1
|
Dechavanne V, Vilbois F, Glez L, Antonsson B. Purification and separation of the 20S immunoproteasome from the constitutive proteasome and identification of the subunits by LC–MS. Protein Expr Purif 2013; 87:100-10. [DOI: 10.1016/j.pep.2012.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
2
|
Blais PA, Côté J, Morin J, Larouche A, Gendron G, Fortier A, Regoli D, Neugebauer W, Gobeil F. Hypotensive effects of hemopressin and bradykinin in rabbits, rats and mice. A comparative study. Peptides 2005; 26:1317-22. [PMID: 16042973 DOI: 10.1016/j.peptides.2005.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hemopressin is a novel vasoactive nonapeptide derived from hemoglobin's alpha-chain as recently reported by Rioli et al. [Rioli V, Gozzo FC, Heimann AS, Linardi A, Krieger JE, Shida CS, et al. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. J Biol Chem 2003;278(10):8547-55]. In anesthetized male Wistar rats, this peptide exhibited hypotensive actions similar to those of bradykinin (BK) when administered intravenously (i.v.), and was found to be metabolized both in vitro and in vivo by several peptidases, including the angiotensin-converting enzyme (ACE). In this study, these findings were expanded upon by examining: (i) the degradation kinetics following incubation with ACE purified from rabbit lung and (ii) the blood pressure lowering effects of HP and BK injected i.v. or intra-arterially (i.a.) in male rabbits, rats, and mice. Our findings demonstrate that, in vitro, HP and BK are both degraded by ACE, but at different velocity rates. Furthermore, both HP and BK induced transient hypotension in all animals tested, although the responses to HP relative to the administration sites were significantly lower (by 10-100-fold) on an equimolar basis compared to those of BK. In rabbits, the decrease of blood pressure induced by HP (10-100 nmol/kg) did not differ whether it was administered i.v. or i.a., suggesting an absence of pulmonary/cardiac inactivation in contrast to BK (0.1-1 nmol/kg). The in vivo effect of HP was significantly potentiated in rabbits immunostimulated with bacterial lipopolysaccharide (LPS), but was unaffected by both the B2 receptor antagonist HOE 140 (0.1 micromol/kg) and captopril (100 microg/kg), contrary to BK. Therefore, HP acts as a weak hypotensive mediator, which does not activate kinin B2 receptors, but uses a functional site and/or signaling paths appearing to be up-regulated by LPS.
Collapse
Affiliation(s)
- Paul-André Blais
- Faculty of Medicine, Department of Pharmacology, Université de Sherbrooke, 301 12th North Avenue, Fleurimont, Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ivanov VT, Karelin AA, Yatskin ON. Generation of peptides by human erythrocytes: Facts and artifacts. Biopolymers 2005; 80:332-46. [PMID: 15739176 DOI: 10.1002/bip.20228] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previously reported data on peptide composition of human erythrocyte lysate were obtained under conditions that did not exclude proteolytic degradation of hemoglobin in the process of peptide isolation. Comparative chromatographic analysis of the diluted erythrocyte lysate incubated in acidic conditions with or without proteolytic enzyme inhibitors showed that several peptides earlier identified as intraerythrocyte ones in fact result from hemoglobin degradation by erythrocyte acidic protease(s) during incubation of the lysate. A rational scheme excluding postlysis proteolysis was developed for isolation of peptide fraction. Further analysis resulted in determination of structure and content of about 50 endogenous intraerythrocyte hemoglobin fragments. A primary endopeptidase splitting of alpha- and beta-globin chains followed by consecutive exopeptidase trimming of primary fragments is suggested as a degradation mechanism. The intraerythrocyte peptides were shown to differ from peptides excreted by the erythrocytes to the extracellular medium in the primary culture. It was also found that intraerythrocyte peptides cannot play the role of precursors of hemoglobin fragments present in tissue extracts.
Collapse
Affiliation(s)
- Vadim T Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russia.
| | | | | |
Collapse
|
4
|
Kanno H, Takizawa T, Miwa S, Fujii H. Molecular basis of Japanese variants of pyrimidine 5'-nucleotidase deficiency. Br J Haematol 2004; 126:265-71. [PMID: 15238149 DOI: 10.1111/j.1365-2141.2004.05029.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The type-I isoform of pyrimidine 5'-nucleotidase (P5N-I) has an important role in the catabolism of pyrimidine mononucleotides during erythroid maturation. Two alternatively spliced forms of P5N-I mRNA have been identified, and we found another alternatively spliced form in reticulocytes, which included an additional 87-bp sequence. The sequence is located 6.2-kb downstream of the exon 2 and 2.7-kb upstream of the exon 3 sequence; consequently, the P5N-I gene encodes 11 exons, which span approximately 48 kb. We identified five novel mutations in nine families with P5N-I deficiency: two missense mutations (425C, 721C), one splice mutation (339C), one 1-bp insertion (251-insA-252) and one 9-bp deletion (del 192-200). All patients were homozygous for each mutation. The mutant P5N-I with 721C (G241R) had lower affinity for cytidine monophosphate, suggesting that Gly241 is important for substrate binding. Haplotype analysis showed that 721C, which had been identified in five unrelated families, was a founder mutation. The mutant P5N was then expressed in Cos-7. The degradation of P5N with 425C (L142P) was significantly faster than a wild-type control, and proteasome inhibitors restored the stability of L142P. These data suggest that L142P increases susceptibility to the degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | |
Collapse
|
5
|
Shimizu K, Fujino T, Ando K, Hayakawa M, Yasuda H, Kikugawa K. Overexpression of oxidized protein hydrolase protects COS-7 cells from oxidative stress-induced inhibition of cell growth and survival. Biochem Biophys Res Commun 2003; 304:766-71. [PMID: 12727222 DOI: 10.1016/s0006-291x(03)00657-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidized protein hydrolase (OPH) preferentially degrades oxidatively damaged proteins in vitro and is widely distributed in various cells and tissues. The role of OPH in intact cells exposed to oxidative stress was examined. For this purpose, using COS-7, a cell line derived from African green monkey kidney, COS-7-OPH cells that stably overexpressed OPH were established. When COS-7-OPH cells were exposed to oxidative stress induced by H(2)O(2) and paraquat, accumulation of protein carbonyls in the cells was apparently lower than that of parental COS-7 cells, and COS-7-OPH cells were significantly resistant to the oxidative stress compared with parental COS-7 cells. The majority of overexpressed OPH in the cells was found to be located uniformly in cytosol, and its location was not altered by H(2)O(2)-induced oxidative stress. Above results indicate that OPH in intact cells plays a preventive role against oxidative stress and suggest that OPH relieves cells from accumulation of oxidatively damaged proteins.
Collapse
Affiliation(s)
- Kei Shimizu
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Rioli V, Gozzo FC, Heimann AS, Linardi A, Krieger JE, Shida CS, Almeida PC, Hyslop S, Eberlin MN, Ferro ES. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. J Biol Chem 2003; 278:8547-55. [PMID: 12500972 DOI: 10.1074/jbc.m212030200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endopeptidase 24.15 (EC; ep24.15), neurolysin (EC; ep24.16), and angiotensin-converting enzyme (EC; ACE) are metallopeptidases involved in neuropeptide metabolism in vertebrates. Using catalytically inactive forms of ep24.15 and ep24.16, we have identified new peptide substrates for these enzymes. The enzymatic activity of ep24.15 and ep24.16 was inactivated by site-directed mutagenesis of amino acid residues within their conserved HEXXH motifs, without disturbing their secondary structure or peptide binding ability, as shown by circular dichroism and binding assays. Fifteen of the peptides isolated were sequenced by electrospray ionization tandem mass spectrometry and shared homology with fragments of intracellular proteins such as hemoglobin. Three of these peptides (PVNFKFLSH, VVYPWTQRY, and LVVYPWTQRY) were synthesized and shown to interact with ep24.15, ep24.16, and ACE, with K(i) values ranging from 1.86 to 27.76 microm. The hemoglobin alpha-chain fragment PVNFKFLSH, which we have named hemopressin, produced dose-dependent hypotension in anesthetized rats, starting at 0.001 microg/kg. The hypotensive effect of the peptide was potentiated by enalapril only at the lowest peptide dose. These results suggest a role for hemopressin as a vasoactive substance in vivo. The identification of these putative intracellular substrates for ep24.15 and ep24.16 is an important step toward the elucidation of the role of these enzymes within cells.
Collapse
Affiliation(s)
- Vanessa Rioli
- Department of Histology and Embryology, Cell Biology Program, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
8
|
Fujino T, Watanabe K, Beppu M, Kikugawa K, Yasuda H. Identification of oxidized protein hydrolase of human erythrocytes as acylpeptide hydrolase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1478:102-12. [PMID: 10719179 DOI: 10.1016/s0167-4838(00)00004-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Partial amino acid sequence of 80 kDa oxidized protein hydrolase (OPH), a serine protease present in human erythrocyte cytosol (Fujino et al., J. Biochem. 124 (1998) 1077-1085) that is adherent to oxidized erythrocyte membranes and preferentially degrades oxidatively damaged proteins (Beppu et al., Biochim. Biophys. Acta 1196 (1994) 81-87; Fujino et al., Biochim. Biophys. Acta 1374 (1998) 47-55) was determined. The N-terminal amino acid of diisopropyl fluorophosphate (DFP)-labeled OPH was suggested to be masked. Six peptide fragments of OPH obtained by digestion of DFP-labeled OPH with lysyl endopeptidase were isolated by use of reverse-phase high-performance liquid chromatography, and the sequence of more than eight amino acids from the N-terminal position of each peptide was determined. Results of homology search of amino acid sequence of each peptide strongly suggested that the protein was identical with human liver acylpeptide hydrolase (ACPH). OPH showed ACPH activity when N-acetyl-L-alanine p-nitroanilide and N-acetylmethionyl L-alanine were used as substrates. Glutathione S-transferase (GST)-tagged recombinant ACPH (rACPH) was prepared by use of baculovirus expression system as a 107-kDa protein from cDNA of human erythroleukemic cell line K-562. rACPH reacted with anti-OPH antiserum from rabbit. rACPH showed OPH activity when hydrogen peroxide-oxidized or glycated bovine serum albumin was used as substrates. As well as the enzyme activities of OPH, those of rACPH were inhibited by DFP. The results clearly demonstrate that ACPH, whose physiological function has not yet been well characterized, can play an important role as OPH in destroying oxidatively damaged proteins in living cells.
Collapse
Affiliation(s)
- T Fujino
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|
9
|
Celedón G, González G, Sotomayor CP, Behn C. Membrane lipid diffusion and band 3 protein changes in human erythrocytes due to acute hypobaric hypoxia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1429-31. [PMID: 9843702 DOI: 10.1152/ajpcell.1998.275.6.c1429] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because it has been reported that hypoxia in rats may promote lipid peroxidation and other free radical reactions that could modify membrane lipids and proteins, the effect of acute hypobaric hypoxia on human erythrocyte membranes was investigated. 12-(1-Pyrene)dodecanoic acid fluorescent probe was used to assess short-range lateral diffusion status in the membrane bilayer. Membrane protein modification was detected by SDS-PAGE. Healthy young men were exposed for 20 min to the hypobaric hypoxia, simulating an altitude of 4,500 m. Under this condition, erythrocyte membrane lipids reached a state of higher lateral diffusivity with respect to normobaric conditions and membrane band 3 protein was modified, becoming more susceptible to membrane-bound proteinases. These observations suggest that acute hypobaric hypoxia may promote an oxidative stress condition in the erythrocyte membrane.
Collapse
Affiliation(s)
- G Celedón
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
10
|
Fujino T, Ishikawa T, Inoue M, Beppu M, Kikugawa K. Characterization of membrane-bound serine protease related to degradation of oxidatively damaged erythrocyte membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1374:47-55. [PMID: 9814851 DOI: 10.1016/s0005-2736(98)00131-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been shown that erythrocyte membrane proteins become susceptible to degradation by membrane-bound serine protease activity after oxidative modification of the membranes (M. Beppu, M. Inoue, T. Ishikawa, K. Kikugawa, Biochim. Biophys. Acta 1196 (1994) 81-87). The aim of the present study was to clarify the presence of the serine protease in oxidized erythrocyte membranes and to characterize the selectivity of the enzyme to oxidized proteins. Human erythrocytes were oxidized in vitro with xanthine/xanthine oxidase/Fe(III) and oxidized membranes isolated. Proteolytic activity of the membranes toward spectrin obtained from oxidized membranes and bovine serum albumin oxidized with H2O2/horseradish peroxidase was increased by membrane oxidation, and the degradability of the substrates was increased by substrate oxidation. The proteolytic activity was inhibited by the serine protease inhibitor diisopropyl fluorophosphate (DFP). The 72 kDa and 80 kDa proteins in the membranes were labeled by [3H]DFP when detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions and subsequent fluorography. The 72 kDa protein was found to be a serine enzyme, acetylcholine esterase. The 80 kDa protein appeared to be responsible for the degradation of oxidatively damaged proteins. The 80 kDa protein was loosely bound to membranes and readily solubilized into a 0.1% NP-40 detergent solution. The presence of the same 80 kDa protease in intact erythrocyte cytosol was suggested. The increased serine protease activity in oxidized membranes can result from the increased adherence of the cytosolic 80 kDa serine protease to the membranes due to oxidation.
Collapse
Affiliation(s)
- T Fujino
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | |
Collapse
|
11
|
Hoffman L, Rechsteiner M. Regulatory features of multicatalytic and 26S proteases. CURRENT TOPICS IN CELLULAR REGULATION 1996; 34:1-32. [PMID: 8646844 DOI: 10.1016/s0070-2137(96)80001-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It should be clear from the foregoing accounts that our understanding of MCP and 26S regulation is still rudimentary. Moreover, we have only recently identified about a dozen natural substrates of these two proteases. Those outside the field may view the situation with some dismay. Those who study the MCP and 26S enzymes are provided with rich opportunities to address fundamental questions of protein catabolism and metabolic regulation.
Collapse
Affiliation(s)
- L Hoffman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
12
|
Abstract
Contrary to widespread belief, the regulation and mechanism of degradation for the mass of intracellular proteins (i.e. differential, selective protein turnover) in vertebrate tissues is still a major biological enigma. There is no evidence for the conclusion that ubiquitin plays any role in these processes. The primary function of the ubiquitin-dependent protein degradation pathway appears to lie in the removal of abnormal, misfolded, denatured or foreign proteins in some eukaryotic cells. ATP/ubiquitin-dependent proteolysis probably also plays a role in the degradation of some so-called 'short-lived' proteins. Evidence obtained from the covalent modification of such natural substrates as calmodulin, histones (H2A, H2B) and some cell membrane receptors with ubiquitin indicates that the reversible interconversion of proteins with ubiquitin followed by concomitant functional changes may be of prime importance.
Collapse
Affiliation(s)
- H P Jennissen
- Institut für Physiologische Chemie, Universität-GHS-Essen, Germany
| |
Collapse
|
13
|
Hilt W, Wolf DH. [Proteasomes. Complex proteases lead to a new understanding of cellular regulation through proteolysis]. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1995; 82:257-68. [PMID: 7643904 DOI: 10.1007/bf01134523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proteasomes are large multicatalytic protease complexes which fulfill central functions in major proteolytic pathways of the eukaryotic cell. Two types of proteasomes are known: the cylindrically shaped 20S proteasome (700 kDa) and the 26S proteasome (1700 kDa) which contains the 20S proteasome as a functional core. Proteasomes are needed for stress-dependent and ubiquitin-mediated proteolysis. They are involved in degradation of abnormal, short-lived, and regulatory proteins. Proteasomes are important for cell differentiation and adaptation to environmental changes. Proteasomes have been shown to function in the control of the cell cycle and are suggested to be involved in antigen presentation by processing of intracellular proteins to antigenic peptides.
Collapse
Affiliation(s)
- W Hilt
- Institut für Biochemie der Universität Stuttgart
| | | |
Collapse
|
14
|
Abstract
Endurance training can lead to what has been termed 'sports anaemia'. Although under normal conditions, red blood cells (RBCs) have a lifespan of about 120 days, the rate of aging may increase during intensive training. However, RBC deficiency is rare in athletes, and sports anaemia is probably due to an expanded plasma volume. Cycling, running and swimming have been shown to cause RBC damage. While most investigators measure indices of haemolysis (for example, plasma haemoglobin or haptoglobin), RBC removal is normally an extravascular process that does not involve haemolysis. Attention is now turning to cellular indices (such as antioxidant depletion, or protein or lipid damage) that may be more indicative of exercise-induced damage. RBCs are vulnerable to oxidative damage because of their continuous exposure to oxygen and their high concentrations of polyunsaturated fatty acids and haem iron. As oxidative stress may be proportional to oxygen uptake, it is not surprising that antioxidants in muscle, liver and RBCs can be depleted during exercise. Oxidative damage to RBCs can also perturb ionic homeostasis and facilitate cellular dehydration. These changes impair RBC deformability which can, in turn, impede the passage of RBCs through the microcirculation. This may lead to hypoxia in working muscle during single episodes of exercise and possibly an increased rate of RBC destruction with long term exercise. Providing RBC destruction does not exceed the rate of RBC production, no detrimental effect to athletic performance should occur. An increased rate of RBC turnover may be advantageous because young cells are more efficient in transporting oxygen. Because most techniques examine the RBC population as a whole, more sophisticated methods which analyse cells individually are required to determine the mechanisms involved in exercise-induced damage of RBCs.
Collapse
Affiliation(s)
- J A Smith
- Department of Physiology and Applied Nutrition, Australian Institute of Sport, Belconnen, ACT
| |
Collapse
|
15
|
Tippler B, Herbst C, Simmet T. Evidence for the formation of endothelin by lysed red blood cells from endogenous precursor. Eur J Pharmacol 1994; 271:131-9. [PMID: 7698196 DOI: 10.1016/0014-2999(94)90273-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The release of endothelin from various blood cell fractions was investigated. Human as well as rat blood cell fractions homogenized by sonification were incubated in buffer for up to 60 min. Neither in platelet nor leukocyte homogenates from either species could immunoreactive endothelin be detected. In contrast, homogenates of red blood cells from both species showed a rapid and time-dependent rise of immunoreactive endothelin levels, reaching a peak at 15 min and decreasing thereafter. However, at time point 0 no immunoreactive endothelin could be detected. Reverse phase high performance liquid chromatography showed immunoreactive endothelin to consist of endothelin-1 as well as big endothelin-1. The release of immunoreactive endothelin in human and rat homogenates was concentration-dependently inhibited by the protease inhibitors, leupeptin, phosphoramidon, chymostatin and pepstatin A in order of increasing potency. Intact red blood cells did not incorporate [125I]endothelin-1 nor did they transform exogenous big endothelin-1 to endothelin-1. However, haemolysis of red blood cells with hypotonic saline (0.2%) or incubation with pore-forming staphylococcal alpha-toxin induced the release of immunoreactive endothelin into the buffer samples. Thus, apart from the indirect vasoconstrictor, haemoglobin, red blood cells can also liberate the direct vasoconstrictor, endothelin, a finding expected to be of considerable pathophysiological significance.
Collapse
Affiliation(s)
- B Tippler
- Department of Pharmacology and Toxicology, Ruhr University, Bochum, Germany
| | | | | |
Collapse
|
16
|
Beppu M, Inoue M, Ishikawa T, Kikugawa K. Presence of membrane-bound proteinases that preferentially degrade oxidatively damaged erythrocyte membrane proteins as secondary antioxidant defense. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1196:81-7. [PMID: 7986814 DOI: 10.1016/0005-2736(94)90298-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human erythrocytes were oxidized with xanthine/xanthine oxidase/ferric ion or ADP/ferric ion at 37 degrees C for several hours. Band 3 protein and spectrin of the oxidized cells were found to be significantly modified as analyzed by radiolabeling with tritiated borohydride. Sodium dodecylsulfate-polyacrylamide gel electrophoresis of the xanthine/xanthine oxidase/ferric iron-oxidized cells and subsequent immunoblotting with anti band 3 protein showed that band 3 protein was fragmented into smaller molecular-weight fragments. When the cell membrane obtained from the oxidized cells were incubated at pH 7.4 and 37 degrees C for several hours in the presence of alpha-tocopherol, extensive degradation of band 3 protein and spectrin was observed. Band 3 protein was found to be most susceptible to the degradation. Degradation of band 3 protein was also observed after similar incubation of the membrane from the ADP/ferric ion-oxidized cells. Membrane-bound serine- and metalloproteinases were responsible for the degradation of band 3 protein, because the degradation was remarkably inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, and partially by ethylenediaminetetraacetic acid. Hence, the membrane proteins became susceptible to membrane-bound proteinases by oxidative stress. This observation suggests that these membrane-bound proteinases exist to remove oxidatively damaged proteins from the cell membrane.
Collapse
Affiliation(s)
- M Beppu
- Tokyo College of Pharmacy, Japan
| | | | | | | |
Collapse
|
17
|
Fischer M, Hilt W, Richter-Ruoff B, Gonen H, Ciechanover A, Wolf DH. The 26S proteasome of the yeast Saccharomyces cerevisiae. FEBS Lett 1994; 355:69-75. [PMID: 7957966 DOI: 10.1016/0014-5793(94)01177-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteasomes are large multicatalytic proteinase complexes found in all eukaryotic organisms investigated so far. They have been shown to play a central role in cytosolic and nuclear proteolysis. According to their sedimentation coefficients two types of these particles can be distinguished: 20S proteasomes and 26S proteasomes. In contrast to 20S proteasomes, which were mainly characterized on the basis of their ability to cleave small chromogenic peptide substrates and certain proteins in an ATP-independent manner, 26S proteasomes degrade ubiquitinylated proteins in an ATP-dependent reaction. 20S proteasomes have been found in all eukaryotes from yeast to man. So far 26S proteasomes have only been discovered in higher eukaryotes. We now report the existence of the 26S proteasome in a lower eukaryote, the yeast Saccharomyces cerevisiae. Formation of the 26S proteasome could most effectively be induced in crude extracts of heat stressed yeast cells by incubation with ATP and Mg2+ ions. This treatment yielded a protein complex, which eluted from gel filtration columns at molecular masses higher than 1500 kDa. Besides chromogenic peptide substrates, this complex cleaves ubiquitinylated proteins in an ATP-dependent fashion. In non-denaturing-PAGE, the purified 26S proteasome disintegrated and migrated as four protein bands. One of these bands could be identified as the 20S proteasome. On SDS-PAGE, the 26S proteasome showed a complex pattern of subunit bands with molecular masses between 15 and 100 kDa. Further evidence for the 20S proteasome being the proteolytically active core of the 26S proteasome was obtained by following peptide cleaving activities in extracts of yeast strains carrying mutations in various subunits of the 20S proteasome.
Collapse
Affiliation(s)
- M Fischer
- Institut für Biochemie, Universität Stuttgart, Universität Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Wenzel T, Baumeister W. Thermoplasma acidophilum proteasomes degrade partially unfolded and ubiquitin-associated proteins. FEBS Lett 1993; 326:215-8. [PMID: 8391997 DOI: 10.1016/0014-5793(93)81793-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is shown that proteasomes from the arachaebacterium Thermoplasma acidophilum selectively degrade substrate proteins partially unfolded by phenylhydrazine- or hydrogen peroxide-treatment. Surprisingly, the pre-incubation of the substrate proteins with ubiquitin is also sufficient to render them susceptible to proteolytic degradation by proteasomes. We propose that, upon spontaneously associating with the substrate protein, ubiquitin exerts a chaotropic effect on it; this may involve the exposure of hydrophobic segments of the polypeptide chain which are recognized by the binding sites of the proteasome.
Collapse
Affiliation(s)
- T Wenzel
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
19
|
Mortensen AM, Novak RF. Dynamic changes in the distribution of the calcium-activated neutral protease in human red blood cells following cellular insult and altered Ca2+ homeostasis. Toxicol Appl Pharmacol 1992; 117:180-8. [PMID: 1471149 DOI: 10.1016/0041-008x(92)90235-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mechanistic studies were conducted to examine the relationship between oxidative membrane protein damage, altered Ca2+ homeostasis, and changes in the levels of plasma membrane-bound Ca(2+)-activated neutral protease, microCANP. Alterations in the levels of plasma membrane-bound microCANP in erythrocytes and hemolysate following cumene hydroperoxide (CHP) insult were monitored using SDS-PAGE and immunoblot analyses. Free radical scavengers, antioxidant and EGTA effects on membrane-bound microCANP levels in CHP-treated cells and hemolysate were also examined. CHP (2 mM) addition to red cells caused a significant decrease/loss in intensity of numerous protein bands in the SDS-PAGE pattern, to include bands 1, 2, 2.1, 4.1, 4.2, and an approximately 60-kDa protein. N-acetylcysteine (20 mM), dithiothreitol (50 mM), and dimethylthiourea (50 mM) diminished CHP-mediated membrane protein damage; in contrast, dimethylfuran (50 mM) exacerbated CHP-mediated membrane protein damage. Dimethylsulfoxide (50 mM) was without significant effect. The free radical scavengers and antioxidants differentially affected membrane-bound microCANP levels largely in parallel with their ability to modulate membrane protein damage. Immunoblot analysis of 1 mM CHP-treated red cells revealed a time-dependent loss of membrane-bound microCANP, with a complete loss of microCANP monitored at 8 hr. Treatment of erythrocytes with CHP also resulted in concentration-dependent alterations in the level of membrane-bound microCANP: at 0.5 or 1.0 mM CHP a decreased level of membrane-bound microCANP was detected relative to control, whereas an increase in the level of bound enzyme was monitored from 2 to 4 mM CHP. CHP addition to hemolysate produced a decrease in membrane-bound microCANP levels comparable to that observed with erythrocytes; addition of the Ca2+ chelator EGTA or Calpain Inhibitor I (N-acetyl-leucyl-leucyl-leucyl-nor-leucinal) to hemolysate effectively inhibited this decrease. In contrast, treatment of erythrocytes with Ca2+ in the presence of the Ca2+ ionophore A23187 resulted in change in the SDS-PAGE protein bands and membrane-bound microCANP levels that were comparable to those produced by CHP. Inclusion of EGTA in this system prevented microCANP binding. These data provide evidence for membrane damage and concomitant dynamic alterations in membrane-bound microCANP levels in the red cell or hemolysate following oxidative insult, and show that this process can be modulated by free radical scavengers and antioxidant, simulated by treating cells with Ca2+ in the presence of ionophore, and inhibited by EGTA or Calpain Inhibitor I.
Collapse
Affiliation(s)
- A M Mortensen
- Institute of Chemical Toxicology, Wayne State University, Detroit, Michigan 48201
| | | |
Collapse
|
20
|
|
21
|
Hoffman L, Pratt G, Rechsteiner M. Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41680-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Pereira ME, Yu B, Wilk S. Enzymatic changes of the bovine pituitary multicatalytic proteinase complex, induced by magnesium ions. Arch Biochem Biophys 1992; 294:1-8. [PMID: 1550335 DOI: 10.1016/0003-9861(92)90128-j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of magnesium ions on the catalytic activities of the bovine pituitary multicatalytic proteinase complex (MPC) was studied. Mg2+ markedly stimulated the breakdown of dephosphorylated beta-casein (caseinolytic activity) and the hydrolysis of Cbz-Leu-Leu-Glu-2-naphthylamide (peptidylglutamyl peptide bond hydrolyzing activity) by a 1700-fold purified preparation of MPC. Cleavage of Cbz-D-Ala-Leu-Arg-2-naphthylamide (trypsin-like activity) was strongly inhibited and cleavage of Cbz-Gly-Gly-Leu-p-nitroanilide (chymotrypsin-like activity) was weakly inhibited. Similar results were produced when enzymatic activities in the absence of Mg2+ were measured at 52 degrees C rather than at 37 degrees C. Trace protein impurities were removed by phenyl-Sepharose chromatography. This additional chromatographic step, while not changing the specific activities of hydrolysis of the three synthetic chromogenic substrates, led to a marked activation of the breakdown of dephosphorylated beta-casein. Mg2+ was not able to further stimulate the caseinolytic activities of either the phenyl-Sepharose-treated preparation or the preparation measured at 52 degrees C. Mg2+ therefore converts a "repressed" form of MPC to an "activated" form, possibly by promoting dissociation of a protein inhibitor, and may serve as a physiological regulator of this enzyme complex.
Collapse
Affiliation(s)
- M E Pereira
- Mount Sinai School of Medicine, City University of New York, New York 10029
| | | | | |
Collapse
|
23
|
Chemical modification of the bovine pituitary multicatalytic proteinase complex by N-acetylimidazole. Reversible activation of casein hydrolysis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47386-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Mykles DL, Haire MF. Sodium dodecyl sulfate and heat induce two distinct forms of lobster muscle multicatalytic proteinase: the heat-activated form degrades myofibrillar proteins. Arch Biochem Biophys 1991; 288:543-51. [PMID: 1898047 DOI: 10.1016/0003-9861(91)90233-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A multicatalytic proteinase (MCP) purified from lobster claw and abdominal muscles degrades a variety of peptide and protein substrates. The enzyme is activated by low concentrations (0.03%) of sodium dodecyl sulfate (SDS) and brief (1 min) heating at 60 degrees C. The lobster MCP can assume three stable and functionally distinct states in vitro; these are classified as the basal, heat-activated, and SDS-activated forms. The basal MCP possessed high trypsin-like peptidase activity and low chymotrypsin-like peptidase, peptidylglutamyl-peptide hydrolase, and caseinolytic activities; incubation of the basal form with SDS stimulated the peptidylglutamyl-hydrolase activity about 30-fold and inhibited the other three activities 80% to 100%. Heating the basal form stimulated caseinolytic activity about 6-fold with little effect on the peptidase activities. The heat-activated enzyme also degraded myosin, tropomyosin, troponin, and actin depolymerizing factor; alpha-actinin was resistant to proteolysis. Incubation of the heat-activated MCP with SDS inhibited the trypsin-like, chymotrypsin-like, and proteinase activities 95 to 100% and stimulated the peptidylglutamyl-hydrolase activity about 16-fold. Incubation of myosin with either the basal or the heat-activated forms in the presence of SDS generated identical proteolytic fragments of the myosin heavy chain, suggesting that SDS induced a third form that can be produced from either the basal or the heat-activated forms. The heat-activated form produced proteolytic fragments of myosin heavy chain different from those generated by either basal or heat-activated enzymes in the presence of SDS. Furthermore, 100 mM KCl stimulated the caseinolytic activity of the heat-activated form 24% and inhibited the trypsin-like and peptidylglutamyl-hydrolase activities 56 and 20%, respectively. These results, though indirect, suggest that heating induced a proteinase activity that was distinct from the three peptidase activities. Activation of the basal form with SDS was reversible, since precipitation of dodecyl sulfate with 100 mM KCl restored trypsin-like activity and inhibited peptidylglutamyl-hydrolase activity. In contrast, removal of dodecyl sulfate from the SDS-activated form that was derived from the heat-activated MCP induced its conversion to the basal form. Thus, although heat-activation was irreversible, the heat-activated form was converted back to the basal form via the SDS-activated form.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523
| | | |
Collapse
|
25
|
Di Cola D, Pratt G, Rechsteiner M. Multicatalytic and 26 S ubiquitin/ATP-stimulated proteases in maturing rabbit red blood cells. FEBS Lett 1991; 280:137-40. [PMID: 1849090 DOI: 10.1016/0014-5793(91)80222-o] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rabbit red blood cells of various ages were separated on Percoll gradients and the activities of two large cytosolic proteases were measured. Both the multicatalytic protease (MCP), assayed by hydrolysis of fluorigenic peptides, and the 26 S ubiquitin/ATP-stimulated protease, assayed by degradation of ubiquitin-lysozyme conjugates, declined 3-fold or less during maturation of rabbit reticulocytes to erythrocytes. The ability of MCP to hydrolyze three classes of peptides decreased in parallel indicating that the 20 S protease is not significantly remodeled during red blood cell maturation.
Collapse
Affiliation(s)
- D Di Cola
- Institute of Biochemical Science, Faculty of Medicine, University of Chieti, Italy
| | | | | |
Collapse
|
26
|
Sacchetta P, Santarone S, Battista P, Di Cola D. Isolation of two high-molecular-mass proteinases from human erythrocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:275-80. [PMID: 2200671 DOI: 10.1111/j.1432-1033.1990.tb19120.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two forms of a neutral--alkaline high-molecular-mass proteinase (termed A1 and A2) have been purified from human erythrocytes by a procedure including a DEAE-cellulose batchwise treatment of erythrocyte cytosol, gel filtration and DEAE-cellulose chromatography. Both enzymes show distinctive properties of multicatalytic proteinases. They have an apparent molecular mass of 700 kDa and are composed by eight major subunits (23-32 kDa). Both enzymes show a proteinase activity towards casein and hydrolyze synthetic peptides with tyrosine, arginine or lysine at the P1 position. Among the synthetic peptides tested, the tetrapeptide succinyl-leucyl-leucyl-valyl-tyrosyl-7-amido-4-methylcoumarin and tripeptides with arginine in the P1 position (benzyloxycarbonyl-valyl-leucyl-arginyl-4-methoxy-2-naphthylamide and benzyloxycarbonyl-alanyl-arginyl-arginyl-4-methoxy-2-naphthylamide) are the most effective substrates. The proteinases are devoid of amino and diaminopeptidase activity. Both enzymes are completely inhibited by hemin, chymostatin and thiol-group reagents. However, the enzymes can be distinguished by the isoelectric point, the different effect of nucleotides, glutathione disulphide, sodium dodecyl sulfate and cations on the catalytic activity.
Collapse
Affiliation(s)
- P Sacchetta
- Istituto di Scienze Biochimiche, Facoltà di Medicina, Università G. D'Annunzio, Chieti, Italy
| | | | | | | |
Collapse
|