1
|
Pooranachithra M, Jyo EM, Brouilly N, Pujol N, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. Development 2024; 151:dev204330. [PMID: 39373389 PMCID: PMC11529277 DOI: 10.1242/dev.204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematodes is known as the cuticle and contains an external lipid-rich layer - the epicuticle. Epicuticlins are a family of tandem repeat cuticle proteins of unknown function. Here, we analyze the localization and function of the three C. elegans epicuticlins (EPIC proteins). EPIC-1 and EPIC-2 localize to the surface of the cuticle near the outer lipid layer, as well as to interfacial cuticles and adult-specific struts. EPIC-3 is expressed in dauer larvae and localizes to interfacial aECM in the buccal cavity. Skin wounding in the adult induces epic-3 expression, and EPIC proteins localize to wound sites. Null mutants lacking EPIC proteins are viable with reduced permeability barrier function and normal epicuticle lipid mobility. Loss of function in EPIC genes modifies the skin blistering phenotypes of Bli mutants and reduces survival after skin wounding. Our results suggest EPIC proteins define specific cortical compartments of the aECM and promote wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Erin M. Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Pujol
- Aix-Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009, Marseille, France
| | - Andreas M. Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Ragle JM, Turzo A, Jackson A, Vo AA, Pham VT, Ward JD. The NHR-23-regulated putative protease inhibitor mlt-11 gene is necessary for C. elegans cuticle structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593762. [PMID: 38766248 PMCID: PMC11100798 DOI: 10.1101/2024.05.12.593762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
C. elegans molting offers a powerful entry point to understanding developmentally programmed apical extracellular matrix remodeling. However, the gene regulatory network controlling this process remains poorly understood. Focusing on targets of NHR-23, a key transcription factor that drives molting, we confirmed the Kunitz family protease inhibitor gene mlt-11 as an NHR-23 target. Through reporter assays, we identified NHR-23-binding sites that are necessary and sufficient for epithelial expression. We generated a translational fusion and demonstrated that MLT-11 is localized to the cuticle and lined openings to the exterior (vulva, rectum, mouth). We created a set of strains expressing varied levels of MLT-11 by deleting endogenous cis-regulatory element sequences. Combined deletion of two cis-regulatory elements caused developmental delay, motility defects, and failure of the cuticle barrier. Inactivation of mlt-11 by RNAi produced even more pronounced defects. mlt-11 is necessary to pattern every layer of the adult cuticle, suggesting a broad patterning role prior to the formation of the mature cuticle. Together these studies provide an entry point into understanding how individual cis-regulatory elements function to coordinate expression of oscillating genes involved in molting and how MLT-11 ensures proper cuticle assembly.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ariela Turzo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anton Jackson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Vivian T. Pham
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
4
|
Pooranachithra M, Jyo EM, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575393. [PMID: 38260454 PMCID: PMC10802564 DOI: 10.1101/2024.01.12.575393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematode is known as the cuticle and contains an external lipid-rich layer, the epicuticle. Epicuticlins are a family of tandem repeat proteins originally identified as components of the insoluble fraction of the cuticular aECM and thought to localize in or near epicuticle. However, there has been little in vivo analysis of epicuticlins. Here, we report the localization analysis of the three C. elegans epicuticlins (EPIC proteins) using fluorescent protein knock-ins to visualize endogenously expressed proteins, and further examine their in vivo function using genetic null mutants. By TIRF microscopy, we find that EPIC-1 and EPIC-2 localize to the surface of the cuticle in larval and adult stages in close proximity to the outer lipid layer. EPIC-1 and EPIC-2 also localize to interfacial cuticles and adult-specific cuticle struts. EPIC-3 expression is restricted to the stress-induced dauer stage, where it localizes to interfacial aECM in the buccal cavity. Strikingly, skin wounding in the adult induces epic-3 expression, and EPIC-3::mNG localizes to wound scars. Null mutants lacking one, two, or all three EPIC proteins display reduced survival after skin wounding yet are viable with low penetrance defects in epidermal morphogenesis. Our results suggest EPIC proteins define specific aECM compartments and have roles in wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
5
|
Betschart B, Bisoffi M, Alaeddine F. Identification and characterization of epicuticular proteins of nematodes sharing motifs with cuticular proteins of arthropods. PLoS One 2022; 17:e0274751. [PMID: 36301857 PMCID: PMC9612446 DOI: 10.1371/journal.pone.0274751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Specific collagens and insoluble proteins called cuticlins are major constituents of the nematode cuticles. The epicuticle, which forms the outermost electron-dense layer of the cuticle, is composed of another category of insoluble proteins called epicuticlins. It is distinct from the insoluble cuticlins localized in the cortical layer and the fibrous ribbon underneath lateral alae. Our objective was to identify and characterize genes and their encoded proteins forming the epicuticle. The combination between previously obtained laboratory results and recently made available data through the whole-genome shotgun contigs (WGS) and the transcriptome Shotgun Assembly (TSA) sequencing projects of Ascaris suum allowed us to identify the first epicuticlin gene, Asu-epic-1, on the chromosome VI. This gene is formed of exon1 (55 bp) and exon2 (1067 bp), separated by an intron of 1593 bp. Exon 2 is formed of tandem repeats (TR) whose number varies in different cDNA and genomic clones of Asu-epic-1. These variations could be due to slippage of the polymerases during DNA replication and RNA transcription leading to insertions and deletions (Indels). The deduced protein, Asu-EPIC-1, consists of a signal peptide of 20 amino acids followed by 353 amino acids composed of seven TR of 49 or 51 amino acids each. Three highly conserved tyrosine motifs characterize each repeat. The GYR motif is the Pfam motif PF02756 present in several cuticular proteins of arthropods. Asu-EPIC-1 is an intrinsically disordered protein (IDP) containing seven predicted molecular recognition features (MoRFs). This type of protein undergoes a disorder-to-order transition upon binding protein partners. Three epicuticular sequences have been identified in A. suum, Ascaris lumbricoides, and Toxocara canis. Homologous epicuticular proteins were identified in over 50 other nematode species. The potential of this new category of proteins in forming the nematode cuticle through covalent interactions with other cuticular components, particularly with collagens, is discussed. Their localization in the outermost layer of the nematode body and their unique structure render them crucial candidates for biochemical and molecular interaction studies and targets for new biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Bruno Betschart
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Marco Bisoffi
- Chemistry and Biochemistry, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Ferial Alaeddine
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
6
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
7
|
Lažetić V, Fay DS. Molting in C. elegans. WORM 2017; 6:e1330246. [PMID: 28702275 DOI: 10.1080/21624054.2017.1330246] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Molting is an essential developmental process for the majority of animal species on Earth. During the molting process, which is a specialized form of extracellular matrix (ECM) remodeling, the old apical ECM, or cuticle, is replaced with a new one. Many of the genes and pathways identified as important for molting in nematodes are highly conserved in vertebrates and include regulators and components of vesicular trafficking, steroid-hormone signaling, developmental timers, and hedgehog-like signaling. In this review, we discuss what is known about molting, with a focus on studies in Caenorhabditis elegans. We also describe the key structural elements of the cuticle that must be released, newly synthesized, or remodeled for proper molting to occur.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
8
|
Jones LH, Narayanan A, Hett EC. Understanding and applying tyrosine biochemical diversity. MOLECULAR BIOSYSTEMS 2014; 10:952-69. [PMID: 24623162 DOI: 10.1039/c4mb00018h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights some of the recent advances made in our understanding of the diversity of tyrosine biochemistry and shows how this has inspired novel applications in numerous areas of molecular design and synthesis, including chemical biology and bioconjugation. The pathophysiological implications of tyrosine biochemistry will be presented from a molecular perspective and the opportunities for therapeutic intervention explored.
Collapse
Affiliation(s)
- Lyn H Jones
- Pfizer R&D, Chemical Biology Group, BioTherapeutics Chemistry, WorldWide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | |
Collapse
|
9
|
Hendriks GJ, Gaidatzis D, Aeschimann F, Großhans H. Extensive oscillatory gene expression during C. elegans larval development. Mol Cell 2014; 53:380-92. [PMID: 24440504 DOI: 10.1016/j.molcel.2013.12.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Oscillations are a key to achieving dynamic behavior and thus occur in biological systems as diverse as the beating heart, defecating worms, and nascent somites. Here we report pervasive, large-amplitude, and phase-locked oscillations of gene expression in developing C. elegans larvae, caused by periodic transcription. Nearly one fifth of detectably expressed transcripts oscillate with an 8 hr period, and hundreds change >10-fold. Oscillations are important for molting but occur in all phases, implying additional functions. Ribosome profiling reveals that periodic mRNA accumulation causes rhythmic translation, potentially facilitating transient protein accumulation as well as coordinated production of stable, complex structures such as the cuticle. Finally, large-amplitude oscillations in RNA sampled from whole worms indicate robust synchronization of gene expression programs across cells and tissues, suggesting that these oscillations will be a powerful new model to study coordinated gene expression in an animal.
Collapse
Affiliation(s)
- Gert-Jan Hendriks
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland
| | - Florian Aeschimann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| |
Collapse
|
10
|
Mai K, Smith NC, Feng ZP, Katrib M, Šlapeta J, Šlapetova I, Wallach MG, Luxford C, Davies MJ, Zhang X, Norton RS, Belli SI. Peroxidase catalysed cross-linking of an intrinsically unstructured protein via dityrosine bonds in the oocyst wall of the apicomplexan parasite, Eimeria maxima. Int J Parasitol 2011; 41:1157-64. [DOI: 10.1016/j.ijpara.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/30/2011] [Accepted: 07/02/2011] [Indexed: 10/18/2022]
|
11
|
Mai K, Sharman PA, Walker RA, Katrib M, De Souza D, McConville MJ, Wallach MG, Belli SI, Ferguson DJP, Smith NC. Oocyst wall formation and composition in coccidian parasites. Mem Inst Oswaldo Cruz 2010; 104:281-9. [PMID: 19430654 DOI: 10.1590/s0074-02762009000200022] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/04/2009] [Indexed: 11/22/2022] Open
Abstract
The oocyst wall of coccidian parasites is a robust structure that is resistant to a variety of environmental and chemical insults. This resilience allows oocysts to survive for long periods, facilitating transmission from host to host. The wall is bilayered and is formed by the sequential release of the contents of two specialized organelles - wall forming body 1 and wall forming body 2 - found in the macrogametocyte stage of Coccidia. The oocyst wall is over 90% protein but few of these proteins have been studied. One group is cysteine-rich and may be presumed to crosslink via disulphide bridges, though this is yet to be investigated. Another group of wall proteins is rich in tyrosine. These proteins, which range in size from 8-31 kDa, are derived from larger precursors of 56 and 82 kDa found in the wall forming bodies. Proteases may catalyze processing of the precursors into tyrosine-rich peptides, which are then oxidatively crosslinked in a reaction catalyzed by peroxidases. In support of this hypothesis, the oocyst wall has high levels of dityrosine bonds. These dityrosine crosslinked proteins may provide a structural matrix for assembly of the oocyst wall and contribute to its resilience.
Collapse
Affiliation(s)
- Kelly Mai
- Institute for Biotechnology of Infectious Diseases, University of Technology, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Drace K, McLaughlin S, Darby C. Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle. PLoS One 2009; 4:e6741. [PMID: 19707590 PMCID: PMC2727005 DOI: 10.1371/journal.pone.0006741] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/22/2009] [Indexed: 11/24/2022] Open
Abstract
The cuticle of Caenorhabditis elegans, a complex, multi-layered extracellular matrix, is a major interface between the animal and its environment. Biofilms produced by the bacterial genus Yersinia attach to the cuticle of the worm, providing an assay for surface characteristics. A C. elegans gene required for biofilm attachment, bah-1, encodes a protein containing the domain of unknown function DUF23. The DUF23 domain is found in 61 predicted proteins in C. elegans, which can be divided into three distinct phylogenetic clades. bah-1 is expressed in seam cells, which are among the hypodermal cells that synthesize the cuticle, and is regulated by a TGF-β signaling pathway.
Collapse
Affiliation(s)
- Kevin Drace
- Department of Cell and Tissue Biology, Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
13
|
Grip S, Johansson J, Hedhammar M. Engineered disulfides improve mechanical properties of recombinant spider silk. Protein Sci 2009; 18:1012-22. [PMID: 19388023 DOI: 10.1002/pro.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nature's high-performance polymer, spider silk, is composed of specific proteins, spidroins, which form solid fibers. So far, fibers made from recombinant spidroins have failed in replicating the extraordinary mechanical properties of the native material. A recombinant miniature spidroin consisting of four poly-Ala/Gly-rich tandem repeats and a nonrepetitive C-terminal domain (4RepCT) can be isolated in physiological buffers and undergoes self assembly into macrofibers. Herein, we have made a first attempt to improve the mechanical properties of 4RepCT fibers by selective introduction of AA --> CC mutations and by letting the fibers form under physiologically relevant redox conditions. Introduction of AA --> CC mutations in the first poly-Ala block in the miniature spidroin increases the stiffness and tensile strength without changes in ability to form fibers, or in fiber morphology. These improved mechanical properties correlate with degree of disulfide formation. AA --> CC mutations in the forth poly-Ala block, however, lead to premature aggregation of the protein, possibly due to disulfide bonding with a conserved Cys in the C-terminal domain. Replacement of this Cys with a Ser, lowers thermal stability but does not interfere with dimerization, fiber morphology or tensile strength. These results show that mutagenesis of 4RepCT can reveal spidroin structure-activity relationships and generate recombinant fibers with improved mechanical properties.
Collapse
Affiliation(s)
- S Grip
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Uppsala 751 23, Sweden
| | | | | |
Collapse
|
14
|
Abstract
Sporulation of the baker's yeast Saccharomyces cerevisiae is a response to nutrient depletion that allows a single diploid cell to give rise to four stress-resistant haploid spores. The formation of these spores requires a coordinated reorganization of cellular architecture. The construction of the spores can be broadly divided into two phases. The first is the generation of new membrane compartments within the cell cytoplasm that ultimately give rise to the spore plasma membranes. Proper assembly and growth of these membranes require modification of aspects of the constitutive secretory pathway and cytoskeleton by sporulation-specific functions. In the second phase, each immature spore becomes surrounded by a multilaminar spore wall that provides resistance to environmental stresses. This review focuses on our current understanding of the cellular rearrangements and the genes required in each of these phases to give rise to a wild-type spore.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, SUNY Stony Brook, Stony Brook, New York 11794-5215, USA.
| |
Collapse
|
15
|
Sapio MR, Hilliard MA, Cermola M, Favre R, Bazzicalupo P. The Zona Pellucida domain containing proteins, CUT-1, CUT-3 and CUT-5, play essential roles in the development of the larval alae in Caenorhabditis elegans. Dev Biol 2005; 282:231-45. [PMID: 15936343 DOI: 10.1016/j.ydbio.2005.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 03/05/2005] [Accepted: 03/15/2005] [Indexed: 11/19/2022]
Abstract
The alae, longitudinal ridges of the lateral cuticle, are the most visible specialization of the Caenorhabditis elegans surface. They are present only in L1 and dauer larvae and in adults. Little is known about the mechanisms through which at the appropriate stages secretion of cuticle components by the seam cells results in the formation of the alae. Here we show that three proteins, each containing a Zona Pellucida domain (ZP), are components of the cuticle necessary for larval alae development: CUT-1 and CUT-5 in dauer larvae and CUT-3 and CUT-5 in L1s. Transcriptional regulation of the corresponding genes contributes to the stage-specific role of these proteins. Larvae with reduced cut-1, cut-3 or cut-5 function not only lack alae but are also larger in diameter due to an increase in the width of the lateral cuticle. We propose a model in which reduction of the body diameter, which occurs in normal L1 and dauer larvae, is the result of a dorso-ventral shrinking of the internal layer of the lateral cuticle and formation of the alae results from the folding of the external layer of the lateral cuticle over the reduced, internal one. Alae of adults appear to form through a different mechanism.
Collapse
Affiliation(s)
- Maria Rosaria Sapio
- Institute of Genetics and Biophysics-A. Buzzati Traverso, CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | | | | | | | | |
Collapse
|
16
|
Andersen SO. Regional differences in degree of resilin cross-linking in the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:459-466. [PMID: 15110867 DOI: 10.1016/j.ibmb.2004.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/18/2004] [Accepted: 02/19/2004] [Indexed: 05/24/2023]
Abstract
Various cuticular regions from the desert locust, Schistocerca gregaria, were quantitatively analyzed for two cross-linking amino acids, dityrosine and trityrosine, characteristic constituents of the rubberlike cuticular protein, resilin. These amino acids were found in all regions of cuticle investigated, but in widely varying amounts. In fully mature adult locusts the largest amounts of di- and trityrosine were obtained from the prealar arms and wing-hinges, structures possessing long-range elasticity and being involved in energy storage in the flight system. In structures where deformations tend to occur more slowly, such as the clypeo-labral springs and tracheae, di- and trityrosine are less abundant. In sclerotized cuticle from femur and tibia, as well as in cornea and in the highly stretchable intersegmental membranes of mature females, they are only found in trace amounts and are probably unrelated to elasticity. The trityrosine-to-dityrosine ratio in the various cuticular regions vary from nearly equal amounts of the two amino acids to about ten times more dityrosine than trityrosine, indicating that the regions differ in degree of cross-linking; the tracheal wall is the material with the highest trityrosine-to-dityrosine ratio. In some cuticular regions the ratio increases during maturation from newly moulted (teneral) adults to reproductively active locusts; the most pronounced increase was observed for the wing-hinges, and only a small increase was observed for the abdominal tergal plates. In most cuticular regions in fifth instar locust nymphs the contents of di- and trityrosine corresponded to the contents measured for the adult cuticular regions, but only trace amounts of the two amino acids were obtained from the region of the nymphal wing base which corresponds to the wing-hinge containing cuticular region in adult locusts.
Collapse
Affiliation(s)
- Svend Olav Andersen
- August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen O, Denmark.
| |
Collapse
|
17
|
Page AP, Winter AD. Enzymes involved in the biogenesis of the nematode cuticle. ADVANCES IN PARASITOLOGY 2003; 53:85-148. [PMID: 14587697 DOI: 10.1016/s0065-308x(03)53003-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nematodes include species that are significant parasites of man, his domestic animals and crops, and cause chronic debilitating diseases in the developing world; such as lymphatic filariasis and river blindness caused by filarial species. Around one third of the World's population harbour parasitic nematodes; no vaccines exist for prevention of infection, limited effective drugs are available and drug resistance is an ever-increasing problem. A critical structure of the nematode is the protective cuticle, a collagen-rich extracellular matrix (ECM) that forms the exoskeleton, and is critical for viability. This resilient structure is synthesized sequentially five times during nematode development and offers protection from the environment, including the hosts' immune response. The detailed characterization of this complex structure; it's components, and the means by which they are synthesized, modified, processed and assembled will identify targets that may be exploited in the future control of parasitic nematodes. This review will focus on the nematode cuticle. This structure is predominantly composed of collagens, a class of proteins that are modified by a range of co- and post-translational modifications prior to assembly into higher order complexes or ECMs. The collagens and their associated enzymes have been comprehensively characterized in vertebrate systems and some of these studies will be addressed in this review. Conversely, the biosynthesis of this class of essential structural proteins has not been studied in such detail in the nematodes. As with all morphogenetic, functional and developmental studies in the Nematoda phylum, the free-living species Caenorhabditis elegans has proven to be invaluable in the characterization of the cuticle and the cuticle collagen gene family, and is now proving to be an excellent model in the study of cuticle collagen biosynthetic enzymes. This model system will be the main focus of this review.
Collapse
Affiliation(s)
- Antony P Page
- Wellcome Centre for Molecular Parasitology, The Anderson College, The University of Glasgow, Glasgow G11 6NU, UK
| | | |
Collapse
|
18
|
Muriel JM, Brannan M, Taylor K, Johnstone IL, Lithgow GJ, Tuckwell D. M142.2 (cut-6), a novel Caenorhabditis elegans matrix gene important for dauer body shape. Dev Biol 2003; 260:339-51. [PMID: 12921736 DOI: 10.1016/s0012-1606(03)00237-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cuticle of the nematode Caenorhabditis elegans is a collagenous extracellular matrix which forms the exoskeleton and defines the shape of the worm. We have characterized the C. elegans gene M142.2, and we show that this is a developmentally regulated gene important for cuticle structure. Transgenic worms expressing M142.2 promoter fused to green fluorescent protein showed that M142.2 is expressed in late embryos and L2d predauers, in the hypodermal cells which synthesize the cuticle. The same temporal pattern was seen by RT-PCR using RNA purified from specific developmental stages. A recombinant fragment of M142.2 was expressed in Escherichia coli and used to raise an antiserum. Immunohistochemistry using the antiserum localized M142.2 to the periphery of the alae of L1 and dauers, forming two longitudinal ribbons over the hypodermal cells. Loss-of-function of M142.2 by RNAi resulted in a novel phenotype: dumpy dauers which lacked alae. M142.2 therefore plays a major role in the assembly of the alae and the morphology of the dauer cuticle; because of its similarity to the other cut genes of the cuticle, we have named the gene cut-6.
Collapse
Affiliation(s)
- Joaquin M Muriel
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 E Chicago Ave, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dombrovsky A, Huet H, Zhang H, Chejanovsky N, Raccah B. Comparison of newly isolated cuticular protein genes from six aphid species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:709-715. [PMID: 12826098 DOI: 10.1016/s0965-1748(03)00065-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper reports on the first aphids' cuticular proteins. One gene (Mpcp1) was obtained by screening a cDNA library of Myzus persicae with antibodies to a lepidopteran cuticle protein. MpCP1 presents a putative signal peptide, a central extended R&R domain, flanked by N- and C-terminal repeats of alanine, tyrosine and proline. The mRNA of Mpcp1 could be detected in a larval and in adult stages. Primers based on Mpcp1 allowed isolating and comparing cuticle protein genes from five aphid species, but not from whitefly or thrips. Comparison revealed a high degree of similarity. Data from this paper suggest that this cuticle protein family is typical and predominant to aphids. The conformation of these cuticle proteins and the significance on particular properties of aphid cuticle is discussed.
Collapse
Affiliation(s)
- A Dombrovsky
- Volcani Center, Department of Virology, Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
20
|
Abstract
The free-living nematode Caenorhabditis elegans is a tractable experimental model system for the study of both vertebrate and invertebrate biology. Its most significant advantages are its simplicity, both in anatomy and in genomic organization, and the elaborate methods that have been developed to attribute function to previously uncharacterized genes. Importantly, > 40% of parasitic nematode genes exhibit high levels of homology to genes within the C. elegans genome. Studying such genes using the C. elegans model should yield new insights into key molecules and their possible implications in parasite survival, leading to the discovery of new drug targets and vaccine candidates.
Collapse
Affiliation(s)
- S Hashmi
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, NY 10021, USA
| | | | | |
Collapse
|
21
|
Brivio MF, de Eguileor M, Grimaldi A, Vigetti D, Valvassori R, Lanzavecchia G. Structural and biochemical analysis of the parasite Gordius villoti (Nematomorpha, Gordiacea) cuticle. Tissue Cell 2000; 32:366-76. [PMID: 11201276 DOI: 10.1054/tice.2000.0125] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cuticle of the nematomorpha Gordius villoti is a proteinaceous extracellular structure that covers the body during the endoparasitic life in the hemocoelic cavity of insect hosts, and of the free-living adult animals. The ultrastructure of the cuticle has a complex spatial organization with several parallel layers of large diameter fibers, interposed thinner fibrous elements and honeycomb-shaped matrix surrounding the fibers. When adult isolated cuticles were partially solubilized by several compounds, the structure revealed a strong insolubility and the main fibers were always observable. HPLC and spectrophotometric assays carried out to investigate the presence of tyrosine cross-linking, indicated such a mechanism as a key-element in the hardening process of the cuticle. Such data strongly suggest that the Gordius cuticle contains dityrosine compounds, whose formation is probably mediated by endogenous peroxidase activity.
Collapse
Affiliation(s)
- M F Brivio
- Department of Structural and Functional Biology, University of Insubria, Varese, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, Hedgecock EM. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 2000; 287:989-94. [PMID: 10669422 DOI: 10.1126/science.287.5455.989] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
New proteins and modules have been invented throughout evolution. Gene "birth dates" in Caenorhabditis elegans range from the origins of cellular life through adaptation to a soil habitat. Possibly half are "metazoan" genes, having arisen sometime between the yeast-metazoan and nematode-chordate separations. These include basement membrane and cell adhesion molecules implicated in tissue organization. By contrast, epithelial surfaces facing the environment have specialized components invented within the nematode lineage. Moreover, interstitial matrices were likely elaborated within the vertebrate lineage. A strategy for concerted evolution of new gene families, as well as conservation of adaptive genes, may underlie the differences between heterochromatin and euchromatin.
Collapse
Affiliation(s)
- H Hutter
- Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lewis E, Hunter SJ, Tetley L, Nunes CP, Bazzicalupo P, Devaney E. cut-1-like genes are present in the filarial nematodes, Brugia pahangi and Brugia malayi, and, as in other nematodes, code for components of the cuticle. Mol Biochem Parasitol 1999; 101:173-83. [PMID: 10413052 DOI: 10.1016/s0166-6851(99)00070-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A fragment of a cut-1 like gene from the filarial nematode Brugia pahangi (designated Bp-cut-1) was isolated by PCR from genomic DNA. The sequence was used to design primers for use in RT-PCR and resulted in the isolation of a cDNA fragment from larvae in the process of the L3-L4 moult. Screening of a B. malayi genomic library identified a single clone, Bm-cut-1. Using primers designed from the Brugia sequences, semi-quantitative RT-PCR was carried out on 11 different life cycle stages chosen to cover periods around the moult and inter-moult periods. This analysis demonstrated that the cut-1 mRNA was most abundant preceding the moult, consistent with its function as a cuticular protein. Immuno-gold electron microscopy using an affinity purified antiserum raised to the highly conserved region of Ascaris CUT-1 confirmed that the protein was restricted to a tight band in the median layer of the cuticle. Despite the fact that no transcripts could be detected in mature adult worms by RT-PCR, immuno-gold microscopy revealed staining of the microfilarial cuticle within the uterus of the adult female worm, suggesting that other cut-1-like genes are present in Brugia.
Collapse
Affiliation(s)
- E Lewis
- Department of Veterinary Parasitology, University of Glasgow, UK
| | | | | | | | | | | |
Collapse
|
24
|
Vollrath F, Knight DP. Structure and function of the silk production pathway in the spider Nephila edulis. Int J Biol Macromol 1999; 24:243-9. [PMID: 10342771 DOI: 10.1016/s0141-8130(98)00095-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our observations on the major ampullate gland of the spider Nephila edulis indicate that the exceptionally tough and strong core and coat composite structure of the dragline thread is formed by the co-drawing of two feedstocks through a single die. The cuticle that lines the gland's duct has the structure of an advanced hollow fibre dialysis membrane and is thought to facilitate a rapid removal of water and change in ionic composition involved in the spinning process. A structure previously termed the 'valve' is thought to advance the broken thread and act as a pump to restart spinning after the accidental internal rupture of a thread. Together, these observations indicate that the spider silk production pathway is highly optimised for the production of silk threads and shows considerable biomimetic potential.
Collapse
Affiliation(s)
- F Vollrath
- Department of Zoology, Aarhus University, Aarhus C, Denmark.
| | | |
Collapse
|
25
|
Abstract
Caenorhabditis elegans has become a popular model system for genetic and molecular research, since it is easy to maintain and has a very fast life-cycle. Its genome is small and a virtually complete physical map in the form of cosmids and YAC clones exists. Thus it was chosen as a model system by the Genome Project for sequencing, and it is expected that by 1998 the complete sequence (100 million bp) will be available. The accumulated wealth of information about C. elegans should be a boon for nematode parasitologists, as many aspects of gene regulation and function can be studied in this simple model system. A large array of techniques is available to study many aspects of C. elegans biology. In combination with genome projects for parasitic nematodes, conserved genes can be identified rapidly. We expect many new areas of fertile research that will lead to new insights in helminth parasitology, which are based not only on the information gained from C. elegans per se, but also from its use as a heterologous system to study parasitic genes.
Collapse
Affiliation(s)
- T R Bürglin
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland.
| | | | | |
Collapse
|
26
|
Abstract
Three genomic fragments homologous to cut-1 of Caenorhabditis elegans (C. elegans) have been identified in the intestinal parasitic nematode Ascaris lumbricoides (A. lumbricoides). Two of these fragments identify one region of the A. lumbricoides genome; they are separated by 8-9 kb and have opposite orientation, with the direction of transcription converging toward the center of the region. The third gene, which has been studied more completely, is in a different region of the genome separated from the first one by not less than 12-15 kb. The complete genomic sequence of this third gene has been determined. cDNA overlapping clones were obtained from adult A. lumbricoides RNA via the rapid amplification of cDNA ends (RACE) procedure [Frohman et al., 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998-9002] and sequenced. The mature mRNA of this gene, which we have named ascut-1, is trans-spliced to the spliced leader sequence of nematodes (SL1) [Krause, M., Hirsh, D., 1987. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49, 753-761]. The mRNA is 1684 nt long plus the poly(A) tail and contains four exons with a 138 nt untranslated 5' leader and a 388 nt untranslated 3' tail. Conceptual translation of the coding sequence shows a protein of 385 aa with a signal peptide of 16 aa. The protein shows very high homology with CECUT-1, the product of the C. elegans gene cut-1 and with other cuticlin proteins of nematodes. A 262 amino acids region which is strongly conserved between these proteins seems to identify a group of proteins, so far restricted to nematodes, for which the name CUT-1-like is proposed.
Collapse
Affiliation(s)
- M Timinouni
- Institut Pasteur du Maroc, Casablanca, Morocco
| | | |
Collapse
|
27
|
|
28
|
Conraths FJ, Hirzmann J, Hobom G, Zahner H. Expression of the microfilarial sheath protein 2 (shp2) of the filarial parasites Litomosoides sigmodontis and Brugia malayi. Exp Parasitol 1997; 85:241-8. [PMID: 9085921 DOI: 10.1006/expr.1996.4138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The microfilarial sheaths of the filarial parasites Brugia malayi, Brugia pahangi, and Litomosoides sigmodontis consist of several parasite proteins, probably ranging between 7 and 10. The gene encoding sheath protein 2 (shp2), which is the object of this study, is transcribed in embryos and in the uterine epithelium; at least in B. malayi, it is translated in both tissues. Apparently, shp2 is synthesized as a monomer, exported by the respective cells, and integrated into the microfilarial sheath. In the sheath, it exists as a highly polymerized molecule cross-linked by cysteine formation and other covalent bonds, presumably epsilon-(gamma-glutamyl)-lysine links.
Collapse
Affiliation(s)
- F J Conraths
- Institut für Parasitologie, Justus-Liebig-Universitat Giessen, Germany.
| | | | | | | |
Collapse
|
29
|
Parise G, Bazzicalupo P. Assembly of nematode cuticle: role of hydrophobic interactions in CUT-2 cross-linking. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1337:295-301. [PMID: 9048907 DOI: 10.1016/s0167-4838(96)00178-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CUT-2 is a component of cuticlin, the highly cross-linked, insoluble residue of the cuticle of the nematode Caenorhabditis elegans. A recombinant fragment of CUT-2, produced in E. coli, can be cross-linked in vitro by horse radish peroxidase via dityrosine formation to give large molecular species [1]. In this paper it is shown that the formation of CUT-2 polymers is greatly favoured over that of CUT-2 oligomers as no low molecular weight intermediates, dimers or trimers can be detected even when the cross-linking reaction is slowed or interrupted before completion. This suggests that recombinant CUT-2 forms large non-covalent complexes that are the only competent substrate for cross-linking. The inhibition of cross-linking by urea and the behavior of recombinant CUT-2 in size-exclusion chromatography under a variety of conditions suggest that hydrophobic interactions are important in the formation and stabilization of these complexes. The complexes are excellent substrates for cross-linking but react poorly with free tyrosine. In contrast, a soluble recombinant CUT-2 is a poor substrate for cross-linking but can efficiently react with free tyrosine.
Collapse
Affiliation(s)
- G Parise
- International Institute of Genetics and Biophysics, Napoli, Italy
| | | |
Collapse
|
30
|
Bisoffi M, Marti S, Betschart B. Repetitive peptide motifs in the cuticlin of Ascaris suum. Mol Biochem Parasitol 1996; 80:55-64. [PMID: 8885222 DOI: 10.1016/0166-6851(96)02668-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cuticle of parasitic nematodes is composed of extracellular structural proteins. Over 90% of these proteins are collagenous molecules in the basal and median layers of the cuticle. The outermost layers of the cuticle, the epicuticle, is composed of non-collagenous proteins, that represent the structural surface of nematodes. In Ascaris these proteins have been termed 'cuticlins'. While cuticular collagens have been well studied by both biochemical and genetic means, knowledge of the molecular structure of cuticlin components of parasitic nematodes is scarce. In the present paper we report on the production of monoclonal antibody 8.1, which is specific for cuticlin, but does not recognize collagen epitopes. We have screened a cDNA library derived from adult Ascaris suum mRNA of the hypodermal tissue underlying and synthesizing the cuticle. One positive cDNA clone encodes alanine-rich repetitive motifs, which are part of the insoluble cuticlin of the outermost layers of the epicuticle of Ascaris suum. This was shown in immunocytochemical experiments using specific polyclonal antisera raised against these motifs, expressed as fusion protein with glutathione S-transferase of the helminth Schistosoma japonicum. Comparison of the repetitive amino acid sequence with structural proteins of the nematode Caenorhabditis elegans and the insects Locusta migratoria and Ceratitis capitata revealed a minimal consensus motif.
Collapse
Affiliation(s)
- M Bisoffi
- Department of Medical Parasitology, Swiss Tropical Institute, Basel, Switzerland
| | | | | |
Collapse
|
31
|
Blaxter ML, Raghavan N, Ghosh I, Guiliano D, Lu W, Williams SA, Slatko B, Scott AL. Genes expressed in Brugia malayi infective third stage larvae. Mol Biochem Parasitol 1996; 77:77-93. [PMID: 8784774 DOI: 10.1016/0166-6851(96)02571-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have used a tag sequencing approach to survey genes expressed in the third stage infective larvae of the human filarial nematode parasite Brugia malayi. RNA was isolated from late vector-stage L3 larvae after days 9 or 10 of infection in mosquitos, and converted to cDNA by reverse transcriptase. Double-stranded cDNA was produced by either conventional methods (non-SL cDNA library) or by PCR using the nematode spliced leader (SLI) and oligo(dT) primers (SL cDNA library). Two clone libraries (one from SL and one from non-SL cDNAs) were constructed in lambda ZapII. A set of these full-length clones was selected and 596 inserts were sequenced from the 5' end. We have identified 364 B. malayi genes (the majority of which are new) that encode housekeeping proteins, structural proteins, proteins of immediate immunological or drug-discovery interest as well as a large class of novel sequences which may prove to have significant involvement in host invasion. Extensive, genome-wide approaches to the analysis of larval gene expression are now possible for B. malayi. We present several examples of this approach.
Collapse
Affiliation(s)
- M L Blaxter
- Institute of Cell, Animal and Population Biology, University of Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rondot I, Quennedey B, Courrent A, Lemoine A, Delachambre J. Cloning and sequencing of a cDNA encoding a larval-pupal-specific cuticular protein in Tenebrio molitor (Insecta, Coleoptera). Developmental expression and effect of a juvenile hormone analogue. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:138-43. [PMID: 8631320 DOI: 10.1111/j.1432-1033.1996.00138.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A cDNA clone encoding a larval-pupal cuticular protein, named TMLPCP-22, has been isolated by screening a library in expression vector with a monoclonal antibody made against pupal cuticular proteins of Tenebrio molitor. Northern-blot and in situ hybridization analyses showed that the expression of TMLPCP-22 is regulated in a stage-specific and tissue-specific manner; the transcript was present during the secretion of preecdysial larval and pupal cuticles and was restricted to epidermal cells. No expression was observed during adult cuticle deposition. In supernumerary pupae obtained after application of a juvenile hormone analogue, which is known to inhibit the adult programme, TMLPCP-22 mRNA was expressed again, confirming its larval-pupal specificity.
Collapse
Affiliation(s)
- I Rondot
- CNRS URA 674, Université de Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|
33
|
Smail EH, Briza P, Panagos A, Berenfeld L. Candida albicans cell walls contain the fluorescent cross-linking amino acid dityrosine. Infect Immun 1995; 63:4078-83. [PMID: 7558322 PMCID: PMC173573 DOI: 10.1128/iai.63.10.4078-4083.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Several clinical and laboratory isolates of Candida albicans have a natural blue surface fluorescence when cultured and observed with sensitive optics. The localization and color of the fluorescence are similar to those of the natural fluorescence of sporulated Saccharomyces cerevisiae which is caused by the generation and surface deposition of the cross-linking amino acid dityrosine. In S. cerevisiae, dityrosine production results from the direct action of at least two genes and is responsible for resistance of the ascospores to lytic enzymes and physicochemical trauma. Among the criteria for the identification of dityrosine is pH sensitivity of the fluorescence intensity and a highly characteristic shift of the fluorescence excitation maximum with a change in pH. Video microscopy of whole Candida organisms revealed the characteristic dityrosine intensity maximum at pH approximately 10 and the intensity minimum at pH approximately 2. Separation of an acid hydrolysate of Candida cell walls by reverse-phase high-performance liquid chromatography revealed a fluorescence peak that coelutes with the reagent dityrosine. At pH approximately 10, this peak has a fluorescence excitation maximum of 320 to 325 nm, while at pH approximately 2, the excitation maximum is 285 to 290 nm. This excitation maximum shift and the observed emission maximum of approximately 410 nm are characteristic of dityrosine. Two separate strains of C. albicans were injected intraperitoneally into mice and harvested at 24 h. Blue surface fluorescence was observed, suggesting that dityrosine generation occurs in vivo as well as in vitro. This is the first report of the presence of dityrosine in a human fungal pathogen.
Collapse
Affiliation(s)
- E H Smail
- Evans Memorial Department of Clinical Research, Boston University Medical Center Hospital, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
34
|
Hirzmann J, Schnaufer A, Hintz M, Conraths F, Stirm S, Zahner H, Hobom G. Brugia spp. and Litomosoides carinii: identification of a covalently cross-linked microfilarial sheath matrix protein (shp2). Mol Biochem Parasitol 1995; 70:95-106. [PMID: 7637719 DOI: 10.1016/0166-6851(95)00011-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A microfilarial sheath protein gene (shp2) coding for the major constituent of the insoluble, cross-linked sheath remnant (SR) from Brugia malayi, Brugia pahangi and Litomosoides carinii has been cloned and sequenced, based on peptide partial amino-acid sequences. All three closely related single-copy shp2 genes in the two genera carry a single intron in identical position; shp2 mRNAs are post-transcriptionally modified by both cis-splicing and trans-splicing. In accordance with their extracellular destinations the encoded proteins include signal peptide sequences; molecular masses of approx. 23 kDa are hence predicted for the mature secreted polypeptides. In their structures sheath matrix proteins shp2 may be regarded as extreme cases of a modular constitution, since these proteins largely consist of two different segments of multiple sequence repetitions, PAA and QYPQAP (or QYPQ), separated by elements of unique sequence. Extreme insolubility and cross-linking are likely to originate from these repetitive sequences within shp2, and to constitute the basic properties of a microfilarial matrix largely consisting of an shp2 network.
Collapse
Affiliation(s)
- J Hirzmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|