1
|
Lopez-Perez M, Seidu Z, Larsen MD, Wang W, Nouta J, Wuhrer M, Vidarsson G, Ofori MF, Hviid L. Acquisition of Fc-afucosylation of PfEMP1-specific IgG is age-dependent and associated with clinical protection against malaria. Nat Commun 2025; 16:237. [PMID: 39747065 PMCID: PMC11696684 DOI: 10.1038/s41467-024-55543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Protective immunity to malaria depends on acquisition of parasite-specific antibodies, with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) being one of the most important target antigens. The effector functions of PfEMP1-specific IgG include inhibition of infected erythrocyte (IE) sequestration and opsonization of IEs for cell-mediated destruction. IgG glycosylation modulates antibody functionality, with increased affinity to FcγRIIIa for IgG lacking fucose in the Fc region (Fc-afucosylation). We report here that selective Fc-afucosylation of PfEMP1-specific IgG1 increases with age in P. falciparum-exposed children and is associated with reduced risk of anemia, independent of the IgG levels. A similar association was found for children having PfEMP1-specific IgG1 inducing multiple effector functions against IEs, particularly those associated with antibody-dependent cellular cytotoxicity (ADCC) by NK cells. Our findings provide new insights regarding protective immunity to P. falciparum malaria and highlight the importance of cell-mediated destruction of IgG-opsonized IEs.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Zakaria Seidu
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Zakaria Seidu, Department of Biochemistry and Molecular Biology, Faculty of Biosciences, University for Development Studies, Nyankpala, Ghana
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
2
|
Alruwaili M, Elderdery AY, Ejaz H, Farhana A, Atif M, Almutary H, Mills J. Genotyping and Characterizing Plasmodium falciparum to Reveal Genetic Diversity and Multiplicity of Infection by Merozoite Surface Proteins 1 and 2 ( msp-1 and msp-2) and Glutamate-Rich Protein ( glurp) Genes. Trop Med Infect Dis 2024; 9:284. [PMID: 39591290 PMCID: PMC11597988 DOI: 10.3390/tropicalmed9110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Resistance to current antimalarial drugs is steadily increasing, and new drugs are required. Drug efficacy trials remain the gold standard to assess the effectiveness of a given drug. The World Health Organization (WHO)'s recommendation for the optimal duration of follow-up for assessing antimalarial efficacy is a minimum of 28 days. However, assessing antimalarial drug efficacy in highly endemic regions can be challenging due to the potential risks of acquiring a new infection in the follow-up period, and thus, it may underestimate the efficacy of the given drugs. A new treatment should be introduced if treatment failure rates exceed 10%. Overestimation occurs as a result of retaining a drug with a clinical efficacy of less than 90% with increases in morbidity and mortality, while underestimation may occur due to a misclassification of new infections as treatment failures with tremendous clinical and economic implications. Therefore, molecular genotyping is necessary to distinguish true new infections from treatment failures to ensure accuracy in determining antimalarial efficacy. There are three genetic markers that are commonly used in antimalarial efficiency trials to discriminate between treatment failures and new infections. These include merozoite surface protein 1 (msp-1), merozoite surface protein 2 (msp-2), and glutamate-rich protein (glurp). The genotyping of P. falciparum by nested polymerase chain reaction (n-PCR) targeting these markers is discussed with the inherent limitations and uncertainties associated with the PCR technique and limitations enforced by the parasite's biology itself.
Collapse
Affiliation(s)
- Muharib Alruwaili
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Hasan Ejaz
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Aisha Farhana
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Muhammad Atif
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Hayfa Almutary
- Medical Surgical Nursing Department, Faculty of Nursing, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Jeremy Mills
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK;
| |
Collapse
|
3
|
Abriham ZY, Belew AK, Baffa LD, Mengistu B, Gasahw M, Mohammod EA, Agimas MC, Sisay M, Angaw DA. Plasmodium falciparum genetic diversity; implications for malaria control in Ethiopia: Systematic review and meta-analysis. Health Sci Rep 2024; 7:e70092. [PMID: 39355094 PMCID: PMC11439746 DOI: 10.1002/hsr2.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background In malaria endemic regions, Plasmodium falciparum infection is characterized by variable genetic diversity at different settings. The parasite's various forms are found at varied frequency in different geographic areas. Understanding malaria parasite diversity and transmission is vital to evaluate control interventions. The aim of this study was under taken to determine the status of P. falciparum genetic diversity and MOI in different regions of Ethiopia. Methods Relevant publications were identified from electronic databases such as; PubMed, EMBASE, Google scholar and Google. Besides, an online search was done using the above databases for all articles published in English on genetic diversity of P. falciparum in Ethiopia. STATA software was used for data analysis. The pooled estimates were calculated using random effect model. The summary estimates were presented using forest plots and tables. Results A total of 11 studies were included in the systematic review. However, only 8, 10 and 2 studies were included for Pfmsp-1, Pfmsp-2 and glurp gene meta-analysis, respectively. However, the meta-analysis result showed that the pooled prevalence of Pfmsp-1, msp-2 and glurp gene were 84% for both msp-1/2% and 51%, respectively. The pooled prevalence of msp-1 gene was higher in Amhara followed by Oromia region and lower in SNNPR while, for msp-2 gene the pooled prevalence was higher in Benshangul gumez region. Among the allelic family of msp-1 and msp-2 genes, MAD20 (34%) and FC27 (44%) were the most predominant respectively. Conclusion Based on the review, there is evidence of the presence of high genetic diversity of P. falciparum parasites in Ethiopia, suggesting that malaria transmission remain high and that strengthened control efforts are needed. The approaches and methods used for investigation of diversified parasites have similarity between studies and should use advanced molecular techniques, like microsatellite, to assess the genetic diversity of P. falciparum for better results.
Collapse
Affiliation(s)
- Zufan Y. Abriham
- Department of Medical Parasitology, School of Biomedical and Laboratory SciencesCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Aysheshim K. Belew
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Lemlem D. Baffa
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Berhanu Mengistu
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Moges Gasahw
- Department of Physiotherapy, School of MedicineCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Esmeal A. Mohammod
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Muluken C. Agimas
- Department of Epidemiology and Biostatistics, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Mekonnen Sisay
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Dessie A. Angaw
- Department of Epidemiology and Biostatistics, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| |
Collapse
|
4
|
Paul KMM, Simpson SV, Nundu SS, Arima H, Yamamoto T. Genetic diversity of glutamate-rich protein (GLURP) in Plasmodium falciparum isolates from school-age children in Kinshasa, DRC. Parasitol Int 2024; 100:102866. [PMID: 38350548 DOI: 10.1016/j.parint.2024.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Malaria infections in school-age children further make it difficult to control the disease's spread. Moreover, the genetic diversity of glutamate-rich protein, potentially a candidate for vaccine development, has not yet been investigated in the Democratic Republic of Congo. Therefore, we aimed to assess the genetic diversity of the immunodominant C-terminal repetitive region (R2) of Plasmodium falciparum glutamate-rich protein gene (pfglurp) among school-age children living in Kinshasa, DRC. We conducted nested PCR targeting R2 of pfglurp and the amplicon were directly sequenced. We summarized the prevalence of mutations of bases and amino acids and indicated the amino acid repeat sequence in the R2 region by the unit code. We then statistically analyzed whether there was a relationship between the number of mutations in the pfglurp gene and attributes. In 221 samples, haplotype 1 was the most common (n = 137, 61.99%), with the same sequence as the 3D7 strain. Regarding the number of base mutations, it was higher in urban areas than rural areas (p = 0.0363). When genetic neutrality was tested using data from 171 samples of the single strain, Tajima's D was -1.857 (p = 0.0059). In addition, FST as the genetic distance between all attributes was very small and no significant difference was observed. This study clarified the genetic mutation status and relevant patient attributes among School-age children in the DRC. We found that urban areas are more likely to harbour pfglurp mutations. Future research needs to clarify the reason and mechanism involved.
Collapse
Affiliation(s)
- Kambale Mathe Mowa Paul
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Shirley V Simpson
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Sabin S Nundu
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Taro Yamamoto
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Takashima E, Otsuki H, Morita M, Ito D, Nagaoka H, Yuguchi T, Hassan I, Tsuboi T. The Need for Novel Asexual Blood-Stage Malaria Vaccine Candidates for Plasmodium falciparum. Biomolecules 2024; 14:100. [PMID: 38254700 PMCID: PMC10813614 DOI: 10.3390/biom14010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
6
|
Hassan I, Kanoi BN, Nagaoka H, Sattabongkot J, Udomsangpetch R, Tsuboi T, Takashima E. High-Throughput Antibody Profiling Identifies Targets of Protective Immunity against P. falciparum Malaria in Thailand. Biomolecules 2023; 13:1267. [PMID: 37627332 PMCID: PMC10452476 DOI: 10.3390/biom13081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria poses a significant global health challenge, resulting in approximately 600,000 deaths each year. Individuals living in regions with endemic malaria have the potential to develop partial immunity, thanks in part to the presence of anti-plasmodium antibodies. As efforts are made to optimize and implement strategies to reduce malaria transmission and ultimately eliminate the disease, it is crucial to understand how these interventions impact naturally acquired protective immunity. To shed light on this, our study focused on assessing antibody responses to a carefully curated library of P. falciparum recombinant proteins (n = 691) using samples collected from individuals residing in a low-malaria-transmission region of Thailand. We conducted the antibody assays using the AlphaScreen system, a high-throughput homogeneous proximity-based bead assay that detects protein interactions. We observed that out of the 691 variable surface and merozoite stage proteins included in the library, antibodies to 268 antigens significantly correlated with the absence of symptomatic malaria in an univariate analysis. Notably, the most prominent antigens identified were P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains. These results align with our previous research conducted in Uganda, suggesting that similar antigens like PfEMP1s might play a pivotal role in determining infection outcomes in diverse populations. To further our understanding, it remains critical to conduct functional characterization of these identified proteins, exploring their potential as correlates of protection or as targets for vaccine development.
Collapse
Affiliation(s)
- Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| | - Bernard N. Kanoi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika 01000, Kenya;
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand;
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan;
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| |
Collapse
|
7
|
B-Cell Epitope Mapping of the Plasmodium falciparum Malaria Vaccine Candidate GMZ2.6c in a Naturally Exposed Population of the Brazilian Amazon. Vaccines (Basel) 2023; 11:vaccines11020446. [PMID: 36851323 PMCID: PMC9966924 DOI: 10.3390/vaccines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The GMZ2.6c malaria vaccine candidate is a multi-stage P. falciparum chimeric protein that contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, an asexual-stage vaccine construction consisting of the N-terminal region of the glutamate-rich protein (GLURP) and the C-terminal region of the merozoite surface protein-3 (MSP-3). Previous studies showed that GMZ2.6c is widely recognized by antibodies from Brazilian exposed individuals and that its components are immunogenic in natural infection by P. falciparum. In addition, anti-GMZ2.6c antibodies increase with exposure to infection and may contribute to parasite immunity. Therefore, identifying epitopes of proteins recognized by antibodies may be an important tool for understanding protective immunity. Herein, we identify and validate the B-cell epitopes of GMZ2.6c as immunogenic and immunodominant in individuals exposed to malaria living in endemic areas of the Brazilian Amazon. Specific IgG antibodies and subclasses against MSP-3, GLURP, and Pfs48/45 epitopes were detected by ELISA using synthetic peptides corresponding to B-cell epitopes previously described for MSP-3 and GLURP or identified by BepiPred for Pfs48/45. The results showed that the immunodominant epitopes were P11 from GLURP and MSP-3c and DG210 from MSP-3. The IgG1 and IgG3 subclasses were preferentially induced against these epitopes, supporting previous studies that these proteins are targets for cytophilic antibodies, important for the acquisition of protective immunity. Most individuals presented detectable IgG antibodies against Pfs48/45a and/or Pfs48/45b, validating the prediction of linear B-cell epitopes. The higher frequency and antibody levels against different epitopes from GLURP, MSP-3, and Pfs48/45 provide additional information that may suggest the relevance of GMZ2.6c as a multi-stage malaria vaccine candidate.
Collapse
|
8
|
Reda AG, Messele A, Mohammed H, Assefa A, Golassa L, Mamo H. Temporal dynamics of Plasmodium falciparum population in Metehara, east-central Ethiopia. Malar J 2022; 21:267. [PMID: 36109748 PMCID: PMC9479295 DOI: 10.1186/s12936-022-04277-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is the most serious, genetically most complex and fastest-evolving malaria parasite. Information on genetic diversity of this parasite would guide policy decision and malaria elimination endeavors. This study explored the temporal dynamics of P. falciparum population in two time points in Metehara, east-central Ethiopia. METHODS The participants were quantitative real-time polymerase chain reaction-confirmed patients who were recruited for uncomplicated falciparum malaria therapeutic efficacy test in 2015 and 2019. Dry blood spot samples were analysed by the nested PCR to genotype P. falciparum merozoite surface protein (msp1, msp2) and glutamate-rich protein (glurp) genes. RESULTS While msp1, msp2 and glurp genotypes were successfully detected in 26(89.7%), 24(82.8%) and 14(48.3%) of 2015 samples (n = 29); the respective figures for 2019 (n = 41) were 31(68.3%), 39(95.1%), 25(61.0%). In 2015, the frequencies of K1, MAD20 and RO33 allelic families of msp1, and FC27 and IC/3D7 of msp2 were 19(73.1%), 8(30.6%), 14(53.8%), 21(87.5%), 12(50.5%); and in 2019 it was 15(48.4%), 19(61.3%), 15(48.4%), 30(76.9%), 27(69.2%) respectively. MAD20 has shown dominance over both K1 and RO33 in 2019 compared to the proportion in 2015. Similarly, although FC27 remained dominant, there was shifting trend in the frequency of IC/3D7 from 50.5% in 2015 to 69.2% in 2019. The multiplicity of infection (MOI) and expected heterozygosity index (He) in 2015 and 2019 were respectively [1.43 ± 0.84] and [1.15 ± 0.91], 0.3 and 0.03 for msp1. However, there was no significant association between MOI and age or parasitaemia in both time points. CONCLUSION The lower genetic diversity in P. falciparum population in the two time points and overall declining trend as demonstrated by the lower MOI and He may suggest better progress in malaria control in Metehara. But, the driving force and selective advantage of switching to MAD20 dominance over the other two msp1 allelic families, and the dynamics within msp2 alleles needs further investigation.
Collapse
Affiliation(s)
- Abeba Gebretsadik Reda
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Alebachew Messele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hussein Mohammed
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Ullah I, Khan A, Israr M, Shah M, Shams S, Khan W, Shah M, Siraj M, Akbar K, Naz T, Afridi SG. Genomic miscellany and allelic frequencies of Plasmodium falciparum msp-1, msp-2 and glurp in parasite isolates. PLoS One 2022; 17:e0264654. [PMID: 35259187 PMCID: PMC8903261 DOI: 10.1371/journal.pone.0264654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction
The genomic miscellany of malaria parasites can help inform the intensity of malaria transmission and identify potential deficiencies in malaria control programs. This study was aimed at investigating the genomic miscellany, allele frequencies, and MOI of P. falciparum infection.
Methods
A total of 85 P. falciparum confirmed isolates out of 100 were included in this study that were collected from P. falciparum patients aged 4 months to 60 years in nine districts of Khyber Pakhtunkhwa Province. Parasite DNA was extracted from 200µL whole blood samples using the Qiagen DNA extraction kit following the manufacturer’s instructions. The polymorphic regions of msp-1, msp-2 and glurp loci were genotyped using nested PCR followed by gel electrophoresis for amplified fragments identification and subsequent data analysis.
Results
Out of 85 P. falciparum infections detected, 30 were msp-1 and 32 were msp-2 alleles specific. Successful amplification occurred in 88.23% (75/85) isolates for msp-1, 78.9% (67/85) for msp-2 and 70% (60/85) for glurp gene. In msp-1, the K1 allelic family was predominantly prevalent as 66.66% (50/75), followed by RO33 and MAD20. The frequency of samples with single infection having only K1, MAD20 and RO33 were 21.34% (16/75), 8% (6/75), and 10.67% (8/75), respectively. In msp-2, both the FC27 and 3D7 allelic families revealed almost the same frequencies as 70.14% (47/67) and 67.16% (45/67), respectively. Nine glurp RII region alleles were identified in 60 isolates. The overall mean multiplicity of infection for msp genes was 1.6 with 1.8 for msp-1 and 1.4 for msp-2, while for glurp the MOI was 1.03. There was no significant association between multiplicity of infection and age groups (Spearman’s rank coefficient = 0.050; P = 0.6) while MOI and parasite density correlated for only msp-2 allelic marker.
Conclusions
The study showed high genetic diversity and allelic frequency with multiple clones of msp-1, msp-2 and glurp in P. falciparum isolates in Khyber Pakhtunkhwa, Pakistan. In the present study the genotype data may provide valuable information essential for monitoring the impact of malaria eradication efforts in this region.
Collapse
Affiliation(s)
- Ibrar Ullah
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Israr
- Department of Forensic Sciences, University of Swat, Swat, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muzafar Shah
- Centre for Animal Sciences & Fisheries, University of Swat, Swat, Pakistan
| | - Muhammad Siraj
- Department of Zoology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Kehkashan Akbar
- Department of Biochemistry, Abbottabad International Medical College, Abbottabad, Pakistan
| | - Tahira Naz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- * E-mail:
| |
Collapse
|
10
|
Baptista BO, de Souza ABL, Riccio EKP, Bianco-Junior C, Totino PRR, Martins da Silva JH, Theisen M, Singh SK, Amoah LE, Ribeiro-Alves M, Souza RM, Lima-Junior JC, Daniel-Ribeiro CT, Pratt-Riccio LR. Naturally acquired antibody response to a Plasmodium falciparum chimeric vaccine candidate GMZ2.6c and its components (MSP-3, GLURP, and Pfs48/45) in individuals living in Brazilian malaria-endemic areas. Malar J 2022; 21:6. [PMID: 34983540 PMCID: PMC8729018 DOI: 10.1186/s12936-021-04020-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. Methods This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. Results The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. Conclusions The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04020-6.
Collapse
Affiliation(s)
- Barbara Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Ana Beatriz Lopes de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Cesare Bianco-Junior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | | | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Medeiros Souza
- Laboratório de Doenças Infecciosas na Amazônia Ocidental, Universidade Federal do Acre, Acre, Brazil
| | | | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil.
| |
Collapse
|
11
|
Afucosylated Plasmodium falciparum-specific IgG is induced by infection but not by subunit vaccination. Nat Commun 2021; 12:5838. [PMID: 34611164 PMCID: PMC8492741 DOI: 10.1038/s41467-021-26118-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/11/2021] [Indexed: 01/02/2023] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate receptor- and tissue-specific sequestration of infected erythrocytes (IEs) in malaria. Antibody responses are a central component of naturally acquired malaria immunity. PfEMP1-specific IgG likely protects by inhibiting IE sequestration and through IgG-Fc Receptor (FcγR) mediated phagocytosis and killing of antibody-opsonized IEs. The affinity of afucosylated IgG to FcγRIIIa is up to 40-fold higher than fucosylated IgG, resulting in enhanced antibody-dependent cellular cytotoxicity. Most IgG in plasma is fully fucosylated, but afucosylated IgG is elicited in response to enveloped viruses and to paternal alloantigens during pregnancy. Here we show that naturally acquired PfEMP1-specific IgG is strongly afucosylated in a stable and exposure-dependent manner, and efficiently induces FcγRIIIa-dependent natural killer (NK) cell degranulation. In contrast, immunization with a subunit PfEMP1 (VAR2CSA) vaccine results in fully fucosylated specific IgG. These results have implications for understanding protective natural- and vaccine-induced immunity to malaria. Here, Larsen et al. describe differences in Fc fucosylation of P. falciparum PfEMP1-specific IgG produced in response to natural infection versus VAR2CSA-type subunit vaccination, which leads to differences in the ability to induce FcγRIIIa-dependent natural killer cell degranulation.
Collapse
|
12
|
Larsen MD, Lopez-Perez M, Dickson EK, Ampomah P, Tuikue Ndam N, Nouta J, Koeleman CAM, Ederveen ALH, Mordmüller B, Salanti A, Nielsen MA, Massougbodji A, van der Schoot CE, Ofori MF, Wuhrer M, Hviid L, Vidarsson G. Afucosylated Plasmodium falciparum-specific IgG is induced by infection but not by subunit vaccination. Nat Commun 2021. [PMID: 34611164 DOI: 10.1101/2021.04.23.441082v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate receptor- and tissue-specific sequestration of infected erythrocytes (IEs) in malaria. Antibody responses are a central component of naturally acquired malaria immunity. PfEMP1-specific IgG likely protects by inhibiting IE sequestration and through IgG-Fc Receptor (FcγR) mediated phagocytosis and killing of antibody-opsonized IEs. The affinity of afucosylated IgG to FcγRIIIa is up to 40-fold higher than fucosylated IgG, resulting in enhanced antibody-dependent cellular cytotoxicity. Most IgG in plasma is fully fucosylated, but afucosylated IgG is elicited in response to enveloped viruses and to paternal alloantigens during pregnancy. Here we show that naturally acquired PfEMP1-specific IgG is strongly afucosylated in a stable and exposure-dependent manner, and efficiently induces FcγRIIIa-dependent natural killer (NK) cell degranulation. In contrast, immunization with a subunit PfEMP1 (VAR2CSA) vaccine results in fully fucosylated specific IgG. These results have implications for understanding protective natural- and vaccine-induced immunity to malaria.
Collapse
Affiliation(s)
- Mads Delbo Larsen
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mary Lopez-Perez
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emmanuel Kakra Dickson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Paulina Ampomah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Agertoug Nielsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Godomey, Benin
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Centre for Medical Parasitology, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands. .,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
14
|
Byakika-Kibwika P, Ssenyonga R, Lamorde M, Blessborn D, Tarning J. Piperaquine concentration and malaria treatment outcomes in Ugandan children treated for severe malaria with intravenous Artesunate or quinine plus Dihydroartemisinin-Piperaquine. BMC Infect Dis 2019; 19:1025. [PMID: 31795967 PMCID: PMC6889437 DOI: 10.1186/s12879-019-4647-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Treatment for severe malaria must be prompt with effective parenteral antimalarial drugs for at least 24 h to achieve fast parasite clearance, and when the patient can tolerate oral therapy, treatment should be completed with effective artemisinin based combination therapy (ACT) for complete parasite clearance and to prevent recrudescence. We evaluated piperaquine concentration and malaria treatment outcomes among Ugandan children treated for severe malaria with intravenous artesunate (AS) or quinine (QN) plus dihydroartemisinin-piperaquine (DP), in Tororo District Hospital in Eastern Uganda. Methods Capillary blood piperaquine concentration data were obtained from a randomized clinical trial whose objective was to evaluate parasite clearance, 42-day parasitological treatment outcomes and safety, following treatment of severe malaria with intravenous AS or QN, plus artemether-lumefantrine or DP among children in Tororo District Hospital, in Eastern Uganda. Results Piperaquine concentration data from 150 participants who received DP were analyzed. Participants with unadjusted treatment failure had lower median day 7 capillary piperaquine concentration than those with treatment success (34.7 (IQR) (17.9–49.1) vs 66.7 (IQR) (41.8–81.9), p < 0.001), and lower than the recommended day 7 cut off level of 57 ng/mL. There was no difference in median capillary piperaquine concentrations among participants with re-infection and recrudescence (35.3 (IQR) (17.9–55.2) vs 34.8 (IQR) (18.1–45.1), p = 0.847). The risk of treatment failure was two times higher among children with low (< 57 ng/mL) day 7 capillary piperaquine concentration (relative risk: 2.1 CI 1.4–3.1), p < 0.001) compared to children with high day 7 capillary piperaquine concentrations (> 57 ng/mL). Conclusion Considering the low day 7 concentrations of piperaquine reported in the patients studied here, we suggest to adopt the recently recommended higher dose of DP in young children or a prolonged 5-day dosing in children living in malaria endemic areas who have suffered an initial episode of severe malaria in order to achieve adequate drug exposures for effective post-treatment prophylactic effects. Trial registration The study was registered with the Pan African Clinical Trial Registry (PACTR201110000321348). Registered 7th October 2011.
Collapse
Affiliation(s)
- Pauline Byakika-Kibwika
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda. .,Infectious Diseases Institute, Kampala, Uganda.
| | - Ronald Ssenyonga
- Clinical Trials Unit, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Daniel Blessborn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Quintana MDP, Ch’ng JH, Zandian A, Imam M, Hultenby K, Theisen M, Nilsson P, Qundos U, Moll K, Chan S, Wahlgren M. SURGE complex of Plasmodium falciparum in the rhoptry-neck (SURFIN4.2-RON4-GLURP) contributes to merozoite invasion. PLoS One 2018; 13:e0201669. [PMID: 30092030 PMCID: PMC6084945 DOI: 10.1371/journal.pone.0201669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Plasmodium falciparum invasion into red blood cells (RBCs) is a complex process engaging proteins on the merozoite surface and those contained and sequentially released from the apical organelles (micronemes and rhoptries). Fundamental to invasion is the formation of a moving junction (MJ), a region of close apposition of the merozoite and the RBC plasma membranes, through which the merozoite draws itself before settling into a newly formed parasitophorous vacuole (PV). SURFIN4.2 was identified at the surface of the parasitized RBCs (pRBCs) but was also found apically associated with the merozoite. Using antibodies against the N-terminus of the protein we show the presence of SURFIN4.2 in the neck of the rhoptries, its secretion into the PV and shedding into the culture supernatant upon schizont rupture. Using immunoprecipitation followed by mass spectrometry we describe here a novel protein complex we have named SURGE where SURFIN4.2 forms interacts with the rhoptry neck protein 4 (RON4) and the Glutamate Rich Protein (GLURP). The N-terminal cysteine-rich-domain (CRD) of SURFIN4.2 mediates binding to the RBC membrane and its interaction with RON4 suggests its involvement in the contact between the merozoite apex and the RBC at the MJ. Supporting this suggestion, we also found that polyclonal antibodies to the extracellular domain (including the CRD) of SURFIN4.2 partially inhibit merozoite invasion. We propose that the formation of the SURGE complex participates in the establishment of parasite infection within the PV and the RBCs.
Collapse
Affiliation(s)
- Maria del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jun-Hong Ch’ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Arash Zandian
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Maryam Imam
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
McCall MBB, Wammes LJ, Langenberg MCC, van Gemert GJ, Walk J, Hermsen CC, Graumans W, Koelewijn R, Franetich JF, Chishimba S, Gerdsen M, Lorthiois A, van de Vegte M, Mazier D, Bijker EM, van Hellemond JJ, van Genderen PJJ, Sauerwein RW. Infectivity of Plasmodium falciparum sporozoites determines emerging parasitemia in infected volunteers. Sci Transl Med 2018. [PMID: 28637923 DOI: 10.1126/scitranslmed.aag2490] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Malaria sporozoites must first undergo intrahepatic development before a pathogenic blood-stage infection is established. The success of infection depends on host and parasite factors. In healthy human volunteers undergoing controlled human malaria infection (CHMI), we directly compared three clinical Plasmodium falciparum isolates for their ability to infect primary human hepatocytes in vitro and to drive the production of blood-stage parasites in vivo. Our data show a correlation between the efficiency of strain-specific sporozoite invasion of human hepatocytes and the dynamics of patent parasitemia in study subjects, highlighting intrinsic differences in infectivity among P. falciparum isolates from distinct geographical locales. The observed heterogeneity in infectivity among strains underscores the value of assessing the protective efficacy of candidate malaria vaccines against heterologous strains in the CHMI model.
Collapse
Affiliation(s)
- Matthew B B McCall
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Linda J Wammes
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | | | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jona Walk
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cornelus C Hermsen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Rob Koelewijn
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands.,Institute for Tropical Diseases, Harbour Hospital, Rotterdam, Netherlands
| | - Jean-François Franetich
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l'hôpital, F-75013 Paris, France
| | - Sandra Chishimba
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Max Gerdsen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Audrey Lorthiois
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l'hôpital, F-75013 Paris, France
| | - Marga van de Vegte
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l'hôpital, F-75013 Paris, France.,AP-HP, Groupe hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie, F-75013 Paris, France
| | - Else M Bijker
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | | | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
17
|
Nguetse CN, Ojo JA, Nchotebah C, Ikegbunam MN, Meyer CG, Thomas BN, Velavan TP, Ojurongbe O. Genetic Diversity of the Plasmodium falciparum Glutamate-Rich Protein R2 Region Before and Twelve Years after Introduction of Artemisinin Combination Therapies among Febrile Children in Nigeria. Am J Trop Med Hyg 2018; 98:667-676. [PMID: 29363449 PMCID: PMC5930894 DOI: 10.4269/ajtmh.17-0621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/14/2017] [Indexed: 11/07/2022] Open
Abstract
The genetic diversity of glutamate-rich protein (GLURP) R2 region in Plasmodium falciparum isolates collected before and 12 years after the introduction of artemisinin combination treatment of malaria in Osogbo, Osun State, Nigeria, was compared in this study. Blood samples were collected on filter paper in 2004 and 2015 from febrile children from ages 1-12 years. The R2 region of the GLURP gene was genotyped using nested polymerase chain reaction and by nucleotide sequencing. In all, 12 GLURP alleles were observed in a total of 199 samples collected in the two study years. The multiplicity of infection (MOI) marginally increased over the two study years; however, the differences were statistically insignificant (2004 samples MOI = 1.23 versus 2015 samples MOI = 1.47). Some alleles were stable in their prevalence, whereas two GLURP alleles, VIII and XI, showed considerable variability between both years. This variability was replicated when GLURP sequences from other regions were compared with ours. The expected heterozygosity (He) values (He = 0.87) were identical for the two groups. High variability in the rearrangement of the amino acid repeat units in the R2 region were observed, with the amino acid repeat sequence DKNEKGQHEIVEVEEILPE more prevalent in both years, compared with the two other repeat sequences observed in the study. The parasite population characterized in this study displayed extensive genetic diversity. The detailed genetic profile of the GLURP R2 region has the potential to help guide further epidemiological studies aimed toward the rational design of novel chemotherapies that are antagonistic toward malaria.
Collapse
Affiliation(s)
- Christian N. Nguetse
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Johnson Adeyemi Ojo
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Charles Nchotebah
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Moses Nkechukwu Ikegbunam
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikwe University, Akwa, Nigeria
| | - Christian G. Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Duy Tan University, Da Nang, Vietnam
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, New York
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Duy Tan University, Da Nang, Vietnam
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
| | - Olusola Ojurongbe
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| |
Collapse
|
18
|
Sarmah NP, Sarma K, Bhattacharyya DR, Sultan A, Bansal D, Singh N, Bharti PK, Kaur H, Sehgal R, Mohapatra PK, Mahanta J. Molecular characterization of Plasmodium falciparum in Arunachal Pradesh from Northeast India based on merozoite surface protein 1 & glutamate-rich protein. Indian J Med Res 2018; 146:375-380. [PMID: 29355145 PMCID: PMC5793473 DOI: 10.4103/ijmr.ijmr_291_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background & objectives: Northeast (NE) India is one of the high endemic regions for malaria with a preponderance of Plasmodium falciparum, resulting in high morbidity and mortality. The P. falciparum parasite of this region showed high polymorphism in drug-resistant molecular biomarkers. However, there is a paucity of information related to merozoite surface protein 1 (msp-1) and glutamate-rich protein (glurp) which have been extensively studied in various parts of the world. The present study was, therefore, aimed at investigating the genetic diversity of P. falciparum based on msp-1 and glurp in Arunachal Pradesh, a State in NE India. Methods: Two hundred and forty nine patients with fever were screened for malaria, of whom 75 were positive for P. falciparum. Blood samples were collected from each microscopically confirmed patient. The DNA was extracted; nested polymerase chain reaction and sequencing were performed to study the genetic diversity of msp-1 (block 2) and glurp. Results: The block 2 of msp-1 gene was found to be highly polymorphic, and overall allelic distribution showed that RO33 was the dominant allele (63%), followed by MAD20 (29%) and K1 (8%) alleles. However, an extensive diversity (9 alleles and 4 genotypes) and 6-10 repeat regions exclusively of R2 type were observed in glurp. Interpretation & conclusions: The P. falciparum population of NE India was diverse which might be responsible for higher plasticity leading to the survival of the parasite and in turn to the higher endemicity of falciparum malaria of this region.
Collapse
Affiliation(s)
| | - Kishore Sarma
- ICMR-Regional Medical Research Centre, Dibrugarh, India
| | | | - Ali Sultan
- Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
| | - Devendra Bansal
- Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
| | - Neeru Singh
- ICMR-National Institute for Research in Tribal Health, Jabalpur, India
| | - Praveen K Bharti
- ICMR-National Institute for Research in Tribal Health, Jabalpur, India
| | - Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | | | |
Collapse
|
19
|
Pattaradilokrat S, Trakoolsoontorn C, Simpalipan P, Warrit N, Kaewthamasorn M, Harnyuttanakorn P. Size and sequence polymorphisms in the glutamate-rich protein gene of the human malaria parasite Plasmodium falciparum in Thailand. Parasit Vectors 2018; 11:49. [PMID: 29357909 PMCID: PMC5778735 DOI: 10.1186/s13071-018-2630-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background The glutamate-rich protein (GLURP) of the malaria parasite Plasmodium falciparum is a key surface antigen that serves as a component of a clinical vaccine. Moreover, the GLURP gene is also employed routinely as a genetic marker for malarial genotyping in epidemiological studies. While extensive size polymorphisms in GLURP are well recorded, the extent of the sequence diversity of this gene is rarely investigated. The present study aimed to explore the genetic diversity of GLURP in natural populations of P. falciparum. Results The polymorphic C-terminal repetitive R2 region of GLURP sequences from 65 P. falciparum isolates in Thailand were generated and combined with the data from 103 worldwide isolates to generate a GLURP database. The collection was comprised of 168 alleles, encoding 105 unique GLURP subtypes, characterized by 18 types of amino acid repeat units (AAU). Of these, 28 GLURP subtypes, formed by 10 AAU types, were detected in P. falciparum in Thailand. Among them, 19 GLURP subtypes and 2 AAU types are described for the first time in the Thai parasite population. The AAU sequences were highly conserved, which is likely due to negative selection. Standard Fst analysis revealed the shared distributions of GLURP types among the P. falciparum populations, providing evidence of gene flow among the different demographic populations. Conclusions Sequence diversity causing size variations in GLURP in Thai P. falciparum populations were detected, and caused by non-synonymous substitutions in repeat units and some insertion/deletion of aspartic acid or glutamic acid codons between repeat units. The P. falciparum population structure based on GLURP showed promising implications for the development of GLURP-based vaccines and for monitoring vaccine efficacy. Electronic supplementary material The online version of this article (doi: 10.1186/s13071-018-2630-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sittiporn Pattaradilokrat
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand. .,Veterinary Parasitology Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chawinya Trakoolsoontorn
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Phumin Simpalipan
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Natapot Warrit
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pongchai Harnyuttanakorn
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
20
|
Byakika-Kibwika P, Achan J, Lamorde M, Karera-Gonahasa C, Kiragga AN, Mayanja-Kizza H, Kiwanuka N, Nsobya S, Talisuna AO, Merry C. Intravenous artesunate plus Artemisnin based Combination Therapy (ACT) or intravenous quinine plus ACT for treatment of severe malaria in Ugandan children: a randomized controlled clinical trial. BMC Infect Dis 2017; 17:794. [PMID: 29281988 PMCID: PMC5745850 DOI: 10.1186/s12879-017-2924-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Severe malaria is a medical emergency associated with high mortality. Adequate treatment requires initial parenteral therapy for fast parasite clearance followed by longer acting oral antimalarial drugs for cure and prevention of recrudescence. METHODS In a randomized controlled clinical trial, we evaluated the 42-day parasitological outcomes of severe malaria treatment with intravenous artesunate (AS) or intravenous quinine (QNN) followed by oral artemisinin based combination therapy (ACT) in children living in a high malaria transmission setting in Eastern Uganda. RESULTS We enrolled 300 participants and all were included in the intention to treat analysis. Baseline characteristics were similar across treatment arms. The median and interquartile range for number of days from baseline to parasite clearance was significantly lower among participants who received intravenous AS (2 (1-2) vs 3 (2-3), P < 0.001). Overall, 63.3% (178/281) of the participants had unadjusted parasitological treatment failure over the 42-day follow-up period. Molecular genotyping to distinguish re-infection from recrudescence was performed in a sample of 127 of the 178 participants, of whom majority 93 (73.2%) had re-infection and 34 (26.8%) had recrudescence. The 42 day risk of recrudescence did not differ with ACT administered. Adverse events were of mild to moderate severity and consistent with malaria symptoms. CONCLUSION In this high transmission setting, we observed adequate initial treatment outcomes followed by very high rates of malaria re-infection post severe malaria treatment. The impact of recurrent antimalarial treatment on the long term efficacy of antimalarial regimens needs to be investigated and surveillance mechanisms for resistance markers established since recurrent malaria infections are likely to be exposed to sub-therapeutic drug concentrations. More strategies for prevention of recurrent malaria infections in the most at risk populations are needed. TRIAL REGISTRATION The study was registered with the Pan African Clinical Trial Registry ( PACTR201110000321348 ).
Collapse
Affiliation(s)
- Pauline Byakika-Kibwika
- Department of Medicine, College of Health Sciences, Makerere University, P. O. Box, 7072, Kampala, Uganda.
- Infectious Diseases Institute, Kampala, Uganda.
| | - Jane Achan
- Medical Research Council Unit, Serekunda, The Gambia
| | | | | | | | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, P. O. Box, 7072, Kampala, Uganda
| | - Noah Kiwanuka
- School of Public Health, Makerere University, Kampala, Uganda
| | - Sam Nsobya
- Department of Pathology, Makerere University, Kampala, Uganda
| | | | - Concepta Merry
- Infectious Diseases Institute, Kampala, Uganda
- Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Sherling ES, van Ooij C. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes. FEMS Microbiol Rev 2017; 40:701-21. [PMID: 27587718 PMCID: PMC5007283 DOI: 10.1093/femsre/fuw016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria is caused by infection of erythrocytes by parasites of the genus Plasmodium. To survive inside erythrocytes, these parasites induce sweeping changes within the host cell, one of the most dramatic of which is the formation of multiple membranous compartments, collectively referred to as the exomembrane system. As an uninfected mammalian erythrocyte is devoid of internal membranes, the parasite must be the force and the source behind the formation of these compartments. Even though the first evidence of the presence these of internal compartments was obtained over a century ago, their functions remain mostly unclear, and in some cases completely unknown, and the mechanisms underlying their formation are still mysterious. In this review, we provide an overview of the different parts of the exomembrane system, describing the parasitophorous vacuole, the tubovesicular network, Maurer's clefts, the caveola-vesicle complex, J dots and other mobile compartments, and the small vesicles that have been observed in Plasmodium-infected cells. Finally, we combine the data into a simplified view of the exomembrane system and its relation to the alterations of the host erythrocyte. Plasmodium parasites remodel the host erythrocyte in various ways, including the formation of several membranous compartments, together referred to as the exomembrane system, within the erythrocyte cytosol that together are key to the sweeping changes in the host cell.
Collapse
Affiliation(s)
- Emma S Sherling
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
22
|
Kaur H, Sehgal R, Goyal K, Makkar N, Yadav R, Bharti PK, Singh N, Sarmah NP, Mohapatra PK, Mahanta J, Bansal D, Sultan AA, Kanwar JR. Genetic diversity of Plasmodium falciparum merozoite surface protein-1 (block 2), glutamate-rich protein and sexual stage antigen Pfs25 from Chandigarh, North India. Trop Med Int Health 2017; 22:1590-1598. [PMID: 29029367 DOI: 10.1111/tmi.12990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To elucidate the genetic diversity of Plasmodium falciparum in residual transmission foci of northern India. METHODS Clinically suspected patients with malaria were screened for malaria infection by microscopy. 48 P. falciparum-infected patients were enrolled from tertiary care hospital in Chandigarh, India. Blood samples were collected from enrolled patients, genomic DNA extraction and nested PCR was performed for further species confirmation. Sanger sequencing was carried out using block 2 region of msp1, R2 region of glurp and pfs25-specific primers. RESULTS Extensive diversity was found in msp1 alleles with predominantly RO33 alleles. Overall allelic prevalence was 55.8% for RO33, 39.5% for MAD20 and 4.7% for K1. Six variants were observed in MAD20, whereas no variant was found in RO33 and K1 alleles. A phylogenetic analysis of RO33 alleles indicated more similarity to South African isolates, whereas MAD20 alleles showed similarity with South-East Asian isolates. In glurp, extensive variation was observed with eleven different alleles based on the AAU repeats. However, pfs25 showed less diversity and was the most stable among the targeted genes. CONCLUSION Our findings document the genetic diversity among circulating strains of P. falciparum in an area of India with low malaria transmission and could have implications for control strategies to reach the national goal of malaria elimination.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kapil Goyal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nikita Makkar
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Richa Yadav
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen K Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Jabalpur, India
| | - Neeru Singh
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Jabalpur, India
| | - Nilanju P Sarmah
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, India
| | - Pradyumna K Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Deakin University, Geelong, Australia
| |
Collapse
|
23
|
Tuju J, Kamuyu G, Murungi LM, Osier FHA. Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 2017; 152:195-206. [PMID: 28646586 PMCID: PMC5588761 DOI: 10.1111/imm.12780] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines.
Collapse
Affiliation(s)
- James Tuju
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Department of BiochemistryPwani UniversityKilifiKenya
| | - Gathoni Kamuyu
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Linda M. Murungi
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Faith H. A. Osier
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Centre for Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- Department of Biomedical SciencesPwani UniversityKilifiKenya
| |
Collapse
|
24
|
Patel P, Bharti PK, Bansal D, Raman RK, Mohapatra PK, Sehgal R, Mahanta J, Sultan AA, Singh N. Genetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: Implication for vaccine development. PLoS One 2017; 12:e0182674. [PMID: 28787005 PMCID: PMC5546615 DOI: 10.1371/journal.pone.0182674] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity in Plasmodium falciparum antigens is a major hurdle in developing an effective malaria vaccine. Protective efficacy of the vaccine is dependent on the polymorphic alleles of the vaccine candidate antigens. Therefore, we investigated the genetic diversity of the potential vaccine candidate antigens i.e. msp-1, msp-2, glurp, csp and pfs25 from field isolates of P.falciparum and determined the natural immune response against the synthetic peptide of these antigens. Genotyping was performed using Sanger method and size of alleles, multiplicity of infection, heterogeneity and recombination rate were analyzed. Asexual stage antigens were highly polymorphic with 55 and 50 unique alleles in msp-1 and msp-2 genes, respectively. The MOI for msp-1 and msp-2 were 1.67 and 1.28 respectively. A total 59 genotype was found in glurp gene with 8 types of amino acid repeats in the conserved part of RII repeat region. The number of NANP repeats from 40 to 44 was found among 55% samples in csp gene while pfs25 was found almost conserved with only two amino acid substitution site. The level of genetic diversity in the present study population was very similar to that from Asian countries. A higher IgG response was found in the B-cell epitopes of msp-1 and csp antigens and higher level of antibodies against csp B-cell epitope and glurp antigen were recorded with increasing age groups. Significantly, higher positive responses were observed in the csp antigen among the samples with ≥42 NANP repeats. The present finding showed extensive diversity in the asexual stage antigens.
Collapse
Affiliation(s)
- Priyanka Patel
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Garha, Jabalpur, Madhya Pradesh, India
| | - Praveen K. Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Garha, Jabalpur, Madhya Pradesh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Rajive K. Raman
- Community Health Centre Janakpur, District Baikunthpur, Chhattisgarh, India
| | - Pradyumna K. Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, Assam, India
| | - Rakesh Sehgal
- Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, Assam, India
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Neeru Singh
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Garha, Jabalpur, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
25
|
Theisen M, Adu B, Mordmüller B, Singh S. The GMZ2 malaria vaccine: from concept to efficacy in humans. Expert Rev Vaccines 2017; 16:907-917. [PMID: 28699823 DOI: 10.1080/14760584.2017.1355246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION GMZ2 is a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of Plasmodium falciparum, and is designed with the aim of mimicking naturally acquired anti-malarial immunity. The rationale for combining these two antigens is based on a series of immune epidemiological studies from geographically diverse malaria endemic regions; functional in vitro studies; and pre-clinical studies in rodents and New World monkeys. GMZ2 adjuvanted with alhydrogel® (alum) was well tolerated and immunogenic in three phase 1 studies. The recently concluded phase 2 trial of GMZ2/alum, involving 1849 participants 12 to 60 month of age in four countries in West, Central and Eastern Africa, showed that GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects for clinical development of GMZ2 sub-unit vaccine. We will focus on discovery, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production, pre-clinical and clinical studies. Expert commentary: GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. More immunogenic formulations should be developed.
Collapse
Affiliation(s)
- Michael Theisen
- a Department for Congenital Disorders , Statens Serum Institut , Copenhagen , Denmark.,b Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology , University of Copenhagen , Copenhagen , Denmark.,c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Bright Adu
- d Noguchi Memorial Institute for Medical Research , University of Ghana , Legon , Ghana
| | - Benjamin Mordmüller
- e Institute of Tropical Medicine and Center for Infection Research, partner site Tübingen , University of Tübingen , Tübingen , Germany
| | - Subhash Singh
- f Indian Institute of Integrative Medicine , Jammu , India
| |
Collapse
|
26
|
Gebru T, Ajua A, Theisen M, Esen M, Ngoa UA, Issifou S, Adegnika AA, Kremsner PG, Mordmüller B, Held J. Recognition of Plasmodium falciparum mature gametocyte-infected erythrocytes by antibodies of semi-immune adults and malaria-exposed children from Gabon. Malar J 2017; 16:176. [PMID: 28446190 PMCID: PMC5406886 DOI: 10.1186/s12936-017-1827-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmission of malaria from man to mosquito depends on the presence of gametocytes, the sexual stage of Plasmodium parasites in the infected host. Naturally acquired antibodies against gametocytes exist and may play a role in controlling transmission by limiting the gametocyte development in the circulation or by interrupting gamete development and fertilization in the mosquito following ingestion. So far, most studies on antibody responses to sexual stage antigens have focused on a subset of gametocyte-surface antigens, even though inhibitory Ab responses to other gametocyte antigens might also play a role in controlling gametocyte density and fertility. Limited information is available on natural antibody response to the surfaces of gametocyte-infected erythrocytes. METHODS Ab responses to surface antigens of erythrocytes infected by in vitro differentiated Plasmodium falciparum mature gametocytes were investigated in sera of semi-immune adults and malaria-exposed children. In addition, the effect of immunization with GMZ2, a blood stage malaria vaccine candidate, and the effect of intestinal helminth infection on the development of immunity to gametocytes of P. falciparum was evaluated in malaria-exposed children and adults from Gabon. Serum samples from two Phase I clinical trials conducted in Gabon were analysed by microscopic and flow-cytometric immunofluorescence assay. RESULTS Adults had a higher Ab response compared to children. Ab reactivity was significantly higher after fixation and permeabilization of parasitized erythrocytes. Following vaccination with the malaria vaccine candidate GMZ2, anti-gametocyte Ab concentration decreased in adults compared to baseline. Ab response to whole asexual stage antigens had a significant but weak positive correlation to anti-gametocyte Ab responses in adults, but not in children. Children infected with Ascaris lumbricoides had a significantly higher anti-gametocyte Ab response compared to non-infected children. CONCLUSION The current data suggest that antigens exposed on the gametocyte-infected red blood cells are recognized by serum antibodies from malaria-exposed children and semi-immune adults. This anti-gametocyte immune response may be influenced by natural exposure and vaccination. Modulation of the natural immune response to gametocytes by co-infecting parasites should be investigated further and may have an important impact on malaria control strategies.
Collapse
Affiliation(s)
- Tamirat Gebru
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon.,Department of Medical Laboratory Sciences, College of Medical and Health Sciences, Haramaya University, Harar, Ethiopia
| | - Anthony Ajua
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Center for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon
| | - Ulysse Ateba Ngoa
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon.,Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saadou Issifou
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Fondation pour la Recherche Scientifique (FORS), Cotonou, Benin
| | - Ayola A Adegnika
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon.,Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon. .,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon.
| |
Collapse
|
27
|
Antwi-Baffour S, Adjei JK, Agyemang-Yeboah F, Annani-Akollor M, Kyeremeh R, Asare GA, Gyan B. Proteomic analysis of microparticles isolated from malaria positive blood samples. Proteome Sci 2017; 15:5. [PMID: 28352210 PMCID: PMC5366142 DOI: 10.1186/s12953-017-0113-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/17/2017] [Indexed: 01/06/2023] Open
Abstract
Background Malaria continues to be a great public health concern due to the significant mortality and morbidity associated with the disease especially in developing countries. Microparticles (MPs), also called plasma membrane derived extracellular vesicles (PMEVs) are subcellular structures that are generated when they bud off the plasma membrane. They can be found in healthy individuals but the numbers tend to increase in pathological conditions including malaria. Although, various studies have been carried out on the protein content of specific cellular derived MPs, there seems to be paucity of information on the protein content of circulating MPs in malaria and their association with the various signs and symptoms of the disease. The aim of this study was therefore to carry out proteomic analyses of MPs isolated from malaria positive samples and compare them with proteins of MPs from malaria parasite culture supernatant and healthy controls in order to ascertain the role of MPs in malaria infection. Methods Plasma samples were obtained from forty-three (43) malaria diagnosed patients (cases) and ten (10) healthy individuals (controls). Malaria parasite culture supernatant was obtained from our laboratory and MPs were isolated from them and confirmed using flow cytometry. 2D LC-MS was done to obtain their protein content. Resultant data were analyzed using SPSS Ver. 21.0 statistical software, Kruskal Wallis test and Spearman’s correlation coefficient r. Results In all, 1806 proteins were isolated from the samples. The MPs from malaria positive samples recorded 1729 proteins, those from culture supernatant were 333 while the control samples recorded 234 proteins. The mean number of proteins in MPs of malaria positive samples was significantly higher than that in the control samples. Significantly, higher quantities of haemoglobin subunits were seen in MPs from malaria samples and culture supernatant compared to control samples. Conclusion A great number of proteins were observed to be carried in the microparticles (MPs) from malaria samples and culture supernatant compared to controls. The greater loss of haemoglobin from erythrocytes via MPs from malaria patients could serve as the initiation and progression of anaemia in P.falciparum infection. Also while some proteins were upregulated in circulating MPs in malaria samples, others were down regulated.
Collapse
Affiliation(s)
- Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Jonathan Kofi Adjei
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana.,Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Agyemang-Yeboah
- Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Max Annani-Akollor
- Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ransford Kyeremeh
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - George Awuku Asare
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Ben Gyan
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
28
|
Kolawole OM, Mokuolu OA, Olukosi YA, Oloyede TO. Population genomics diversity of Plasmodium falciparum in malaria patients attending Okelele Health Centre, Okelele, Ilorin, Kwara State, Nigeria. Afr Health Sci 2016; 16:704-711. [PMID: 27917203 DOI: 10.4314/ahs.v16i3.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plasmodium falciparum, the most dangerous malaria parasite species to humans remains an important public health concern in Okelele, a rural community in Ilorin, Kwara State, Nigeria. There is however little information about the genetic diversity of Plasmodium falciparum in Nigeria. OBJECTIVE To determine the population genomic diversity of Plasmodium falciparum in malaria patients attending Okelele Community Healthcare Centre, Okelele, Ilorin, Kwara State. METHODS In this study, 50 Plasmodium falciparum strains Merozoite Surface Protein 1, Merozoite Surface Protein 2 and Glutamate Rich Protein were analysed from Okelele Health Centre, Okelele, Ilorin, Nigeria. Genetic diversity of P. falciparum isolates were analysed from nested polymerase chain reactions (PCR) of the MSP-1 (K1, MAD 20 and RO33), MSP-2 (FC27 and 3D7) and Glutamate Rich Protein allelic families respectively. RESULTS Polyclonal infections were more in majority of the patients for MSP-1 allelic families while monoclonal infections were more for MSP-2 allelic families. Multiplicity of infection for MSP-1, MSP-2 and GLURP were 1.7, 1.8 and 2.05 respectively. CONCLUSION There is high genetic diversity in MSP - 2 and GLURP allelic families of Plasmodium falciparum isolates from Okelele Health Centre, Ilorin, Nigeria.
Collapse
Affiliation(s)
- Olatunji Matthew Kolawole
- Infectious Diseases and Environmental Health Research Group, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| | | | - Yetunde Adeola Olukosi
- Department of Nutrition and Biochemistry, Nigerian Institute of Medical Research, Yaba, Lagos
| | - Tolulope Ololade Oloyede
- Infectious Diseases and Environmental Health Research Group, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
29
|
Xu C, Wei QK, Li J, Xiao T, Yin K, Zhao CL, Wang YB, Kong XL, Zhao GH, Sun H, Liu X, Huang BC. Characteristics of Imported Malaria and Species of Plasmodium Involved in Shandong Province, China (2012-2014). THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:407-14. [PMID: 27658591 PMCID: PMC5040091 DOI: 10.3347/kjp.2016.54.4.407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 02/04/2023]
Abstract
Malaria remains a serious public health problem in Shandong Province, China; therefore, it is important to explore the characteristics of the current malaria prevalence situation in the province. In this study, data of malaria cases reported in Shandong during 2012-2014 were analyzed, and Plasmodium species were confirmed by smear microscopy and nested-PCR. A total of 374 malaria cases were reported, 80.8% of which were reported from 6 prefectures. Of all cases, P. falciparum was dominant (81.3%), followed by P. vivax (11.8%); P. ovale and P. malariae together accounted for 6.4% of cases. Notably, for the first time since 2012, no indigenous case had been reported in Shandong Province, a situation that continued through 2014. Total 95.2% of cases were imported from Africa. The ratio of male/female was 92.5:1, and 96.8% of cases occurred in people 20-54 years of age. Farmers or laborers represented 77.5% of cases. No significant trends of monthly pattern were found in the reported cases. All patients were in good condition after treatment, except for 3 who died. These results indicate that imported malaria has increased significantly since 2012 in Shandong Province, especially for P. falciparum, and there is an emergence of species diversity.
Collapse
Affiliation(s)
- Chao Xu
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Qing-Kuan Wei
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Jin Li
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Ting Xiao
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Kun Yin
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Chang-Lei Zhao
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Yong-Bin Wang
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Xiang-Li Kong
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Gui-Hua Zhao
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Hui Sun
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Xin Liu
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| | - Bing-Cheng Huang
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, Shandong Provincial Reference Laboratory for Malaria Diagnosis, Jining, Shandong Province 272033, People's Republic of China
| |
Collapse
|
30
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine 2015; 33:7525-37. [DOI: 10.1016/j.vaccine.2015.09.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
|
32
|
Mvé-Ondo B, Nkoghe D, Arnathau C, Rougeron V, Bisvigou U, Mouele LY, Boundenga L, Durand P, Elguero E, Lemmers S, Délicat-Loembet LM, Diamella-Moukodoum N, Paupy C, Renaud F, Prugnolle F, Ollomo B. Genetic diversity of Plasmodium falciparum isolates from Baka Pygmies and their Bantu neighbours in the north of Gabon. Malar J 2015; 14:395. [PMID: 26450086 PMCID: PMC4599724 DOI: 10.1186/s12936-015-0862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/23/2015] [Indexed: 11/25/2022] Open
Abstract
Background There have been many reports on the population genetic structure of Plasmodium falciparum from different endemic regions especially sub-Saharan Africa. However, few studies have been performed on neglected populations, such as the Pygmy populations. In this study, the population genetic structure of P. falciparum was investigated in the Baka Pygmies of Gabon and compared to that observed in neighboring villages composed mostly of Bantu farmers. Methods A total of 342 blood samples were collected from 170 Baka Pygmies and 172 Bantus in the north of Gabon (Woleu Ntem Province). Plasmodium infections were characterized by sequencing a portion of the parasite cytochrome b gene. Population genetic structure of P. falciparum in the different villages was analysed using microsatellite markers and genes coding for antigenic proteins (MSP1, MSP2, GLURP, and EBA-175). Results Overall, prevalence of P. falciparum was around 57 % and no significant difference of prevalence was observed between Pygmies and Bantus. No significant differences of population genetic structure of P. falciparum was found between Pygmy and Bantu people except for one antigen-coding gene, glurp, for which genetic data suggested the existence of a potentially disruptive selection acting on this gene in the two types of populations. The genetic structure of P. falciparum followed a pattern of isolation by distance at the scale of the study. Conclusion The prevalence and genetic diversity of P. falciparum observed in Baka demonstrates a significant transmission of the parasite in this population, and some exchanges of parasites with Bantu neighbours. Despite that, some antigen-coding genes seem to have had a particular evolutionary trajectory in certain Pygmy populations due to specific local human and/or mosquito characteristics. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0862-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bertrand Mvé-Ondo
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon. .,Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale, BP 876, Franceville, Gabon.
| | - Dieudonné Nkoghe
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon. .,Ministry of Health, BP 50, Libreville, Gabon.
| | - Céline Arnathau
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290/IRD 224, Université Montpellier, CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France.
| | - Virginie Rougeron
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon. .,Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290/IRD 224, Université Montpellier, CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France.
| | | | - Lauriane Yacka Mouele
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon. .,Fac de Médecine, UMR-BIOMED, BP 8507, Libreville, Gabon.
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon. .,Département de Biologie Animale, Faculté des Sciences et Techniques, Laboratoire d'Écologie et Biologie évolutive, Université Cheikh AntaDiop de Dakar, BP 5005, Dakar, Senegal.
| | - Patrick Durand
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290/IRD 224, Université Montpellier, CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France.
| | - Eric Elguero
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290/IRD 224, Université Montpellier, CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France.
| | - Simone Lemmers
- Department of Anthropology, Durham University, Dawson Building, South Road, Durham, DH1 3LE, England, UK.
| | | | - Nancy Diamella-Moukodoum
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.
| | - Christophe Paupy
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290/IRD 224, Université Montpellier, CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France.
| | - François Renaud
- Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290/IRD 224, Université Montpellier, CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France.
| | - Franck Prugnolle
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon. .,Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290/IRD 224, Université Montpellier, CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France.
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon. .,Fac de Médecine, UMR-BIOMED, BP 8507, Libreville, Gabon.
| |
Collapse
|
33
|
Cheng Y, Li J, Ito D, Kong DH, Ha KS, Lu F, Wang B, Sattabongkot J, Lim CS, Tsuboi T, Han ET. Antigenicity and immunogenicity of PvRALP1, a novel Plasmodium vivax rhoptry neck protein. Malar J 2015; 14:186. [PMID: 25925592 PMCID: PMC4435652 DOI: 10.1186/s12936-015-0698-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins secreted from the rhoptry in Plasmodium merozoites are associated with the formation of tight junctions and parasitophorous vacuoles during invasion of erythrocytes and are sorted within the rhoptry neck or bulb. Very little information has been obtained to date about Plasmodium vivax rhoptry-associated leucine (Leu) zipper-like protein 1 (PvRALP1; PVX_096245), a putative rhoptry protein. PvRALP1 contains a signal peptide, a glycine (Gly)/glutamate (Glu)-rich domain, and a Leu-rich domain, all of which are conserved in other Plasmodium species. METHODS Recombinant PvRALP1s were expressed as full-length protein without the signal peptide (PvRALP1-Ecto) and as truncated protein consisting of the Gly/Glu- and Leu-rich domains (PvRALP1-Tr) using the wheat germ cell-free expression system. The immunoreactivity to these two fragments of recombinant PvRALP1 protein in serum samples from P. vivax-infected patients and immunized mice, including analysis of immunoglobulin G (IgG) subclasses, was evaluated by enzyme-linked immunosorbent assay or protein microarray technology. The subcellular localization of PvRALP1 in blood stage parasites was also determined. RESULTS Recombinant PvRALP1-Ecto and PvRALP1-Tr proteins were successfully expressed, and in serum samples from P. vivax patients from the Republic of Korea, the observed immunoreactivities to these proteins had 58.9% and 55.4% sensitivity and 95.0% and 92.5% specificity, respectively. The response to PvRALP1 in humans was predominantly cytophilic antibodies (IgG1 and IgG3), but a balanced Th1/Th2 response was observed in mice. Unexpectedly, there was no significant inverse correlation between levels of parasitaemia and levels of antibody against either PvRALP1-Ecto (R2=0.11) or PvRALP1-Tr (R2=0.14) antigens. PvRALP1 was localized in the rhoptry neck of merozoites, and this was the first demonstration of the localization of this protein in P. vivax. CONCLUSIONS This study analysed the antigenicity and immunogenicity of PvRALP1 and suggested that PvRALP1 may be immunogenic in humans during parasite infection and might play an important role during invasion of P. vivax parasites.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Hyoja2-dong, Chuncheon, Gangwon-do, 200-701, Republic of Korea. .,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, 20852, USA.
| | - Jian Li
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Hyoja2-dong, Chuncheon, Gangwon-do, 200-701, Republic of Korea. .,Department of Parasitology, College of Basic Medicine, Hubei University of Medicine, Hubei, 442000, China.
| | - Daisuke Ito
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, 20852, USA. .,Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan.
| | - Deok-Hoon Kong
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-701, Republic of Korea.
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-701, Republic of Korea.
| | - Feng Lu
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Hyoja2-dong, Chuncheon, Gangwon-do, 200-701, Republic of Korea. .,Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Hyoja2-dong, Chuncheon, Gangwon-do, 200-701, Republic of Korea. .,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan.
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Hyoja2-dong, Chuncheon, Gangwon-do, 200-701, Republic of Korea.
| |
Collapse
|
34
|
Kaddumukasa M, Lwanira C, Lugaajju A, Katabira E, Persson KEM, Wahlgren M, Kironde F. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria. PLoS One 2015; 10:e0124297. [PMID: 25906165 PMCID: PMC4408068 DOI: 10.1371/journal.pone.0124297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.
Collapse
Affiliation(s)
- Mark Kaddumukasa
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Elly Katabira
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kristina E M Persson
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Lund University, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Kironde
- College of Health Sciences, Makerere University, Kampala, Uganda; Habib Medical School, IUIU, Kampala, Uganda
| |
Collapse
|
35
|
Daou M, Kouriba B, Ouédraogo N, Diarra I, Arama C, Keita Y, Sissoko S, Ouologuem B, Arama S, Bousema T, Doumbo OK, Sauerwein RW, Scholzen A. Protection of Malian children from clinical malaria is associated with recognition of multiple antigens. Malar J 2015; 14:56. [PMID: 25653026 PMCID: PMC4332451 DOI: 10.1186/s12936-015-0567-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/16/2015] [Indexed: 12/13/2022] Open
Abstract
Background Naturally acquired immunity to clinical malaria is thought to be mainly antibody-mediated, but reports on antigen targets are contradictory. Recognition of multiple antigens may be crucial for protection. In this study, the magnitude of antibody responses and their temporal stability was assessed for a panel of malaria antigens in relation to protection against clinical Plasmodium falciparum malaria. Methods Malian children aged two to 14 years were enrolled in a longitudinal study and followed up by passive and active case detection for seven months. Plasma was collected at enrolment and at the beginning, in the middle and after the end of the transmission season. Antibody titres to the P. falciparum-antigens apical membrane protein (AMA)-1, merozoite surface protein (MSP)-119, MSP-3, glutamine-rich protein (GLURP-R0) and circumsporozoite antigen (CSP) were assessed by enzyme-linked immunosorbent assay (ELISA) for 99 children with plasma available at all time points. Parasite carriage was determined by microscopy and nested PCR. Results Antibody titres to all antigens, except MSP-119, and the number of antigens recognized increased with age. After malaria exposure, antibody titres increased in children that had low titres at baseline, but decreased in those with high baseline responses. No significant differences were found between antibody titers for individual antigens between children remaining symptomatic or asymptomatic after exposure, after adjustment for age. Instead, children remaining asymptomatic following parasite exposure had a broader repertoire of antigen recognition. Conclusions The present study provides immune-epidemiological evidence from a limited cohort of Malian children that strong recognition of multiple antigens, rather than antibody titres for individual antigens, is associated with protection from clinical malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0567-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Modibo Daou
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali. .,Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| | - Bourèma Kouriba
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Nicolas Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso.
| | - Issa Diarra
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Charles Arama
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Yamoussa Keita
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Sibiri Sissoko
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Boucary Ouologuem
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Seydou Arama
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Teun Bousema
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands. .,Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, UK.
| | - Ogobara K Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Kumar D, Dhiman S, Rabha B, Goswami D, Deka M, Singh L, Baruah I, Veer V. Genetic polymorphism and amino acid sequence variation in Plasmodium falciparum GLURP R2 repeat region in Assam, India, at an interval of five years. Malar J 2014; 13:450. [PMID: 25416405 PMCID: PMC4256832 DOI: 10.1186/1475-2875-13-450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 11/12/2022] Open
Abstract
Background The R2 repeat region of GLURP has been reported as a good genetic marker for Plasmodium falciparum genotyping. Proper knowledge of the extent and nature of P. falciparum genetic diversity using highly immunogenic R2 repeat region in malaria-endemic areas is a crucial element to understand various aspects related to immunity acquisition and disease pathogenesis. Methods Population diversity of P. falciparum GLURP and amino acid sequence repeats in GLURP R2 region was studied in malaria-endemic Assam state, northeast India and compared at an interval of five years during 2005 (Group-A) and 2011 (Group-B). Results Of the 66 samples, a total of 55 samples showed positive PCR bands for GLURP R2 region and altogether ten types of alleles with size ranging from 501 bp to 1,050 bp (50 bp bin) were observed and coded as genotypes I-X. In Group-A (n = 29), 24 samples were found infected with single, four with double and one with triple P. falciparum genotype, while in Group-B (n = 26), single genotype was found in 23 samples, double in two samples and triple in one sample. Genotype IV showed significant increase (p = 0.002) during 2011 (Group-B). Genotypes I to V were more common in Group-B (62%), however genotypes VI to X were more frequently distributed in Group-A. The expected heterozygosity was found slightly higher in Group-A (HE = 0.87) than Group-B (HE = 0.85), whereas multiplicity of infection (MOI) in Group-A (MOI = 1.21 ± 0.49) and Group-B (MOI = 1.12 ± 0.43) did not display significant variation. The amino acid repeat sequence unit (AAU) DKNEKGQHEIVEVEEILPE (called ‘a’) was more frequent in the well-conserved part of R2 repeat region. Conclusion The present study is the first extensive study in India which has generated substantial data for understanding the type and distribution of naturally evolved genetic polymorphism at amino acid sequence level in GLURP R2 repeat region in P. falciparum. There was decrease in the PCR amplicon size as well as the number of AAU [amino acid repeat unit] in Group-B displaying the bottleneck effect. The present study described a new type of AAU ‘d’ which varied from the other previous known AAUs. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-450) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Sunil Dhiman
- Medical Entomology Division, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pratt-Riccio LR, Perce-da-Silva DDS, Lima-Junior JDC, Theisen M, Santos F, Daniel-Ribeiro CT, de Oliveira-Ferreira J, Banic DM. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil. Mem Inst Oswaldo Cruz 2014; 108:523-8. [PMID: 23828006 DOI: 10.1590/s0074-02762013000400022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/26/2012] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.
Collapse
Affiliation(s)
- Lilian Rose Pratt-Riccio
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dechavanne C, Pierrat C, Renard E, Costes B, Martin N, Ladekpo R, Ahouangninou C, Alvarez VM, Huynh BT, Garcia A, Migot-Nabias F. Genetic characterization of Plasmodium falciparum allelic variants infecting mothers at delivery and their children during their first plasmodial infections. INFECTION GENETICS AND EVOLUTION 2013; 20:16-25. [PMID: 23932959 DOI: 10.1016/j.meegid.2013.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Infants born to mothers with placental malaria at delivery develop Plasmodium falciparum parasitemia earlier than those born to mothers without placental infection. This phenomenon may be explained by the development of immune tolerance due to exposure to P. falciparum antigens in utero. The hypothesis of this study is that this increased susceptibility might be related to infections by parasites expressing the same blood stage allele's antigens as those to which the infants were exposed in utero. METHODS The comparison of P.falciparum msp2 (3D7 and FC27) and glurp gene polymorphisms of infected mothers at delivery to those of their offspring's infections during infancy was realized and the possible associations of the different polymorphisms with clinical outcomes were assessed. A second approach consisted in the use of a Geographic Information System to determine whether the antigen alleles were homogeneously distributed in the area of study. This was necessary to analyze whether the biological observations were due to high exposure to a particular antigen allelic form in the environment or to high infant permissiveness to the same allelic antigen polymorphism as the placental one. RESULTS Infants born to mothers with placental malaria at delivery were more susceptible to infections by parasites carrying the same glurp allele as encountered in utero compared to distinct alleles, independently of their geographic distribution. CONCLUSION The increased permissiveness of infants to plasmodial infections with shared placental-infant glurp alleles sheds light on the role that P. falciparum blood stage antigen polymorphisms may play in the first plasmodial infections in infancy.
Collapse
Affiliation(s)
- Célia Dechavanne
- Institut de Recherche Pour le Développement, UMR 216 Mère et Enfant Face Aux Infections Tropicales, Paris, France; PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jepsen MPG, Jogdand PS, Singh SK, Esen M, Christiansen M, Issifou S, Hounkpatin AB, Ateba-Ngoa U, Kremsner PG, Dziegiel MH, Olesen-Larsen S, Jepsen S, Mordmüller B, Theisen M. The Malaria Vaccine Candidate GMZ2 Elicits Functional Antibodies in Individuals From Malaria Endemic and Non-Endemic Areas. J Infect Dis 2013; 208:479-88. [DOI: 10.1093/infdis/jit185] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
|
41
|
Cherif MK, Sanou GS, Maiga B, Israelsson E, Ouédraogo AL, Bougouma EC, Diarra A, Ouédraogo A, Ouattara AS, Troye-Blomberg M, Dolo A, Cavanagh DR, Theisen M, Modiano D, Sirima SB, Nebié I. FcγRIIa polymorphism and anti-malaria-specific IgG and IgG subclass responses in populations differing in susceptibility to malaria in Burkina Faso. Scand J Immunol 2012; 75:606-13. [PMID: 22268665 DOI: 10.1111/j.1365-3083.2012.02690.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FcγRIIa is known to be polymorphic; and certain variants are associated with different susceptibilities to malaria. Studies involving the Fulani ethnic group reported an ethnic difference in FcγRIIa-R131H genotype frequencies between the Fulani and other sympatric groups. No previous studies have addressed these questions in Burkina Faso. This study aimed to assess the influence of FcγRIIa-R131H polymorphism on anti-falciparum malaria IgG and IgG subclass responses in the Fulani and the Mossi ethnic groups living in Burkina Faso. Healthy adults more than 20 years old belonging to the Mossi or the Fulani ethnic groups were enrolled for the assessment of selected parasitological, immunological and genetic variables in relation to their susceptibility to malaria. The prevalence of the Plasmodium falciparum infection frequency was relatively low in the Fulani ethnic group compared to the Mossi ethnic group. For all tested antigens, the Fulani had higher antibody levels than the Mossi group. In both ethnic groups, a similar distribution of FcγRIIa R131H polymorphism was found. Individuals with the R allele of FcγRIIa had higher antibody levels than those with the H allele. This study confirmed that malaria infection affected less the Fulani group than the Mossi group. FcγRIIa-R131H allele distribution is similar in both ethnic groups, and higher antibody levels are associated with the FcγRIIa R allele compared to the H allele.
Collapse
Affiliation(s)
- M K Cherif
- Centre National de Recherche et de Formation sur le Paludisme, Burkina Faso Université de Ouagadougou, Burkina Faso
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kattenberg JH, Versteeg I, Migchelsen SJ, González IJ, Perkins MD, Mens PF, Schallig HDFH. New developments in malaria diagnostics: monoclonal antibodies against Plasmodium dihydrofolate reductase-thymidylate synthase, heme detoxification protein and glutamate rich protein. MAbs 2012; 4:120-6. [PMID: 22327435 DOI: 10.4161/mabs.4.1.18529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Currently available rapid diagnostic tests (RDTs) for malaria show large variation in sensitivity and specificity, and there are concerns about their stability under field conditions. To improve current RDTs, monoclonal antibodies (mAbs) for novel malaria antigens have been developed and screened for their possible use in new diagnostic tests. Three antigens, glutamate rich protein (GLURP), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and heme detoxification protein (HDP), were selected based on literature searches. Recombinant antigens were produced and used to immunize mice. Antibody-producing cell lines were subsequently selected and the resulting antibodies were screened for specificity against Plasmodium falciparum and Plasmodium vivax. The most optimal antibody couples were selected based on antibody affinity (expressed as dissociation constants, KD) and detection limit of crude antigen extract from P. falciparum 3D7 culture. The highest affinity antibodies have KD values of 0.10 nM ± 0.014 (D5) and 0.068 ± 0.015 nM (D6) for DHFR-TS mAbs, 0.10 ± 0.022 nM (H16) and 0.21 ± 0.022 nM (H18) for HDP mAbs and 0.11 ± 0.028 nM (G23) and 0.33 ± 0.093 nM (G22) for GLURP mAbs. The newly developed antibodies performed at least as well as commercially available histidine rich protein antibodies (KD of 0.16 ± 0.13 nM for PTL3 and 1.0 ± 0.049 nM for C1-13), making them promising reagents for further test development.
Collapse
Affiliation(s)
- Johanna H Kattenberg
- Parasitology Unit, Royal Tropical Institute, Koninklijk Instituut voor de Tropen (KIT), KIT Biomedical Research, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Baumann A, Magris MM, Urbaez ML, Vivas-Martinez S, Durán R, Nieves T, Esen M, Mordmüller BG, Theisen M, Avilan L, Metzger WG. Naturally acquired immune responses to malaria vaccine candidate antigens MSP3 and GLURP in Guahibo and Piaroa indigenous communities of the Venezuelan Amazon. Malar J 2012; 11:46. [PMID: 22335967 PMCID: PMC3296639 DOI: 10.1186/1475-2875-11-46] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Malaria transmission in most of Latin America can be considered as controlled. In such a scenario, parameters of baseline immunity to malaria antigens are of specific interest with respect to future malaria eradication efforts. Methods A cross-sectional study was carried out in two indigenous population groups in Amazonas/Venezuela. Data from the regional malaria documentation system were extracted and participants from the ethnic groups of the Guahibo (n = 180) and Piaroa (n = 295) were investigated for the presence of Plasmodium parasites and naturally acquired antibodies to Plasmodium falciparum antigens in serum. The GMZ2 vaccine candidate proteins MSP3 and GLURP were chosen as serological markers. Results The incidence of P. falciparum in both communities was found to be less than 2%, and none of the participants harboured P. falciparum at the time of the cross-sectional. Nearly a quarter of the participants (111/475; 23,4%) had positive antibody titres to at least one of the antigens. 53/475 participants (11.2%) were positive for MSP3, and 93/475 participants (19.6%) were positive for GLURP. High positive responses were detected in 36/475 participants (7.6%) and 61/475 participants (12.8%) for MSP3 and GLURP, respectively. Guahibo participants had significantly higher antibody titres than Piaroa participants. Conclusions Considering the low incidence of P. falciparum, submicroscopical infections may explain the comparatively high anti-P. falciparum antibody concentrations.
Collapse
Affiliation(s)
- Andreas Baumann
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Turner L, Wang CW, Lavstsen T, Mwakalinga SB, Sauerwein RW, Hermsen CC, Theander TG. Antibodies against PfEMP1, RIFIN, MSP3 and GLURP are acquired during controlled Plasmodium falciparum malaria infections in naïve volunteers. PLoS One 2011; 6:e29025. [PMID: 22174947 PMCID: PMC3236238 DOI: 10.1371/journal.pone.0029025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022] Open
Abstract
Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered vaccine candidates. However, to what extent these antibodies to blood stage antigens are acquired during naive individuals' first infections has not been studied in depth. Using plasma samples collected from controlled experimental P. falciparum infections we show that antibodies against variant surface antigens, PfEMP1 and RIFIN as well as MSP3 and GLURP, are acquired during a single short low density P. falciparum infection in non-immune individuals including strain transcendent PfEMP1 immune responses. These data indicate that the immunogenicity of the variant surface antigens is similar to the less diverse merozoite antigens. The acquisition of a broad and strain transcendent repertoire of PfEMP1 antibodies may reflect a parasite strategy of expressing most or all PfEMP1 variants at liver release optimizing the likelihood of survival and establishment of chronic infections in the new host.
Collapse
Affiliation(s)
- Louise Turner
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- * E-mail:
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Steven B. Mwakalinga
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Cornelus C. Hermsen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Thor G. Theander
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
45
|
Pratt-Riccio LR, Bianco-Junior C, Totino PRR, Perce-Da-Silva DDS, Silva LA, Riccio EKP, Ennes-Vidal V, Neves-Ferreira AGC, Perales J, Rocha SLGD, Dias-Da-Silva F, Ferreira-da-Cruz MDF, Daniel-Ribeiro CT, Oliveira-Ferreira JD, Theisen M, Carvalho LJDM, Banic DM. Antibodies against the Plasmodium falciparum glutamate-rich protein from naturally exposed individuals living in a Brazilian malaria-endemic area can inhibit in vitro parasite growth. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:34-43. [DOI: 10.1590/s0074-02762011000900005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/01/2011] [Indexed: 11/22/2022] Open
|
46
|
Genotipificación de Plasmodium falciparum por PCR múltiple por medio de los genes msp1, msp2 y glurp, en cuatro localidades de Colombia. BIOMÉDICA 2011. [DOI: 10.7705/biomedica.v30i4.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Barry AE, Schultz L, Buckee CO, Reeder JC. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum. PLoS One 2009; 4:e8497. [PMID: 20041125 PMCID: PMC2795866 DOI: 10.1371/journal.pone.0008497] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/07/2009] [Indexed: 11/21/2022] Open
Abstract
The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next-generation malaria vaccines.
Collapse
Affiliation(s)
- Alyssa E Barry
- Centre for Population Health, Burnet Institute, Melbourne, Australia.
| | | | | | | |
Collapse
|
48
|
|
49
|
The role of MHC- and non-MHC-associated genes in determining the human immune response to malaria antigens. Parasitology 2009. [DOI: 10.1017/s0031182000076654] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYIndividual susceptibility to malaria infection, disease and death is influenced by host genotype, parasite virulence and a number of environmental factors including malaria-specific immunity. Immune responses are themselves determined by a combination of host genes and environmental effects. The extent to which host genotype limits the spectrum of possible immune responses may influence the outcome of infection and has consequences for vaccine design. Associations have been observed between human major histocompatibility complex (MHC) genotype and susceptibility to severe malaria, but no similar associations have been observed for mild malarial disease or for specific antibody responses to defined malaria antigens. Epidemiological studies have shown that, in practice, neither T helper cell nor antibody responses to malaria parasites are limited by host MHC genotype, but have revealed that genes lying outside the MHC may influence T cell proliferative responses. These genes have yet to be identified, but possible candidates include T cell receptor (TcR) genes, and genes involved in TcR gene rearrangements. More importantly, perhaps, longitudinal epidemiological studies have shown that the anti-malarial antibody repertoire is selective and becomes fixed in malaria-immune individuals, but is independent of host genotype. These findings suggest that the antibody repertoire may be determined, at least in part, by stochastic events. The first of these is the generation of the T and B cell repertoire, which results from random gene recombinations and somatic mutation and is thus partially independent of germline genes. Secondly, of the profusion of immunogenic peptides which are processed and presented by antigen presenting cells, a few will, by chance, interact with T and B cell surface antigen receptors of particularly high affinity. These T and B cell clones will be selected, will expand and may come to dominate the immune response, preventing the recognition of variant epitopes presented by subsequent infections - a process known as original antigenic sin or clonal imprinting. The immune response of an individual thus reflects the balance between genetic and stochastic effects. This may have important consequences for subunit vaccine development.
Collapse
|
50
|
Dodoo D, Aikins A, Kusi KA, Lamptey H, Remarque E, Milligan P, Bosomprah S, Chilengi R, Osei YD, Akanmori BD, Theisen M. Cohort study of the association of antibody levels to AMA1, MSP119, MSP3 and GLURP with protection from clinical malaria in Ghanaian children. Malar J 2008; 7:142. [PMID: 18664257 PMCID: PMC2529305 DOI: 10.1186/1475-2875-7-142] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/29/2008] [Indexed: 11/24/2022] Open
Abstract
Background Antigen-specific antibody-mediated immune responses play an important role in natural protection against clinical malaria, but conflicting estimates of this association have emerged from immuno-epidemiological studies in different geographical settings. This study was aimed at assessing in a standardized manner the relationship between the antibody responses to four malaria vaccine candidate antigens and protection from clinical malaria, in a cohort of Ghanaian children. Methods Standardized ELISA protocols were used to measure isotype and IgG subclass levels to Apical Membrane Antigen 1 (AMA1), Merozoite Surface Protein 1–19 (MSP119), Merozoite Surface Protein 3 (MSP3) and Glutamate Rich Protein (GLURP) antigens in plasma samples from 352 Ghanaian children, aged three to 10 years with subsequent malaria surveillance for nine months. This is one of a series of studies in different epidemiological settings using the same standardized ELISA protocols to permit comparisons of results from different laboratories. Results The incidence rate of malaria was 0.35 episodes per child per year. Isotype and IgG subclasses for all antigens investigated increased with age, while the risk of malaria decreased with age. After adjusting for age, higher levels of IgG to GLURP, MSP119, MSP3 and IgM to MSP119, MSP3 and AMA1 were associated with decreased malaria incidence. Of the IgG subclasses, only IgG1 to MSP119 was associated with reduced incidence of clinical malaria. A previous study in the same location failed to find an association of antibodies to MSP119 with clinical malaria. The disagreement may be due to differences in reagents, ELISA and analytical procedures used in the two studies. When IgG, IgM and IgG subclass levels for all four antigens were included in a combined model, only IgG1 [(0.80 (0.67–0.97), p = 0.018)] and IgM [(0.48 (0.32–0.72), p < 0.001)] to MSP119 were independently associated with protection from malaria. Conclusion Using standardized procedures, the study has confirmed the importance of antibodies to MSP119 in reducing the risk of clinical malaria in Ghanaian children, thus substantiating its potential as a malaria vaccine candidate.
Collapse
Affiliation(s)
- Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|