID: 32452569 DOI: 10.1111/jne.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 11/30/2022]
Abstract
Mammalian reproductive success depends on gonadotrophin-releasing hormone (GnRH) neurones to stimulate gonadotrophin secretion from the anterior pituitary and activate gonadal steroidogenesis and gametogenesis. Genetic screening studies in patients diagnosed with Kallmann syndrome (KS), a congenital form of hypogonadotrophic hypogonadism (CHH), identified several causal mutations, including those in the fibroblast growth factor (FGF) system. This signalling pathway regulates neuroendocrine progenitor cell proliferation, fate specification and cell survival. Indeed, the GnRH neurone system was absent or abrogated in transgenic mice with reduced (ie, hypomorphic) Fgf8 and/or Fgf receptor (Fgfr) 1 expression, respectively. Moreover, we found that GnRH neurones were absent in the embryonic olfactory placode of Fgf8 hypomorphic mice, the putative birthplace of GnRH neurones. These observations, together with those made in human KS/CHH patients, indicate that the FGF8/FGFR1 signalling system is a requirement for the ontogenesis of the GnRH neuronal system and function. In this review, we discuss how epigenetic factors control the expression of genes such as Fgf8 that are known to be critical for GnRH neurone ontogenesis, fate specification, and the pathogenesis of KS/CHH.
Collapse
Affiliation(s)
- Megan L Linscott
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Wilson C J Chung
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
6
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
7
|
Pinelli C, Jadhao AG, Bhoyar RC, Tsutsui K, D’Aniello B. Distribution of gonadotropin-inhibitory hormone (GnIH)-like immunoreactivity in the brain and pituitary of the frog (Pelophylax esculentus) during development. Cell Tissue Res 2019; 380:115-127. [DOI: 10.1007/s00441-019-03139-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
|
8
|
Scaros AT, Andouche A, Baratte S, Croll RP. Histamine and histidine decarboxylase in the olfactory system and brain of the common cuttlefish Sepia officinalis (Linnaeus, 1758). J Comp Neurol 2019; 528:1095-1112. [PMID: 31721188 DOI: 10.1002/cne.24809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Cephalopods are radically different from any other invertebrate. Their molluscan heritage, innovative nervous system, and specialized behaviors create a unique blend of characteristics that are sometimes reminiscent of vertebrate features. For example, despite differences in the organization and development of their nervous systems, both vertebrates and cephalopods use many of the same neurotransmitters. One neurotransmitter, histamine (HA), has been well studied in both vertebrates and invertebrates, including molluscs. While HA was previously suggested to be present in the cephalopod central nervous system (CNS), Scaros, Croll, and Baratte only recently described the localization of HA in the olfactory system of the cuttlefish Sepia officinalis. Here, we describe the location of HA using an anti-HA antibody and a probe for histidine decarboxylase (HDC), a synthetic enzyme for HA. We extended previous descriptions of HA in the olfactory organ, nerve, and lobe, and describe HDC staining in the same regions. We found HDC-positive cell populations throughout the CNS, including the optic gland and the peduncle, optic, dorso-lateral, basal, subvertical, frontal, magnocellular, and buccal lobes. The distribution of HA in the olfactory system of S. officinalis is similar to the presence of HA in the chemosensory organs of gastropods but is different than the sensory systems in vertebrates or arthropods. However, HA's widespread abundance throughout the rest of the CNS of Sepia is a similarity shared with gastropods, vertebrates, and arthropods. Its widespread use with differing functions across Animalia provokes questions regarding the evolutionary history and adaptability of HA as a transmitter.
Collapse
Affiliation(s)
- Alexia T Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aude Andouche
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Sébastien Baratte
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Cranial nerve 13. HANDBOOK OF CLINICAL NEUROLOGY 2019. [PMID: 31604543 DOI: 10.1016/b978-0-444-63855-7.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Contrary to popular belief, there are 13 cranial nerves. The thirteenth cranial nerve, commonly referred to as the nervus terminalis or terminal nerve, is a highly conserved multifaceted nerve found just above the olfactory bulbs in humans and most vertebrate species. In most forms its fibers course from the rostral portion of the brain to the olfactory and nasal epithelia. Although there are differing perspectives as to what constitutes this nerve, in most species GnRH-immunoreactive neurons appear to be its defining feature. The involvement of this trophic peptide, as well as the nerve's association with the development of the hypothalamic-pituitary-gonadal axis, suggest a primary role in reproductive development and, in humans, disorders such as Kallmann syndrome. In some species, this enigmatic nerve appears to influence sensory processing, sexual behavior, autonomic and vasomotor control, and pathogenic defense (via secretion of nitric oxide). In this review, we provide a general overview of what is known about this neglected cranial nerve, with the goal of informing neurologists and neuroscientists of its presence and the need for its further study.
Collapse
|
10
|
Umatani C, Oka Y. Multiple functions of non-hypophysiotropic gonadotropin releasing hormone neurons in vertebrates. ZOOLOGICAL LETTERS 2019; 5:23. [PMID: 31367467 PMCID: PMC6647275 DOI: 10.1186/s40851-019-0138-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a hypophysiotropic hormone that is generally thought to be important for reproduction. This hormone is produced by hypothalamic GnRH neurons and stimulates the secretion of gonadotropins. On the other hand, vertebrates also have non-hypophysiotropic GnRH peptides, which are produced by extrahypothalamic GnRH neurons. They are mainly located in the terminal nerve, midbrain tegmentum, trigeminal nerve, and spinal cord (sympathetic preganglionic nerves). In vertebrates, there are typically three gnrh paralogues (gnrh1, gnrh2, gnrh3). GnRH-expression in the non-hypophysiotropic neurons (gnrh1 or gnrh3 in the terminal nerve and the trigeminal nerve, gnrh2 in the midbrain tegmentum) occurs from the early developmental stages. Recent studies have suggested that non-hypophysiotropic GnRH neurons play various functional roles. Here, we summarize their anatomical/physiological properties and discuss their possible functions, focusing on studies in vertebrates. GnRH neurons in the terminal nerve show different spontaneous firing properties during the developmental stages. These neurons in adulthood show regular pacemaker firing, and it has been suggested that these neurons show neuromodulatory function related to the regulation of behavioral motivation, etc. In addition to their recognized role in neuromodulation in adult, in juvenile fish, these neurons, which show more frequent burst firing than in adults, are suggested to have novel functions. GnRH neurons in the midbrain tegmentum show regular pacemaker firing similar to that of the adult terminal nerve and are suggested to be involved in modulations of feeding (teleosts) or nutrition-related sexual behaviors (musk shrew). GnRH neurons in the trigeminal nerve are suggested to be involved in nociception and chemosensory avoidance, although the literature on their electrophysiological properties is limited. Sympathetic preganglionic cells in the spinal cord were first reported as peptidergic modulatory neurons releasing GnRH with a putative function in coordinating interaction between vasomotor and exocrine outflow in the sympathetic nervous system. The functional role of non-hypophysiotropic GnRH neurons may thus be in the global modulation of neural circuits in a manner dependent on internal conditions or the external environment.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033 Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
11
|
Peña-Melián Á, Cabello-de la Rosa JP, Gallardo-Alcañiz MJ, Vaamonde-Gamo J, Relea-Calatayud F, González-López L, Villanueva-Anguita P, Flores-Cuadrado A, Saiz-Sánchez D, Martínez-Marcos A. Cranial Pair 0: The Nervus Terminalis. Anat Rec (Hoboken) 2018; 302:394-404. [PMID: 29663690 DOI: 10.1002/ar.23826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022]
Abstract
Originally discovered in elasmobranchs by Fritsh in 1878, the nervus terminalis has been found in virtually all species, including humans. After more than one-century debate on its nomenclature, it is nowadays recognized as cranial pair zero. The nerve mostly originates in the olfactory placode, although neural crest contribution has been also proposed. Developmentally, the nervus terminalis is clearly observed in human embryos; subsequently, during the fetal period loses some of its ganglion cells, and it is less recognizable in adults. Fibers originating in the nasal cavity passes into the cranium through the middle area of the cribiform plate of the ethmoid bone. Intracranially, fibers joint the telencephalon at several sites including the olfactory trigone and the primordium of the hippocampus to reach preoptic and precommissural regions. The nervus terminalis shows ganglion cells, that sometimes form clusters, normally one or two located at the base of the crista galli, the so-called ganglion of the nervus terminalis. Its function is uncertain. It has been described that its fibers facilitates migration of luteinizing hormone-releasing hormone cells to the hypothalamus thus participating in the development of the hypothalamic-gonadal axis, which alteration may provoke Kallmann's syndrome in humans. This review summarizes current knowledge on this structure, incorporating original illustrations of the nerve at different developmental stages, and focuses on its anatomical and clinical relevance. Anat Rec, 302:394-404, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ángel Peña-Melián
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | | | - Julia Vaamonde-Gamo
- Servicio de Neurología, Hospital General Universitario de Ciudad Real, Ciudad Real 13005, Spain
| | - Fernanda Relea-Calatayud
- Servicio de Anatomía Patológica, Hospital General Universitario de Ciudad Real, Ciudad Real 13005, Spain
| | - Lucía González-López
- Servicio de Anatomía Patológica, Hospital General Universitario de Ciudad Real, Ciudad Real 13005, Spain
| | - Patricia Villanueva-Anguita
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Alicia Flores-Cuadrado
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Daniel Saiz-Sánchez
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Alino Martínez-Marcos
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| |
Collapse
|
12
|
Jadhao AG, Pinelli C, D'Aniello B, Tsutsui K. Gonadotropin-inhibitory hormone (GnIH) in the amphibian brain and its relationship with the gonadotropin releasing hormone (GnRH) system: An overview. Gen Comp Endocrinol 2017; 240:69-76. [PMID: 27667155 DOI: 10.1016/j.ygcen.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/02/2016] [Accepted: 09/14/2016] [Indexed: 01/28/2023]
Abstract
It is well known that the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) plays an important role as a primary factor regulating gonadotropin secretion in reproductive processes in vertebrates. The discovery of the presence of a gonadotropin-inhibitory hormone (GnIH) in the brains of birds has further contributed to our understanding of the reproduction control by the brain. GnIH plays a key role in inhibition of reproduction and acts on the pituitary gland and GnRH neurons via a novel G protein-coupled receptor (GPR147). GnIH decreases gonadotropin synthesis and release, thus inhibiting gonadal development and maintenance. The GnRH and GnIH neuronal peptidergic systems are well reported in mammals and birds, but limited information is available regarding their presence and localization in the brains of other vertebrate species, such as reptiles, amphibians and fishes. The aim of this review is to compile and update information on the localization of GnRH and GnIH neuronal systems, with a particular focus on amphibians, summarizing the neuroanatomical distribution of GnIH and GnRH and emphasizing the discovery of GnIH based on RFamide peptides and GnIH orthologous peptides found in other vertebrates and their functional significance.
Collapse
Affiliation(s)
- Arun G Jadhao
- Department of Zoology, RTM Nagpur University Campus, Nagpur 440 033, MS, India.
| | - Claudia Pinelli
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Biagio D'Aniello
- Department of Biology, University of Naples "Federico II", 80126 Napoli, Italy
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Centre for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
13
|
Chung WCJ, Linscott ML, Rodriguez KM, Stewart CE. The Regulation and Function of Fibroblast Growth Factor 8 and Its Function during Gonadotropin-Releasing Hormone Neuron Development. Front Endocrinol (Lausanne) 2016; 7:114. [PMID: 27656162 PMCID: PMC5011149 DOI: 10.3389/fendo.2016.00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022] Open
Abstract
Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus-pituitary-gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.
Collapse
Affiliation(s)
- Wilson C. J. Chung
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
- *Correspondence: Wilson C. J. Chung,
| | - Megan L. Linscott
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Karla M. Rodriguez
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Courtney E. Stewart
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
14
|
Quintana-Urzainqui I, Anadón R, Candal E, Rodríguez-Moldes I. Development of the terminal nerve system in the shark Scyliorhinus canicula. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:277-87. [PMID: 25402659 DOI: 10.1159/000367839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/23/2014] [Indexed: 11/19/2022]
Abstract
The nervus terminalis (or terminal nerve) system was discovered in an elasmobranch species more than a century ago. Over the past century, it has also been recognized in other vertebrate groups, from agnathans to mammals. However, its origin, functions or relationship with the olfactory system are still under debate. Despite the abundant literature about the nervus terminalis system in adult elasmobranchs, its development has been overlooked. Studies in other vertebrates have reported newly differentiated neurons of the terminal nerve system migrating from the olfactory epithelium to the telencephalon as part of a 'migratory mass' of cells associated with the olfactory nerve. Whether the same occurs in developing elasmobranchs (adults showing anatomically separated nervus terminalis and olfactory systems) has not yet been determined. In this work we characterized for the first time the development of the terminal nerve and ganglia in an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula), by means of tract-tracing techniques combined with immunohistochemical markers for the terminal nerve (such as FMRF-amide peptide), for the developing components of the olfactory system (Gα0 protein, GFAP, Pax6), and markers for early postmitotic neurons (HuC/D) and migrating immature neurons (DCX). We discriminated between embryonic olfactory and terminal nerve systems and determined that both components may share a common origin in the migratory mass. We also localized the exact point where they split off near the olfactory nerve-olfactory bulb junction. The study of the development of the terminal nerve system in a basal gnathostome contributes to the knowledge of the ancestral features of this system in vertebrates, shedding light on its evolution and highlighting the importance of elasmobranchs for developmental and evolutionary studies.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Departamento de Bioloxía Celular e Ecoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
15
|
Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 2014; 389:13-27. [PMID: 24576539 DOI: 10.1016/j.ydbio.2014.02.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
Abstract
Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provide the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities.
Collapse
Affiliation(s)
- Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th Street, New York City, NY 10010, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
16
|
Sukhan ZP, Kitano H, Selvaraj S, Yoneda M, Yamaguchi A, Matsuyama M. Identification and distribution of three gonadotropin-releasing hormone (GnRH) isoforms in the brain of a clupeiform fish, Engraulis japonicus. Zoolog Sci 2014; 30:1081-91. [PMID: 24320187 DOI: 10.2108/zsj.30.1081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To gain a better understanding of the reproductive endocrinology of a primitive order clupeiform fish (Japanese anchovy, Engraulis japonicus), cDNAs encoding three gonadotropin-releasing hormone (GnRH) isoforms were isolated from the brain, and their distribution was analyzed using insitu hybridization (ISH). The three GnRH isoforms include GnRH1 (herring GnRH), GnRH2 (chicken GnRH-ll) and GnRH3 (salmon GnRH), and their full-length cDNAs encode 88, 86, and 89 deduced amino acids (aa), respectively. Alignment analysis of Japanese anchovy GnRH isoforms showed lower identities with other teleost fish. The major population of GnRH1 neurons was localized in the ventral telencephalon (VT) and nucleus preopticus (NPO) of the preoptic area (POA) with minor population in the anterior olfactory bulb (OB). GnRH2 neurons were restricted to the midbrain tegmentum (MT), specific to the nucleus of the medial longitudinal fasciculus (nMLF). GnRH3 neurons were localized in the olfactory nerve (ON), ventral OB, and transitional area between OB and ON. Interestingly, GnRH1 neurons were also localized in the olfactory bulb, in addition to its major population in the preoptic area. These results indicate the differential distribution of three GnRH isoforms expressed in the brain of the Japanese anchovy.
Collapse
Affiliation(s)
- Zahid Parvez Sukhan
- 1 Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Sandvik GK, Hodne K, Haug TM, Okubo K, Weltzien FA. RFamide Peptides in Early Vertebrate Development. Front Endocrinol (Lausanne) 2014; 5:203. [PMID: 25538682 PMCID: PMC4255600 DOI: 10.3389/fendo.2014.00203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/16/2014] [Indexed: 12/17/2022] Open
Abstract
RFamides (RFa) are neuropeptides involved in many different physiological processes in vertebrates, such as reproductive behavior, pubertal activation of the reproductive endocrine axis, control of feeding behavior, and pain modulation. As research has focused mostly on their role in adult vertebrates, the possible roles of these peptides during development are poorly understood. However, the few studies that exist show that RFa are expressed early in development in different vertebrate classes, perhaps mostly associated with the central nervous system. Interestingly, the related peptide family of FMRFa has been shown to be important for brain development in invertebrates. In a teleost, the Japanese medaka, knockdown of genes in the Kiss system indicates that Kiss ligands and receptors are vital for brain development, but few other functional studies exist. Here, we review the literature of RFa in early vertebrate development, including the possible functional roles these peptides may play.
Collapse
Affiliation(s)
- Guro Katrine Sandvik
- Department of Basic Sciences and Aquatic medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Kjetil Hodne
- Institute for Experimental Medical Research, Oslo University Hospital , Oslo , Norway
| | | | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Bunkyo , Japan
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic medicine, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
18
|
Stevenson EL, Corella KM, Chung WCJ. Ontogenesis of gonadotropin-releasing hormone neurons: a model for hypothalamic neuroendocrine cell development. Front Endocrinol (Lausanne) 2013; 4:89. [PMID: 23882261 PMCID: PMC3712253 DOI: 10.3389/fendo.2013.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/02/2013] [Indexed: 02/02/2023] Open
Abstract
The vertebrate hypothalamo-pituitary-gonadal axis is the anatomical framework responsible for reproductive competence and species propagation. Essential to the coordinated actions of this three-tiered biological system is the fact that the regulatory inputs ultimately converge on the gonadotropin-releasing hormone (GnRH) neuronal system, which in rodents primarily resides in the preoptic/hypothalamic region. In this short review we will focus on: (1) the general embryonic temporal and spatial development of the rodent GnRH neuronal system, (2) the origin(s) of GnRH neurons, and (3) which transcription - and growth factors have been found to be critical for GnRH neuronal ontogenesis and cellular fate-specification. Moreover, we ask the question whether the molecular and cellular mechanisms involved in GnRH neuronal development may also play a role in the development of other hypophyseal secreting neuroendocrine cells in the hypothalamus.
Collapse
Affiliation(s)
- Erica L. Stevenson
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kristina M. Corella
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Wilson C. J. Chung
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
- *Correspondence: Wilson C. J. Chung, Department of Biological Sciences, School of Biomedical Sciences, Kent State University, 222 Cunningham Hall, Kent, OH 44242, USA e-mail:
| |
Collapse
|
19
|
Yáñez J, Folgueira M, Köhler E, Martínez C, Anadón R. Connections of the terminal nerve and the olfactory system in two galeomorph sharks: an experimental study using a carbocyanine dye. J Comp Neurol 2012; 519:3202-17. [PMID: 21618231 DOI: 10.1002/cne.22674] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In elasmobranchs the terminal nerve courses separately from the olfactory nerve. This characteristic makes elasmobranchs excellent models to study the anatomy and function of these two systems. Here we study the neural connections of the terminal nerve and olfactory system in two sharks by experimental tracing methods using carbocyanine dyes. The main projections from the terminal nerve system (consisting of three ganglia in Scyliorhinus canicula) course ipsilaterally to the medial septal nucleus and bilaterally to the ventromedial telencephalic pallial region. Minor terminal nerve projections were also traced ipsilaterally to diencephalic and mesencephalic levels. With regard to the olfactory connections, our results show that in sharks, unlike ray-finned fishes, the primary olfactory projections are mainly restricted to the olfactory bulb. We also performed tracer application to the olfactory bulb in order to analyze the possible central neuroanatomical relationship between the projections of the terminal nerve and the olfactory bulb. In these experiments labeled neurons and fibers were observed from telencephalic to caudal mesencephalic regions. However, we observe almost no overlap between the two systems at central levels. The afferent and the putatively efferent connections of the dogfish olfactory bulb are compared with those previously reported in other elasmobranchs. The significance of the extratelencephalic secondary olfactory projections is also discussed in a comparative context.
Collapse
Affiliation(s)
- Julián Yáñez
- Department of Cell and Molecular Biology, University of A Coruña, E-15008 A Coruña, Spain.
| | | | | | | | | |
Collapse
|
20
|
Northcutt RG, Rink E. Olfactory projections in the lepidosirenid lungfishes. BRAIN, BEHAVIOR AND EVOLUTION 2011; 79:4-25. [PMID: 22067508 DOI: 10.1159/000331267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022]
Abstract
Olfactory nerve and olfactory bulb projections in lepidosirenid lungfishes were experimentally determined with neural tracers. Unilateral injections of DiI into the olfactory nerve labeled the accessory and main olfactory bulbs as well as fibers of the anterior root of the terminal nerve, which terminates extensively in cell groups of the medial hemispheric wall, the dorsal and lateral pallia, and the preoptic nuclei and posterior tubercle. Lepidosirenid lungfishes do not exhibit separate vomeronasal nerves, but previous data indicate that calbindin-positive receptors within basal crypts of the olfactory epithelium are homologous to the vomeronasal organ of tetrapods. Unilateral injections of DiI into the accessory olfactory bulb reveal an accessory olfactory tract which terminates primarily if not solely in the ipsilateral medial amygdalar nucleus as in amphibians. Unilateral injections of tracers into the main olfactory bulb reveal extensive projections to all cell groups in the ipsilateral telencephalic hemisphere, except for the medial amygdalar nucleus, as well as secondary olfactory projections (decussating in the habenular commissure) to the contralateral dorsal pallium and main olfactory bulb. Secondary olfactory projections also terminate bilaterally in diencephalic and midbrain centers after partial decussation in the anterior and postoptic commissures, as well as in the ventral hypothalamus and posterior tubercle. Cladistic analysis of the extensive secondary olfactory projections indicates that this pattern is primitive for all bony fishes whereas the reduction in secondary olfactory projections in amphibians, particularly anurans, is a derived, simplified pattern.
Collapse
Affiliation(s)
- R Glenn Northcutt
- Laboratory of Comparative Neurobiology, Scripps Institution of Oceanography and Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093-0201, USA.
| | | |
Collapse
|
21
|
Kanda S, Nishikawa K, Karigo T, Okubo K, Isomae S, Abe H, Kobayashi D, Oka Y. Regular pacemaker activity characterizes gonadotropin-releasing hormone 2 neurons recorded from green fluorescent protein-transgenic medaka. Endocrinology 2010; 151:695-701. [PMID: 20032054 DOI: 10.1210/en.2009-0842] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH2 is a molecule conserved from fish to humans, suggesting its important functions. However, recent studies have shown that GnRH2 neurons project widely in the brain but not to the pituitary, which suggests their functions other than stimulation of gonadotropin secretion. In contrast to the wealth of knowledge in GnRH1 and GnRH3 neuronal systems, the GnRH2 neuronal system remains to be studied, and there has been no single cell approach so far, partly because of the lack of GnRH2 system in rodents. Here, we generated GnRH2-green fluorescent protein (GFP) transgenic medaka for the first single cell electrophysiological recording from GnRH2 neurons in vertebrates. Whole-cell and on-cell patch clamp analyses revealed their regular pacemaker activities that are intrinsic to the GnRH2 neurons. Pacemaker activities of GnRH2 neurons were not peculiar to medaka because dwarf gourami GnRH2 neurons also showed similar pacemaker activities. By comparing with spontaneous action currents from GFP-expressing GnRH1 and GnRH3 neurons in the adult transgenic medaka, which were already in our hands, we have demonstrated that GnRH2 neurons show pacemaker activity similar to nonhypophysiotropic GnRH3 neurons but not to hypophysiotropic GnRH1 neurons. Thus, by taking advantage of medaka brain, which has all three GnRH neuronal systems with different axonal projection patterns and thus different functions, we have gained insights into the close relationship between the pattern of spontaneous electrical activity and the functions of the three. Moreover, the three types of GnRH-GFP transgenic medaka will provide useful models for studying multifunctional GnRH systems in future.
Collapse
Affiliation(s)
- Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abraham E, Palevitch O, Gothilf Y, Zohar Y. Targeted gonadotropin-releasing hormone-3 neuron ablation in zebrafish: effects on neurogenesis, neuronal migration, and reproduction. Endocrinology 2010; 151:332-40. [PMID: 19861502 DOI: 10.1210/en.2009-0548] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypophysiotropic GnRH neurons are located in the preoptic area and ventral hypothalamus of sexually mature vertebrates. In several species, the embryonic origin of hypophysiotropic GnRH neurons remains unclear. Using the Tg(GnRH3:EGFP) zebrafish line, in which GnRH3 neurons express EGFP, GnRH3 neurons in the olfactory region were specifically and individually ablated during early development using laser pulses. After ablation, the olfactory region maintained the capacity to regenerate GnRH3 neurons. However, this capacity was time-limited. When ablation of GnRH3 cells was conducted at 2 d after fertilization, high regeneration rates were observed, but regeneration capacity significantly decreased when ablation was performed at 4 or 6 d after fertilization. Unilateral GnRH3 neuron ablation results in unilateral soma presence. These unilateral somata are capable of projecting fiber extensions bilaterally. Successful bilateral GnRH3 soma ablation during development resulted in complete lack of olfactory, terminal nerve, preoptic area, and hypothalamic GnRH3 neurons and fibers in 12-wk-old animals. Mature animals lacking GnRH3 neurons exhibited arrested oocyte development and reduced average oocyte diameter. Animals in which GnRH3 neurons were partially ablated exhibited normal oocyte development; however, their fecundity was significantly reduced. These findings demonstrate that the hypophysiotropic GnRH3 populations in zebrafish consist of neurons that originate in the olfactory region during early development. The presence of GnRH3 neurons of olfactory region origin in reproductively mature zebrafish is a prerequisite for normal oocyte development and reproduction.
Collapse
Affiliation(s)
- Eytan Abraham
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | | | |
Collapse
|
23
|
Bhattacharyya S, Bronner-Fraser M. Competence, specification and commitment to an olfactory placode fate. Development 2009; 135:4165-77. [PMID: 19029046 DOI: 10.1242/dev.026633] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nasal placode shares a common origin with other sensory placodes within a pre-placodal domain at the cranial neural plate border. However, little is known about early events in nasal placode development as it segregates from prospective lens, neural tube and epidermis. Here, Dlx3, Dlx5, Pax6 and the pan-neuronal marker Hu serve as molecular labels to follow the maturation of olfactory precursors over time. When competence to form olfactory placode was tested by grafting ectoderm from different axial levels to the anterior neural fold, we found that competence is initially broad for head, but not trunk, ectoderm and declines rapidly with time. Isolated olfactory precursors are specified by HH10, concomitant with their complete segregation from other placodal, epidermal and neural progenitors. Heterotopic transplantation of olfactory progenitors reveals they are capable of autonomous differentiation only 12 hours later, shortly before overt placode invagination at HH14. Taken together, these results show that olfactory placode development is a step-wise process whereby signals from adjacent tissues specify competent ectoderm at or before HH10, followed by gradual commitment just prior to morphological differentiation.
Collapse
Affiliation(s)
- Sujata Bhattacharyya
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
24
|
Developing a sense of scents: plasticity in olfactory placode formation. Brain Res Bull 2007; 75:340-7. [PMID: 18331896 DOI: 10.1016/j.brainresbull.2007.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 10/17/2007] [Indexed: 11/21/2022]
Abstract
The sense organs of the vertebrate head arise predominantly from sensory placodes. The sensory placodes have traditionally been grouped as structures that share common developmental and evolutionary characteristics. In attempts to build a coherent model for development of all placodes, the fascinating differences that make placodes unique are often overlooked. Here I review olfactory placode development with special attention to the origin and cell movements that generate the olfactory placode, the derivatives of this sensory placode, and the degree to which it shows plasticity during development. Next, through comparison with adenohypophyseal, and lens placodes I suggest we revise our thinking and terminology for these anterior placodes, specifically by: (1) referring to the peripheral olfactory sensory system as neural ectoderm because it expresses the same series of genes involved in neural differentiation and differentiates in tandem with the olfactory bulb, and (2) grouping the anterior placodes with their corresponding central nervous system structures and emphasizing patterning mechanisms shared between placodes and these targets. Sensory systems did not arise independent of the central nervous system; they are part of a functional unit composed of peripheral sensory structures and their targets. By expanding our analyses of sensory system development to also include cell movements, gene expression and morphological changes observed in this functional unit, we will better understand the evolution of sensory structures.
Collapse
|
25
|
Repérant J, Médina M, Ward R, Miceli D, Kenigfest N, Rio J, Vesselkin N. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. ACTA ACUST UNITED AC 2007; 53:161-97. [DOI: 10.1016/j.brainresrev.2006.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/23/2022]
|
26
|
Jastrow H, Oelschläger HHA. Terminal nerve in the mouse-eared bat (Myotis myotis): ontogenetic aspects. ACTA ACUST UNITED AC 2006; 288:1201-15. [PMID: 17031808 DOI: 10.1002/ar.a.20390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As in other mammals, ontogenesis of the terminal nerve (TN) in the mouse-eared bat (Myotis myotis) starts shortly after the formation of the olfactory placode, a derivative of the ectoderm. During development of the olfactory pit, proliferating neuroblasts thicken the placodal epithelium and one cell population migrates toward the rostroventral tip of the telencephalon. Here they accumulate in a primordial terminal ganglion, which successively divides into smaller units. Initial fibers of the TN can be distinguished from olfactory fibers in the mid-embryonic period. The main TN fiber bundle (mfb) originates from the anteriormost ganglion in the nasal roof, whereas one or more inconstant smaller fiber bundles (sfb) originate from one or more smaller ganglia in the basal part of the rostral nasal septum. The fibers of the mfb and sfbs join in the posterior quarter of the nasal roof before reaching the central ganglion (M) located in the meninges medial to the olfactory bulb. From the mid-fetal period onward, a thin TN fiber bundle with some intermingled perikarya connects M to the brain by penetrating its wall rostral to the olfactory tubercle. Additional smaller ganglia may occur in this region. The TN and its ganglia persist in postnatal and adult bats but the number of perikarya is reduced here. Moreover, the different potential functions of the TN are discussed briefly.
Collapse
Affiliation(s)
- Holger Jastrow
- Department of Anatomy and Cell Biology, Histology, Johannes Gutenberg University, Mainz, Germany.
| | | |
Collapse
|
27
|
Mousley A, Polese G, Marks NJ, Eisthen HL. Terminal nerve-derived neuropeptide y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum). J Neurosci 2006; 26:7707-17. [PMID: 16855098 PMCID: PMC1855265 DOI: 10.1523/jneurosci.1977-06.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by l-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.
Collapse
|
28
|
Whitlock KE, Illing N, Brideau NJ, Smith KM, Twomey S. Development of GnRH cells: Setting the stage for puberty. Mol Cell Endocrinol 2006; 254-255:39-50. [PMID: 16777316 DOI: 10.1016/j.mce.2006.04.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cells containing gonadotropin-releasing hormone (GnRH) are essential not only for reproduction but also for neuromodulatory functions in the adult animal. A variety of studies have hinted at multiple origins for GnRH-containing cells in the developing embryo. We have shown, using zebrafish as a model system, that GnRH cells originate from precursors lying outside the olfactory placode: the region of the anterior pituitary gives rise to hypothalamic GnRH cells and the cranial neural crest gives rise to the GnRH cells of the terminal nerve and midbrain. Cells of both the forming anterior pituitary and cranial neural crest are closely apposed to the precursors of the olfactory epithelium during early development. Disruption of kallmann gene function results in loss of the hypothalamic but not the terminal nerve GnRH cells during early development. The GnRH proteins are expressed early in development and this expression is mirrored by the onset of GnRH receptor (GnRH-R) expression during early development. Thus the signaling of the GnRH neuronal circuitry is set up early in development laying the foundation for the GnRH network that is activated at puberty leading to reproductive function in the mature animal.
Collapse
Affiliation(s)
- K E Whitlock
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | | | |
Collapse
|
29
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
30
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Whitlock KE, Smith KM, Kim H, Harden MV. A role forfoxd3andsox10in the differentiation of gonadotropin-releasing hormone (GnRH) cells in the zebrafishDanio rerio. Development 2005; 132:5491-502. [PMID: 16291787 DOI: 10.1242/dev.02158] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is found in a wide range of vertebrate tissues, including the nervous system. In general, GnRH has two functions: endocrine, acting as a releasing hormone; and neuromodulatory,affecting neural activity in the peripheral and central nervous system. The best understood population of GnRH cells is that of the hypothalamus, which is essential for reproduction. Less well understood are the populations of GnRH cells found in the terminal nerve and midbrain, which appear to be neuromodulatory in function. The GnRH-containing cells of the midbrain are proposed to arise from the mesencephalic region of the neural tube. Previously, we showed that neuromodulatory GnRH cells of the terminal nerve arise from cranial neural crest. To test the hypothesis that neuromodulatory GnRH cells of the midbrain also arise from neural crest, we used gene knockdown experiments in zebrafish to disrupt neural crest development. We demonstrate that decrement of the function of foxd3 and/or sox10, two genes important for the development and specification of neural crest, resulted in a reduction and/or loss of GnRH cells of the midbrain, as well as a reduction in the number of terminal nerve GnRH cells. Therefore, our data support a neural crest origin for midbrain GnRH cells. Additionally, we demonstrate that knockdown of kallmann gene function resulted in the loss of endocrine GnRH cells of the hypothalamus, but not of neuromodulatory GnRH cells of the midbrain and terminal nerve, thus providing additional evidence for separate pathways controlling the development of neuromodulatory and endocrine GnRH cells.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Department of Molecular Biology and Genetics, 445 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
32
|
Mohamed JS, Thomas P, Khan IA. Isolation, cloning, and expression of three prepro-GnRH mRNAs in Atlantic croaker brain and pituitary. J Comp Neurol 2005; 488:384-95. [PMID: 15973678 DOI: 10.1002/cne.20596] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three prepro-gonadotropin-releasing hormones, seabream GnRH (sbGnRH), chicken GnRH-II (cGnRH-II), and salmon GnRH (sGnRH) were isolated by cDNA cloning from the brain of the Atlantic croaker, Micropogonias undulatus. The amino acid sequences of croaker GnRH precursors show greatest similarities to those of the gilthead and red sea breams and European sea bass. In situ hybridization of croaker brain sections revealed more abundant sbGnRH mRNA expression in the preoptic area (POA) than in other brain regions. sbGnRH mRNA expression was also observed in the olfactory bulb (OB; but not in the terminal nerve ganglion cells [TNgc]), ventral telencephalon (vTEL), and anterior hypothalamus. In addition, specific sbGnRH mRNA signals were detected in the pituitary. cGnRH-II mRNA expression was limited to the midbrain tegmentum. Neuronal elements expressing sGnRH mRNA were detected in the OB including the TNgc, vTEL, and POA, indicating an overlap of the sbGnRH and sGnRH systems in certain ventral forebrain areas. The results of quantitative reverse transcriptase-polymerase chain reaction of the three GnRH mRNAs in different brain areas and the pituitary are consistent with their localization by in situ hybridization. Interestingly, a few sbGnRH mRNA-expressing neuronal elements were observed arranged in a row in the anteroventral hypothalamus projecting toward the pituitary. The results provide a morphological basis for a putative role of sbGnRH as the gonadotropin-releasing hormone. Moreover, localization of sbGnRH mRNA in a teleost pituitary points to sbGnRH synthesis, and its potential role as a local regulator, within the pituitary, similar to the role of GnRH-I in mammals.
Collapse
Affiliation(s)
- J Shaik Mohamed
- Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373, USA.
| | | | | |
Collapse
|
33
|
Abstract
Gonadotropin-releasing hormone (GnRH) is an essential decapeptide, with both endocrine and neuromodulatory functions in vertebrates. GnRH-containing cells of the forebrain were thought to originate in the olfactory placode and migrate to their central nervous system destinations, and those of the midbrain to arise locally from the neural tube. Here, the embryonic origins of GnRH cells are re-examined in light of recent data suggesting that forebrain GnRH cells arise from the anterior pituitary placode and cranial neural crest, from where they migrate to their final destinations. The emerging picture suggests that GnRH cells do not originate from the olfactory placodes, but arise from multiple embryonic origins, and transiently associate with the developing olfactory system as they migrate to ventral forebrain locations.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Department of Molecular Biology and Genetics, 445/449 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Biju KC, Gaikwad A, Sarkar S, Schreibman MP, Subhedar N. Ontogeny of GnRH-like immunoreactive neuronal systems in the forebrain of the Indian major carp, Cirrhinus mrigala. Gen Comp Endocrinol 2005; 141:161-71. [PMID: 15748717 DOI: 10.1016/j.ygcen.2004.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 11/18/2022]
Abstract
GnRH immunoreactivity appeared in the medial olfactory placode very early in the development of Cirrhinus mrigala. The immunoreactive elements were divisible into distinct migratory and non-migratory components. The migratory component appeared as a patch of intensely immunoreactive cells located close to the olfactory epithelium in day 6 post-fertilization larvae. Subsequently, these neurons migrate caudally along the ventromedial aspect of the developing forebrain and enroute give rise to GnRH immunoreactive neurons in the (1) nervus terminalis located in ventral and caudal part of the olfactory bulb (day 8), and (2) basal telencephalon (day 9). The non-migratory GnRH immunoreactive component appeared in the olfactory placode of day 1 post-fertilization larvae. It consisted of few olfactory receptor neuron (ORN)-like cells with distinct flask-shaped somata, dendrites that communicate with the periphery and a single axon on the basal side; GnRH immunoreactivity was seen throughout the neuron. Considerable increase in the number of immunoreactive ORNs was encountered in day 2 post-fertilization larvae. On day 3, the dendrites of ORNs sprout bunches of apical cilia, while on the basal side the axonal outgrowths can be traced to the olfactory bulb. GnRH immunoreactive fibers were distributed in the olfactory nerve layer in the periphery of the bulb and glomeruli-like innervation was clearly established in 5 days old larvae. The innervation to the olfactory bulb showed a considerable increase in GnRH immunoreactivity in 9 and 19 days old larvae. However, GnRH immunoreactivity in non-migratory as well as migratory components gradually diminished and disappeared altogether by the age of 68 days. Results of the present study suggest that GnRH may serve a neurotransmitter role in the ORNs during early stages of development in C. mrigala.
Collapse
Affiliation(s)
- K C Biju
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | | | | | |
Collapse
|
35
|
Abstract
The origin of the nervus terminalis is one of the least well understood developmental events involved in generating the cranial ganglia of the forebrain in vertebrate animals. This cranial nerve forms at the formidable interface of the anteriormost limits of migrating cranial neural crest cells, the terminal end of the neural tube and the differentiating olfactory and adenohypophyseal placodes. The complex cellular interactions that give rise to the various structures associated with the sensory placode (olfactory) and endocrine placode (adenohypophysis) surround and engulf this enigmatic cranial nerve. The tortured history of nervus terminalis development (see von Bartheld, this issue, pages 13-24) reflects the lack of consensus on the origin (or origins), as well as the experimental difficulties in uncovering the origin, of the nervus terminalis. Recent technical advances have allowed us to make headway in understanding the origin(s) of this nerve. The emergence of the externally fertilized zebrafish embryo as a model system for developmental biology and genetics has shed new light on this century-old problem. Coupled with new developmental models are techniques that allow us to trace lineage, visualize gene expression, and genetically ablate cells, adding to our experimental tools with which to follow up on studies provided by our scientific predecessors. Through these techniques, a picture is emerging in which the origin of at least a subset of the nervus terminalis cells lies in the cranial neural crest. In this review, the data surrounding this finding will be discussed in light of recent findings on neural crest and placode origins.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Department of Molecular Biology and Genetics, 445 Biotechnology Building, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
36
|
Wong TT, Gothilf Y, Zmora N, Kight KE, Meiri I, Elizur A, Zohar Y. Developmental Expression of Three Forms of Gonadotropin-Releasing Hormone and Ontogeny of the Hypothalamic-Pituitary-Gonadal Axis in Gilthead Seabream (Sparus aurata)1. Biol Reprod 2004; 71:1026-35. [PMID: 15163612 DOI: 10.1095/biolreprod.104.028019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To address the complexity of the origin of the GnRH system in perciforms, we investigated the ontogenic expression of three GnRHs in gilthead seabream. Using in situ hybridization, chicken (c) GnRH-II mRNA-expressing cells were detected in the hindbrain at 1.5 days postfertilization (DPF) and in the midbrain at 2 DPF and thereafter; the hindbrain signals became undetectable after 10 DPF. Salmon (s) GnRH mRNA-expressing cells were first seen in the olfactory placode at 3 DPF, started caudal migration at 14 DPF, and reached the preoptic areas at 59 DPF. Seabream (sb) GnRH mRNA-expressing cells were first detected in the terminal nerve ganglion cells (TNgc), ventral part of the ventral telencephalon, nucleus preopticus parvocellularis, and thalamus at 39 DPF, and extended to the nucleus preopticus magnocellularis at 43 DPF, ventrolateral hypothalamus at 51 DPF, and nucleus lateralis tuberis and posterior tuberculum at 59 DPF. Coexpression of sbGnRH and sGnRH transcripts was found in the TNgc. Using real-time fluorescence-based quantitative polymerase chain reaction, transcript levels of cGnRH-II and sGnRH were first detected at 1 and 1.5 DPF, respectively, and increased and remained high thereafter. Transcript levels of sbGnRH remained low after first detection at 1 DPF. Furthermore, these GnRH expression profiles were correlated with the expression profiles of reproduction-related genes in which at least four concomitant increases of GnRH, GnRH receptor, gonadotropin, gonadotropin receptor, and Vasa transcripts were found at 5, 8, 14, and 28 DPF. Our data provide an expanded view of the ontogeny of the GnRH system and reproductive axis in perciforms.
Collapse
Affiliation(s)
- Ten-Tsao Wong
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
González-Martínez D, Zmora N, Saligaut D, Zanuy S, Elizur A, Kah O, Muñoz-Cueto JA. New insights in developmental origins of different GnRH (gonadotrophin-releasing hormone) systems in perciform fish: an immunohistochemical study in the European sea bass (Dicentrarchus labrax). J Chem Neuroanat 2004; 28:1-15. [PMID: 15363486 DOI: 10.1016/j.jchemneu.2004.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 04/01/2004] [Accepted: 05/07/2004] [Indexed: 11/16/2022]
Abstract
The knowledge of the roles and origins of different gonadotrophin-releasing hormone (GnRH) systems could greatly contribute to improve the understanding of mechanisms involved in the physiological control of early development, puberty and spawning. Thus, in this study, we have analyzed the distribution of the cells expressing salmon GnRH, seabream GnRH and chicken GnRH-II forms in the brain and pituitary of developing sea bass using specific antibodies to their corresponding GnRH-associated peptides. The first prepro-chicken GnRH-II-immunoreactive cells arose in the germinal zone of the third ventricle at 4 days after hatching, increasing their number from days 10 to 30, in which they adopted their adult position. The prepro-chicken GnRH-II-immunoreactive fibers became conspicuous in the first week and from day 26 they reached almost all brain areas, especially the hindbrain, being never detected in the pituitary. First prepro-salmon GnRH-immunoreactive cells were detected in the olfactory placode at day 7 after hatching and reached the olfactory bulbs at day 10. Migrating prepro-salmon GnRH cells arrived at the ventral telencephalon at day 15, and became apparent in the preoptic area from day 45. The prepro-salmon GnRH innervation was more evident in the forebrain and increased notably between 10 and 30 days, at which fibers already extended from the olfactory bulbs to the medulla. A few prepro-salmon GnRH-immunoreactive fibers were observed in the pituitary from day 30. The prepro-seabream GnRH-immunoreactive cells were first detected at day 26 in the rostral olfactory bulbs. On day 30, prepro-seabream GnRH-immunoreactive cells were also present in the ventral telencephalon, reaching the preoptic area and the hypothalamus at 45 and 60 days, respectively. The prepro-seabream GnRH innervation appeared restricted to the ventral forebrain, increasing notably during the sixth week, when fibers also reached the pituitary. A significant prepro-seabream GnRH innervation was not detected in the pituitary until day 60.
Collapse
Affiliation(s)
- David González-Martínez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Polígono Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Gonadotropin-releasing hormone (GnRH) is a decapeptide, which has been isolated from the hypothalamus as a releasing hormone of gonadotropins from the pituitary. However, subsequent morphological studies have demonstrated the presence of multiple GnRH neuronal groups outside the hypothalamus and preoptic area. In most vertebrate lineages studied to date, GnRH neuronal groups are present along the terminal nerve and in the midbrain tegmentum, in addition to a population in the preoptico-hypothalamic areas. The presence of GnRH fibers in extrahypothalamic areas has also been demonstrated, indicating a significance for GnRH neurons in functions other than those that are purely hypophysiotropic. Among vertebrate lineages, GnRH neurons have been most extensively studied in teleost fish through morphological, electrophysiological, behavioral and molecular approaches. To date, studies on differential roles of GnRH neuronal groups have been mostly restricted to teleosts. In the present review, the anatomy and functions of each GnRH neuronal group are reconsidered, based mainly on knowledge from teleosts. Recent findings in teleosts indicate that the preoptico-hypothalamic GnRH neurons are hypophysiotropic and that GnRH neurons of the terminal nerve and midbrain tegmentum regulate neural activities in various regions, including extrahypothalamic areas. The latter populations presumably serve as neuromodulatory systems to control aspects of neural functions such as reproductive behavior. Similar functional differentiation may be generalized to other vertebrate lineages as well.
Collapse
Affiliation(s)
- Naoyuki Yamamoto
- Department of Anatomy, Laboratory for Comparative Neuromorphology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
39
|
Abstract
A few examples of hypothalamic, peptidergic disorders leading to clinical signs and symptoms are presented in this review. Increased activity of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) and decreased activity of the vasopressin neurons in the biological clock and of the thyroxine-releasing hormone (TRH) neurons in the PVN contribute to the signs and symptoms of depression. In men, the central nucleus of the bed nucleus of the stria terminalis (BSTc) is about twice as large and contains twice as many somatostatin neurons as in women. In transsexuals this sex difference is reversed, pointing to a role of this structure in gender. Luteinizing hormone-releasing hormone (LHRH) neurons are formed in the fetal olfactory placade and migrate along the terminal nerve fibers into the hypothalamus. In Kallmann's syndrome the migration process of the LHRH (gonadotropin-releasing hormone) neurons is aborted, which explains the joint occurrence of hypogonadotropic hypogonadism and anosmia in this syndrome. In postmenopausal women, the neurons of the infundibular nucleus hypertrophy and become hyperactive because of the disappearance of the estrogen feedback and contain hyperactive peptidergic neurons. Climacteric flushes may be caused by hyperactivity of the neurokinin-B or LHRH neurons in this nucleus. The hypocretin (orexin) neurons in the perifornical area are involved in sleep. In narcolepsy with cataplexy, a loss of these neurons, probably due to an autoimmune process, is found. Obese subjects with a mutation in the gene that encodes for leptin, the preproghrelin gene, or the alpha-melanocyte-stimulating hormone (alpha-MSH) gene have been described. Decreased numbers and activity of the oxytocin neurons in the PVN may be responsible for the absence of satiety in Prader-Willi syndrome. Moreover, a glucocorticoid receptor polymorphism is associated with obesitas and dysregulation of the hypothalamus-pituitary-adrenal axis. In contrast, two single nucleotide polymorphisms (SNPs) of the AGRP gene have been associated with anorexia nervosa.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Brain Research, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Miranda LA, Strobl-Mazzulla PH, Strüssmann CA, Parhar I, Somoza GM. Gonadotropin-releasing hormone neuronal development during the sensitive period of temperature sex determination in the pejerrey fish, Odontesthes bonariensis. Gen Comp Endocrinol 2003; 132:444-53. [PMID: 12849968 DOI: 10.1016/s0016-6480(03)00117-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of gonadotropin-releasing hormone (GnRH) neurons was studied in relation to the sensitive period of thermolabile sex determination in the pejerrey Odontesthes bonariensis, an atherinid fish from South America. Fish were raised from hatching at three different temperatures: 17 degrees C (100% females), 24 degrees C (70% females), and 29 degrees C (100% males). Three groups of immunoreactive GnRH (ir-GnRH) neurons were identified at the terminal nerve ganglion (TNG), the midbrain tegmentum (MT), and the preoptic area (POA). Immunoreactive GnRH (ir-GnRH) neurons were identified in the TNG at hatching (day 0) and in the MT at day 3 at all the experimental temperatures. In the POA ir-GnRH neurons were identified in the nucleus preopticus periventricularis simultaneously with the first appearance of ir-GnRH fibers in the pituitary on days 11, 14, and 17 for larvae kept at 29, 24, and 17 degrees C, respectively. The number of ir-GnRH neurons in the TNG did not show any statistical difference between temperatures. The number of ir-GnRH neurons in the MT increased in number during the experiment for larvae kept at 17 and 24 degrees C but decreased between days 17 and 31 in larvae kept at 29 degrees C. The number of ir-GnRH neurons in the POA increased during development with a peak at day 28 for all temperatures studied and the magnitude of this peak showed a correlation with incubation temperature. These results reinforce the notion that the hypothalamus-pituitary-gonadal axis is active during sex determination in pejerrey suggesting a possible role of the central nervous system and GnRH in this process. It is also suggested that GnRH neurons located in the preoptic area might be the physiological transducers of temperature during the temperature sensitive period in this species.
Collapse
Affiliation(s)
- Leandro Andrés Miranda
- Instituto de Investigaciones Biotecnológicas/Instituto Tecnológico de Chascomús, Camino de Circunvalacion Laguna, C.C. 164, (B7130IWA), Chascomús, Provincia de Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
41
|
Whitlock KE, Wolf CD, Boyce ML. Gonadotropin-releasing hormone (GnRH) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, Danio rerio. Dev Biol 2003; 257:140-52. [PMID: 12710963 DOI: 10.1016/s0012-1606(03)00039-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The olfactory placodes generate the primary sensory neurons of the olfactory sensory system. Additionally, the olfactory placodes have been proposed to generate a class of neuroendocrine cells containing gonadotropin-releasing hormone (GnRH). GnRH is a multifunctional decapeptide essential for the development of secondary sex characteristics in vertebrates as well as a neuromodulator within the central nervous system. Here, we show that endocrine and neuromodulatory GnRH cells arise from two separate, nonolfactory regions in the developing neural plate. Specifically, the neuromodulatory GnRH cells of the terminal nerve arise from the cranial neural crest, and the endocrine GnRH cells of the hypothalamus arise from the adenohypophyseal region of the developing anterior neural plate. Our findings are consistent with cell types generated by the adenohypophysis, a source of endocrine tissue in vertebrate animals, and by neural crest, a source of cells contributing to the cranial nerves. The adenohypophysis arises from a region of the anterior neural plate flanked by the olfactory placode fields at early stages of development, and premigratory cranial neural crest lies adjacent to the caudal edge of the olfactory placode domain [Development 127 (2000), 3645]. Thus, the GnRH cells arise from tissue closely associated with the developing olfactory placode, and their different developmental origins reflect their different functional roles in the adult animal.
Collapse
Affiliation(s)
- K E Whitlock
- Field of Genetics and Development/Neurobiology and Behavior, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
42
|
Wirsig-Wiechmann CR, Wiechmann AF, Eisthen HL. What defines the nervus terminalis? Neurochemical, developmental, and anatomical criteria. PROGRESS IN BRAIN RESEARCH 2003; 141:45-58. [PMID: 12508560 DOI: 10.1016/s0079-6123(02)41083-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Celeste R Wirsig-Wiechmann
- Department of Cell Biology, University of Oklahoma Health Science Center, 940 S.L. Young Boulevard, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
43
|
Parhar IS. Cell migration and evolutionary significance of GnRH subtypes. PROGRESS IN BRAIN RESEARCH 2003; 141:3-17. [PMID: 12508557 DOI: 10.1016/s0079-6123(02)41080-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hypothetically it can be assumed that in advanced teleost fishes, GnRH-III and GnRH-IV neurons migrate along the 'telencephalonic' (anterior) and 'diencephalonic' (posterior) migratory route, which perhaps fuses in primitive teleost fishes and land vertebrates to form the 'ancient migratory route' (in all probability = nervus terminalis; see Von Bartheld et al., 1988) of GnRH-I neurons. The difference in distribution pattern of GnRH forms in the vertebrate brain is due to distinct embryonic origins: (1) Cells of olfactory origin, which give rise to GnRH-I (salmon, catfish, chicken I, mammalian GnRH) are distributed along the olfactory system and the basal forebrain in primitive fishes and in land vertebrates; GnRH-I might be pivotal for LH/FSH synthesis-release, olfaction and metamorphosis in lower vertebrates. In advanced teleost fishes, neurons synthesizing GnRH-III ('salmon' GnRH) originate from the olfactory system; they are distributed along the basal olfactory bulbs, with distinct ganglia (NOR) at the caudalmost part of the olfactory bulbs and few scattered cells in the basal telencephalon. The NOR might function as a neuromodulator, hypophysiotropic hormone and regulate visual associated reproductive behaviors. (2) Cells of mesencephalonic origin, which give rise to GnRH-II (chicken-II GnRH) are evolutionarily conserved; might function as a neuromodulator involved in motor-associated reproductive behaviors and acid-base balance. (3) Cells of diencephalonic origin, which give rise to GnRH-IV (seabream, medaka GnRH); they are localized in the anterior-basal OVLT-POA area and present only in advanced teleost fishes. GnRH-IV has been implicated in gonadal sex differentiation, gonadal maturation, LH/FSH secretion and territorial behavior. Advance teleost fishes for yet unknown functions might have acquired GnRH-IV. Although all GnRH subtypes participate in some aspect of reproduction; the precise function of each GnRH form still remains unclear.
Collapse
Affiliation(s)
- Ishwar S Parhar
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan.
| |
Collapse
|
44
|
Abstract
The ontogeny and organization of the terminal nerve (TN) during turbot development was studied using an antiserum to neuropeptide Y. First immunoreactive cells were detected in the olfactory placode at hatching time. At 1 day after hatching, a loose group of labeled neurons form an extracranial primordial ganglion of the TN. During the subsequent larval development, more perikarya displaying increased immunoreactivity were found along the course of the olfactory nerve. Moreover, labeled cells cross the meninx of the forebrain gathering in the olfactory bulb of larval turbot. Projections from these cells, directed both to the caudal brain and to the retina, develop when the cells become established in the olfactory bulb. The generation of immunoreactive cells in the olfactory organ extends into the metamorphic period, when a pronounced asymmetry affects the turbot morphology. At this time, the topological location of the immunoreactive cells in the TN becomes distorted. This developmental pattern was compared with those found in other teleosts and in other vertebrates. Preabsorption experiments of anti-neuropeptide Y serum with neuropeptide Y and FMRF-amide suggests that immunoreactive material observed in TN cells was not neuropeptide Y, and raises the possibility that other peptides, e.g. FMRF-amide-like peptides, exist in this neural system.
Collapse
Affiliation(s)
- B Prego
- Department of Functional Biology, Laboratory of Cell Biology, University of Vigo, 36200, Vigo, Spain
| | | | | | | |
Collapse
|
45
|
González-Martínez D, Zmora N, Zanuy S, Sarasquete C, Elizur A, Kah O, Muñoz-Cueto JA. Developmental expression of three different prepro-GnRH (gonadotrophin-releasing hormone) messengers in the brain of the European sea bass (Dicentrarchus labrax). J Chem Neuroanat 2002; 23:255-67. [PMID: 12048109 DOI: 10.1016/s0891-0618(02)00004-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, we have analyzed the ontogenic expression of three gonadotrophin-releasing hormones (GnRH) systems expressed in the brain of a perciform fish, the European sea bass, using in situ hybridization. The riboprobes used correspond to the GnRH-associated peptide (GAP) coding regions of the three prepro-GnRH cDNAs cloned from the same species: prepro-salmon GnRH, prepro-seabream GnRH and prepro-chicken GnRH II. On day 4 after hatching, the first prepro-chicken GnRH-II mRNA-expressing cells appeared in the germinal zone of the third ventricle. They increased in number and size from 10 to 21 days, reaching at day 30 their adult final position, within the synencephalic area, at the transitional zone between the diencephalon and the mesencephalon. First prepro-salmon GnRH mRNA-expressing cells became evident on day 7 arising from the olfactory placode and migrating towards the olfactory nerve. On day 10, this cell group reached the olfactory bulb, being evident in the ventral telencephalon and preoptic area from days 15 and 45, respectively. Weakly labeled prepro-seabream GnRH mRNA-expressing cells were first detected at 30 days in the olfactory area and ventral telencephalon. On day 45, prepro-seabream GnRH mRNA-expressing cells were also present in the preoptic region reaching the ventrolateral hypothalamus on day 60. The results obtained in sea bass indicate that sGnRH and sbGnRH cells have a common origin in an olfactory primordium suggesting that both forms might arise from a duplication of a single ancestral gene, while cGnRH-II cells develop from a synencephalic primordium.
Collapse
Affiliation(s)
- David González-Martínez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Poligono Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Gonadotropin-releasing hormone (GnRH) regulates the hypothalamo-pituitary-gonadal (HPG) axis in all vertebrates studied. GnRH neurons that regulate the HPG axis are primarily derived from progenitor cells in the nasal compartment (NC) and migrate along olfactory system derived fibers across the cribriform plate to destinations in the forebrain. Across their long and uncommon migratory route many factors are likely important for their successful development. Several classes of molecules are being studied for their potential influences on migration, including those related to cell surface interactions (membrane receptors, adhesion molecules, extracellular matrix (ECM) molecules, etc.) and those related to communication across distances (neurotransmitters, peptides, chemoattractant or repellent molecules). Of the classes of molecules associated with cell surface interactions, glycoconjugates with terminal galactose, are temporally and spatially expressed on olfactory fibers that guide GnRH neurons and may play role(s) in migration. Of the molecules associated with communication across distances, the neurotransmitter gamma-aminobutyric acid (GABA) is associated with the GnRH migration pathway and influences the position and organization of GnRH neurons in vitro and in vivo. Furthermore, galactose-containing glycoconjugates and GABA are associated with GnRH neurons in species ranging from humans to lamprey. In mice and rats, GABA is found transiently within a subpopulation of GnRH neurons as they migrate through the NC. One of the key elements in considering regulators of GnRH neuron migration is the diversity of GnRH synthesizing cells. For example, only subpopulations of GnRH neurons also contain GABA, specific GABA receptors, or select glycoconjugates. Similarly, treatments that influence GnRH neuronal migration may only affect specific subsets and not the entire population. It is likely that we will not be able to characterize the migration of all GnRH neurons by a single factor. By combining molecular inquiries with genetic models, single cell analyses, and an in vitro migration model, we are beginning to decipher one of the most critical events in the establishment of the reproductive axis.
Collapse
Affiliation(s)
- S A Tobet
- Program in Neuroscience, The Shriver Center, School of Medicine, The University of Massachusetts, 200 Trapelo Road, Waltham, MA 02452, USA.
| | | | | |
Collapse
|
47
|
Castro A, Becerra M, Anadón R, Manso MJ. Distribution and development of FMRFamide-like immunoreactive neuronal systems in the brain of the brown trout, Salmo trutta fario. J Comp Neurol 2001; 440:43-64. [PMID: 11745607 DOI: 10.1002/cne.1369] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distribution of Phe-Met-Arg-Phe-amide (FMRFamide) peptide-immunoreactive (FMRF-ir) cells and fibers in the terminal nerve and central nervous system was investigated in developing stages and adults of the brown trout, Salmo trutta fario. The first FMRF-ir neurons appeared in the terminal nerve system of 8-mm embryos in and below the olfactory placode. In the brain, FMRF-ir neurons were first observed in the rostral hypothalamus, primordial hypothalamic lobe, mesencephalic laminar nucleus, and locus coeruleus of 12- to 13 -m embryos. After hatching, FMRF-ir cells appeared in the lateral part of the ventral telencephalic area and the anterior tuberal nucleus. In adult trout, FMRF-ir cells were observed in all these areas. The number of FMRF-ir neurons increased markedly in some of these populations during development. Dense innervation by FMRF-ir fibers was observed in the dorsal and lateral parts of the dorsal telencephalic area, and in the ventral telencephalic area, the lateral preoptic area, the medial hypothalamic and posterior tubercle regions, midbrain tegmentum and rhombencephalic reticular areas, the central gray, the superior raphe nucleus, the secondary visceral nucleus, the vagal nuclei, and the area postrema. Fairly rich FMRF-ir innervation was also observed in the optic tectum and some parts of the torus semicircularis. The saccus vasculosus and hypophysis received a moderate amount of FMRF-ir fibers. Innervation of most of these regions appeared either in late alevins or fry, although FMRF-ir fibers in the preoptic area, hypothalamus, and reticular areas appeared in embryos. Comparative analysis of the complex innervation pattern observed in the brain of trout suggests that FMRF is involved in a variety of functions, like the FMRF family of peptides in mammals.
Collapse
Affiliation(s)
- A Castro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | |
Collapse
|
48
|
Wang X, Gao C, Norgren RB. Cellular interactions in the development of the olfactory system: an ablation and homotypic transplantation analysis. JOURNAL OF NEUROBIOLOGY 2001; 49:29-39. [PMID: 11536195 DOI: 10.1002/neu.1063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the current study, we addressed two questions: First, is the olfactory placode necessary for the development of the olfactory bulb and the entire telencephalon? Second, does the olfactory placode contribute cells to the olfactory bulb? We addressed these questions by unilaterally ablating the olfactory placode in chick embryos before an olfactory nerve was produced and, in a second series of experiments, by replacing the ablated chick olfactory placode with a quail olfactory placode. Our results indicate that the olfactory placode is critical for olfactory bulb development, but is not necessary for the development of the rest of the telencephalon. Further, our results support the hypothesis that LHRH neurons and olfactory nerve glia originate in the olfactory placode, but do not support an olfactory placodal origin for other cell types within the olfactory bulb.
Collapse
Affiliation(s)
- X Wang
- Department of Cell Biology and Anatomy, University of Nebraska Medical Center, 600 S. 42(nd) Street, Omaha, Nebraska 69198-6395, USA
| | | | | |
Collapse
|
49
|
Dubois EA, Zandbergen MA, Peute J, Bogerd J, Goos HJ. Development of three distinct GnRH neuron populations expressing two different GnRH forms in the brain of the African catfish (Clarias gariepinus). J Comp Neurol 2001; 437:308-20. [PMID: 11494258 DOI: 10.1002/cne.1285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The early development of both the catfish gonadotropin-releasing hormone (cfGnRH)- and the chicken GnRH-II (cGnRH-II) system was investigated in African catfish by immunocytochemistry by using antibodies against the GnRH-associated peptide (GAP) of the respective preprohormones. Weakly cfGnRH-immunoreactive (ir) neurons and fibers were present at 2 weeks after hatching (ph) but only in the ventral telencephalon and pituitary. Two weeks later, cfGnRH fibers and neurons were also observed in more rostral and in more caudal brain areas, mainly in the preoptic area and hypothalamus. Based on differences in temporal, spatial, and morphologic appearance, two distinct cfGnRH populations were identified in the ventral forebrain: a population innervating the pituitary (ventral forebrain system) and a so-called terminal nerve (TN) population. DiI tracing studies revealed that the TN population has no neuronal connections with the pituitary. The cGnRH-II system is present from 2 weeks ph onward in the midbrain tegmentum and only their size and staining intensity increased during development. Based on the comparison of GnRH systems amongst vertebrates, we hypothesize that during fish evolution, three different GnRH systems evolved, each expressing their own molecular form: the cGnRH-II system in the midbrain, a hypophysiotropic GnRH system in the hypothalamus with a species-specific GnRH form, and a salmon GnRH-expressing TN population. This hypothesis is supported by phylogenetic analysis of known GnRH precursor amino acid sequences. We hypothesize, because the African catfish is a less advanced teleost species, that it contains the cfGnRH form both in the ventral forebrain system and in the TN population.
Collapse
Affiliation(s)
- E A Dubois
- Research Group of Comparative Endocrinology, Graduate School for Developmental Biology, Faculty of Biology, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
D'Aniello B, Fiorentin M, Pinelli C, Guarino FM, Angelini F, Rastogi RK. Localization of FMRFamide-like immunoreactivity in the brain of the viviparous skink (Chalcides chalcides). BRAIN, BEHAVIOR AND EVOLUTION 2001; 57:18-32. [PMID: 11359045 DOI: 10.1159/000047223] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuroanatomical distribution of FMRFamide-like immunoreactivity was investigated in the brain and olfactory system of the viviparous skink, Chalcides chalcides. In the adult brain FMRFamide immunoreactive (ir) perikarya were observed in the diagonal band of Broca, medial septal nucleus, accumbens nucleus, bed nucleus of the anterior commissure, periventricular hypothalamic nucleus, lateral forebrain bundle, and lateral preoptic, subcommissural, suprachiasmatic and lateral hypothalamic areas. This pattern was seen in both male and female brains. Though all major brain areas showed FMRFamide-ir innervation, the densest ir fiber network was observed in the hypothalamus. During development, ir elements were observed for the first time in embryos at mid-pregnancy. FMRFamide perikarya were located along the ventral surface of the vomeronasal nerve, in the olfactory peduncle mediobasally, as well as in the anterior olfactory nucleus and olfactory tubercle. Furthermore, some ir neurons were observed in the rhombencephalic reticular substance; however, the ir fiber network was poorly developed. Later in development FMRFamide-ir neurons appeared also in the bed nucleus of the anterior commissure as well as the rhombencephalic nucleus of solitary tract and the dorsal motor nucleus of vagus nerve. In juveniles, the distribution profile of FMRFamide immunoreactivity was substantially similar to that of the adults, with a less widespread neuronal distribution and a more developed fiber network. Ontogenetic presence of FMRFamide immunoreactivity in the nasal area has been linked to the presence of a nervus terminalis in this reptile.
Collapse
Affiliation(s)
- B D'Aniello
- Dipartimento di Zoologia, Università di Napoli Federico II, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|