1
|
Yu YH, Crosbie DB, Marín Arancibia M. Pseudomonas in the spotlight: emerging roles in the nodule microbiome. TRENDS IN PLANT SCIENCE 2025; 30:461-470. [PMID: 39788854 DOI: 10.1016/j.tplants.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
While rhizobia have long been recognised as the primary colonisers of legume nodules, microbiome studies have revealed the presence of other bacteria in these organs. This opinion delves into the factors shaping the nodule microbiome and explores the potential roles of non-rhizobial endophytes, focusing particularly on Pseudomonas as prominent players. We explore the mechanisms by which Pseudomonas colonise nodules, their interactions with rhizobia, and their remarkable potential to promote plant growth and protect against pathogens. Furthermore, we discuss the promising prospects of using Pseudomonas as inoculants alongside rhizobia to enhance crop growth and promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Yu-Hsiang Yu
- Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Munich, Germany; Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Duncan B Crosbie
- Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Munich, Germany
| | - Macarena Marín Arancibia
- Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Munich, Germany; Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Chen X, Wang K, Qin T, Bai Y, Li Q, Guo A, Liao B, Zhang J. An ideal leaf spraying strategy of brown sugar for edible medicinal plants of Viola inconspicua. NPJ Sci Food 2024; 8:99. [PMID: 39572563 PMCID: PMC11582318 DOI: 10.1038/s41538-024-00343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The typical edible medicinal plants of Viola inconspicua were compared with leaf-green, biomass, metabolomes, and bacterial communities, after leaf-spraying water (A), brown sugar water (B), brown sugar, urea, and KH2PO4 water (C), or KH2PO4 and urea water (D). The plants sprayed with C solution presented relatively normal leaf-green and the highest biomass. In contrast of A group, B, C, and D groups were found with 72, 94, and 104 leaf differently accumulated metabolites (DAMs) and 105, 88, and 92 root DAMs, respectively. Typically, relative abundances of amino acids were elevated in C and D groups, while those of leaf flavonoids were increased in B group. Noticeably, leaf DAMs of C group versus A group had strong correlations with one to more phylum- or/and genus-dominant bacteria of C group. Taken together, leaf-spraying brown sugar, urea, and KH2PO4 water are ideal for holding leaf-green and biomass in V. inconspicua plants.
Collapse
Affiliation(s)
- Xuhan Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Kemei Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Ting Qin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Yachao Bai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Aimin Guo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Jun Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China.
| |
Collapse
|
3
|
Alattas H, Glick BR, Murphy DV, Scott C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front Microbiol 2024; 15:1485197. [PMID: 39640850 PMCID: PMC11617545 DOI: 10.3389/fmicb.2024.1485197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
This review examines the role of Pseudomonas spp. bacteria as biocontrol agents against crop diseases, focusing on their mechanisms of action, efficacy, and potential applications in sustainable agriculture. Pseudomonas spp., ubiquitous in soil ecosystems and root microbiomes, have attracted attention for their ability to suppress phytopathogens and enhance plant health through various mechanisms. These include direct competition for nutrients, production of antimicrobial compounds and volatile organic compounds, competition using type VI secretion systems, and indirect induction of systemic resistance. Our review shows that Pseudomonas strains effectively control a wide range of diseases across diverse plant species, with some strains demonstrating efficacy comparable to chemical fungicides. However, the review also highlights challenges in achieving consistent performance when using Pseudomonas inoculants under field conditions due to various biotic and abiotic factors. Strategies to optimize biocontrol potential, such as formulation techniques, application methods, and integration with other management practices, are discussed. The advantages of Pseudomonas-based biocontrol for sustainable agriculture include reduced reliance on chemical pesticides, enhanced crop productivity, and improved environmental sustainability. Future research directions should focus on understanding the complex interactions within the plant microbiome, optimizing delivery systems, and addressing regulatory hurdles for commercial deployment. This review underscores the significant potential of Pseudomonas spp. in sustainable crop protection while acknowledging the need for further research to fully harness their capabilities in agricultural systems.
Collapse
Affiliation(s)
- Hussain Alattas
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
4
|
Chen S, Wang Y, Gao J, Chen X, Qi J, Peng Z, Chen B, Pan H, Liang C, Liu J, Wang Y, Wei G, Jiao S. Agricultural tillage practice and rhizosphere selection interactively drive the improvement of soybean plant biomass. PLANT, CELL & ENVIRONMENT 2023; 46:3542-3557. [PMID: 37564021 DOI: 10.1111/pce.14694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Rhizosphere microbes play key roles in plant growth and productivity in agricultural systems. One of the critical issues is revealing the interaction of agricultural management (M) and rhizosphere selection effects (R) on soil microbial communities, root exudates and plant productivity. Through a field management experiment, we found that bacteria were more sensitive to the M × R interaction effect than fungi, and the positive effect of rhizosphere bacterial diversity on plant biomass existed in the bacterial three two-tillage system. In addition, inoculation experiments demonstrated that the nitrogen cycle-related isolate Stenotrophomonas could promote plant growth and alter the activities of extracellular enzymes N-acetyl- d-glucosaminidase and leucine aminopeptidase in rhizosphere soil. Microbe-metabolites network analysis revealed that hubnodes Burkholderia-Caballeronia-Paraburkholderia and Pseudomonas were recruited by specific root metabolites under the M × R interaction effect, and the inoculation of 10 rhizosphere-matched isolates further proved that these microbes could promote the growth of soybean seedlings. Kyoto Encyclopaedia of Genes and Genomes pathway analysis indicated that the growth-promoting mechanisms of these beneficial genera were closely related to metabolic pathways such as amino acid metabolism, melatonin biosynthesis, aerobactin biosynthesis and so on. This study provides field observation and experimental evidence to reveal the close relationship between beneficial rhizosphere microbes and plant productivity under the M × R interaction effect.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiamin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xingyu Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiejun Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Beibei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiai Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yihe Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Munier-Lépinay E, Mathiron D, Quéro A, Khelifa M, Laclef S, Pilard S. Pseudomonas PA14H7: Identification and Quantification of the 7-Hydroxytropolone Iron Complex as an Active Metabolite against Dickeya, the Causal Agent of Blackleg on the Potato Plant. Molecules 2023; 28:6207. [PMID: 37687036 PMCID: PMC10488565 DOI: 10.3390/molecules28176207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Soft rot Pectobacteriaceae (SRP), such as Pectobacterium and Dickeya, are phytopathogenic agents responsible for blackleg disease on several crops, such as potatoes, affecting the yield and depressing the seed production quality. However, neither conventional nor biocontrol products are available on the market to control this disease. In this study Pseudomonas PA14H7, a bacteria isolated from potato rhizosphere, was selected as a potential antagonist agent against Dickeya solani. In order to understand the mechanism involved in this antagonism, we managed to identify the main active molecule(s) produced by PA14H7. Cell-free supernatant (CFS) of PA14H7 cultures were extracted and analyzed using LC-MS, GC-MS, and NMR. We further correlated the biological activity against Dickeya solani of extracted CFS-PA14H7 to the presence of 7-hydroxytropolone (7-HT) complexed with iron. In a second time, we have synthesized this molecule and determined accurately using LC-UV, LC-MS, and GC-MS that, after 48 h incubation, PA14H7 released, in its CFS, around 9 mg/L of 7-HT. The biological activities of CFS-PA14H7 vs. synthetic 7-HT, at this concentration, were evaluated to have a similar bacteriostatic effect on the growth of Dickeya solani. Even if 7-HT is produced by other Pseudomonas species and is mostly known for its antibacterial and antifungal activities, this is the first description of its involvement as an effective molecule against pectinolytic bacteria. Our work opens the way for the comprehension of the mode of action of PA14H7 as a biocontrol agent against potato blackleg.
Collapse
Affiliation(s)
- Euphrasie Munier-Lépinay
- inov3PT—Recherche Développement Innovation des Producteurs de Plants de Pomme de Terre, 43-45 Rue de Naples, 75008 Paris, France; (E.M.-L.); (M.K.)
- Plateforme-Analytique (PFA), Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France;
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A), Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France
| | - David Mathiron
- Plateforme-Analytique (PFA), Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France;
| | - Anthony Quéro
- UMRT INRAE 1158 BioEcoAgro, UFR de Pharmacie, Université de Picardie Jules Verne, 1 Rue des Louvels, 80037 Amiens, France;
| | - Mounia Khelifa
- inov3PT—Recherche Développement Innovation des Producteurs de Plants de Pomme de Terre, 43-45 Rue de Naples, 75008 Paris, France; (E.M.-L.); (M.K.)
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A), Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France
| | - Serge Pilard
- Plateforme-Analytique (PFA), Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France;
| |
Collapse
|
6
|
Twizeyimana M, Hammer PE, Gachango E, Craig K, Espejo B, Biggs MB, Kremer J, Ingham DJ. Diverse environmental bacteria displaying activity against Phakopsora pachyrhizi, the cause of soybean rust. FRONTIERS IN PLANT SCIENCE 2023; 14:1080116. [PMID: 36818841 PMCID: PMC9932200 DOI: 10.3389/fpls.2023.1080116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The management of soybean rust (SBR) caused by the obligate fungus Phakopsora pachyrhizi mostly relies on the use of synthetic fungicides, especially in areas where the disease inflicts serious yield losses. The reliance on synthetic fungicides to manage this disease has resulted in resistance of P. pachyrhizi populations to most fungicides. In this study, bacteria isolated from diverse environments were evaluated for their biocontrol potential against P. pachyrhizi using soybean detached-leaf method and on-plant in the growth chamber, greenhouse, and field. Among 998 bacterial isolates evaluated using the detached-leaf method; 58% were isolated from plant-related materials, 27% from soil, 10% from insects, and 5% from other environments. Of the isolates screened, 73 were active (they had ⪖ 75% rust reduction) with an active rate of 7.3%. From the active isolates, 65 isolates were re-tested on-plant in the growth chamber for activity confirmation. In the confirmation test, 49 bacteria isolated from plant-related materials maintained their activity with a confirmation rate of 75%. The majority of bacteria with confirmed activity belonged to the taxonomic classes Bacilli and Gammaproteobacteria (70%). Active isolates were prioritized for greenhouse and field testing based on activity in the initial screen and confirmation test. Six bacterial isolates AFS000009 (Pseudomonas_E chlororaphis), AFS032321 (Bacillus subtilis), AFS042929 (Bacillus_C megaterium), AFS065981 (Bacillus_X simplex_A), AFS090698 (Bacillus_A thuringiensis_S), and AFS097295 (Bacillus_A toyonensis) were selected from those bacteria that maintained activity in the confirmation test and were evaluated in the greenhouse, and five among them were evaluated in the field. From the Alabama field evaluation, all bacterial isolates reduced rust infection as well as azoxystrobin (Quadris® at 0.3 L/ha) used as the fungicide control (P > 0.05). Moreover, the scanning electron micrographs demonstrated evidence of antagonistic activity of AFS000009 and AFS032321 against P. pachyrhizi urediniospores. Bacterial isolates that consistently showed activity comparable to that of azoxystrobin can be improved through fermentation and formulation optimization, developed, and deployed. These bacteria strains would provide a valuable alternative to the synthetic fungicides and could play a useful role in integrated disease management programs for this disease.
Collapse
|
7
|
Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Synthetic chemicals, such as fertilizers and pesticides, are abundantly used in agriculture to enhance soil fertility and prevent the occurrence of diseases, respectively. Many studies have reported a negative influence of these chemicals on the soil environment. Natural sources from earthworms and their products, as a result of vermicomposting, may be considered better alternatives. The aim of this review was to reveal the source of antifungal efficiency of vermicompost and its derivatives, such as vermiwash, coelomic fluid, skin secretion of earthworms, and metabolites from decomposer bacteria in vermicompost, in order to highlight their application in agriculture. The synergistic activity of bioactive compounds present in coelomic fluid, mucus, skin secretion, and metabolites from associated bacteria (decomposer) assisted crop plants for effective action against various soil pathogenic fungi, such as Rhizoctoniasolani, Alternaria solani, Aspergillus niger, A.flavus, Fusariumoxysporum, and F. graminearum. Thus, these bioactive metabolites can be recommended to suppress plant fungal diseases. Vermicompost and its derivatives should be considered for use in agricultural fields to control harmful soil fungi and increase crop productivity.
Collapse
|
8
|
Librizzi V, Malacrinò A, Li Destri Nicosia MG, Barger N, Luzzatto-Knaan T, Pangallo S, Agosteo GE, Schena L. Extracts from Environmental Strains of Pseudomonas spp. Effectively Control Fungal Plant Diseases. PLANTS (BASEL, SWITZERLAND) 2022; 11:436. [PMID: 35161417 PMCID: PMC8840005 DOI: 10.3390/plants11030436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/21/2022]
Abstract
The use of synthetic chemical products in agriculture is causing severe damage to the environment and human health, but agrochemicals are still widely used to protect our crops. To counteract this trend, we have been looking for alternative strategies to control plant diseases without causing harm to the environment or damage to our health. However, these alternatives are still far from completely replacing chemical products. Microorganisms have been widely known as a biological tool to control plant diseases, but their use is still limited due to the high variability in their efficacy, together with issues in product registration. However, the metabolites produced by these microorganisms can represent a novel tool for the environment-friendly management of plant diseases, while reducing the issues mentioned above. In this study, we explore the soil microbial diversity in natural systems to look for microorganisms with the potential to be used in pre- and post-harvest protection against fungal plant pathogens. Using a simple workflow, we isolated 22 bacterial strains that were tested both in vitro and in vivo for their ability to counteract the growth of common plant pathogens. The three best isolates, identified as members of the bacterial genus Pseudomonas, were used to produce a series of alcoholic extracts, which were then tested for their action against plant pathogens in simulated real-world applications. Results show that extracts from these isolates have an exceptional biocontrol activity and can be successfully used to control plant pathogens in operational setups. Thus, this study shows that the environmental microbiome is an important source of microorganisms producing metabolites that might provide an alternative strategy to synthetic chemical products.
Collapse
Affiliation(s)
- Valentina Librizzi
- Department Agraria, University of Reggio Calabria, 89122 Reggio Calabria, Italy; (V.L.); (M.G.L.D.N.); (S.P.); (G.E.A.); (L.S.)
| | - Antonino Malacrinò
- Department Agraria, University of Reggio Calabria, 89122 Reggio Calabria, Italy; (V.L.); (M.G.L.D.N.); (S.P.); (G.E.A.); (L.S.)
| | - Maria Giulia Li Destri Nicosia
- Department Agraria, University of Reggio Calabria, 89122 Reggio Calabria, Italy; (V.L.); (M.G.L.D.N.); (S.P.); (G.E.A.); (L.S.)
| | - Nataly Barger
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (N.B.); (T.L.-K.)
| | - Tal Luzzatto-Knaan
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (N.B.); (T.L.-K.)
| | - Sonia Pangallo
- Department Agraria, University of Reggio Calabria, 89122 Reggio Calabria, Italy; (V.L.); (M.G.L.D.N.); (S.P.); (G.E.A.); (L.S.)
| | - Giovanni E. Agosteo
- Department Agraria, University of Reggio Calabria, 89122 Reggio Calabria, Italy; (V.L.); (M.G.L.D.N.); (S.P.); (G.E.A.); (L.S.)
| | - Leonardo Schena
- Department Agraria, University of Reggio Calabria, 89122 Reggio Calabria, Italy; (V.L.); (M.G.L.D.N.); (S.P.); (G.E.A.); (L.S.)
| |
Collapse
|
9
|
Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M, Mustafa A. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Int J Mol Sci 2021; 22:10529. [PMID: 34638870 PMCID: PMC8509026 DOI: 10.3390/ijms221910529] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.
Collapse
Affiliation(s)
- Qudsia Saeed
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jiří Kučerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road, Lahore 54000, Pakistan;
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Munaza Naseem
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
- Agricultural Research, Ltd., Zahradni 400/1, 664 41 Troubsko, Czech Republic
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Adnan Mustafa
- Biology Center CAS, SoWa RI, Na Sadkach 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
10
|
Santoyo G, Gamalero E, Glick BR. Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.672881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population.
Collapse
|
11
|
Gudeta K, Julka J, Kumar A, Bhagat A, Kumari A. Vermiwash: An agent of disease and pest control in soil, a review. Heliyon 2021; 7:e06434. [PMID: 33732941 PMCID: PMC7944038 DOI: 10.1016/j.heliyon.2021.e06434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Vermiwash is a liquid extract produced from vermicompost in a medium where earthworms are richly populated. It comprises a massive decomposer bacteria count, mucus, vitamins, different bioavailable minerals, hormones, enzymes, different antimicrobial peptides, etc. This paper aimed to assess how these natural products in vermiwash suppressed the pathogen and pests. Thus, we have reviewed the importance of vermiwash/vermicompost in disease control, the mechanism of disease suppression, the components of vermiwash applied in disease suppression, and pest control to use the scientific facts in agriculture to enhance the productivity of the crops. The bioactive macromolecules from the skin secretion of earthworm, coelomic fluid, and mucus directly able to defend pathogenic soil microbes against the worm and thereby freed the environment from the disease. Earthworms establish symbiotic relations with microbes, produce an essential product that supports the growth of plants, and suppress plant's root disease. It is recomended that earthworm should be inoculated in an agricultural field, or prepare and apply its vermiwash/vermicompost as a spray or as additive bio-fertilizer in the soil to enhance the productivities of the crops.
Collapse
Affiliation(s)
- Kasahun Gudeta
- Adama Science and Technology University, Department of Biology, P.O. Box 1888, Adama, Ethiopia
- Shoolini University Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan 173212, Himachal Pradesh, India
| | - J.M. Julka
- Shoolini University Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan 173212, Himachal Pradesh, India
| | - Arun Kumar
- Shoolini University Biotechnology and Management Sciences, School of Biotechnology, Solan 173212, Himachal Pradesh, India
| | - Ankeet Bhagat
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amita Kumari
- Shoolini University Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan 173212, Himachal Pradesh, India
| |
Collapse
|
12
|
Elucidation and Identification of an Antifungal Compound from Pseudomonas aeruginosa DA3.1 Isolated from Soil in Vietnam. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.103792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Fusarium sp. and Rhizoctonia sp. fungi have been always threats to short-term crops. In Vietnam, corn and soybean suffer serious losses annually. Therefore, it is necessary to utilize an environmentally friendly antifungal compound that is highly effective against phytopathogenic fungi. Pseudomonas sp. is a popular soil bacterial strain and well known for its high antifungal activity. Objectives: This study was carried out to evaluate and assess the antifungal activity of a local bacterial strain namely DA3.1 that was later identified as Pseudomonas aeruginosa. This would be strong scientific evidence to develop an environmentally friendly biocide from a local microorganism strain for commercial use. Methods: The antifungal compound was purified from ethyl acetate extraction of deproteinized cell culture broth by a silica gel column (CH2Cl2/MeOH (0% - 10% MeOH)). The purity of the isolated compound was determined by HPLC, and its molecular structure was elucidated using spectroscopic experiments including one-dimensional (1D) (1H NMR, 13C NMR, DEPT) and two-dimensional (2D) (HMBC and HSQC) spectra. The activity of the purified compound against Fusarium sp. and Rhizoctonia sp. fungi was measured using the PDA-disk diffusion method, and its growth-promoting ability was evaluated using the seed germination test of corn and soybean. Results: The results showed that the antifungal compound produced by Pseudomonas aeruginosa DA3.1 had a retention factor (Rf) of 0.86 on thin layer chromatography (TLC). Based on the evidence of spectral data including proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), distortionless enhancement by polarization transfer (DEPT), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum coherence (HSQC), the chemical structure was elucidated as phenazine-1-carboxylic. The purified compound showed inhibitory activity against F. oxysporum and R. solani and exhibited the ability of the germination of corn and soybean seeds. The results revealed the benefit of native P. aeruginosa DA3.1 and phenazine-1-carboxylic acid for use as a biocontrol agent, as well as a plant growth promoter. Conclusions: The antifungal compound isolated from local Pseudomonas DA3.1 was identified as phenazine-1-carboxylic acid that posed high antifungal activity and was a plant germination booster.
Collapse
|
13
|
Latour X. The Evanescent GacS Signal. Microorganisms 2020; 8:microorganisms8111746. [PMID: 33172195 PMCID: PMC7695008 DOI: 10.3390/microorganisms8111746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
The GacS histidine kinase is the membrane sensor of the major upstream two-component system of the regulatory Gac/Rsm signal transduction pathway. This pathway governs the expression of a wide range of genes in pseudomonads and controls bacterial fitness and motility, tolerance to stress, biofilm formation, and virulence or plant protection. Despite the importance of these roles, the ligands binding to the sensor domain of GacS remain unknown, and their identification is an exciting challenge in this domain. At high population densities, the GacS signal triggers a switch from primary to secondary metabolism and a change in bacterial lifestyle. It has been suggested, based on these observations, that the GacS signal is a marker of the emergence of nutritional stress and competition. Biochemical investigations have yet to characterize the GacS signal fully. However, they portray this cue as a low-molecular weight, relatively simple and moderately apolar metabolite possibly resembling, but nevertheless different, from the aliphatic organic acids acting as quorum-sensing signaling molecules in other Proteobacteria. Significant progress in the development of metabolomic tools and new databases dedicated to Pseudomonas metabolism should help to unlock some of the last remaining secrets of GacS induction, making it possible to control the Gac/Rsm pathway.
Collapse
Affiliation(s)
- Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Normandy University (University of Rouen Normandy), 55 rue Saint-Germain, 27000 Evreux, France;
- Research Federation NORVEGE Fed4277, Normandy University, F-76821 Mont-Saint-Aignan, France
| |
Collapse
|
14
|
Gastélum G, Rocha J. La milpa como modelo para el estudio de la microbiodiversidad e interacciones planta-bacteria. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
La microbiología agrícola busca reemplazar a los agroquímicos por microorganismos o sus productos como agentes de control biológico, debido a que el uso de tecnologías de la revolución verde tiene efectos negativos sobre el ambiente, los productores y sus familias, los consumidores y la salud de los cultivos. Sin embargo, el conocimiento actual acerca de las interacciones benéficas planta-bacteria en ambientes complejos es limitado e insuficiente, para lograr el éxito esperado de los productos biológicos. Las milpas son agroecosistemas tradicionales donde se cultivan diversas variedades de maíz nativo con otras especies asociadas; no se utiliza riego, ni labranza y aunque su aplicación va en aumento, comúnmente no se utilizan agroquímicos; por esto, la milpa representa una fuente de conocimiento sobre prácticas sustentables. Recientemente, se han descrito cambios en las comunidades microbianas de los sistemas agrícolas a causa de la modernización y a la domesticación de las plantas. En la milpa, también se han identificado interacciones benéficas planta-bacteria que parecen haberse perdido en los cultivos modernos. En esta revisión, discutimos las estrategias clásicas y modernas de la microbiología agrícola que pueden ser aplicadas en el estudio de la milpa. El establecimiento de la milpa como modelo de estudio de las interacciones planta-bacteria puede resultar en la generación del conocimiento necesario para disminuir el uso de agroquímicos en los sistemas agrícolas modernos, así como evitar su creciente uso en las milpas.
Collapse
|
15
|
Vilaplana L, Marco MP. Phenazines as potential biomarkers of Pseudomonas aeruginosa infections: synthesis regulation, pathogenesis and analytical methods for their detection. Anal Bioanal Chem 2020; 412:5897-5912. [PMID: 32462363 DOI: 10.1007/s00216-020-02696-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Infectious diseases are still a worldwide important problem. This fact has led to the characterization of new biomarkers that would allow an early, fast and reliable diagnostic and targeted therapy. In this context, Pseudomonas aeruginosa can be considered one of the most threatening pathogens since it causes a wide range of infections, mainly in patients that suffer other diseases. Antibiotic treatment is not trivial given the incidence of resistance processes and the fewer new antibiotics that are placed on the market. With this scenario, relevant quorum sensing (QS) molecules that regulate the secretion of virulence factors and biofilm formation can play an important role in diagnostic and therapeutic issues. In this review, we have focused our attention on phenazines, as possible new biomarkers. They are pigmented metabolites that are produced by diverse bacteria, characterized for presenting unique redox properties. Phenazines are involved in virulence, competitive fitness and are an essential component of the bacterial QS system. Here we describe their role in bacterial pathogenesis and we revise phenazine production regulation systems. We also discuss phenazine levels previously reported in bacterial isolates and in clinical samples to evaluate them as putative good candidates to be used as P. aeruginosa infection biomarkers. Moreover we deeply go through all analytical techniques that have been used for their detection and also new approaches are discussed from a critical point. Graphical abstract.
Collapse
Affiliation(s)
- Lluïsa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain
| |
Collapse
|
16
|
Messan KS, Jones RM, Doherty SJ, Foley K, Douglas TA, Barbato RA. The role of changing temperature in microbial metabolic processes during permafrost thaw. PLoS One 2020; 15:e0232169. [PMID: 32353013 PMCID: PMC7192436 DOI: 10.1371/journal.pone.0232169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Approximately one fourth of the Earth's Northern Hemisphere is underlain by permafrost, earth materials (soil, organic matter, or bedrock), that has been continuously frozen for at least two consecutive years. Numerous studies point to evidence of accelerated climate warming in the Arctic and sub-Arctic where permafrost is located. Changes to permafrost biochemical processes may critically impact ecosystem processes at the landscape scale. Here, we sought to understand how the permafrost metabolome responds to thaw and how this response differs based on location (i.e. chronosequence of permafrost formation constituting diverse permafrost types). We analyzed metabolites from microbial cells originating from Alaskan permafrost. Overall, permafrost thaw induced a shift in microbial metabolic processes. Of note were the dissimilarities in biochemical structure between frozen and thawed samples. The thawed permafrost metabolomes from different locations were highly similar. In the intact permafrost, several metabolites with antagonist properties were identified, illustrating the competitive survival strategy required to survive a frozen state. Interestingly, the intensity of these antagonistic metabolites decreased with warmer temperature, indicating a shift in ecological strategies in thawed permafrost. These findings illustrate the impact of change in temperature and spatial variability as permafrost undergoes thaw, knowledge that will become crucial for predicting permafrost biogeochemical dynamics as the Arctic and Antarctic landscapes continue to warm.
Collapse
Affiliation(s)
- Komi S. Messan
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Robert M. Jones
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Stacey J. Doherty
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Karen Foley
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Thomas A. Douglas
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Fairbanks, Alaska, United States of America
| | - Robyn A. Barbato
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| |
Collapse
|
17
|
Tilocca B, Cao A, Migheli Q. Scent of a Killer: Microbial Volatilome and Its Role in the Biological Control of Plant Pathogens. Front Microbiol 2020; 11:41. [PMID: 32117096 PMCID: PMC7018762 DOI: 10.3389/fmicb.2020.00041] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
The use of synthetic fungicides represents the most common strategy to control plant pathogens. Excessive and/or long-term distribution of chemicals is responsible for increased levels of environmental pollution, as well as adverse health consequence to humans and animals. These issues are deeply influencing public perception, as reflected by the increasing demand for safer and eco-friendly agricultural commodities and their by-products. A steadily increasing number of research efforts is now devoted to explore the use of safer and innovative approaches to control plant pathogens. The use of microorganisms as biological control agents (BCAs) represents one of the most durable and promising strategies. Among the panoply of microbial mechanisms exerted by BCAs, the production of volatile organic compounds (VOCs) represents an intriguing issue, mostly exploitable in circumstances where a direct contact between the pathogen and its antagonist is not practicable. VOCs are potentially produced by all living microorganisms, and may be active in the biocontrol of phytopathogenic oomycetes, fungi, and bacteria by means of antimicrobial activity and/or other cross-talk interactions. Their biological effects, the reduced residuals in the environment and on agricultural commodities, and the ease of application in different agricultural systems make the use of VOCs a promising and sustainable approach to replace synthetic fungicides in the control of plant pathogens. In this review, we focus on VOCs produced by bacteria and fungi and on their role in the cross-talk existing between the plant pathogens and their host. Biologic systemic effect of the microbial volatile blends on both pathogen and host plant cells is also briefly reviewed.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- Dipartimento di Agraria and NRD-Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Quirico Migheli
- Dipartimento di Agraria and NRD-Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
18
|
Sharma D, Gupta S, Gupta M, Summuna B. Exploration of Secondary Metabolites for Management of Chickpea Diseases. Fungal Biol 2020. [DOI: 10.1007/978-3-030-35947-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Genomic and phenotypic insights point to diverse ecological strategies by facultative anaerobes obtained from subsurface coal seams. Sci Rep 2019; 9:16186. [PMID: 31700097 PMCID: PMC6838118 DOI: 10.1038/s41598-019-52846-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Microbes in subsurface coal seams are responsible for the conversion of the organic matter in coal to methane, resulting in vast reserves of coal seam gas. This process is important from both environmental and economic perspectives as coal seam gas is rapidly becoming a popular fuel source worldwide and is a less carbon intensive fuel than coal. Despite the importance of this process, little is known about the roles of individual bacterial taxa in the microbial communities carrying out this process. Of particular interest is the role of members of the genus Pseudomonas, a typically aerobic taxa which is ubiquitous in coal seam microbial communities worldwide and which has been shown to be abundant at early time points in studies of ecological succession on coal. The current study performed aerobic isolations of coal seam microbial taxa generating ten facultative anaerobic isolates from three coal seam formation waters across eastern Australia. Subsequent genomic sequencing and phenotypic analysis revealed a range of ecological strategies and roles for these facultative anaerobes in biomass recycling, suggesting that this group of organisms is involved in the degradation of accumulated biomass in coal seams, funnelling nutrients back into the microbial communities degrading coal to methane.
Collapse
|
20
|
Alijani Z, Amini J, Ashengroph M, Bahramnejad B. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. Int J Food Microbiol 2019; 307:108276. [DOI: 10.1016/j.ijfoodmicro.2019.108276] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/27/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
|
21
|
Bergeau D, Mazurier S, Barbey C, Merieau A, Chane A, Goux D, Bernard S, Driouich A, Lemanceau P, Vicré M, Latour X. Unusual extracellular appendages deployed by the model strain Pseudomonas fluorescens C7R12. PLoS One 2019; 14:e0221025. [PMID: 31461454 PMCID: PMC6713353 DOI: 10.1371/journal.pone.0221025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas fluorescens is considered to be a typical plant-associated saprophytic bacterium with no pathogenic potential. Indeed, some P. fluorescens strains are well-known rhizobacteria that promote plant growth by direct stimulation, by preventing the deleterious effects of pathogens, or both. Pseudomonas fluorescens C7R12 is a rhizosphere-competent strain that is effective as a biocontrol agent and promotes plant growth and arbuscular mycorrhization. This strain has been studied in detail, but no visual evidence has ever been obtained for extracellular structures potentially involved in its remarkable fitness and biocontrol performances. On transmission electron microscopy of negatively stained C7R12 cells, we observed the following appendages: multiple polar flagella, an inducible putative type three secretion system typical of phytopathogenic Pseudomonas syringae strains and densely bundled fimbria-like appendages forming a broad fractal-like dendritic network around single cells and microcolonies. The deployment of one or other of these elements on the bacterial surface depends on the composition and affinity for the water of the microenvironment. The existence, within this single strain, of machineries known to be involved in motility, chemotaxis, hypersensitive response, cellular adhesion and biofilm formation, may partly explain the strong interactions of strain C7R12 with plants and associated microflora in addition to the type three secretion system previously shown to be implied in mycorrhizae promotion.
Collapse
Affiliation(s)
- Dorian Bergeau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
| | - Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
| | - Didier Goux
- Centre de Microscopie Appliquée à la biologie, SFR 4206 ICORE Université de Caen Normandie (CMAbio3), Caen, France
| | - Sophie Bernard
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Maïté Vicré
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- * E-mail:
| |
Collapse
|
22
|
Kandaswamy R, Ramasamy MK, Palanivel R, Balasundaram U. Impact of Pseudomonas putida RRF3 on the root transcriptome of rice plants: Insights into defense response, secondary metabolism and root exudation. J Biosci 2019. [DOI: 10.1007/s12038-019-9922-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Talaromyces variabilis interferes with Pythium aphanidermatum growth and suppresses Pythium-induced damping-off of cucumbers and tomatoes. Sci Rep 2019; 9:11255. [PMID: 31375723 PMCID: PMC6677756 DOI: 10.1038/s41598-019-47736-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Pythium-induced damping-off disease is a major disease limiting cucumber and tomato production in different parts of the world. The current study investigated the efficiency of Talaromyces variabilis and its bioactive metabolites in suppressing Pythium-induced damping-off of cucumbers and tomatoes. T. variabilis inhibited the in vitro growth of P. aphanidermatum in solid and liquid media. In addition, abnormalities in P. aphanidermatum hyphae were observed as a result of T. variabilis. Extracts from T. variabilis induced cellular leakage and suppressed oospore production of P. aphanidermatum. Biochemical analyses of T. variabilis metabolites showed that T. variabilis produces glucanase, cellulase and siderophores, suggesting the contribution of these metabolites in the inhibition of P. aphandermatum growth and in hyphal abnormalities. Treating cucumber seeds with spore and mycelial suspension of T. variabilis isolates led to a significant improvement in the seedling survival of P. aphanidermatum-inoculated seedlings from 18 to 52% (improvement by 34%) for isolate 48 P and from 30–66% (improvement by 36%) for isolate 28 R. Similarly, treating tomato seeds with spore and mycelial suspension of T. variabilis isolates led to a significant improvement in the seedling survival of P. aphanidermatum-inoculated seedlings from 7 to 36% (improvement by 29%) for isolate 28 R and from 20 to 64% (improvement by 44%) for isolate 48 P. Differences in the percent improvement in seedling survival between experiments may be related to difference in the efficacy of the two different isolates or their interaction with the hosts and pathogen. The use of T. variabilis in the biocontrol of Pythium-induced diseases may offer alternatives to the currently used chemical control.
Collapse
|
24
|
Mustafa S, Kabir S, Shabbir U, Batool R. Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 2019. [DOI: 10.1007/s13199-019-00602-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Ikeda-Ohtsubo W, Brugman S, Warden CH, Rebel JMJ, Folkerts G, Pieterse CMJ. How Can We Define "Optimal Microbiota?": A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Front Nutr 2018; 5:90. [PMID: 30333981 PMCID: PMC6176000 DOI: 10.3389/fnut.2018.00090] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
All multicellular organisms benefit from their own microbiota, which play important roles in maintaining the host nutritional health and immunity. Recently, the number of studies on the microbiota of animals, fish, and plants of economic importance is rapidly expanding and there are increasing expectations that productivity and sustainability in agricultural management can be improved by microbiota manipulation. However, optimizing microbiota is still a challenging task because of the lack of knowledge on the dominant microorganisms or significant variations between microbiota, reflecting sampling biases, different agricultural management as well as breeding backgrounds. To offer a more generalized view on microbiota in agriculture, which can be used for defining criteria of “optimal microbiota” as the goal of manipulation, we summarize here current knowledge on microbiota on animals, fish, and plants with emphasis on bacterial community structure and metabolic functions, and how microbiota can be affected by domestication, conventional agricultural practices, and use of antimicrobial agents. Finally, we discuss future tasks for defining “optimal microbiota,” which can improve host growth, nutrition, and immunity and reduce the use of antimicrobial agents in agriculture.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Craig H Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Johanna M J Rebel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
Molecular cloning, expression, and characterization of acyltransferase from Pseudomonas protegens. Appl Microbiol Biotechnol 2018; 102:6057-6068. [PMID: 29754162 PMCID: PMC6013524 DOI: 10.1007/s00253-018-9052-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 10/26/2022]
Abstract
The formation of C-C bonds by using CoA independent acyltransferases may have significant impact for novel methods for biotechnology. We report the identification of Pseudomonas strains with CoA-independent acyltransferase activity as well as the heterologous expression of the enzyme in E. coli. The cloning strategies and selected expression studies are discussed. The recombinant acyltransferases were characterized with regard to thermal and storage stability, pH,- and co-solvent tolerance. Moreover, the impact of bivalent metals, inhibitors, and other additives was tested. Careful selection of expression and working conditions led to obtain recombinant acyltransferase form Pseudomonas protegens with up to 11 U mL-1 activity.
Collapse
|
27
|
Anderson JA, Staley J, Challender M, Heuton J. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Res 2018; 27:103-113. [PMID: 29427161 PMCID: PMC5847145 DOI: 10.1007/s11248-018-0061-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022]
Abstract
Genetically modified crops undergo extensive evaluation to characterize their food, feed and environmental safety prior to commercial introduction, using a well-established, science-based assessment framework. One component of the safety assessment includes an evaluation of each introduced trait, including its source organism, for potential adverse pathogenic, toxic and allergenic effects. Several Pseudomonas species have a history of safe use in agriculture and certain species represent a source of genes with insecticidal properties. The ipd072Aa gene from P. chlororaphis encodes the IPD072Aa protein, which confers protection against certain coleopteran pests when expressed in maize plants. P. chlororaphis is ubiquitous in the environment, lacks known toxic or allergenic properties, and has a history of safe use in agriculture and in food and feed crops. This information supports, in part, the safety assessment of potential traits, such as IPD072Aa, that are derived from this source organism.
Collapse
Affiliation(s)
| | - Jamie Staley
- DuPont Pioneer, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mary Challender
- DuPont Pioneer, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Jamie Heuton
- DuPont Pioneer, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| |
Collapse
|
28
|
Wordofa GG, Kristensen M. Tolerance and metabolic response of Pseudomonas taiwanensis VLB120 towards biomass hydrolysate-derived inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:199. [PMID: 30034525 PMCID: PMC6052574 DOI: 10.1186/s13068-018-1192-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/06/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Bio-conversion of lignocellulosic biomass to high-value products offers numerous benefits; however, its development is hampered by chemical inhibitors generated during the pretreatment process. A better understanding of how microbes naturally respond to those inhibitors is valuable in the process of designing microorganisms with improved tolerance. Pseudomonas taiwanensis VLB120 is a natively tolerant strain that utilizes a wide range of carbon sources including pentose and hexose sugars. To this end, we investigated the tolerance and metabolic response of P. taiwanensis VLB120 towards biomass hydrolysate-derived inhibitors including organic acids (acetic acid, formic acid, and levulinic acid), furans (furfural, 5-hydroxymethylfurfural), and phenols (vanillin). RESULTS The inhibitory effect of the tested compounds varied with respect to lag phase, specific growth rate, and biomass yield compared to the control cultures grown under the same conditions without addition of inhibitors. However, P. taiwanensis was able to oxidize vanillin and furfural to vanillic acid and 2-furoic acid, respectively. Vanillic acid was further metabolized, whereas 2-furoic acid was secreted outside the cells and remained in the fermentation broth without further conversion. Acetic acid and formic acid were completely consumed from the fermentation broth, while concentration of levulinic acid remained constant throughout the fermentation process. Analysis of free intracellular metabolites revealed varying levels when P. taiwanensis VLB120 was exposed to inhibitory compounds. This resulted in increased levels of ATP to export inhibitors from the cell and NADPH/NADP ratio that provides reducing power to deal with the oxidative stress caused by the inhibitors. Thus, adequate supply of these metabolites is essential for the survival and reproduction of P. taiwanensis in the presence of biomass-derived inhibitors. CONCLUSIONS In this study, the tolerance and metabolic response of P. taiwanensis VLB120 to biomass hydrolysate-derived inhibitors was investigated. P. taiwanensis VLB120 showed high tolerance towards biomass hydrolysate-derived inhibitors compared to most wild-type microbes reported in the literature. It adopts different resistance mechanisms, including detoxification, efflux, and repair, which require additional energy and resources. Thus, targeting redox and energy metabolism in strain engineering may be a successful strategy to overcome inhibition during biomass hydrolysate conversion and lead to development of more robust strains.
Collapse
Affiliation(s)
- Gossa G. Wordofa
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Mette Kristensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
29
|
Solaiman DK, Ashby RD, Aneja KK, Crocker NV, Liu Y. Galacto-oligosaccharide hydrolysis by genetically-engineered alpha-galactosidase-producing Pseudomonas chlororaphis strains. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Cheng F, Ma A, Zhuang G, Fray RG. Exogenous N-acyl-homoserine lactones enhance the expression of flagella of Pseudomonas syringae and activate defence responses in plants. MOLECULAR PLANT PATHOLOGY 2018; 19:104-115. [PMID: 27756102 PMCID: PMC6637982 DOI: 10.1111/mpp.12502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 05/05/2023]
Abstract
In order to cope with pathogens, plants have evolved sophisticated mechanisms to sense pathogenic attacks and to induce defence responses. The N-acyl-homoserine lactone (AHL)-mediated quorum sensing in bacteria regulates diverse physiological processes, including those involved in pathogenicity. In this work, we study the interactions between AHL-producing transgenic tobacco plants and Pseudomonas syringae pv. tabaci 11528 (P. syringae 11528). Both a reduced incidence of disease and decrease in the growth of P. syringae 11528 were observed in AHL-producing plants compared with wild-type plants. The present data indicate that plant-produced AHLs enhance disease resistance against this pathogen. Subsequent RNA-sequencing analysis showed that the exogenous addition of AHLs up-regulated the expression of P. syringae 11528 genes for flagella production. Expression levels of plant defence genes in AHL-producing and wild-type plants were determined by quantitative real-time polymerase chain reaction. These data showed that plant-produced AHLs activated a wide spectrum of defence responses in plants following inoculation, including the oxidative burst, hypersensitive response, cell wall strengthening, and the production of certain metabolites. These results demonstrate that exogenous AHLs alter the gene expression patterns of pathogens, and plant-produced AHLs either directly or indirectly enhance plant local immunity during the early stage of plant infection.
Collapse
Affiliation(s)
- Feifei Cheng
- Research Center for Eco‐Environment SciencesChinese Academy of SciencesBeijing100085China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Anzhou Ma
- Research Center for Eco‐Environment SciencesChinese Academy of SciencesBeijing100085China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Guoqiang Zhuang
- Research Center for Eco‐Environment SciencesChinese Academy of SciencesBeijing100085China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Rupert G. Fray
- School of Biological SciencesNottingham UniversityLoughboroughLE12 5RDUK
| |
Collapse
|
31
|
Simionato AS, Navarro MOP, de Jesus MLA, Barazetti AR, da Silva CS, Simões GC, Balbi-Peña MI, de Mello JCP, Panagio LA, de Almeida RSC, Andrade G, de Oliveira AG. The Effect of Phenazine-1-Carboxylic Acid on Mycelial Growth of Botrytis cinerea Produced by Pseudomonas aeruginosa LV Strain. Front Microbiol 2017; 8:1102. [PMID: 28659907 PMCID: PMC5469906 DOI: 10.3389/fmicb.2017.01102] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/31/2017] [Indexed: 11/13/2022] Open
Abstract
One of the most important postharvest plant pathogens that affect strawberries, grapes and tomatoes is Botrytis cinerea, known as gray mold. The fungus remains in latent form until spore germination conditions are good, making infection control difficult, causing great losses in the whole production chain. This study aimed to purify and identify phenazine-1-carboxylic acid (PCA) produced by the Pseudomonas aeruginosa LV strain and to determine its antifungal activity against B. cinerea. The compounds produced were extracted with dichloromethane and passed through a chromatographic process. The purity level of PCA was determined by reversed-phase high-performance liquid chromatography semi-preparative. The structure of PCA was confirmed by nuclear magnetic resonance and electrospray ionization mass spectrometry. Antifungal activity was determined by the dry paper disk and minimum inhibitory concentration (MIC) methods and identified by scanning electron microscopy and confocal microscopy. The results showed that PCA inhibited mycelial growth, where MIC was 25 μg mL-1. Microscopic analysis revealed a reduction in exopolysaccharide (EPS) formation, showing distorted and damaged hyphae of B. cinerea. The results suggested that PCA has a high potential in the control of B. cinerea and inhibition of EPS (important virulence factor). This natural compound is a potential alternative to postharvest control of gray mold disease.
Collapse
Affiliation(s)
- Ane S. Simionato
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Miguel O. P. Navarro
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Maria L. A. de Jesus
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - André R. Barazetti
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Caroline S. da Silva
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Glenda C. Simões
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Maria I. Balbi-Peña
- Laboratório de Fitopatologia, Departamento de Agronomia, Universidade Estadual de LondrinaLondrina, Brazil
| | - João C. P. de Mello
- Laboratório de Produtos Fitoterápicos, Departamento de Farmácia e Farmacologia, Universidade Estadual de MaringáMaringá, Brazil
| | - Luciano A. Panagio
- Laboratório de Micologia, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Ricardo S. C. de Almeida
- Laboratório de Micologia, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Galdino Andrade
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Admilton G. de Oliveira
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
- Laboratório de Microscopia Eletrônica e Microanálise, Universidade Estadual de LondrinaLondrina, Brazil
| |
Collapse
|
32
|
Patil S, Nikam M, Anokhina T, Kochetkov V, Chaudhari A. Multi-stress tolerant plant growth promoting Pseudomonas spp. MCC 3145 producing cytostatic and fungicidal pigment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Jamal Q, Cho JY, Moon JH, Kim KY. Purification and antifungal characterization of Cyclo (D-Pro-L- Val) from Bacillus amyloliquefaciens Y1 against Fusarium graminearum to control head blight in wheat. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Draft genome sequence of a caprolactam degrader bacterium: Pseudomonas taiwanensis strain SJ9. Braz J Microbiol 2016; 48:187-188. [PMID: 26991304 PMCID: PMC5470341 DOI: 10.1016/j.bjm.2015.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas taiwanensis strain SJ9 is a caprolactam degrader, isolated from industrial wastewater in South Korea and considered to have the potential for caprolactam bioremediation. The genome of this strain is approximately 6.2 Mb (G + C content, 61.75%) with 6,010 protein-coding sequences (CDS), of which 46% are assigned to recognized functional genes. This draft genome of strain SJ9 will provide insights into the genetic basis of its caprolactam-degradation ability.
Collapse
|
35
|
de Oliveira AG, Spago FR, Simionato AS, Navarro MOP, da Silva CS, Barazetti AR, Cely MVT, Tischer CA, San Martin JAB, de Jesus Andrade CGT, Novello CR, Mello JCP, Andrade G. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri. Front Microbiol 2016; 7:113. [PMID: 26903992 PMCID: PMC4746251 DOI: 10.3389/fmicb.2016.00113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022] Open
Abstract
Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL(-1). In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker.
Collapse
Affiliation(s)
- Admilton G. de Oliveira
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Flavia R. Spago
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Ane S. Simionato
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Miguel O. P. Navarro
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Caroline S. da Silva
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - André R. Barazetti
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Martha V. T. Cely
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Cesar A. Tischer
- Laboratório de Espectroscopia, Departamento de Bioquímica e Biotecnologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Juca A. B. San Martin
- Laboratório de Microscopia Eletrônica e Microanálise, Departamento de Biologia Geral, Universidade Estadual de LondrinaLondrina, Brazil
| | - Célia G. T. de Jesus Andrade
- Laboratório de Microscopia Eletrônica e Microanálise, Departamento de Biologia Geral, Universidade Estadual de LondrinaLondrina, Brazil
| | - Cláudio R. Novello
- Laboratório de Produtos Fitoterápicos, Departamento de Farmácia e Farmacologia, Universidade Estadual de MaringáMaringá, Brazil
| | - João C. P. Mello
- Laboratório de Produtos Fitoterápicos, Departamento de Farmácia e Farmacologia, Universidade Estadual de MaringáMaringá, Brazil
| | - Galdino Andrade
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| |
Collapse
|
36
|
Yasumiba K, Bell S, Alford R. Cell Density Effects of Frog Skin Bacteria on Their Capacity to Inhibit Growth of the Chytrid Fungus, Batrachochytrium dendrobatidis. MICROBIAL ECOLOGY 2016; 71:124-130. [PMID: 26563320 DOI: 10.1007/s00248-015-0701-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Bacterial symbionts on frog skin can reduce the growth of the chytrid fungus Batrachochytrium dendrobatidis (Bd) through production of inhibitory metabolites. Bacteria can be effective at increasing the resistance of amphibians to chytridiomycosis when added to amphibian skin, and isolates can be screened for production of metabolites that inhibit Bd growth in vitro. However, some bacteria use density-dependent mechanism such as quorum sensing to regulate metabolite production. It is therefore important to consider cell density effects when evaluating bacteria as possible candidates for bioaugmentation. The aim of our study was to evaluate how the density of cutaneous bacteria affects their inhibition of Bd growth in vitro. We sampled cutaneous bacteria isolated from three frog species in the tropical rainforests of northern Queensland, Australia, and selected ten isolates that were inhibitory to Bd in standardised pilot trials. We grew each isolate in liquid culture at a range of initial dilutions, sub-sampled each dilution at a series of times during the first 48 h of growth and measured spectrophotometric absorbance values, cell counts and Bd-inhibitory activity of cell-free supernatants at each time point. The challenge assay results clearly demonstrated that the inhibitory effects of most isolates were density dependent, with relatively low variation among isolates in the minimum cell density needed to inhibit Bd growth. We suggest the use of minimum cell densities and fast-growing candidate isolates to maximise bioaugmentation efforts.
Collapse
Affiliation(s)
- Kiyomi Yasumiba
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.
| | - Sara Bell
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia
| | - Ross Alford
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
37
|
SINGH RN, SINGH RP, SHARMA A, SAXENA AK. Modeling of PrnD protein from Pseudomonas fluorescens RajNB11 and its comparative structural analysis with PrnD proteins expressed in Burkholderia and Serratia. Turk J Biol 2016. [DOI: 10.3906/biy-1501-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
38
|
Li Z, Guo B, Wan K, Cong M, Huang H, Ge Y. Effects of bacteria-free filtrate fromBacillus megateriumstrain L2 on the mycelium growth and spore germination ofAlternaria alternata. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1068135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
39
|
Lee S, Ge C, Bohrerova Z, Grewal PS, Lee J. Enhancing plant productivity while suppressing biofilm growth in a windowfarm system using beneficial bacteria and ultraviolet irradiation. Can J Microbiol 2015; 61:457-66. [PMID: 25996177 DOI: 10.1139/cjm-2015-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Common problems in a windowfarm system (a vertical and indoor hydroponic system) are phytopathogen infections in plants and excessive buildup of biofilms. The objectives of this study were (i) to promote plant health by making plants more resistant to infection by using beneficial biosurfactant-producing Pseudomonas chlororaphis around the roots and (ii) to minimize biofilm buildup by ultraviolet (UV) irradiation of the water reservoir, thereby extending the lifespan of the whole system with minimal maintenance. Pseudomonas chlororaphis-treated lettuce grew significantly better than nontreated lettuce, as indicated by enhancement of color, mass, length, and number of leaves per head (p < 0.05). The death rate of the lettuce was reduced by ∼ 50% when the lettuce was treated with P. chlororaphis. UV irradiation reduced the bacteria (4 log reduction) and algae (4 log reduction) in the water reservoirs and water tubing systems. Introduction of P. chlororaphis into the system promoted plant growth and reduced damage caused by the plant pathogen Pythium ultimum. UV irradiation of the water reservoir reduced algal and biofilm growth and extended the lifespan of the system.
Collapse
Affiliation(s)
- Seungjun Lee
- a Environmental Science and Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Chongtao Ge
- b Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Zuzana Bohrerova
- c Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Parwinder S Grewal
- d Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jiyoung Lee
- a Environmental Science and Graduate Program, The Ohio State University, Columbus, Ohio, USA
- b Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- e College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
40
|
Spoils of war: iron at the crux of clinical and ecological fitness of Pseudomonas aeruginosa. Biometals 2015; 28:433-43. [DOI: 10.1007/s10534-015-9848-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/13/2015] [Indexed: 01/07/2023]
|
41
|
Calderón CE, Ramos C, de Vicente A, Cazorla FM. Comparative Genomic Analysis of Pseudomonas chlororaphis PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:249-260. [PMID: 25679537 DOI: 10.1094/mpmi-10-14-0326-fi] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonas chlororaphis PCL1606 is a rhizobacterium that has biocontrol activity against many soilborne phytopathogenic fungi. The whole genome sequence of this strain was obtained using the Illumina Hiseq 2000 sequencing platform and was assembled using SOAP denovo software. The resulting 6.66-Mb complete sequence of the PCL1606 genome was further analyzed. A comparative genomic analysis using 10 plant-associated strains within the fluorescent Pseudomonas group, including the complete genome of P. chlororaphis PCL1606, revealed a diverse spectrum of traits involved in multitrophic interactions with plants and microbes as well as biological control. Phylogenetic analysis of these strains using eight housekeeping genes clearly placed strain PCL1606 into the P. chlororaphis group. The genome sequence of P. chlororaphis PCL1606 revealed the presence of sequences that were homologous to biosynthetic genes for the antifungal compounds 2-hexyl, 5-propyl resorcinol (HPR), hydrogen cyanide, and pyrrolnitrin; this is the first report of pyrrolnitrin encoding genes in this P. chlororaphis strain. Single-, double-, and triple-insertional mutants in the biosynthetic genes of each antifungal compound were used to test their roles in the production of these antifungal compounds and in antagonism and biocontrol of two fungal pathogens. The results confirmed the function of HPR in the antagonistic phenotype and in the biocontrol activity of P. chlororaphis PCL1606.
Collapse
|
42
|
Olanya OM, Annous BA, Taylor J. Effects ofPseudomonas chlororaphisand gaseous chlorine dioxide on the survival ofSalmonella entericaon tomatoes. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ocen Modesto Olanya
- Food Safety and Intervention Technology Research Unit; Eastern Regional Research Center; USDA Agricultural Research Service; 600 East Mermaid Lane Wyndmoor PA 19038 USA
| | - Bassam A. Annous
- Food Safety and Intervention Technology Research Unit; Eastern Regional Research Center; USDA Agricultural Research Service; 600 East Mermaid Lane Wyndmoor PA 19038 USA
| | - Janysha Taylor
- Food Safety and Intervention Technology Research Unit; Eastern Regional Research Center; USDA Agricultural Research Service; 600 East Mermaid Lane Wyndmoor PA 19038 USA
| |
Collapse
|
43
|
Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol 2014; 5:636. [PMID: 25484880 PMCID: PMC4240174 DOI: 10.3389/fmicb.2014.00636] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens SQR9 exhibited predominantly antagonistic activities against a broad range of soilborne pathogens. The fungi-induced SQR9 extracts possess stronger antifungal activities compared with SQR9 monoculture extracts. To investigate how SQR9 fine-tunes lipopeptides (LPs) and a siderophore bacillibactin production to control different fungal pathogens, LPs and bacillibactin production and transcription of the respective encoding genes in SQR9 were measured and compared with six different soilborne fungal pathogens. SQR9 altered its spectrum of antifungal compounds production responding to different fungal pathogen. Bacillomycin D was the major LP produced when SQR9 was confronted with Fusarium oxysporum. Fengycin contributed to the antagonistic activity against Verticillium dahliae kleb, Fusarium oxysporum, Fusarium solani, and Phytophthora parasitica. Surfactin participated in the antagonistic process against Sclerotinia sclerotiorum, Rhizoctonia solani, and Fusarium solani. Bacillibactin was up-regulated when SQR9 was confronted with all tested fungi. The reduction in antagonistic activities of three LP and bacillibactin deficient mutants of SQR9 when confronted with the six soilborne fungal pathogens provided further evidence of the contribution of LPs and bacillibactin in controlling fungal pathogens. These results provide a new understanding of specific cues in bacteria-fungi interactions and provide insights for agricultural applications.
Collapse
Affiliation(s)
- Bing Li
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China
| | - Qing Li
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China
| | - Zhihui Xu
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China
| | - Nan Zhang
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China
| | - Qirong Shen
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China
| | - Ruifu Zhang
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China ; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
44
|
Calderón CE, de Vicente A, Cazorla FM. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. FEMS Microbiol Ecol 2014; 89:20-31. [PMID: 24641321 DOI: 10.1111/1574-6941.12319] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022] Open
Abstract
Different bacterial traits can contribute to the biocontrol of soilborne phytopathogenic fungus. Among others, (1) antagonism, (2) competition for nutrients and niches, (3) induction of systemic resistance of the plants and (4) predation and parasitism are the most studied. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium that produces the antifungal metabolite 2-hexyl, 5-propyl resorcinol (HPR). This bacterium can biologically control the avocado white root rot caused by Rosellinia necatrix. Confocal laser scanning microscopy of the avocado rhizosphere revealed that this biocontrol bacterium and the fungal pathogen compete for the same niche and presumably also for root exudate nutrients. The use of derivative mutants in the geners related to HPR biosynthesis (dar genes) revealed that the lack of HPR production by P. chlororaphis PCL1606 negatively influences the bacterial colonisation of the avocado root surface. Microscopical analysis showed that P. chlororaphis PCL1606 closely interacts and colonises the fungal hyphae, which may represent a novel biocontrol mechanism in this pseudomonad. Additionally, the presence of HPR-producing biocontrol bacteria negatively affects the ability of the fungi to infect the avocado root. HPR production negatively affects hyphal growth, leading to alterations in the R. necatrix physiology visible under microscopy, including the curling, vacuolisation and branching of hyphae, which presumably affects the colonisation and infection abilities of the fungus. This study provides the first report of multitrophic interactions in the avocado rhizosphere, advancing our understanding of the role of HPR production in those interactions.
Collapse
Affiliation(s)
- Claudia E Calderón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | | | | |
Collapse
|
45
|
Calderón CE, Pérez-García A, de Vicente A, Cazorla FM. The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:554-565. [PMID: 23547906 DOI: 10.1094/mpmi-01-13-0012-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To determine the genetic basis by which 2-hexyl, 5-propyl resorcinol (HPR) is produced by the biocontrol rhizobacterium Pseudomonas chlororaphis (formerly known as P. fluorescens) PCL1606, the presence and role of dar genes were investigated. To accomplish this aim, the pCGNOV-1 plasmid was isolated from a PCL1606 genomic library and was shown to hybridize to various dar probes by Southern blot. An analysis of the pCGNOV-1 genomic DNA revealed the presence of five open reading frames that were homologous to dar genes and had an organization that resembled the arrangement of previously described P. chlororaphis strains. Phylogenetic studies resulted in the clustering of PCL1606 with the P. chlororaphis subgroup, which supported the renaming of this strain from P. fluorescens to P. chlororaphis PCL1606. The construction of insertional mutants for each homologous dar gene in P. chlororaphis PCL1606 along with their corresponding complemented derivative strains restored HPR production and confirmed the key role of the dar A and darB genes in HPR production and in the antagonistic phenotype. Finally, biocontrol assays were performed on avocado-Rosellinia and tomato-Fusarium test systems using the HPR-defective and -complemented derivative strains generated here and demonstrated the crucial role of the biosynthetic dar genes in the biocontrol phenotype of P. chlororaphis PCL1606. This biocontrol phenotype is dependent on the dar genes via their production of the HPR antibiotic. Some of the dar genes not directly involved in the biosynthesis of HPR, such as darS or darR, might contribute to regulatory features of HPR production.
Collapse
|
46
|
Beneduzi A, Ambrosini A, Passaglia LM. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol 2012; 35:1044-51. [PMID: 23411488 PMCID: PMC3571425 DOI: 10.1590/s1415-47572012000600020] [Citation(s) in RCA: 491] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.
Collapse
Affiliation(s)
- Anelise Beneduzi
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Luciane M.P. Passaglia
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
47
|
Plant growth promoting characterization of indigenous Azotobacteria isolated from soils in Iran. Curr Microbiol 2012; 64:397-403. [PMID: 22294493 DOI: 10.1007/s00284-012-0083-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
Abstract
It has been well known that the bacteria of the genus Azotobacter, in addition to the beneficial N(2)-fixing activity, are able to improve plant growth by a number of direct and indirect mechanisms. To identify this potential in indigenous azotobacteria, the efficiency of 17 isolates of Azotobacter from the rhizosphere of wheat and barley plants cultivated in salt- and/or drought-affected soils in Iran were evaluated for their ability to dissolve inorganic and organic phosphates, siderophore secretion, indole acetic acid (IAA) production; and protease, chitinase, and ACC deaminase (ACCD) activities. First, they were biochemically characterized and one isolate (strain) was identified by 16S rDNA sequencing. Eight isolates were designated as Azotobacter vinelandii and the remaining isolates were identified as A. chroococcum. All isolates hydrolyzed the organic and inorganic phosphate compounds and effectively produced IAA. Fifteen isolates produced siderophore, but only one isolate showed protease activity which is being reported for the first time in relation to Azotobacter. None of the 17 isolates was capable of producing ACCD or chitinase. However, polymerase chain reaction amplification of the ACCD coding genes, by the use of the gene-specific primers, indicated that not all contain the ACCD gene. The standard screening methods with slight modifications, especially in the case of ACCD assay, were applied. The results showed that the use of specific screening methods, modified according to bacterial nutritional requirements, are the efficient methods for precise evaluation of the plant growth promoting rhizobacteria activity.
Collapse
|
48
|
Mohan V, Radhakrish A. Screening of Phosphate Solubilizing Bacterial Isolates for the Growth Improvement of Tectona grandis Linn. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/jm.2012.101.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Monfared PS, Kazemitabar SK. Cloning and Expression of Genes Encoding Enzymes Involved in the Synthesis of Phenolic Antibiotic in Recombinant E. Coli. BIOTECHNOL BIOTEC EQ 2012. [DOI: 10.5504/bbeq.2012.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
Genetic and functional diversity among the antagonistic potential fluorescent pseudomonads isolated from tea rhizosphere. Curr Microbiol 2010; 62:434-44. [PMID: 20689953 DOI: 10.1007/s00284-010-9726-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Twenty-five fluorescent pseudomonads from rhizospheric soil of six tea gardens in four district of Upper Assam, India were isolated and screened for antagonistic activity against fungal pathogens such as Fusarium oxysporum f. sp. raphani (For), Fusarium oxysporum f. sp. ciceri (Foc), Fusarium semitectum (Fs), and Rhizoctonia solani (Rs); and bacterial pathogens-Staphylococcus aureus (Sa), Escherichia coli (Ec), and Klebsiella pneumoniae (Kp). Most of the isolates exhibited strong antagonistic activity against the fungal pathogens and gram-positive bacterium i.e. Staphylococcus aureus. Productions of siderophore, salicylic acid (SA), hydrogen cyanide (HCN), and cell wall-degrading enzyme (chitinase) were studied to observe the possible mechanisms of antagonistic activity of the isolates. Correlation between the antagonistic potentiality of some isolates and their levels of production of siderophore, salicylic acid, and hydrogen cyanide was observed. Out of the 25 isolates, antibiotic-coding genes, 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) were detected in the isolates, Pf12 and Pf373, respectively. Genetic diversity of these fluorescent pseudomonads were analyzed with reference to four strains of Pseudomonas fluorescens NICM 2099(T), P. aeruginosa MTCC 2582(T), P. aureofaciens NICM 2026(T), and P. syringae MTCC 673(T). 16S rDNA-RFLP analysis of these isolates using three tetra cutter restriction enzymes (HaeIII, AluI and MspI) revealed two distinct clusters. Cluster A comprised only two isolates Pf141 and 24-PfM3, and cluster B comprised 23 isolates along with four reference strains.
Collapse
|