1
|
Dyer KD, Garcia-Crespo KE, Glineur S, Domachowske JB, Rosenberg HF. The Pneumonia Virus of Mice (PVM) model of acute respiratory infection. Viruses 2012; 4:3494-510. [PMID: 23342367 PMCID: PMC3528276 DOI: 10.3390/v4123494] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 01/16/2023] Open
Abstract
Pneumonia Virus of Mice (PVM) is related to the human and bovine respiratory syncytial virus (RSV) pathogens, and has been used to study respiratory virus replication and the ensuing inflammatory response as a component of a natural host—pathogen relationship. As such, PVM infection in mice reproduces many of the clinical and pathologic features of the more severe forms of RSV infection in human infants. Here we review some of the most recent findings on the basic biology of PVM infection and its use as a model of disease, most notably for explorations of virus infection and allergic airways disease, for vaccine evaluation, and for the development of immunomodulatory strategies for acute respiratory virus infection.
Collapse
Affiliation(s)
- Kimberly D. Dyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.E.G.-C.); (S.G.); (H.F.R.)
| | - Katia E. Garcia-Crespo
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.E.G.-C.); (S.G.); (H.F.R.)
| | - Stephanie Glineur
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.E.G.-C.); (S.G.); (H.F.R.)
| | - Joseph B. Domachowske
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA; E-Mail:
| | - Helene F. Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.E.G.-C.); (S.G.); (H.F.R.)
| |
Collapse
|
2
|
Karlin D, Belshaw R. Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins. PLoS One 2012; 7:e31719. [PMID: 22403617 PMCID: PMC3293882 DOI: 10.1371/journal.pone.0031719] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/18/2012] [Indexed: 11/19/2022] Open
Abstract
Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11-16aa), several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected simply by comparing orthologous proteins.
Collapse
Affiliation(s)
- David Karlin
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
3
|
Georgiev VS. Pneumonia Virus of Mice (PVM): Exploring Novel Therapeutic Options In a Severe Respiratory Disease Model. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES, NIH 2010. [PMCID: PMC7176177 DOI: 10.1007/978-1-60761-512-5_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Respiratory syncytial virus (RSV) is the most important respiratory pathogen among infants and toddlers, with infections prevalent and nearly universal in this age group. Severe infections are more common among premature infants, those with cardiac and pulmonary anomalies, and the immunosupressed. Effective prophylactic monoclonal antibody treatment is available for high-risk infants, but there is no effective vaccine. Mouse challenge models have been used for the study of the human RSV pathogen, but the most severe forms of RSV disease are not replicated by this approach. Pneumonia virus of mice (PVM; family Paramyxoviridae, genus Pneumovirus) is a mouse pathogen of the same family as human respiratory syncytial virus. PVM replicates efficiently in mouse-lung epithelial cells in vivo in response to a minimal virus inoculum, and replication is accompanied by local production of proinflammatory cytokines (MIP-1α, MIP-2, MCP-1, and IFN-γ) and granulocyte recruitment to the lung. PVM infection and the ensuing inflammatory response can lead to pulmonary edema and respiratory compromise. Our laboratories have pioneered the use of the PVM model for the study of human clinical disease, which has provided important insights into the role of the inflammatory response in the pathogenesis of severe respiratory virus infection. As part of this work, we have presented several immunomodulatory strategies that clearly reduce morbidity and mortality when administered to PVM infected, symptomatic mice, and thus hold promise as realistic therapeutic strategies for severe RSV infection in human subjects.
Collapse
Affiliation(s)
- Vassil St. Georgiev
- Dept. Health & Human Services, National Institute of Health, Rockledge Drive 6610, Bethesda, 20892 Maryland USA
| |
Collapse
|
4
|
Derdowski A, Peters TR, Glover N, Qian R, Utley TJ, Burnett A, Williams JV, Spearman P, Crowe JE. Human metapneumovirus nucleoprotein and phosphoprotein interact and provide the minimal requirements for inclusion body formation. J Gen Virol 2009; 89:2698-2708. [PMID: 18931065 DOI: 10.1099/vir.0.2008/004051-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human metapneumovirus (HMPV) is a recently discovered paramyxovirus of the subfamily Pneumovirinae, which also includes avian pneumovirus and human respiratory syncytial virus (HRSV). HMPV is an important cause of respiratory disease worldwide. To understand early events in HMPV replication, cDNAs encoding the HMPV nucleoprotein (N), phosphoprotein (P), matrix protein (M), M2-1 protein and M2-2 protein were cloned from cells infected with the genotype A1 HMPV wild-type strain TN/96-12. HMPV N and P were shown to interact using a variety of techniques: yeast two-hybrid assays, co-immunoprecipitation and fluorescence resonance energy transfer (FRET). Confocal microscopy studies showed that, when expressed individually, fluorescently tagged HMPV N and P exhibited a diffuse expression pattern in the host-cell cytoplasm of uninfected cells but were recruited to cytoplasmic viral inclusion bodies in HMPV-infected cells. Furthermore, when HMPV N and P were expressed together, they also formed cytoplasmic inclusion-like complexes, even in the absence of viral infection. FRET microscopy revealed that HMPV N and P interacted directly within cytoplasmic inclusion-like complexes. Moreover, it was shown by yeast two-hybrid analysis that the N-terminal 28 aa are required for the recruitment to and formation of cytoplasmic inclusions, but are dispensable for binding to HMPV P. This work showed that HMPV N and P proteins provide the minimal viral requirements for HMPV inclusion body formation, which may be a distinguishing characteristic of members of the subfamily Pneumovirinae.
Collapse
Affiliation(s)
- Aaron Derdowski
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Timothy R Peters
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nancy Glover
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ray Qian
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Thomas J Utley
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Atuhani Burnett
- Department of Pediatrics and Microbiology and Immunology, Emory School of Medicine, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John V Williams
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Paul Spearman
- Department of Pediatrics and Microbiology and Immunology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - James E Crowe
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Rosenberg HF, Domachowske JB. Pneumonia virus of mice: severe respiratory infection in a natural host. Immunol Lett 2008; 118:6-12. [PMID: 18471897 DOI: 10.1016/j.imlet.2008.03.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/17/2008] [Accepted: 03/21/2008] [Indexed: 11/26/2022]
Abstract
Pneumonia virus of mice (PVM; family Paramyxoviridae, genus Pneumovirus) is a natural mouse pathogen that is closely related to human and bovine respiratory syncytial viruses. Among the prominent features of this infection, robust replication of PVM takes place in bronchial epithelial cells in response to a minimal virus inoculum. Virus replication in situ results in local production of proinflammatory cytokines (MIP-1alpha, MIP-2, MCP-1 and IFNgamma) and granulocyte recruitment to the lung. If left unchecked, PVM infection and the ensuing inflammatory response ultimately lead to pulmonary edema, respiratory compromise and death. In this review, we consider the recent studies using the PVM model that have provided important insights into the role of the inflammatory response in the pathogenesis of severe respiratory virus infection. We also highlight several works that have elucidated acquired immune responses to this pathogen, including T cell responses and the development of humoral immunity. Finally, we consider several immunomodulatory strategies that have been used successfully to reduce morbidity and mortality when administered to PVM-infected, symptomatic mice, and thus hold promise as realistic therapeutic strategies for severe respiratory virus infections in human subjects.
Collapse
Affiliation(s)
- Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
6
|
Vetiska SM, Ahmadian G, Ju W, Liu L, Wymann MP, Wang YT. GABAA receptor-associated phosphoinositide 3-kinase is required for insulin-induced recruitment of postsynaptic GABAA receptors. Neuropharmacology 2006; 52:146-55. [PMID: 16890252 DOI: 10.1016/j.neuropharm.2006.06.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/25/2006] [Accepted: 06/26/2006] [Indexed: 11/16/2022]
Abstract
Type A gamma-aminobutyric acid (GABAA) receptors mediate most of the fast inhibitory synaptic transmission within the vertebrate brain. The regulation of this inhibition is vital in modulating neural activity. One regulator of GABAA receptor function is insulin, which can serve to enhance GABAA receptor-mediated miniature inhibitory postsynaptic currents, via an increase in the number of receptors at the plasma membrane. We set out to investigate the molecular mechanisms involved in the insulin-induced potentiation of GABAA receptor-mediated responses, by examining the role of phosphoinositide 3-kinase (PI3-K), a key mediator of the insulin response within the brain. We found that PI3-K associates with the GABAA receptor, and this interaction is increased following insulin treatment. Additionally, the beta2 subunit of the GABAA receptor appears to mediate the insulin-stimulated association with the N-terminal SH2 domain of the p85 subunit of PI3-K. Our results imply a mechanism whereby insulin can regulate changes in synaptic transmission through its downstream actions on the GABAA receptor.
Collapse
Affiliation(s)
- S M Vetiska
- Programme in Brain and Behavior Research, Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Easton AJ, Domachowske JB, Rosenberg HF. Animal pneumoviruses: molecular genetics and pathogenesis. Clin Microbiol Rev 2004; 17:390-412. [PMID: 15084507 PMCID: PMC387412 DOI: 10.1128/cmr.17.2.390-412.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumoviruses are single-stranded, negative-sense, nonsegmented RNA viruses of the family Paramyxoviridae, subfamily Pneumovirinae, and include pathogens that infect humans (respiratory syncytial virus and human metapneumovirus), domestic mammals (bovine, ovine, and caprine respiratory syncytial viruses), rodents (pneumonia virus of mice), and birds (avian metapneumovirus). Among the topics considered in this review are recent studies focused on the roles of the individual virus-encoded components in promoting virus replication as well as in altering and evading innate antiviral host defenses. Advances in the molecular technology of pneumoviruses and the emergence of recombinant pneumoviruses that are leading to improved virus-based vaccine formulations are also discussed. Since pneumovirus infection in natural hosts is associated with a profound inflammatory response that persists despite adequate antiviral therapy, we also review the recent experimental treatment strategies that have focused on combined antiviral, anti-inflammatory, and immunomodulatory approaches.
Collapse
|
8
|
Stokes HL, Easton AJ, Marriott AC. Chimeric pneumovirus nucleocapsid (N) proteins allow identification of amino acids essential for the function of the respiratory syncytial virus N protein. J Gen Virol 2003; 84:2679-2683. [PMID: 13679601 DOI: 10.1099/vir.0.19370-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleocapsid (N) protein of the pneumovirus respiratory syncytial virus (RSV) is a major structural protein which encapsidates the RNA genome and is essential for replication and transcription of the RSV genome. The N protein of the related virus pneumonia virus of mice (PVM) is functionally unable to replace the RSV N protein in a minigenome replication assay. Using chimeric proteins, in which the immediate C-terminal part of the RSV N protein was replaced with the equivalent region of the PVM N protein, it was shown that six amino acid residues near the C terminus of the N protein (between residues 352-369) are essential for its function in replication and for the ability of the N protein to bind to the viral phosphoprotein, P.
Collapse
Affiliation(s)
- H L Stokes
- University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, UK
| | - A J Easton
- University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, UK
| | - A C Marriott
- University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, UK
| |
Collapse
|
9
|
Lu B, Brazas R, Ma CH, Kristoff T, Cheng X, Jin H. Identification of temperature-sensitive mutations in the phosphoprotein of respiratory syncytial virus that are likely involved in its interaction with the nucleoprotein. J Virol 2002; 76:2871-80. [PMID: 11861854 PMCID: PMC135989 DOI: 10.1128/jvi.76.6.2871-2880.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoprotein (P) of human respiratory syncytial virus (RSV) is an essential component of the viral RNA polymerase, along with the large polymerase (L), nucleocapsid (N), and M2-1 proteins. By screening a randomly mutagenized P gene cDNA library, two independent mutations, one with a substitution of glycine at position 172 by serine (G172S) and the other with a substitution of glutamic acid at position 176 by glycine (E176G), were identified to result in the loss of N-P interaction at 37 degrees C in the yeast two-hybrid assay. Both P mutants exhibited greatly reduced activity in supporting the replication and transcription of an RSV minigenome replicon at 37 and 39 degrees C. The G172S and E176G mutations were introduced individually into the RSV A2 (rA2) antigenomic cDNA, and recombinant viruses, rA2-P172 and rA2-P176, were obtained. Both viruses replicate as well as wild-type A2 virus in both Vero and HEp-2 cells at 33 degrees C, but each mutant virus exhibited temperature-sensitive replication in both cell lines. rA2-P176 is more temperature sensitive than rA2-P172. Coimmunoprecipitation of the N protein with each P mutant from virus-infected cells demonstrates that N-P interaction is impaired at 37 degrees C. In addition, the levels of replication of rA2-P172 and rA2-P176 in the lungs of mice and cotton rats were reduced. As is the case with the in vitro assays, rA2-P176 is more restricted in replication in the lower respiratory tract of mice and cotton rats than rA2-P172. During in vitro passage at 37 degrees C, the E176G mutation in rA2-P176 was rapidly changed from glycine to predominantly aspartic acid; mutations to cysteine or serine were also detected. All of the revertants lost the temperature-sensitive phenotype. To analyze the importance of the amino acids in the region from positions 161 to 180 for the P protein function, additional mutations were introduced and their functions were analyzed in vitro. A double mutant containing both G172S and E176G changes in the P gene, substitution of the three charged residues at positions 174 to 176 by alanine, and a deletion of residues from positions 161 to 180 completely abolished the P protein function in the minigenome assay. Thus, the amino acids at positions 172 and 176 and the adjacent charged residues play critical roles in the function of the P protein.
Collapse
Affiliation(s)
- Bin Lu
- Aviron, Mountain View, California 94043, USA
| | | | | | | | | | | |
Collapse
|
10
|
Khattar SK, Yunus AS, Samal SK. Mapping the domains on the phosphoprotein of bovine respiratory syncytial virus required for N-P and P-L interactions using a minigenome system. J Gen Virol 2001; 82:775-779. [PMID: 11257181 DOI: 10.1099/0022-1317-82-4-775] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction of bovine respiratory syncytial virus (BRSV) phosphoprotein (P) with nucleocapsid (N) and large polymerase (L) proteins was investigated using an intracellular BRSV-CAT minigenome replication system. Coimmunoprecipitation assays using P-specific antiserum revealed that the P protein can form complexes with N and L proteins. Deletion mutant analysis of the P protein was performed to identify the regions of P protein that interact with N and L proteins. The results indicate that two independent N-binding sites exist on the P protein: an internal region of 161-180 amino acids and a C-terminal region of 221-241 amino acids. The L-binding site was mapped to a region of P protein encompassing amino acids 121-160. The data suggest that N and L protein binding domains on the P protein do not overlap.
Collapse
Affiliation(s)
- Sunil K Khattar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA1
| | - Abdul S Yunus
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA1
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA1
| |
Collapse
|
11
|
Tober C, Seufert M, Schneider H, Billeter MA, Johnston IC, Niewiesk S, ter Meulen V, Schneider-Schaulies S. Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 1998; 72:8124-32. [PMID: 9733853 PMCID: PMC110150 DOI: 10.1128/jvi.72.10.8124-8132.1998] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/1998] [Accepted: 07/08/1998] [Indexed: 11/20/2022] Open
Abstract
Nonstructural proteins encoded by measles virus (MV) include the V protein which is translated from an edited P mRNA. V protein is not associated with intracellular or released viral particles and has recently been found to be dispensable for MV propagation in cell culture (H. Schneider, K. Kaelin, and M. A. Billeter, Virology 227:314-322, 1997). Using recombinant MVs (strain Edmonston [ED]) genetically engineered to overexpress V protein (ED-V+) or to be deficient for V protein (ED-V-), we found that in the absence of V both MV-specific proteins and RNAs accumulated to levels higher than those in the parental MV molecular clone (ED-tag), whereas MV-specific gene expression was strongly attenuated in human U-87 glioblastomas cells after infection with ED-V+. The titers of virus released from these cells 48 h after infection with either V mutant virus were lower than those from cells infected with ED-tag. Similarly, significantly reduced titers of infectious virus were reisolated from lung tissue of cotton rats (Sigmodon hispidus) after intranasal infection with both editing mutants compared to titers isolated from ED-tag-infected animals. In cell culture, expression of V protein led to a redistribution of MV N protein in doubly transfected Cos-7 cells, indicating that these proteins form heterologous complexes. This interaction was further confirmed by using a two-hybrid approach with both proteins expressed as Gal4 or VP16 fusion products. Moreover, V protein efficiently competed complexes formed between MV N and P proteins. These findings indicate that V protein acts to balance accumulation of viral gene products in cell culture, and this may be dependent on its interaction with MV N protein. Furthermore, expression of V protein may contribute to viral pathogenicity in vivo.
Collapse
Affiliation(s)
- C Tober
- Institute for Virology and Immunobiology, University of Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Slack MS, Easton AJ. Characterization of the interaction of the human respiratory syncytial virus phosphoprotein and nucleocapsid protein using the two-hybrid system. Virus Res 1998; 55:167-76. [PMID: 9725669 DOI: 10.1016/s0168-1702(98)00042-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction between the human respiratory syncytial virus phosphoprotein (P) and nucleocapsid (N) protein has been investigated using the two hybrid system in yeast and in tissue culture cells. Deletion analysis identified two regions in the P protein involved in this interaction. The immediate carboxy-terminal 20 amino acids were essential for interaction with the N protein. Point mutations in this region demonstrated that alteration of two conserved, phosphorylated, serine residues reduced binding to 50% of that of the native protein. The introduction of two proline residues to disrupt the predicted alpha-helical domain in this region dramatically reduced the ability of the mutant P protein to interact with the N protein. A second region which affected the interaction of the two proteins was located adjacent to the essential carboxy-terminal area. Deletion of this second region resulted in an increase in the strength of the interaction between the two proteins. These data shows that the RSV P protein, while having no amino acid sequence identity with the equivalent P protein of other negative strand viruses, is likely to have similar structural and functional features.
Collapse
Affiliation(s)
- M S Slack
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|