1
|
Yamaguchi M, Shimokawa N, Murata T. Extracellular regucalcin reveals anti-cancer activity by suppressing cell growth and metastatic activity by blocking EGF signaling pathway in human glioblastoma cells in vitro. Cell Signal 2025; 132:111844. [PMID: 40318797 DOI: 10.1016/j.cellsig.2025.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/14/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Glioblastoma is a malignant brain tumor, which is insistent and deadly tumor. It is vital to adjust outcomes for patients with brain tumors. There are no effective treatments for malignant glioblastoma. Glioblastoma is characterized by overexpression of epidermal growth factor (EGF) receptors in a ligand-independent manner. EGF receptor signaling stimulates tumorigenesis by increasing the proliferation and metastatic activity of glioblastoma cells. Regucalcin is a critical regulator of signaling in non-tumor and tumor cells. Interestingly, extracellular regucalcin is reported to inhibit cancer cell proliferation. Furthermore, the current study elucidates the inhibitory effects of extracellular regucalcin on human glioblastoma cells in vitro. Glioblastoma cells were cultured in DMEM-low glucose containing 10 % fetal bovine serum (FBS) with the addition of regucalcin (0.001-10 nM). The proliferation of glioblastoma cells increased in culture with EGF or FBS. This augmentation was blocked by the treatment with extracellular regucalcin (0.001-10 nM) by the independent mechanism of altering EGF receptor levels and cell death. The suppressive effects of regucalcin on cell growth were not attenuated by treatment with various intracellular signaling inhibitors, including genistein, a tyrosine kinase inhibitor, and MAPK inhibitor. Mechanistically, culture with regucalcin reduced the expression levels of PI3-kinase 100α, Akt, MAPK, phosphor-MAPK, and mTOR, which promote cell growth, and regucalcin, which is an inhibitor of cancer cell growth. In addition, treatment with regucalcin inhibited metastatic activity, including adhesion, invasion, and migration of glioblastoma cells. Thus, extracellular regucalcin inhibited the activity of human glioblastoma cells, suggesting a suppressive role in the cancer microenvironment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, HI 96813, USA.
| | - Noriaki Shimokawa
- Department of Nutrition, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan
| | - Tomiyasu Murata
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| |
Collapse
|
2
|
Aksan B, Mauceri D. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure. J Biomed Sci 2025; 32:33. [PMID: 40050849 PMCID: PMC11884128 DOI: 10.1186/s12929-025-01128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Institute of Anatomy and Cell Biology, Dept. Molecular and Cellular Neuroscience, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
3
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. Acta Neuropathol 2024; 148:72. [PMID: 39585417 PMCID: PMC11588930 DOI: 10.1007/s00401-024-02819-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, and frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD, and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI, and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin-T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8 ± 2.4%), MCI (32.8 ± 5.4%), and preclinical AD (28.3 ± 6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6 ± 2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin-T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
Affiliation(s)
- Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Caitlin Johnston
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dominique Leitner
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Margaret Sunde
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
4
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. RESEARCH SQUARE 2024:rs.3.rs-5229472. [PMID: 39574902 PMCID: PMC11581049 DOI: 10.21203/rs.3.rs-5229472/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8±2.4%), MCI (32.8±5.4%) and preclinical AD (28.3±6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6±2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
|
5
|
Pedroni A, Dai YWE, Lafouasse L, Chang W, Srivastava I, Del Vecchio L, Ampatzis K. Neuroprotective gap-junction-mediated bystander transformations in the adult zebrafish spinal cord after injury. Nat Commun 2024; 15:4331. [PMID: 38773121 PMCID: PMC11109231 DOI: 10.1038/s41467-024-48729-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
The adult zebrafish spinal cord displays an impressive innate ability to regenerate after traumatic insults, yet the underlying adaptive cellular mechanisms remain elusive. Here, we show that while the cellular and tissue responses after injury are largely conserved among vertebrates, the large-size fast spinal zebrafish motoneurons are remarkably resilient by remaining viable and functional. We also reveal the dynamic changes in motoneuron glutamatergic input, excitability, and calcium signaling, and we underscore the critical role of calretinin (CR) in binding and buffering the intracellular calcium after injury. Importantly, we demonstrate the presence and the dynamics of a neuron-to-neuron bystander neuroprotective biochemical cooperation mediated through gap junction channels. Our findings support a model in which the intimate and dynamic interplay between glutamate signaling, calcium buffering, gap junction channels, and intercellular cooperation upholds cell survival and promotes the initiation of regeneration.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yu-Wen E Dai
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Leslie Lafouasse
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Weipang Chang
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ipsit Srivastava
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Lisa Del Vecchio
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | |
Collapse
|
6
|
Veshchitskii A, Merkulyeva N. Calcium-binding protein parvalbumin in the spinal cord and dorsal root ganglia. Neurochem Int 2023; 171:105634. [PMID: 37967669 DOI: 10.1016/j.neuint.2023.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Parvalbumin is one of the calcium-binding proteins. In the spinal cord, it is mainly expressed in inhibitory neurons; in the dorsal root ganglia, it is expressed in proprioceptive neurons. In contrast to in the brain, weak systematization of parvalbumin-expressing neurons occurs in the spinal cord. The aim of this paper is to provide a systematic review of parvalbumin-expressing neuronal populations throughout the spinal cord and the dorsal root ganglia of mammals, regarding their mapping, co-expression with some functional markers. The data reviewed are mostly concerning rodentia species because they are predominantly presented in literature.
Collapse
Affiliation(s)
- Aleksandr Veshchitskii
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| | - Natalia Merkulyeva
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia.
| |
Collapse
|
7
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Kaur S, Sehrawat A, Mastana SS, Kandimalla R, Sharma PK, Bhatti GK, Bhatti JS. Targeting calcium homeostasis and impaired inter-organelle crosstalk as a potential therapeutic approach in Parkinson's disease. Life Sci 2023; 330:121995. [DOI: https:/doi.org/10.1016/j.lfs.2023.121995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
10
|
Kaur S, Sehrawat A, Mastana SS, Kandimalla R, Sharma PK, Bhatti GK, Bhatti JS. Targeting calcium homeostasis and impaired inter-organelle crosstalk as a potential therapeutic approach in Parkinson's disease. Life Sci 2023; 330:121995. [PMID: 37541578 DOI: 10.1016/j.lfs.2023.121995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremors, rigidity, and bradykinesia. Current therapeutic strategies for PD are limited and mainly involve symptomatic relief, with no available treatment for the underlying causes of the disease. Therefore, there is a need for new therapeutic approaches that target the underlying pathophysiological mechanisms of PD. Calcium homeostasis is an essential process for maintaining proper cellular function and survival, including neuronal cells. Calcium dysregulation is also observed in various organelles, including the endoplasmic reticulum (ER), mitochondria, and lysosomes, resulting in organelle dysfunction and impaired inter-organelle communication. The ER, as the primary calcium reservoir, is responsible for folding proteins and maintaining calcium homeostasis, and its dysregulation can lead to protein misfolding and neurodegeneration. The crosstalk between ER and mitochondrial calcium signaling is disrupted in PD, leading to neuronal dysfunction and death. In addition, a lethal network of calcium cytotoxicity utilizes mitochondria, ER and lysosome to destroy neurons. This review article focused on the complex role of calcium dysregulation and its role in aggravating functioning of organelles in PD so as to provide new insight into therapeutic strategies for treating this disease. Targeting dysfunctional organelles, such as the ER and mitochondria and lysosomes and whole network of calcium dyshomeostasis can restore proper calcium homeostasis and improve neuronal function. Additionally targeting calcium dyshomeostasis that arises from miscommunication between several organelles can be targeted so that therapeutic effects of calcium are realised in whole cellular territory.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, India
| | | | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
11
|
Mahmoud SF, Elewa YH, Nomir AG, Rashwan AM, Noreldin AE. Calbindin Has a Potential Spatiotemporal Correlation with Proliferation and Apoptosis in the Postnatal Rat Kidney. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1705-1717. [PMID: 37584523 DOI: 10.1093/micmic/ozad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
The protein calbindin-D28k modulates calcium reabsorption in the kidney. Here, we aimed to study the influence of proliferation and apoptosis in different compartments of the kidney on the developmental function of calbindin. Using immunohistochemistry, we investigated the postnatal development of rats' kidneys by using calbindin, proliferative cell nuclear antigen (PCNA), and apoptotic single-stranded DNA (ssDNA). In the neonatal stage (1-day and 1-week-old rats), calbindin showed a positive reaction in the distal convoluted tubule (DCT), a short nephron segment between the macula densa, collecting ducts, and tubules. Moreover, the localization of calbindin was restricted to immature nephrons and mesenchymal tissues. Furthermore, PCNA immunoreactivity was moderate in early-developed podocytes with no reactivity in other renal tubules. The ssDNA immunoreactivity was moderate in the undifferentiated nephron. Then, in the mature stage (3 and 6 weeks old), there was an intense calbindin reaction in DCT but a moderate reaction to PCNA and ssDNA in podocytes. A more intense calbindin reactivity was found in the adult stage (2- and 3-month-old rats) in DCT and collecting tubules. Therefore, in this study, calbindin localization showed an inverse relationship with PCNA and ssDNA of the nephron compartments, which might reflect the efficiency of bone-building and muscle contraction during animal development.
Collapse
Affiliation(s)
- Sahar F Mahmoud
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Al Gomhouria St, Scientific Campus, Damanhour 22511, Egypt
| | - Yaser H Elewa
- Department of Histology, Faculty of Veterinary Medicine, Zagazig University, El Tagneed St, Agriculture Square, Zagazig 44519, Egypt
- Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Kita Ku, Kita18, Nishi 9 Jo, Sapporo 060-0818, Japan
| | - Ahmed G Nomir
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Al Gomhouria St, Scientific Campus, Damanhour 22511, Egypt
| | - Ahmed M Rashwan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Al Gomhouria St, Scientific Campus, Damanhour 22511, Egypt
- Laboratory of Life science frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Al Gomhouria St, Scientific Campus, Damanhour 22511, Egypt
| |
Collapse
|
12
|
Varlamova EG, Plotnikov EY, Turovsky EA. Neuronal Calcium Sensor-1 Protects Cortical Neurons from Hyperexcitation and Ca 2+ Overload during Ischemia by Protecting the Population of GABAergic Neurons. Int J Mol Sci 2022; 23:ijms232415675. [PMID: 36555318 PMCID: PMC9778989 DOI: 10.3390/ijms232415675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
A defection of blood circulation in the brain leads to ischemia, damage, and the death of nerve cells. It is known that individual populations of GABAergic neurons are the least resistant to the damaging factors of ischemia and therefore they die first of all, which leads to impaired inhibition in neuronal networks. To date, the neuroprotective properties of a number of calcium-binding proteins (calbindin, calretinin, and parvalbumin), which are markers of GABAergic neurons, are known. Neuronal calcium sensor-1 (NCS-1) is a signaling protein that is expressed in all types of neurons and is involved in the regulation of neurotransmission. The role of NCS-1 in the protection of neurons and especially their individual populations from ischemia and hyperexcitation has not been practically studied. In this work, using the methods of fluorescence microscopy, vitality tests, immunocytochemistry, and PCR analysis, the molecular mechanisms of the protective action of NCS-1 in ischemia/reoxygenation and hyperammonemia were established. Since NCS-1 is most expressed in GABAergic neurons, the knockdown of this protein with siRNA led to the most pronounced consequences in GABAergic neurons. The knockdown of NCS-1 (NCS-1-KD) suppressed the basic expression of protective proteins without significantly reducing cell viability. However, ischemia-like conditions (oxygen-glucose deprivation, OGD) and subsequent 24-h reoxygenation led to a more massive activation of apoptosis and necrosis in neurons with NCS-1-KD, compared to control cells. The mass death of NCS-1-KD cells during OGD and hyperammonemia has been associated with the induction of a more pronounced network hyperexcitation symptom, especially in the population of GABAergic neurons, leading to a global increase in cytosolic calcium ([Ca2+]i). The symptom of hyperexcitation of neurons with NCS-1-KD correlated with a decrease in the level of expression of the calcium-binding protein-parvalbumin. This was accompanied by an increase in the expression of excitatory ionotropic glutamate receptors, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (NMDAR and AMPAR) against the background of suppression of the expression of glutamate decarboxylase (synthesis of γ-aminobutyric acid).
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| |
Collapse
|
13
|
Stępień T, Heitzman J, Wierzba-Bobrowicz T, Gosek P, Krajewski P, Chrzczonowicz-Stępień A, Berent J, Jurek T, Bolechała F. Neuropathological Changes in the Brains of Suicide Killers. Biomolecules 2021; 11:1674. [PMID: 34827673 PMCID: PMC8615963 DOI: 10.3390/biom11111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Homicide combined with subsequent suicide of the perpetrator is a particular form of interpersonal violence and, at the same time, a manifestation of extreme aggression directed against oneself. Despite the relatively well-described individual acts of homicide and suicide, both in terms of psychopathology and law, acts of homicide and subsequent suicide committed by the same person are not well-studied phenomena. The importance of emotional factors, including the influence of mental state deviations (psychopathology), on this phenomenon, is discussed in the literature, but still there is relatively little data with which to attempt neuropathological assessments of the brains of suicide killers. This paper is dedicated to the issue based on the neuropathological studies performed. METHODS We analyzed a group of murder-suicides using histochemical and immunohistochemical methods. RESULTS The results of our research indicate the presence of neurodegenerative changes including multiple deposits of ß-amyloid in the form of senile/amyloid plaques and perivascular diffuse plaques. CONCLUSIONS Neurodegenerative changes found in the analyzed brains of suicide killers may provide an interesting starting point for a number of analyses. The presence of neurodegenerative changes at such a young age in some murderers may suggest preclinical lesions that affect cognitive functions and are associated with depressed moods.
Collapse
Affiliation(s)
- Tomasz Stępień
- Department of Neuropathology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland;
| | - Janusz Heitzman
- Department of Forensic Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (J.H.); (P.G.)
| | | | - Paweł Gosek
- Department of Forensic Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (J.H.); (P.G.)
| | - Paweł Krajewski
- Forensic Medicine Department, Medical University of Warsaw, 02-007 Warsaw, Poland;
| | | | - Jarosław Berent
- Department of Forensic Medicine, Medical University of Lodz, 91-304 Lodz, Poland;
| | - Tomasz Jurek
- Department of Forensic Medicine, Wroclaw Medical University, 50-372 Wroclaw, Poland;
| | - Filip Bolechała
- Department of Forensic Medicine, Jagiellonian University Collegium Medicum, 31-531 Cracow, Poland;
| |
Collapse
|
14
|
Kanu B, Kia GSN, Aimola IA, Korie GC, Tekki IS. Rabies virus infection is associated with alterations in the expression of parvalbumin and secretagogin in mice brain. Metab Brain Dis 2021; 36:1267-1275. [PMID: 33783673 PMCID: PMC8008021 DOI: 10.1007/s11011-021-00717-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Infection with the deadly rabies virus (RABV) leads to alteration of cellular gene expression. The RABV, similar to other neurodegenerative diseases may be implicated in neuronal death due to an imbalance in Ca2+ homeostasis. Parvalbumin (PV) and Secretagogin (Scgn), two members of the Calcium-Binding Proteins (CBPs) are useful neuronal markers responsible for calcium regulation and buffering with possible protective roles against infections. This study investigated whether infection with rabies virus causes variance in expression levels of PV and Scgn using the Challenge virus standard (CVS) and Nigerian Street Rabies virus (SRV) strains. Forty-eight, 4-week-old BALB/c mice strains were divided into two test groups and challenged with Rabies virus (RABV) infection and one control group. The presence of RABV antigen was verified by direct fluorescent antibody test (DFAT) and real-time quantitative PCR (qRT-PCR) was used to assess PV and Scgn gene expression. Infection with both virus strains resulted in significant (p < 0.05) increases in expression during early infection. Mid-infection phase caused reduced expression for both genes. However, as infection progressed to the terminal phase, a lower increase in expression was measured. Gene expression and viral load correlation indicated no positive relationship. Neurons with these CBPs may have a greater capacity to buffer calcium and be more resistant to degenerative changes caused by RABV. This implies that, when PV and Scgn expression levels are kept adequately high, the integrity of neurons may be maintained and degeneration caused by RABV infection may be prevented or stopped, hence, these are possible constituents of effective rabies therapy.
Collapse
Affiliation(s)
- Brenda Kanu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria.
| | - Grace S N Kia
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
- Department of Veterinary Public Health, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Idowu A Aimola
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
| | - George C Korie
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
| | - Ishaya S Tekki
- Central Diagnostics Laboratory, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| |
Collapse
|
15
|
Attaai AH, Noreldin AE, Abdel-Maksoud FM, Hussein MT. An updated investigation on the dromedary camel cerebellum (Camelus dromedarius) with special insight into the distribution of calcium-binding proteins. Sci Rep 2020; 10:21157. [PMID: 33273572 PMCID: PMC7713137 DOI: 10.1038/s41598-020-78192-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
Studying the cerebella of different animals is important to expand the knowledge about the cerebellum. Studying the camel cerebellum was neglected even though the recent research in the middle east and Asia. Therefore, the present study was designed to achieve a detailed description of the morphology and the cellular organization of the camel cerebellum. Because of the high importance of the calcium ions as a necessary moderator the current work also aimed to investigate the distribution of calcium binding proteins (CaBP) such as calbindin D-28K (CB), parvalbumin (PV) and calretinin (CR) in different cerebellar cells including the non-traditional neurons. The architecture of camel cerebellum, as different mammals, consists of the medulla and three layered-cortex. According to our observation the cells in the granular layer were not crowded and many spaces were observed. CB expression was the highest by Purkinje cells including their dendritic arborization. In addition to its expression by the inhibitory interneurons (basket, stellate and Golgi neurons), it is also expressed by the excitatory granule cells. PV was expressed by Purkinje cells, including their primary arborization, and by the molecular layer cells. CR immunoreactivity (-ir) was obvious in almost all cell layers with varying degrees, however a weak or any expression by the Purkinje cells. The molecular layer cells and the Golgi and the non traditional large neurons of the granular layer showed the strongest CR-ir. Granule neurons showed moderate immunoreactivity for CB and CR. In conclusion, the results of the current study achieved a complete map for the neurochemical organization of CaBP expression and distribution by different cells in the camel cerebellum.
Collapse
Affiliation(s)
- Abdelraheim H Attaai
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, 22511, Damanhour, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt.
| | - Manal T Hussein
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt
| |
Collapse
|
16
|
Vishnyakova PA, Moiseev KY, Spirichev AA, Emanuilov AI, Nozdrachev AD, Masliukov PM. Expression of calbindin and calretinin in the dorsomedial and ventromedial hypothalamic nuclei during aging. Anat Rec (Hoboken) 2020; 304:1094-1104. [DOI: 10.1002/ar.24536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Polina A. Vishnyakova
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | - Konstantin Yu. Moiseev
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | - Andrey A. Spirichev
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | - Andrey I. Emanuilov
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | | | - Petr M. Masliukov
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| |
Collapse
|
17
|
Kaur C, Saini S, Pal I, Kumar P, Chandra Sati H, Jacob TG, Bhardwaj DN, Roy TS. Age-related changes in the number of cresyl-violet-stained, parvalbumin and NMDAR 2B expressing neurons in the human spiral ganglion. Hear Res 2020; 388:107883. [PMID: 31981822 DOI: 10.1016/j.heares.2020.107883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 01/11/2023]
Abstract
Animal-studies associate age-related hearing loss (presbycusis) with decreasing number of spiral ganglion neurons (SGNs) in Rosenthal's canal (RC) of cochlea. The excitatory neurotransmitter for SGNs is glutamate (through its receptor NMDAR 2B), which can be neurotoxic through Ca2+ overload. Neurotoxicity is balanced by calcium-binding proteins (CBPs) like Parvalbumin (PV), which is the predominant CBP of the SGNs. To estimate the volume of the RC and total number of SGNs that are immunoreactive to PV and NMDAR 2B, we used unbiased stereology in 35 human cochleae derived from cadavers of persons from 2nd to 8th decade of life (subsequently statistically divided into two groups) and compared them to the total number of cresyl violet (CV) stained SGNs. We also estimated the volume of individual neurons and their nuclei. Regression analysis was made on estimated parameters against age. Hierarchical-cluster analysis was done on the neuronal against neuronal nuclear volumes.The average volume of the RC did not change with increasing age (p = 0.4115). The total number of SGNs (CV-stained and those separately expressing PV and NMDAR 2B) significantly decreased with age (p < 0.001). We identified three distinct populations of neurons on the basis of their volumes among SGNs. Thus, there is significant age-related decline in the total number of SGNs, which starts early in life. It may be due to ambient noise and inadequate neutralisation of excitotoxicity.
Collapse
Affiliation(s)
- Charanjeet Kaur
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Shubhi Saini
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Indra Pal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Punit Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Hem Chandra Sati
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Tony George Jacob
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Daya Nand Bhardwaj
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
18
|
Kumar D, Sharma A, Sharma L. A Comprehensive Review of Alzheimer's Association with Related Proteins: Pathological Role and Therapeutic Significance. Curr Neuropharmacol 2020; 18:674-695. [PMID: 32172687 PMCID: PMC7536827 DOI: 10.2174/1570159x18666200203101828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's is an insidious, progressive, chronic neurodegenerative disease which causes the devastation of neurons. Alzheimer's possesses complex pathologies of heterogeneous nature counting proteins as one major factor along with enzymes and mutated genes. Proteins such as amyloid precursor protein (APP), apolipoprotein E (ApoE), presenilin, mortalin, calbindin-D28K, creactive protein, heat shock proteins (HSPs), and prion protein are some of the chief elements in the foremost hypotheses of AD like amyloid-beta (Aβ) cascade hypothesis, tau hypothesis, cholinergic neuron damage, etc. Disturbed expression of these proteins results in synaptic dysfunction, cognitive impairment, memory loss, and neuronal degradation. On the therapeutic ground, attempts of developing anti-amyloid, anti-inflammatory, anti-tau therapies are on peak, having APP and tau as putative targets. Some proteins, e.g., HSPs, which ameliorate oxidative stress, calpains, which help in regulating synaptic plasticity, and calmodulin-like skin protein (CLSP) with its neuroprotective role are few promising future targets for developing anti-AD therapies. On diagnostic grounds of AD C-reactive protein, pentraxins, collapsin response mediator protein-2, and growth-associated protein-43 represent the future of new possible biomarkers for diagnosing AD. The last few decades were concentrated over identifying and studying protein targets of AD. Here, we reviewed the physiological/pathological roles and therapeutic significance of nearly all the proteins associated with AD that addresses putative as well as probable targets for developing effective anti-AD therapies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P. India
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P. India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P. India
| |
Collapse
|
19
|
Arkan S, Kasap M, Akman Ö, Akpınar G, Ateş N, Karson A. The lower expression of parvalbumin in the primary somatosensory cortex of WAG/Rij rats may facilitate the occurrence of absence seizures. Neurosci Lett 2019; 709:134299. [DOI: 10.1016/j.neulet.2019.134299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022]
|
20
|
Resveratrol Directly Controls the Activity of Neuronal Ryanodine Receptors at the Single-Channel Level. Mol Neurobiol 2019; 57:422-434. [PMID: 31376069 DOI: 10.1007/s12035-019-01705-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/10/2019] [Indexed: 01/14/2023]
Abstract
Calcium ion dyshomeostasis contributes to the progression of many neurodegenerative diseases and represents a target for the development of neuroprotective therapies, as reported by Duncan et al. (Molecules 15(3):1168-95, 2010), LaFerla (Nat Rev Neurosci 3(11):862-72, 2002), and Niittykoshi et al. (Invest Ophthalmol Vis Sci 51(12):6387-93, 2010). Dysfunctional ryanodine receptors contribute to calcium ion dyshomeostasis and potentially to the pathogenesis of neurodegenerative diseases by generating abnormal calcium ion release from the endoplasmic reticulum, according to Bruno et al. (Neurobiol Aging 33(5):1001 e1-6, 2012) and Stutzmann et al. (J Neurosci 24(2):508-13, 2004). Since ryanodine receptors share functional and structural similarities with potassium channels, as reported by Lanner et al. (Cold Spring Harb Perspect Biol 2(11):a003996, 2010), and small molecules with anti-oxidant properties, such as resveratrol (3,5,4'-trihydroxy-trans-stilbene), directly control the activity of potassium channels, according to Wang et al. (J Biomed Sci 23(1):47, 2016), McCalley et al. (Molecules 19(6):7327-40, 2014), Novakovic et al. (Mol Hum Reprod 21(6):545-51, 2015), Li et al. (Cardiovasc Res 45(4):1035-45, 2000), Gopalakrishnan et al. (Br J Pharmacol 129(7):1323-32, 2000), and Hambrock et al. (J Biol Chem 282(5):3347-56, 2007), we hypothesized that trans-resveratrol can modulate intracellular calcium signaling through direct binding and functional regulation of ryanodine receptors. The goal of our study was to identify and measure the control of ryanodine receptor activity by trans-resveratrol. Mechanisms of calcium signaling mediated by the direct interaction between trans-resveratrol and ryanodine receptors were identified and measured with single-channel electrophysiology. Addition of trans-resveratrol to the cytoplasmic face of the ryanodine receptor increased single-channel activity at physiological and elevated pathophysiological cytoplasmic calcium ion concentrations. The open probability of the channel increases after interacting with the small molecule in a dose-dependent manner, but remains also dependent on the concentration of its physiological ligand, cytoplasmic-free calcium ions. This study provides the first evidence of a direct functional interaction between trans-resveratrol and ryanodine receptors. Such functional control of ryanodine receptors by trans-resveratrol as a novel mechanism of action could provide additional rationales for the development of novel therapeutic strategies to treat and prevent neurodegenerative diseases.
Collapse
|
21
|
Fischer N, Johnson Chacko L, Majerus A, Potrusil T, Riechelmann H, Schmutzhard J, Schrott-Fischer A, Glueckert R. Age-Dependent Calcium-Binding Protein Expression in the Spiral Ganglion and Hearing Performance of C57BL/6J and 129/SvJ Mice. ORL J Otorhinolaryngol Relat Spec 2019; 81:138-154. [PMID: 31170714 DOI: 10.1159/000499472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Calcium-binding proteins in neurons buffer intracellular free Ca2+ ions, which interact with proteins controlling enzymatic and ion channel activity. The heterogeneous distribution of calretinin, calbindin, and parvalbumin influences calcium homeostasis, and calcium-related neuronal processes play an important role in neuronal aging and degeneration. This study evaluated age-related changes in calretinin, calbindin, and parvalbumin immune reactivity in spiral ganglion cells. METHODS A total of 16 C57BL/6J and 16 129/SvJ mice at different ages (2, 4, 7, and 12 months) were included in the study. Hearing thresholds were assessed using auditory brainstem response before inner ears were excised for further evaluation. Semiquantitative immunohistochemistry for the aforementioned calcium-binding proteins was performed at the cellular level. RESULTS The hearing thresholds of C57BL/6J and 129/SvJ mice increased significantly by 7 months of age. The average immune reactivity of calbin-din as well as the relative number of positive cells increased significantly with aging, but no significant alterations in calretinin or parvalbumin were observed. CONCLUSIONS Upregulation of calbindin could serve as a protection to compensate for functional deficits that occur with aging. Expression of both calretinin and parvalbumin seem to be stabilizing factors in murine inner ears up to the age of 12 months in C57BL/6J and 129/SvJ mice.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Majerus
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Potrusil
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria.,Department of Otorhinolaryngology, Tirol Kliniken, University Clinics of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Kovács-Öller T, Szarka G, Ganczer A, Tengölics Á, Balogh B, Völgyi B. Expression of Ca 2+-Binding Buffer Proteins in the Human and Mouse Retinal Neurons. Int J Mol Sci 2019; 20:E2229. [PMID: 31067641 PMCID: PMC6539911 DOI: 10.3390/ijms20092229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
Ca2+-binding buffer proteins (CaBPs) are widely expressed by various neurons throughout the central nervous system (CNS), including the retina. While the expression of CaBPs by photoreceptors, retinal interneurons and the output ganglion cells in the mammalian retina has been extensively studied, a general description is still missing due to the differences between species, developmental expression patterns and study-to-study discrepancies. Furthermore, CaBPs are occasionally located in a compartment-specific manner and two or more CaBPs can be expressed by the same neuron, thereby sharing the labor of Ca2+ buffering in the intracellular milieu. This article reviews this topic by providing a framework on CaBP functional expression by neurons of the mammalian retina with an emphasis on human and mouse retinas and the three most abundant and extensively studied buffer proteins: parvalbumin, calretinin and calbindin.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
- Medical School, University of Pécs, 7624 Pécs, Hungary.
| | - Gergely Szarka
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Alma Ganczer
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Ádám Tengölics
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Boglárka Balogh
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Béla Völgyi
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
- Medical School, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
23
|
Joshi H, Jha BK. Fractionally delineate the neuroprotective function of calbindin-D28k in Parkinson’s disease. INT J BIOMATH 2019. [DOI: 10.1142/s1793524518501036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuron is a fundamental unit of the brain, which is specialized to transmit information throughout the body through electrical and chemical signals. Calcium ([Formula: see text]) ions are known as second messengers which play important roles in the movement of the neurotransmitter. Calbindin-[Formula: see text] is a [Formula: see text] binding protein which is involved in regulation of intracellular [Formula: see text] ions and maintains [Formula: see text] homeostasis level, it also alters the cytosolic calcium concentration ([[Formula: see text]]) in nerve cells to keep the cell alive. Parkinson’s disease (PD) is a chronic progressive neurodegenerative brain disorder of the nervous system. Several regions of the brain indicate the hallmark of the PD. The symptoms of PD are plainly linked with the degeneration and death of dopamine neurons in the substantia nigra pars compacta located in midbrain which is accompanied by depletion in calbindin-[Formula: see text]. In the present paper, the neuroprotective role of calbindin-[Formula: see text] in the cytoplasmic [[Formula: see text]] distribution is studied. The elicitation in [[Formula: see text]] is due to the presence of low amount of calbindin-[Formula: see text] which can be portrayed and is a hallmark of PD. A one-dimensional space time fractional reaction diffusion equation is designed by keeping in mind the physiological condition taking place inside Parkinson’s brain. Computational results are performed in MATLAB.
Collapse
Affiliation(s)
- Hardik Joshi
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382007, India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
24
|
Jeon JY, Lee ES, Park EB, Jeon CJ. The organization of tyrosine hydroxylase-immunopositive cells in the sparrow retina. Neurosci Res 2018; 145:10-21. [PMID: 30243906 DOI: 10.1016/j.neures.2018.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to identify tyrosine hydroxylase-immunopositive (TH+) cells in the sparrow retina using immunocytochemistry and quantitative analysis. All TH+ cells were conventional amacrine cells. Based on dendritic morphology, at least two types were observed. The first type had a single thick primary process that descended from the cell body and many densely beaded processes in substrata (s) 1, less beaded processes in s3, and spiny processes in s4/5 of the inner plexiform layer. The dendrites of the second type appeared similar in each layer, but it displayed several primary processes that spread laterally away from the soma before descending to the inner plexiform layer. The average density of TH+ cells was 37.48 ± 1.97 cells/mm2 (mean ± standard deviation; n = 4), and the estimated total number of TH+ cells was 3,061.25 ± 192.79. The highest and lowest densities of TH+ cells were located in the central dorsotemporal retina and periphery of the ventronasal retina, respectively. TH+ cells did not express calbindin-D28 K, calretinin, or parvalbumin. These results suggest that all TH+ cells in specific amacrine cell subpopulations are involved in retinal information processing in both the ON and OFF sublaminae in sparrow retina.
Collapse
Affiliation(s)
- Joo-Yeong Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| | - Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| | - Eun-Bee Park
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
25
|
Voltage-Dependent Calcium Channels, Calcium Binding Proteins, and Their Interaction in the Pathological Process of Epilepsy. Int J Mol Sci 2018; 19:ijms19092735. [PMID: 30213136 PMCID: PMC6164075 DOI: 10.3390/ijms19092735] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023] Open
Abstract
As an important second messenger, the calcium ion (Ca2+) plays a vital role in normal brain function and in the pathophysiological process of different neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and epilepsy. Ca2+ takes part in the regulation of neuronal excitability, and the imbalance of intracellular Ca2+ is a trigger factor for the occurrence of epilepsy. Several anti-epileptic drugs target voltage-dependent calcium channels (VDCCs). Intracellular Ca2+ levels are mainly controlled by VDCCs located in the plasma membrane, the calcium-binding proteins (CBPs) inside the cytoplasm, calcium channels located on the intracellular calcium store (particular the endoplasmic reticulum/sarcoplasmic reticulum), and the Ca2+-pumps located in the plasma membrane and intracellular calcium store. So far, while many studies have established the relationship between calcium control factors and epilepsy, the mechanism of various Ca2+ regulatory factors in epileptogenesis is still unknown. In this paper, we reviewed the function, distribution, and alteration of VDCCs and CBPs in the central nervous system in the pathological process of epilepsy. The interaction of VDCCs with CBPs in the pathological process of epilepsy was also summarized. We hope this review can provide some clues for better understanding the mechanism of epileptogenesis, and for the development of new anti-epileptic drugs targeting on VDCCs and CBPs.
Collapse
|
26
|
Berg EM, Bertuzzi M, Ampatzis K. Complementary expression of calcium binding proteins delineates the functional organization of the locomotor network. Brain Struct Funct 2018; 223:2181-2196. [PMID: 29423637 PMCID: PMC5968073 DOI: 10.1007/s00429-018-1622-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Neuronal networks in the spinal cord generate and execute all locomotor-related movements by transforming descending signals from supraspinal areas into appropriate rhythmic activity patterns. In these spinal networks, neurons that arise from the same progenitor domain share similar distribution patterns, neurotransmitter phenotypes, morphological and electrophysiological features. However, subgroups of them participate in different functionally distinct microcircuits to produce locomotion at different speeds and of different modalities. To better understand the nature of this network complexity, here we characterized the distribution of parvalbumin (PV), calbindin D-28 k (CB) and calretinin (CR) which are regulators of intracellular calcium levels and can serve as anatomical markers for morphologically and potential functionally distinct neuronal subpopulations. We observed wide expression of CBPs in the adult zebrafish, in several spinal and reticulospinal neuronal populations with a diverse neurotransmitter phenotype. We also found that several spinal motoneurons express CR and PV. However, only the motoneuron pools that are responsible for generation of fast locomotion were CR-positive. CR can thus be used as a marker for fast motoneurons and might potentially label the fast locomotor module. Moreover, CB was mainly observed in the neuronal progenitor cells that are distributed around the central canal. Thus, our results suggest that during development the spinal neurons utilize CB and as the neurons mature and establish a neurotransmitter phenotype they use CR or/and PV. The detailed characterization of CBPs expression, in the spinal cord and brainstem neurons, is a crucial step toward a better understanding of the development and functionality of neuronal locomotor networks.
Collapse
Affiliation(s)
- Eva M Berg
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | |
Collapse
|
27
|
Altobelli GG, Van Noorden S, Cimini V. Calcium-binding protein and some neuropeptides in the retina of Octopus vulgaris: A morpho-histochemical study. J Cell Physiol 2018; 233:6866-6876. [PMID: 29682745 DOI: 10.1002/jcp.26570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
Abstract
The existence of both calcium-binding proteins (CBPs) and neuropeptides in the retina and brain of various species of vertebrates and invertebrates is well documented. Octopus retina is particularly interesting because it represents a case of convergent evolution. The aim of this study was to characterize the distribution of two CBPs, calretinin and calbindin, in Octopus retina using morphology, in situ hybridization, immunocytochemistry and Western blot. Calretinin-like immunoreactivity was found in the photoreceptor cells, but unexpectedly also in the supporting cells. In situ hybridization and Western blot analysis confirmed these results. No immunoreactivity was found for calbindin. Two neuropeptides, Substance P and calcitonin gene-related peptide (CGRP), as well as neurofilament protein and glial fibrillary acidic protein were also localized in the Octopus retina by immunocytochemistry. Our work provides new insights about calcium-binding proteins and neuropeptide distribution in Octopus retina and suggests a functional role for calretinin, a highly conserved protein, in visual signal transduction of cephalopods.
Collapse
Affiliation(s)
- Giovanna G Altobelli
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | | | - Vincenzo Cimini
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
28
|
Masliukov PM, Budnik AF, Nozdrachev AD. Neurochemical Features of Metasympathetic System Ganglia in the Course of Ontogenesis. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057017040087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Turovsky EA, Zinchenko VP, Gaidin SG, Turovskaya MV. Calcium-Binding Proteins Protect GABAergic Neurons of the Hippocampus from Hypoxia and Ischemia in vitro. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818010105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Bauter MR, Mendes O. Subchronic toxicity of lyophilized apoaequorin protein powder in Sprague-Dawley rats. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318756905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Apoaequorin is a bioluminescent calcium-binding apoprotein endogenous to the Aequorea species of jellyfish and is commercially available in a dietary supplement in support of brain and cognitive health. Results from a previous 90-day subchronic oral gavage study established the no-observed-adverse-effect-level (NOAEL) of lyophilized apoaequorin protein powder (LAPP) at 666.7 mg/kg/day. The current 90-day oral gavage study in Sprague-Dawley rats administered dose levels of 1000, 2000, and 4000 mg/kg/day of test substance as received. These doses are expressed as milligram of supplement with the amounts of apoaequorin based on the analysis of the percentage of active ingredient. The corresponding amounts of apoaequorin protein are 603, 1206, and 2412 mg/kg/day. These dose levels target approximately 4221, 8442, and 16,844 times more than the expected human oral intake. There were no mortalities, clinical observations, ophthalmological, clinical pathology, or histopathological changes attributable to LAPP administration. Changes in mean body weight and feed efficiency, without other correlating clinical or pathological or other toxicologically relevant findings, were considered to be of little toxicological significance. Therefore, the NOAEL for LAPP administered orally up to 90 days was 4000 mg/kg/day (2412 mg/kg/day based on 603 mg/g or 60.3% active ingredient, apoaequorin protein), the highest dose tested in male and female rats.
Collapse
|
31
|
Cuadrado A, Kügler S, Lastres-Becker I. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol 2017; 14:522-534. [PMID: 29121589 PMCID: PMC5681345 DOI: 10.1016/j.redox.2017.10.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023] Open
Abstract
Tauopathies are a group of neurodegenerative disorders where TAU protein is presented as aggregates or is abnormally phosphorylated, leading to alterations of axonal transport, neuronal death and neuroinflammation. Currently, there is no treatment to slow progression of these diseases. Here, we have investigated whether dimethyl fumarate (DMF), an inducer of the transcription factor NRF2, could mitigate tauopathy in a mouse model. The signaling pathways modulated by DMF were also studied in mouse embryonic fibroblast (MEFs) from wild type or KEAP1-deficient mice. The effect of DMF on neurodegeneration, astrocyte and microglial activation was examined in Nrf2+/+ and Nrf2−/− mice stereotaxically injected in the right hippocampus with an adeno-associated vector expressing human TAUP301L and treated daily with DMF (100 mg/kg, i.g) during three weeks. DMF induces the NRF2 transcriptional through a mechanism that involves KEAP1 but also PI3K/AKT/GSK-3-dependent pathways. DMF modulates GSK-3β activity in mouse hippocampi. Furthermore, DMF modulates TAU phosphorylation, neuronal impairment measured by calbindin-D28K and BDNF expression, and inflammatory processes involved in astrogliosis, microgliosis and pro-inflammatory cytokines production. This study reveals neuroprotective effects of DMF beyond disruption of the KEAP1/NRF2 axis by inhibiting GSK3 in a mouse model of tauopathy. Our results support repurposing of this drug for treatment of these diseases. DMF mechanisms of action are partially KEAP1-dependent. Modulation of GSK-3β phosphorylation by DMF. DMF modulates TAU hyperphosphorylation in a tauopathy mouse model. DMF attenuates hippocampal neuronal damage, astrogliosis and microgliosis.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| | - Sebastian Kügler
- Department of Neurology, Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medicine Göttingen, Göttingen, Germany.
| | - Isabel Lastres-Becker
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
32
|
Masliukov PM, Moiseev K, Budnik AF, Nozdrachev AD, Timmermans JP. Development of Calbindin- and Calretinin-Immunopositive Neurons in the Enteric Ganglia of Rats. Cell Mol Neurobiol 2017; 37:1257-1267. [PMID: 28008568 PMCID: PMC11482072 DOI: 10.1007/s10571-016-0457-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
Calbindin D28 K (CB) and calretinin (CR) are the members of the EF-hand family of calcium-binding proteins that are expressed in neurons and nerve fibers of the enteric nervous system. CB and CR are expressed differentially in neuronal subpopulations throughout the central and peripheral nervous systems and their expression has been used to selectively target specific cell types and isolate neuronal networks. The present study presents an immunohistochemical analysis of CB and CR in the enteric ganglia of small intestine in rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 60-day-old, 1-year-old, and 2-year-old). The data obtained suggest a number of age-dependent changes in CB and CR expression in the myenteric and submucous plexuses. In the myenteric plexus, the lowest percentage of CB-immunoreactive (IR) and CR-IR neurons was observed at birth, after which the number of IR cells increased in the first 10 days of life. In the submucous plexus, CB-IR and CR-IR neurons were observed from 10-day-old onwards. The percentage of CR-IR and CB-IR neurons increased in the first 2 months and in the first 20 days, respectively. In all animals, the majority of the IR neurons colocalized CR and CB. From the moment of birth, the mean of the cross-sectional area of the CB-IR and CR-IR neuronal profiles was larger than that of CB- and CR-negative cells.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000.
| | - Konstantin Moiseev
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| | | | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Dudczig S, Currie PD, Jusuf PR. Developmental and adult characterization of secretagogin expressing amacrine cells in zebrafish retina. PLoS One 2017; 12:e0185107. [PMID: 28949993 PMCID: PMC5614429 DOI: 10.1371/journal.pone.0185107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Calcium binding proteins show stereotypical expression patterns within diverse neuron types across the central nervous system. Here, we provide a characterization of developmental and adult secretagogin-immunolabelled neurons in the zebrafish retina with an emphasis on co-expression of multiple calcium binding proteins. Secretagogin is a recently identified and cloned member of the F-hand family of calcium binding proteins, which labels distinct neuron populations in the retinas of mammalian vertebrates. Both the adult distribution of secretagogin labeled retinal neurons as well as the developmental expression indicative of the stage of neurogenesis during which this calcium binding protein is expressed was quantified. Secretagogin expression was confined to an amacrine interneuron population in the inner nuclear layer, with monostratified neurites in the center of the inner plexiform layer and a relatively regular soma distribution (regularity index > 2.5 across central–peripheral areas). However, only a subpopulation (~60%) co-labeled with gamma-aminobutyric acid as their neurotransmitter, suggesting that possibly two amacrine subtypes are secretagogin immunoreactive. Quantitative co-labeling analysis with other known amacrine subtype markers including the three main calcium binding proteins parvalbumin, calbindin and calretinin identifies secretagogin immunoreactive neurons as a distinct neuron population. The highest density of secretagogin cells of ~1800 cells / mm2 remained relatively evenly along the horizontal meridian, whilst the density dropped of to 125 cells / mm2 towards the dorsal and ventral periphery. Thus, secretagogin represents a new amacrine label within the zebrafish retina. The developmental expression suggests a possible role in late stage differentiation. This characterization forms the basis of functional studies assessing how the expression of distinct calcium binding proteins might be regulated to compensate for the loss of one of the others.
Collapse
Affiliation(s)
- Stefanie Dudczig
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter David Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Patricia Regina Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
- * E-mail:
| |
Collapse
|
34
|
Rees CL, White CM, Ascoli GA. Neurochemical Markers in the Mammalian Brain: Structure, Roles in Synaptic Communication, and Pharmacological Relevance. Curr Med Chem 2017; 24:3077-3103. [PMID: 28413962 PMCID: PMC5646670 DOI: 10.2174/0929867324666170414163506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Knowledge of molecular marker (typically protein or mRNA) expression in neural systems can provide insight to the chemical blueprint of signal processing and transmission, assist in tracking developmental or pathological progressions, and yield key information regarding potential medicinal targets. These markers are particularly relevant in the mammalian brain in the light of its unsurpassed cellular diversity. Accordingly, molecular expression profiling is rapidly becoming a major approach to classify neuron types. Despite a profusion of research, however, the biological functions of molecular markers commonly used to distinguish neuron types remain incompletely understood. Furthermore, most molecular markers of mammalian neuron types are also present in other organs, therefore complicating considerations of their potential pharmacological interactions. OBJECTIVE Here, we survey 15 prominent neurochemical markers from five categories, namely membrane transporters, calcium-binding proteins, neuropeptides, receptors, and extracellular matrix proteins, explaining their relation and relevance to synaptic communication. METHOD For each marker, we summarize fundamental structural features, cellular functionality, distributions within and outside the brain, as well as known drug effectors and mechanisms of action. CONCLUSION This essential primer thus links together the cellular complexity of the brain, the chemical properties of key molecular players in neurotransmission, and possible biomedical opportunities.
Collapse
Affiliation(s)
- Christopher L. Rees
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Charise M. White
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
35
|
Lee JC, Cho JH, Lee TK, Kim IH, Won MH, Cho GS, Shin BN, Hwang IK, Park JH, Ahn JH, Kang IJ, Lee YJ, Kim YH. Effect of hyperthermia on calbindin-D 28k immunoreactivity in the hippocampal formation following transient global cerebral ischemia in gerbils. Neural Regen Res 2017; 12:1458-1464. [PMID: 29089991 PMCID: PMC5649466 DOI: 10.4103/1673-5374.215256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Calbindin D-28K (CB), a Ca2+-binding protein, maintains Ca2+ homeostasis and protects neurons against various insults. Hyperthermia can exacerbate brain damage produced by ischemic insults. However, little is reported about the role of CB in the brain under hyperthermic condition during ischemic insults. We investigated the effects of transient global cerebral ischemia on CB immunoreactivity as well as neuronal damage in the hippocampal formation under hyperthermic condition using immunohistochemistry for neuronal nuclei (NeuN) and CB, and Fluoro-Jade B histofluorescence staining in gerbils. Hyperthermia (39.5 ± 0.2°C) was induced for 30 minutes before and during transient ischemia. Hyperthermic ischemia resulted in neuronal damage/death in the pyramidal layer of CA1–3 area and in the polymorphic layer of the dentate gyrus at 1, 2, 5 days after ischemia. In addition, hyperthermic ischemia significantly decreaced CB immunoreactivity in damaged or dying neurons at 1, 2, 5 days after ischemia. In brief, hyperthermic condition produced more extensive and severer neuronal damage/death, and reduced CB immunoreactivity in the hippocampus following transient global cerebral ischemia. Present findings indicate that the degree of reduced CB immunoreactivity might be related with various neuronal damage/death overtime and corresponding areas after ischemic insults.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Geum-Sil Cho
- Department of Pharmacology & Toxicology, Shinpoong Pharmaceutical Co., Ltd., Ansan, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| | - Young Joo Lee
- Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul, South Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
36
|
Kim IH, Jeon YH, Lee TK, Cho JH, Lee JC, Park JH, Ahn JH, Shin BN, Kim YH, Hong S, Yan BC, Won MH, Lee YL. Neuroprotective effects of ischemic preconditioning on hippocampal CA1 pyramidal neurons through maintaining calbindin D28k immunoreactivity following subsequent transient cerebral ischemia. Neural Regen Res 2017; 12:918-924. [PMID: 28761424 PMCID: PMC5514866 DOI: 10.4103/1673-5374.208573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning (2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult (5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity.
Collapse
Affiliation(s)
- In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yong Hwan Jeon
- Department of Radiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
37
|
Masliukov PM, Nozdrachev AD, Emanuilov AI. Age-related features in expression of calcium-binding proteins in autonomic ganglionic neurons. ADVANCES IN GERONTOLOGY 2016. [DOI: 10.1134/s207905701604010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Diabetes negatively affects cortical and striatal GABAergic neurons: an effect that is partially counteracted by exendin-4. Biosci Rep 2016; 36:BSR20160437. [PMID: 27780892 PMCID: PMC5137538 DOI: 10.1042/bsr20160437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023] Open
Abstract
Diabetes negatively affects specific subtypes of inhibitory neurons in brain areas that regulate sensory and motor functions. This impairment can be partially reversed by exendin-4 (Ex-4). The findings could contribute to the development of treatments against diabetic neurological complications. Type 2 diabetic (T2D) patients often develop early cognitive and sensorimotor impairments. The pathophysiological mechanisms behind these problems are largely unknown. Recent studies demonstrate that dysfunctional γ-aminobutyric acid (GABAergic) neurons are involved in age-related cognitive decline. We hypothesized that similar, but earlier dysfunction is taking place under T2D in the neocortex and striatum (two brain areas important for cognition and sensorimotor functions). We also hypothesized that the T2D-induced effects are pharmacologically reversible by anti-diabetic drugs targeting the glucagon-like peptide-1 receptor (GLP-1R). We determined the effect of T2D on cortical and striatal GABAergic neurons positive for glutamic acid decarboxylase-67 (GAD67), calbindin (CB), parvalbumin (PV) and calretinin (CR) by using immunohistochemistry and quantitative microscopy. Young and middle-aged T2D Goto-Kakizaki (GK) (a model of spontaneous T2D) and Wistar rats were used. Furthermore, we determined the therapeutic potential of the GLP1-R agonist exendin-4 (Ex-4) by treating middle-aged GK rats for 6 weeks with 0.1 μg/kg Ex-4 twice daily. We show that T2D reduced the density of GAD67-positive neurons in the striatum and of CB-positive neurons in both striatum and neocortex. T2D also increased the average volume of PV-positive interneurons in the striatum. Ex-4 treatment increased the density of CB-positive neurons in the striatum of GK rats. Our data demonstrate that T2D negatively affects GAD67 and CB-positive GABAergic neurons in the brain during aging, potentially identifying some of the pathophysiological mechanisms to explain the increased prevalence of neurological complications in T2D. We also show a specific, positive effect of Ex-4 on striatal CB-positive neurons, which could be exploited in therapeutic perspective.
Collapse
|
39
|
Moreno-Ortega AJ, Al-achbili LM, Alonso E, de los Ríos C, García AG, Ruiz-Nuño A, Cano-Abad MF. Neuroprotective Effect of the Novel Compound ITH33/IQM9.21 Against Oxidative Stress and Na+ and Ca2+ Overload in Motor Neuron-like NSC-34 Cells. Neurotox Res 2016; 30:380-91. [DOI: 10.1007/s12640-016-9623-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 12/11/2022]
|
40
|
Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel E. Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson's disease induced by L-DOPA? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0190. [PMID: 26009769 DOI: 10.1098/rstb.2014.0190] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inflammatory mechanisms are proposed to play a role in L-DOPA-induced dyskinesia. Cyclooxygenase-2 (COX2) contributes to inflammation pathways in the periphery and is constitutively expressed in the central nervous system. Considering that inhibition of nitric oxide (NO) formation attenuates L-DOPA-induced dyskinesia, this study aimed at investigating if a NO synthase (NOS) inhibitor would change COX2 brain expression in animals with L-DOPA-induced dyskinesia. To this aim, male Wistar rats received unilateral 6-hydroxydopamine microinjection into the medial forebrain bundle were treated daily with L-DOPA (21 days) combined with 7-nitroindazole or vehicle. All hemi-Parkinsonian rats receiving l-DOPA showed dyskinesia. They also presented increased neuronal COX2 immunoreactivity in the dopamine-depleted dorsal striatum that was directly correlated with dyskinesia severity. Striatal COX2 co-localized with choline-acetyltransferase, calbindin and DARPP-32 (dopamine-cAMP-regulated phosphoprotein-32), neuronal markers of GABAergic neurons. NOS inhibition prevented L-DOPA-induced dyskinesia and COX2 increased expression in the dorsal striatum. These results suggest that increased COX2 expression after L-DOPA long-term treatment in Parkinsonian-like rats could contribute to the development of dyskinesia.
Collapse
Affiliation(s)
- Mariza Bortolanza
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil
| | - Fernando E Padovan-Neto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Maurício Dos Santos-Pereira
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Institut de Cerveau et de la Moelle Epinière, Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Paris, France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Valiullina F, Zakharova Y, Mukhtarov M, Draguhn A, Burnashev N, Rozov A. The Relative Contribution of NMDARs to Excitatory Postsynaptic Currents is Controlled by Ca(2+)-Induced Inactivation. Front Cell Neurosci 2016; 10:12. [PMID: 26858606 PMCID: PMC4731592 DOI: 10.3389/fncel.2016.00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
NMDA receptors (NMDARs) are important mediators of excitatory synaptic transmission and plasticity. A hallmark of these channels is their high permeability to Ca(2+). At the same time, they are themselves inhibited by the elevation of intracellular Ca(2+) concentration. It is unclear however, whether the Ca(2+) entry associated with single NMDAR mediated synaptic events is sufficient to self-inhibit their activation. Such auto-regulation would have important effects on the dynamics of synaptic excitation in several central neuronal networks. Therefore, we studied NMDAR-mediated synaptic currents in mouse hippocampal CA1 pyramidal neurons. Postsynaptic responses to subthreshold Schaffer collateral stimulation depended strongly on the absence or presence of intracellular Ca(2+) buffers. Loading of pyramidal cells with exogenous Ca(2+) buffers increased the amplitude and decay time of NMDAR mediated EPSCs (EPSPs) and prolonged the time window for action potential (AP) generation. Our data indicate that the Ca(2+) influx mediated by unitary synaptic events is sufficient to produce detectable self-inhibition of NMDARs even at a physiological Mg(2+) concentration. Therefore, the contribution of NMDARs to synaptic excitation is strongly controlled by both previous synaptic activity as well as by the Ca(2+) buffer capacity of postsynaptic neurons.
Collapse
Affiliation(s)
| | - Yulia Zakharova
- OpenLab of Neurobiology, Kazan Federal University Kazan, Russia
| | - Marat Mukhtarov
- OpenLab of Neurobiology, Kazan Federal University Kazan, Russia
| | - Andreas Draguhn
- Department of Physiology and Pathophysiology, University of Heidelberg Heidelberg, Germany
| | - Nail Burnashev
- INMED, Institut de Neurobiologie de la Méditerranée UMR901, Aix-Marseille UniversitéMarseille, France; INSERM U901Marseille, France
| | - Andrei Rozov
- OpenLab of Neurobiology, Kazan Federal UniversityKazan, Russia; Department of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
42
|
陈 圆. Modeling of Ca<sup>2+</sup> Channels and Ca<sup>2+</sup> Signal Oscillations. Biophysics (Nagoya-shi) 2016. [DOI: 10.12677/biphy.2016.41001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
43
|
Hong CJH, Siddiqui AM, Sabljic TF, Ball AK. Changes in parvalbumin immunoreactive retinal ganglion cells and amacrine cells after optic nerve injury. Exp Eye Res 2015; 145:363-372. [PMID: 26601926 DOI: 10.1016/j.exer.2015.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 10/09/2015] [Accepted: 11/04/2015] [Indexed: 11/25/2022]
Abstract
Parvalbumin (PARV) is a Ca(2+)-binding protein that may offer resistance to cell death as it primarily functions to maintain Ca(2+) homeostasis. The purpose of this study was to investigate whether PARV expressing retinal ganglion cells (RGCs) would be more resistant to cell death than RGCs that do not express PARV. RGCs in Sprague-Dawley rats were retrogradely labeled with Fluorogold (FG). After 2-28 days following an optic nerve crush (ONC) injury immunohistochemistry was performed on the sections using antibodies against PARV and markers of RGCs. The proportion of retinal ganglion cell layer cells labeled with PARV colocalized with FG or Brn3a and labeled only with PARV (displaced amacrine cells; dACs) were analyzed. PARV staining intensity was measured in ACs, dACs, and RGCs. Double labeling studies revealed that 49% of RGCs and 22% of dACs expressed PARV. There was an immediate reduction in RGC PARV staining after ONC but the overall rate of cell death after 28 days was similar in PARV and non-PARV expressing RGCs. There was no change in PARV AC or dAC number or staining intensity. Although this study suggests that there is no selective survival of the subpopulation of RGCs that contain PARV, there is down-regulation of PARV expression by these RGCs. This suggests that down-regulation of PARV may contribute to RGC death due to a compromised Ca(2+) buffering capacity. Maintaining PARV expression after injury could be an important neuroprotective strategy to improve RGC survival after injury.
Collapse
Affiliation(s)
- Chris Joon Ho Hong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Ahad M Siddiqui
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Thomas F Sabljic
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Alexander K Ball
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
44
|
Mithbaokar P, Fiorito F, Della Morte R, Maharajan V, Costagliola A. Chronic maternal morphine alters calbindin D-28k expression pattern in postnatal mouse brain. Synapse 2015; 70:15-23. [PMID: 26418221 DOI: 10.1002/syn.21866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
The distribution pattern of calbindin (CB)-D28k-expressing neurons results to be altered in several brain regions of chronic morphine exposed adult mice. In this study, the influence of chronic maternal exposure to morphine on the distribution pattern of CB-D28k-expressing neurons in the brain of mouse offspring was investigated. Females of CD-1 mice were daily administered with saline or morphine for 7 days before mating, during the whole gestation period, and until 21 day post-partum. Their offspring were sacrificed on postnatal day 18, and the brains were examined by histology using cresyl violet and by immunohistochemistry using a rabbit polyclonal anti-CB-D28k antibody. Histology revealed no significant differences in the distribution pattern and the number of neurons between the offspring forebrain of the control group of mice and the two groups of mice treated with different doses of morphine. However, immunohistochemical analysis revealed that the number of CB-D28k-immunoreactive neurons remarkably decreased in the cingulate cortex, in the layers II-IV of the parietal cortex and in all regions of the hippocampus, while it increased in the layers V-VI of the parietal cortex and in the subicular region of the offspring brain of morphine treated mice. Overall, our findings demonstrate that maternal exposure to morphine alters the pattern of CB-D28k-expressing neuron pattern in specific regions of murine developing brain, in a layer- and dose-dependent way, thus suggesting that these alterations might represent a mechanism by which morphine modifies the functional aspects of developing brain.
Collapse
Affiliation(s)
- Pratibha Mithbaokar
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy.,Department of Chemistry, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, via Salute, 2, Portici, Naples, 80055, Italy
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy
| | | | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy
| |
Collapse
|
45
|
Mauceri D, Hagenston AM, Schramm K, Weiss U, Bading H. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture. J Biol Chem 2015; 290:23039-49. [PMID: 26231212 DOI: 10.1074/jbc.m115.654962] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines.
Collapse
Affiliation(s)
- Daniela Mauceri
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Anna M Hagenston
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Kathrin Schramm
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Ursula Weiss
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Hilmar Bading
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| |
Collapse
|
46
|
Sensory Deprivation during Early Postnatal Period Alters the Density of Interneurons in the Mouse Prefrontal Cortex. Neural Plast 2015; 2015:753179. [PMID: 26161272 PMCID: PMC4487934 DOI: 10.1155/2015/753179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/14/2015] [Accepted: 06/04/2015] [Indexed: 11/17/2022] Open
Abstract
Early loss of one sensory system can cause improved function of other sensory systems. However, both the time course and neuronal mechanism of cross-modal plasticity remain elusive. Recent study using functional MRI in humans suggests a role of the prefrontal cortex (PFC) in cross-modal plasticity. Since this phenomenon is assumed to be associated with altered GABAergic inhibition in the PFC, we have tested the hypothesis that early postnatal sensory deprivation causes the changes of inhibitory neuronal circuit in different regions of the PFC of the mice. We determined the effects of sensory deprivation from birth to postnatal day 28 (P28) or P58 on the density of parvalbumin (PV), calbindin (CB), and calretinin (CR) neurons in the prelimbic, infralimbic, and dorsal anterior cingulate cortices. The density of PV and CB neurons was significantly increased in layer 5/6 (L5/6). Moreover, the density of CR neurons was higher in L2/3 in sensory deprived mice compared to intact mice. These changes were more prominent at P56 than at P28. These results suggest that long-term sensory deprivation causes the changes of intracortical inhibitory networks in the PFC and the changes of inhibitory networks in the PFC may contribute to cross-modal plasticity.
Collapse
|
47
|
Knabe W, Washausen S. Early development of the nervous system of the eutherian <i>Tupaia belangeri</i>. Primate Biol 2015. [DOI: 10.5194/pb-2-25-2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract. The longstanding debate on the taxonomic status of Tupaia belangeri (Tupaiidae, Scandentia, Mammalia) has persisted in times of molecular biology and genetics. But way beyond that Tupaia belangeri has turned out to be a valuable and widely accepted animal model for studies in neurobiology, stress research, and virology, among other topics. It is thus a privilege to have the opportunity to provide an overview on selected aspects of neural development and neuroanatomy in Tupaia belangeri on the occasion of this special issue dedicated to Hans-Jürg Kuhn. Firstly, emphasis will be given to the optic system. We report rather "unconventional" findings on the morphogenesis of photoreceptor cells, and on the presence of capillary-contacting neurons in the tree shrew retina. Thereafter, network formation among directionally selective retinal neurons and optic chiasm development are discussed. We then address the main and accessory olfactory systems, the terminal nerve, the pituitary gland, and the cerebellum of Tupaia belangeri. Finally, we demonstrate how innovative 3-D reconstruction techniques helped to decipher and interpret so-far-undescribed, strictly spatiotemporally regulated waves of apoptosis and proliferation which pass through the early developing forebrain and eyes, midbrain and hindbrain, and through the panplacodal primordium which gives rise to all ectodermal placodes. Based on examples, this paper additionally wants to show how findings gained from the reported projects have influenced current neuroembryological and, at least partly, medical research.
Collapse
|
48
|
Jeong MJ, Jeon CJ. Localization of melanopsin-immunoreactive cells in the Mongolian gerbil retina. Neurosci Res 2015; 100:6-16. [PMID: 26083722 DOI: 10.1016/j.neures.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian rhythm and pupil responses. The purpose of this study was to reveal the organization of melanopsin-immunoreactive (IR) neurons in the Mongolian gerbil retina using immunocytochemistry. Melanopsin-IR cells were primarily located in the ganglion cell layer (GCL; M1c; 75.15%). Many melanopsin-IR cells were also observed in the inner nuclear layer (INL; M1d; 22.28%). The M1c and M1d cell types extended their dendritic processes into the OFF sublayer of the inner plexiform layer (IPL). We rarely observed bistratified cells (M3; 2.56%) with dendrites in both the ON and OFF sublayers of the IPL. Surprisingly, we did not observe M2 cells which are well observed in other rodents. Melanopsin-IR cell somas were small to medium in size and had large dendritic fields. They had 2-5 primary dendrites that branched sparingly and had varicosities. Melanopsin-IR cell density was very low: they comprised 0.50% of the total ganglion cell population. Moreover, none of the melanopsin-IR cells expressed calbindin-D28K, calretinin, or parvalbumin. These results suggest that in the Mongolian gerbil, melanopsin-IR cells are expressed in a very small RGC subpopulation, and are independent of calcium-binding proteins-containing RGCs.
Collapse
Affiliation(s)
- Mi-Jin Jeong
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
49
|
Altobelli GG, Cimini D, Esposito G, Iuvone T, Cimini V. Analysis of calretinin early expression in the rat hippocampus after beta amyloid (1–42) peptide injection. Brain Res 2015; 1610:89-97. [DOI: 10.1016/j.brainres.2015.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/14/2015] [Indexed: 01/12/2023]
|
50
|
Spruill MM, Kuncl RW. Calbindin-D28K is increased in the ventral horn of spinal cord by neuroprotective factors for motor neurons. J Neurosci Res 2015; 93:1184-91. [PMID: 25914366 DOI: 10.1002/jnr.23562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/27/2014] [Accepted: 01/01/2015] [Indexed: 02/06/2023]
Abstract
Slow glutamate-mediated neuronal degeneration is implicated in the pathophysiology of motor neuron diseases such as amyotrophic lateral sclerosis (ALS). The calcium-binding proteins calbindin-D28K and parvalbumin have been reported to protect neurons against excitotoxic insults. Expression of calbindin-D28K is low in adult human motor neurons, and vulnerable motor neurons additionally may lack parvalbumin. Thus, it has been speculated that the lack of calcium-binding proteins may, in part, be responsible for early degeneration of the population of motor neurons most vulnerable in ALS. Using a rat organotypic spinal cord slice system, we examined whether the most potent neuroprotective factors for motor neurons can increase the expression of calbindin-D28K or parvalbumin proteins in the postnatal spinal cord. After 4 weeks of incubation of spinal cord slices with 1) glial cell line-derived neurotrophic factor (GDNF), 2) neurturin, 3) insulin-like growth factor I (IGF-I), or 4) pigment epithelium-derived factor (PEDF), the number of calbindin-D28K -immunopositive large neurons (>20 μm) in the ventral horn was higher under the first three conditions, but not after PEDF, compared with untreated controls. Under the same conditions, parvalbumin was not upregulated by any neuroprotective factor. The same calbindin increase was true of IGF-I and GDNF in a parallel glutamate toxicity model of motor neuron degeneration. Taken together with our previous reports from the same model, which showed that all these neurotrophic factors can potently protect motor neurons from slow glutamate injury, the data here suggest that upregulation of calbindin-D28K by some of these factors may be one mechanism by which motor neurons can be protected from glutamate-induced, calcium-mediated excitotoxicity.
Collapse
Affiliation(s)
- Maria M Spruill
- Department of Neurology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ralph W Kuncl
- Department of Neurology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|