1
|
Alkadhi KA. Synaptic Plasticity and Cognitive Ability in Experimental Adult-Onset Hypothyroidism. J Pharmacol Exp Ther 2024; 389:150-162. [PMID: 38508752 DOI: 10.1124/jpet.123.001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Adult-onset hypothyroidism impairs normal brain function. Research on animal models of hypothyroidism has revealed critical information on how deficiency of thyroid hormones impacts the electrophysiological and molecular functions of the brain, which leads to the well known cognitive impairment in untreated hypothyroid patients. Currently, such information can only be obtained from experiments on animal models of hypothyroidism. This review summarizes important research findings that pertain to understanding the clinical cognitive consequences of hypothyroidism, which will provide a better guiding path for therapy of hypothyroidism. SIGNIFICANCE STATEMENT: Cognitive impairment occurs during adult-onset hypothyroidism in both humans and animal models. Findings from animal studies validate clinical findings showing impaired long-term potentiation, decreased CaMKII, and increased calcineurin. Such findings can only be gleaned from animal experiments to show how hypothyroidism produces clinical symptoms.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
2
|
Kida H, Kawakami R, Sakai K, Otaku H, Imamura K, Han TZ, Sakimoto Y, Mitsushima D. Motor training promotes both synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. J Physiol 2023; 601:335-353. [PMID: 36515167 DOI: 10.1113/jp283755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Layer V neurons in the primary motor cortex (M1) are important for motor skill learning. Since pretreatment of either CNQX or APV in rat M1 layer V impaired rotor rod learning, we analysed training-induced synaptic plasticity by whole-cell patch-clamp technique in acute brain slices. Rats trained for 1 day showed a decrease in small inhibitory postsynaptic current (mIPSC) frequency and an increase in the paired-pulse ratio of evoked IPSCs, suggesting a transient decrease in presynaptic GABA release in the early phase. Rats trained for 2 days showed an increase in miniature excitatory postsynaptic current (mEPSC) amplitudes/frequency and elevated AMPA/NMDA ratios, suggesting a long-term strengthening of AMPA receptor-mediated excitatory synapses. Importantly, rotor rod performance in trained rats was correlated with the mean mEPSC amplitude and the frequency obtained from that animal. In current-clamp analysis, 1-day-trained rats transiently decreased the current-induced firing rate, while 2-day-trained rats returned to pre-training levels, suggesting dynamic changes in intrinsic properties. Furthermore, western blot analysis of layer V detected decreased phosphorylation of Ser408-409 in GABAA receptor β3 subunits in 1-day-trained rats, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in 2-day-trained rats. Finally, live-imaging analysis of Thy1-YFP transgenic mice showed that the training rapidly recruited a substantial number of spines for long-term plasticity in M1 layer V neurons. Taken together, these results indicate that motor training induces complex and diverse plasticity in M1 layer V pyramidal neurons. KEY POINTS: Here we examined motor training-induced synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. The training reduced presynaptic GABA release in the early phase, but strengthened AMPA receptor-mediated excitatory synapses in the later phase: acquired motor performance after training correlated with the strength of excitatory synapses rather than inhibitory synapses. As to the intrinsic property, the training transiently decreased the firing rate in the early phase, but returned to pre-training levels in the later phase. Western blot analysis detected decreased phosphorylation of Ser408-409 in GABAA receptor β3 subunits in the acute phase, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in the later phase. Live-imaging analysis of Thy1-YFP transgenic mice showed rapid and long-term spine plasticity in M1 layer V neurons, suggesting training-induced increases in self-entropy per spine.
Collapse
Affiliation(s)
- H Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - R Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - K Sakai
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - H Otaku
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - K Imamura
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Thiri-Zin Han
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Y Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.,The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
3
|
Chatterjee D, Beaulieu JM. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front Mol Neurosci 2022; 15:1028963. [PMID: 36504683 PMCID: PMC9731798 DOI: 10.3389/fnmol.2022.1028963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3β, have more than 100 validated substrates. They are thus central hubs for major biological functions, such as dopamine-glutamate neurotransmission, synaptic plasticity (Hebbian and homeostatic), inflammation, circadian regulation, protein synthesis, metabolism, inflammation, and mitochondrial functions. The intricate contributions of GSK3 to several biological processes make it difficult to identify specific mechanisms of mood stabilization for therapeutic development. Identification of GSK3 substrates involved in lithium therapeutic action is thus critical. We provide an overview of GSK3 biological functions and substrates for which there is evidence for a contribution to lithium effects. A particular focus is given to four of these: the transcription factor cAMP response element-binding protein (CREB), the RNA-binding protein FXR1, kinesin subunits, and the cytoskeletal regulator CRMP2. An overview of how co-regulation of these substrates may result in shared outcomes is also presented. Better understanding of how inhibition of GSK3 contributes to the therapeutic effects of lithium should allow for identification of more specific targets for future drug development. It may also provide a framework for the understanding of how lithium effects overlap with those of other drugs such as ketamine and antipsychotics, which also inhibit brain GSK3.
Collapse
Affiliation(s)
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Souchet B, Audrain M, Alves S, Fol R, Tada S, Orefice NS, Potier B, Dutar P, Billard JM, Cartier N, Braudeau J. Evaluation of Memantine in AAV-AD Rat: A Model of Late-Onset Alzheimer's Disease Predementia. J Prev Alzheimers Dis 2022; 9:338-347. [PMID: 35543008 DOI: 10.14283/jpad.2021.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Though our understanding of Alzheimer's disease (AD) remains elusive, it is well known that the disease starts long before the first signs of dementia. This is supported by the large number of symptomatic drug failures in clinical trials and the increased trend to enroll patients at predementia stages with either mild or no cognitive symptoms. However, the design of pre-clinical studies does not follow this attitude, in particular regarding the choice of animal models, often irrelevant to mimic predementia Late Onset Alzheimer's Disease (LOAD). OBJECTIVES We aimed to pharmacologically validate the AAV-AD rat model to evaluate preventive treatment of AD. METHODS We evaluated an N-methyl-D-aspartate receptor antagonist, named memantine, in AAV-AD rats, an age-dependent amyloid rat model which closely mimics Alzheimer's pathology including asymptomatic and prodromal stages. Memantine was used at a clinically relevant dose (20 mg daily oral administration) from 4 (asymptomatic phase) to 10 (mild cognitive impairment phase) months of age. RESULTS A 6-month treatment with memantine promoted a non-amyloidogenic cleavage of APP followed by a decrease in soluble Aβ42. Consequently, both long-term potentiation and cognitive impairments were prevented. By contrast, the levels of hyperphosphorylated endogenous tau remained unchanged, indicating that a long-term memantine treatment is ineffective to restrain the APP processing-induced tauopathy. CONCLUSIONS Together, our data confirm that relevant models to LOAD, such as the AAV-AD rat, can provide a framework for a better understanding of the disease and accurate assessment of preventive treatments.
Collapse
Affiliation(s)
- Benoit Souchet
- Jérôme Braudeau, AgenT SAS, Evry 91000, France, and Nathalie Cartier, INSERM UMR1127, Paris Sorbonne University, Paris, France,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Brault V, Nguyen TL, Flores-Gutiérrez J, Iacono G, Birling MC, Lalanne V, Meziane H, Manousopoulou A, Pavlovic G, Lindner L, Selloum M, Sorg T, Yu E, Garbis SD, Hérault Y. Dyrk1a gene dosage in glutamatergic neurons has key effects in cognitive deficits observed in mouse models of MRD7 and Down syndrome. PLoS Genet 2021; 17:e1009777. [PMID: 34587162 PMCID: PMC8480849 DOI: 10.1371/journal.pgen.1009777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Perturbation of the excitation/inhibition (E/I) balance leads to neurodevelopmental diseases including to autism spectrum disorders, intellectual disability, and epilepsy. Loss-of-function mutations in the DYRK1A gene, located on human chromosome 21 (Hsa21,) lead to an intellectual disability syndrome associated with microcephaly, epilepsy, and autistic troubles. Overexpression of DYRK1A, on the other hand, has been linked with learning and memory defects observed in people with Down syndrome (DS). Dyrk1a is expressed in both glutamatergic and GABAergic neurons, but its impact on each neuronal population has not yet been elucidated. Here we investigated the impact of Dyrk1a gene copy number variation in glutamatergic neurons using a conditional knockout allele of Dyrk1a crossed with the Tg(Camk2-Cre)4Gsc transgenic mouse. We explored this genetic modification in homozygotes, heterozygotes and combined with the Dp(16Lipi-Zbtb21)1Yey trisomic mouse model to unravel the consequence of Dyrk1a dosage from 0 to 3, to understand its role in normal physiology, and in MRD7 and DS. Overall, Dyrk1a dosage in postnatal glutamatergic neurons did not impact locomotor activity, working memory or epileptic susceptibility, but revealed that Dyrk1a is involved in long-term explicit memory. Molecular analyses pointed at a deregulation of transcriptional activity through immediate early genes and a role of DYRK1A at the glutamatergic post-synapse by deregulating and interacting with key post-synaptic proteins implicated in mechanism leading to long-term enhanced synaptic plasticity. Altogether, our work gives important information to understand the action of DYRK1A inhibitors and have a better therapeutic approach. The Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A, DYRK1A, drives cognitive alterations with increased dose in Down syndrome (DS) or with reduced dose in DYRK1A-related intellectual disability syndromes (ORPHA:268261; ORPHA:464311) also known as mental retardation, autosomal dominant disease 7 (MRD7; OMIM #614104). Here we report that specific and complete loss of Dyrk1a in glutamatergic neurons induced a range of specific cognitive phenotypes and alter the expression of genes involved in neurotransmission in the hippocampus. We further explored the consequences of Dyrk1a dosage in glutamatergic neurons on the cognitive phenotypes observed respectively in MRD7 and DS mouse models and we found specific roles in long-term explicit memory with no impact on motor activity, short-term working memory, and susceptibility to epilepsy. Then we demonstrated that DYRK1A is a component of the glutamatergic post-synapse and interacts with several component such as NR2B and PSD95. Altogether our work describes a new role of DYRK1A at the glutamatergic synapse that must be considered to understand the consequence of treatment targeting DYRK1A in disease.
Collapse
Affiliation(s)
- Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Thu Lan Nguyen
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Javier Flores-Gutiérrez
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Valérie Lalanne
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Antigoni Manousopoulou
- Institute for Life Sciences, University of Southampton, School of Medicine, Southampton, United Kingdom
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Loïc Lindner
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
- Genetics, Genomics and Bioinformatics Program, State University of New York At Buffalo, Buffalo, New York, United States of America
| | - Spiros D. Garbis
- Institute for Life Sciences, University of Southampton, School of Medicine, Southampton, United Kingdom
| | - Yann Hérault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
- * E-mail:
| |
Collapse
|
6
|
Cascella R, Cecchi C. Calcium Dyshomeostasis in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22094914. [PMID: 34066371 PMCID: PMC8124842 DOI: 10.3390/ijms22094914] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that is characterized by amyloid β-protein deposition in senile plaques, neurofibrillary tangles consisting of abnormally phosphorylated tau protein, and neuronal loss leading to cognitive decline and dementia. Despite extensive research, the exact mechanisms underlying AD remain unknown and effective treatment is not available. Many hypotheses have been proposed to explain AD pathophysiology; however, there is general consensus that the abnormal aggregation of the amyloid β peptide (Aβ) is the initial event triggering a pathogenic cascade of degenerating events in cholinergic neurons. The dysregulation of calcium homeostasis has been studied considerably to clarify the mechanisms of neurodegeneration induced by Aβ. Intracellular calcium acts as a second messenger and plays a key role in the regulation of neuronal functions, such as neural growth and differentiation, action potential, and synaptic plasticity. The calcium hypothesis of AD posits that activation of the amyloidogenic pathway affects neuronal Ca2+ homeostasis and the mechanisms responsible for learning and memory. Aβ can disrupt Ca2+ signaling through several mechanisms, by increasing the influx of Ca2+ from the extracellular space and by activating its release from intracellular stores. Here, we review the different molecular mechanisms and receptors involved in calcium dysregulation in AD and possible therapeutic strategies for improving the treatment.
Collapse
|
7
|
Magnesium for Pain Treatment in 2021? State of the Art. Nutrients 2021; 13:nu13051397. [PMID: 33919346 PMCID: PMC8143286 DOI: 10.3390/nu13051397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Magnesium (Mg) is commonly used in clinical practice for acute and chronic pain and has been reported to reduce pain intensity and analgesics consumption in a number of studies. Results are, however, contested. Objectives: This review aims to investigate randomised clinical trials (RCTs) on the effectiveness of Mg treatment on pain and analgesics consumption in situations including post-operative pain, migraine, renal pain, chronic pain, neuropathic pain and fibromyalgia. Results: The literature search identified 81 RCTs (n = 5447 patients) on Mg treatment in pain (50 RCTs in post-operative pain, 18 RCTs in migraine, 5 RCTs in renal pain, 6 RCTs in chronic/neuropathic pain, 2 RCTs in fibromyalgia). Conclusion: The level of evidence for the efficacy of Mg in reducing pain and analgesics consumption is globally modest and studies are not very numerous in chronic pain. A number of gaps have been identified in the literature that need to be addressed especially in methodology, rheumatic disease, and cancer. Additional clinical trials are needed to achieve a sufficient level of evidence and to better optimize the use of Mg for pain and pain comorbidities in order to improve the quality of life of patients who are in pain.
Collapse
|
8
|
The Emerging Role of LHb CaMKII in the Comorbidity of Depressive and Alcohol Use Disorders. Int J Mol Sci 2020; 21:ijms21218123. [PMID: 33143210 PMCID: PMC7663385 DOI: 10.3390/ijms21218123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Depressive disorders and alcohol use disorders are widespread among the general population and are significant public health and economic burdens. Alcohol use disorders often co-occur with other psychiatric conditions and this dual diagnosis is called comorbidity. Depressive disorders invariably contribute to the development and worsening of alcohol use disorders, and vice versa. The mechanisms underlying these disorders and their comorbidities remain unclear. Recently, interest in the lateral habenula, a small epithalamic brain structure, has increased because it becomes hyperactive in depression and alcohol use disorders, and can inhibit dopamine and serotonin neurons in the midbrain reward center, the hypofunction of which is believed to be a critical contributor to the etiology of depressive disorders and alcohol use disorders as well as their comorbidities. Additionally, calcium/calmodulin-dependent protein kinase II (CaMKII) in the lateral habenula has emerged as a critical player in the etiology of these comorbidities. This review analyzes the interplay of CaMKII signaling in the lateral habenula associated with depressive disorders and alcohol use disorders, in addition to the often-comorbid nature of these disorders. Although most of the CaMKII signaling pathway's core components have been discovered, much remains to be learned about the biochemical events that propagate and link between depression and alcohol abuse. As the field rapidly advances, it is expected that further understanding of the pathology involved will allow for targeted treatments.
Collapse
|
9
|
Guaraldi M, Lee S, Shea TB. Synaptic Signals from Glutamate-Treated Neurons Induce Aberrant Post-Synaptic Signals in Untreated Neuronal Networks. Open Neurol J 2020. [DOI: 10.2174/1874205x02014010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background and Objective:
Glutamate neurotoxicity is associated with a wide range of disorders and can impair synaptic function. Failure to clear extracellular glutamate fosters additional cycles and spread of regional hyperexcitation.
Methods and Results:
Using cultured murine cortical neurons, herein it is demonstrated that synaptic signals generated by cultures undergoing glutamate-induced hyperactivity can invoke similar effects in other cultures not exposed to elevated glutamate.
Conclusion:
Since sequential synaptic connectivity can encompass extensive cortical regions, this study presents a potential additional contributor to the spread of damage resulting from glutamate excitotoxicity and should be considered in attempts to mitigate neurodegeneration.
Collapse
|
10
|
TRPM4 inhibition improves spatial memory impairment and hippocampal long-term potentiation deficit in chronic cerebral hypoperfused rats. Behav Brain Res 2020; 393:112781. [PMID: 32619565 DOI: 10.1016/j.bbr.2020.112781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) been well characterized as a common pathological status contributing to neurodegenerative diseases such as Alzheimer's disease and vascular dementia. CCH is an important factor that leads to cognitive impairment, but the underlying neurobiological mechanism is poorly understood and no effective treatment is available. Recently, transient receptor potential melastatin 4 (TRPM4) cation channel has been identified as an important molecular element in focal cerebral ischemia. Over activation of the channel is a major molecular mechanism of oncotic cell death. However, the role of TRPM4 in CCH that propagates global brain hypoxia have not been explored. Therefore, the present study is designed to investigate the effect of TRPM4 inhibition on the cognitive functions of the rats following CCH via permanent bilateral occlusion of common carotid arteries (PBOCCA) model. In this model, treatment with siRNA suppressed TRPM4 expression at both the mRNA and protein levels and improved cognitive deficits of the CCH rats without affecting their motor function. Furthermore, treatment with siRNA rescued the LTP impairment in CCH-induced rats. Consistent with the restored of LTP, western blot analysis revealed that siRNA treatment prevented the reduction of synaptic proteins, including calcium/calmodulin-dependent kinase II alpha (CaMKIIα) and brain-derived neurotrophic factor (BDNF) in brain regions of CCH rats. The present findings provide a novel role of TRPM4 in restricting cognitive functions in CCH and suggest inhibiting TRPM4 may represent a promising therapeutic strategy in targeting ion channels to prevent the progression of cognitive deficits induced by ischemia.
Collapse
|
11
|
Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ. Current understanding of metal ions in the pathogenesis of Alzheimer's disease. Transl Neurodegener 2020; 9:10. [PMID: 32266063 PMCID: PMC7119290 DOI: 10.1186/s40035-020-00189-z] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background The homeostasis of metal ions, such as iron, copper, zinc and calcium, in the brain is crucial for maintaining normal physiological functions. Studies have shown that imbalance of these metal ions in the brain is closely related to the onset and progression of Alzheimer's disease (AD), the most common neurodegenerative disorder in the elderly. Main body Erroneous deposition/distribution of the metal ions in different brain regions induces oxidative stress. The metal ions imbalance and oxidative stress together or independently promote amyloid-β (Aβ) overproduction by activating β- or γ-secretases and inhibiting α-secretase, it also causes tau hyperphosphorylation by activating protein kinases, such as glycogen synthase kinase-3β (GSK-3β), cyclin-dependent protein kinase-5 (CDK5), mitogen-activated protein kinases (MAPKs), etc., and inhibiting protein phosphatase 2A (PP2A). The metal ions imbalances can also directly or indirectly disrupt organelles, causing endoplasmic reticulum (ER) stress; mitochondrial and autophagic dysfunctions, which can cause or aggravate Aβ and tau aggregation/accumulation, and impair synaptic functions. Even worse, the metal ions imbalance-induced alterations can reversely exacerbate metal ions misdistribution and deposition. The vicious cycles between metal ions imbalances and Aβ/tau abnormalities will eventually lead to a chronic neurodegeneration and cognitive deficits, such as seen in AD patients. Conclusion The metal ions imbalance induces Aβ and tau pathologies by directly or indirectly affecting multiple cellular/subcellular pathways, and the disrupted homeostasis can reversely aggravate the abnormalities of metal ions transportation/deposition. Therefore, adjusting metal balance by supplementing or chelating the metal ions may be potential in ameliorating AD pathologies, which provides new research directions for AD treatment.
Collapse
Affiliation(s)
- Lu Wang
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Ya-Ling Yin
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Xin-Zi Liu
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Peng Shen
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Yan-Ge Zheng
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Xin-Rui Lan
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Cheng-Biao Lu
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Jian-Zhi Wang
- 2Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
12
|
Zhou J, Qi F, Hu Z, Zhang L, Li Z, Wang ZJ, Tang H, Chen Z. Dezocine attenuates the remifentanil-induced postoperative hyperalgesia by inhibition of phosphorylation of CaMKⅡα. Eur J Pharmacol 2020; 869:172882. [PMID: 31863769 DOI: 10.1016/j.ejphar.2019.172882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/22/2023]
Abstract
Remifentanil, ultra-short-acting μ-opioid receptor agonist, has the greatest advantage in analgesia but could increase postoperative pain scores and induces postoperative hyperalgesia. Dezocine is a mixed opioid receptor partial agonist/antagonist and has been used for postoperative hyperalgesia management in clinical patients,but the potential molecular mechanism is still unclear. Ca2+/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ) has been reported involved in remifentanil-induced hyperalgesia (RIH) in previous studies, but the relationship between CaMKⅡ and dezocine in RIH is still unclear. To investigate the mechanism of dezocine in RIH, we used a remifentanil induced postoperative hyperalgesia (RIPH) in incisional pain model of mouse. We subcutaneously infused remifentanil (40 μg/kg) to induce postoperative hyperalgesia. Dezocine (1.5 mg/kg, 3.0 mg/kg, and 6.0 mg/kg) was infused subcutaneously with remifentanil using the apparatus pump for 30 min. Paw withdrawal thermal latency (PWTL) and paw withdrawal mechanical threshold (PWMT) were used to assess thermal hyperalgesia and mechanical allodynia. Western blotting analysis and immunohistochemistry analysis were used to assess the expression of phosphorylated CaMKⅡα (p-CaMKⅡα) in somatosensory cortex, hippocampus and spinal cord. Subcutaneous infusion of remifentanil enhanced postoperative pain induced by surgical incision and increased PWTL and PWMT. Dezocine dose-dependently decreased the PWTL and PWMT in RIPH model. Correlating with behavioral effects, dezocine inhibited remifentanil-induced up-regulation of p-CaMKⅡα expression in somatosensory cortex, hippocampus and spinal cord. Dezocine could attenuate RIPH by suppressing p-CaMKⅡα.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China; Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China
| | - Fang Qi
- Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, 434020, China; Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China
| | - Zhengqiang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lejun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zigang Li
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL, 60607, USA
| | - Huifang Tang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Zhijun Chen
- Department of Anesthesiology, Wuhan NO. 1 Hospital, Wuhan, Hubei, 430022, China; Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China.
| |
Collapse
|
13
|
Depotentiation of Long-Term Potentiation Is Associated with Epitope-Specific Tau Hyper-/Hypophosphorylation in the Hippocampus of Adult Rats. J Mol Neurosci 2018; 67:193-203. [PMID: 30498986 DOI: 10.1007/s12031-018-1224-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/18/2018] [Indexed: 01/19/2023]
Abstract
It is well-known that some kinases which are involved in the induction of synaptic plasticity probably modulate tau phosphorylation. However, how depression of potentiated synaptic strength contributes to tau phosphorylation is unclear because of the lack of experiments in which depotentiation of LTP was induced. Field excitatory postsynaptic potential (fEPSP) and population spike (PS) were recorded from the dentate gyrus in response to the perforant pathway stimulation. To induce LTP, high-frequency stimulation (HFS) was used, while, for depotentiation of LTP, low-frequency stimulation (LFS) consisting of 900 pulses at 1 Hz was applied 5 min after tetanization. In some experiments, a neutral protocol at 0.033 Hz was applied throughout the experiment without any induction of synaptic plasticity. One-hertz depotentiation protocol was able to decrease fEPSP slope which was previously increased by HFS, whereas no significant change in fEPSP slope and PS amplitude was observed in neutral protocol experiments. Relative to saline infusion, LTP was lower in magnitude and was more reversed by subsequent LFS in the presence of ERK1/2 inhibitor. Western blot experiments indicated that tau protein was hyperphosphorylated at ser416 epitope but rather hypophosphorylated at thr231 epitope in the whole hippocampus upon depotentiation of LTP. These changes concomitantly occurred with a notable increase in the levels of total tau and in the levels of phosphorylated form of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). ERK1/2 inhibition resulted in a decrease in phosphorylation of tau at p416Tau when ERK1/2 was inhibited. These findings indicate that some forms of long-term plastic changes might be related with epitope-specific tau phosphorylation and ERK1/2 activation in the hippocampus. Therefore, we emphasize that tau may be crucial for physiological learning as well as Alzheimer's disease pathology.
Collapse
|
14
|
Hodges TE, Louth EL, Bailey CDC, McCormick CM. Adolescent social instability stress alters markers of synaptic plasticity and dendritic structure in the medial amygdala and lateral septum in male rats. Brain Struct Funct 2018; 224:643-659. [DOI: 10.1007/s00429-018-1789-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
|
15
|
Alkadhi KA. Neuroprotective Effects of Nicotine on Hippocampal Long-Term Potentiation in Brain Disorders. J Pharmacol Exp Ther 2018; 366:498-508. [PMID: 29914875 DOI: 10.1124/jpet.118.247841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/23/2018] [Indexed: 08/30/2023] Open
Abstract
Long-term potentiation (LTP) is commonly considered the cellular correlate of learning and memory. In learning and memory impairments, LTP is invariably diminished in the hippocampus, the brain region responsible for memory formation. LTP is measured electrophysiologically in various areas of the hippocampus. Two mechanistically distinct phases of LTP have been identified: early phase LTP, related to short-term memory; and late-phase LTP, related to long-term memory. These two forms can be severely reduced in a variety of conditions but can be rescued by treatment with nicotine. This report reviews the literature on the beneficial effect of nicotine on LTP in conditions that compromise learning and memory.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Professor of Pharmacology, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
16
|
Vagus Nerve Stimulation Enhances Extinction of Conditioned Fear in Rats and Modulates Arc Protein, CaMKII, and GluN2B-Containing NMDA Receptors in the Basolateral Amygdala. Neural Plast 2016; 2016:4273280. [PMID: 27957346 PMCID: PMC5120198 DOI: 10.1155/2016/4273280] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Vagus nerve stimulation (VNS) enhances the consolidation of extinction of conditioned fear. High frequency stimulation of the infralimbic cortex (IL) produces long-term potentiation in the basolateral amygdala (BLA) in rats given VNS-paired extinction training, whereas the same stimulation produces long-term depression in sham-treated rats. The present study investigated the state of synaptic plasticity-associated proteins in the BLA that could be responsible for this shift. Male Sprague-Dawley rats were separated into 4 groups: auditory fear conditioning only (fear-conditioned); fear conditioning + 20 extinction trials (extended-extinction); fear conditioning + 4 extinction trials paired with sham stimulation (sham-extinction); fear conditioning + 4 extinction trials paired with VNS (VNS-extinction). Freezing was significantly reduced in extended-extinction and VNS-extinction rats. Western blots were used to quantify expression and phosphorylation state of synaptic plasticity-associated proteins such as Arc, CaMKII, ERK, PKA, and AMPA and NMDA receptors. Results show significant increases in GluN2B expression and phosphorylated CaMKII in BLA samples from VNS- and extended-extinction rats. Arc expression was significantly reduced in VNS-extinction rats compared to all groups. Administration of the GluN2B antagonist ifenprodil immediately after fear extinction training blocked consolidation of extinction learning. Results indicate a role for BLA CaMKII-induced GluN2B expression and reduced Arc protein in VNS-enhanced extinction.
Collapse
|
17
|
Kida H, Tsuda Y, Ito N, Yamamoto Y, Owada Y, Kamiya Y, Mitsushima D. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex. Cereb Cortex 2016; 26:3494-507. [PMID: 27193420 PMCID: PMC4961021 DOI: 10.1093/cercor/bhw134] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats—while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training.
Collapse
Affiliation(s)
| | | | | | - Yui Yamamoto
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yoshinori Kamiya
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, 4132 Urasa, Minami-uonuma, Niigata 949-7302, Japan
| | | |
Collapse
|
18
|
Yao ZG, Liang L, Liu Y, Zhang L, Zhu H, Huang L, Qin C. Valproate improves memory deficits in an Alzheimer's disease mouse model: investigation of possible mechanisms of action. Cell Mol Neurobiol 2014; 34:805-12. [PMID: 24939432 PMCID: PMC11488907 DOI: 10.1007/s10571-013-0012-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is a very common progressive neurodegenerative disorder affecting the learning and memory abilities in the brain. Key findings from recent studies of epigenetic mechanisms of memory suggest chromatin remodeling disorders via histone hypoacetylation of the lysine residue contribute to the cognitive impairment in AD. Therefore, the deinhibition of histone acetylation induced by histone deacetylases (HDACs) inhibitors contributes to recovery of learning and memory. We show here that the antiepileptic drug sodium valproate (VPA) potently enhanced long-term recognition memory and spatial learning and memory in AD transgenic mice. Possible mechanisms showed VPA could significantly elevate histone acetylation through HDACs activity inhibition and increase plasticity-associated gene expression within the hippocampi of mice. Our study suggests that VPA, serving as a HDACs inhibitor, can be considered as a potential pharmaceutical agent for the improvement of cognitive function in AD.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Liang Liang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Yu Liu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Ling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Hua Zhu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Lan Huang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Chuan Qin
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| |
Collapse
|
19
|
Driessen HE, Bourgonje VJA, van Veen TAB, Vos MA. New antiarrhythmic targets to control intracellular calcium handling. Neth Heart J 2014; 22:198-213. [PMID: 24733689 PMCID: PMC4016334 DOI: 10.1007/s12471-014-0549-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sudden cardiac death due to ventricular arrhythmias is a major problem. Drug therapies to prevent SCD do not provide satisfying results, leading to the demand for new antiarrhythmic strategies. New targets include Ca2+/Calmodulin-dependent protein kinase II (CaMKII), the Na/Ca exchanger (NCX), the Ryanodine receptor (RyR, and its associated protein FKBP12.6 (Calstabin)) and the late component of the sodium current (INa-Late), all related to intracellular calcium (Ca2+) handling. In this review, drugs interfering with these targets (SEA-0400, K201, KN-93, W7, ranolazine, sophocarpine, and GS-967) are evaluated and their future as clinical compounds is considered. These new targets prove to be interesting; however more insight into long-term drug effects is necessary before clinical applicability becomes reality.
Collapse
Affiliation(s)
- H E Driessen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, the Netherlands,
| | | | | | | |
Collapse
|
20
|
Hu YS, Long N, Pigino G, Brady ST, Lazarov O. Molecular mechanisms of environmental enrichment: impairments in Akt/GSK3β, neurotrophin-3 and CREB signaling. PLoS One 2013; 8:e64460. [PMID: 23700479 PMCID: PMC3660250 DOI: 10.1371/journal.pone.0064460] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/15/2013] [Indexed: 11/18/2022] Open
Abstract
Experience of mice in a complex environment enhances neurogenesis and synaptic plasticity in the hippocampus of wild type and transgenic mice harboring familial Alzheimer's disease (FAD)-linked APPswe/PS1ΔE9. In FAD mice, this experience also reduces levels of tau hyperphosphorylation and oligomeric β-amyloid. Although environmental enrichment has significant effects on brain plasticity and neuropathology, the molecular mechanisms underlying these effects are unknown. Here we show that environmental enrichment upregulates the Akt pathway, leading to the downregulation of glycogen synthase kinase 3β (GSK3β), in wild type but not FAD mice. Several neurotrophic signaling pathways are activated in the hippocampus of both wild type and FAD mice, including brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and this increase is accompanied by the upregulation of the BDNF receptor, tyrosine kinase B (TrkB). Interestingly, neurotrophin-3 (NT-3) is upregulated in the brains of wild type mice but not FAD mice, while insulin growth factor-1 (IGF-1) is upregulated exclusively in the brains of FAD mice. Upregulation of neurotrophins is accompanied by the increase of N-Methyl-D-aspartic acid (NMDA) receptors in the hippocampus following environmental enrichment. Most importantly, we observed a significant increase in levels of cAMP response element- binding (CREB) transcripts in the hippocampus of wild type and FAD mice following environmental enrichment. However, CREB phosphorylation, a critical step for the initiation of learning and memory-required gene transcription, takes place in the hippocampus of wild type but not of FAD mice. These results suggest that experience of wild type mice in a complex environmental upregulates critical signaling that play a major role in learning and memory in the hippocampus. However, in FAD mice, some of these pathways are impaired and cannot be rescued by environmental enrichment.
Collapse
Affiliation(s)
- Yuan-Shih Hu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nancy Long
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gustavo Pigino
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Scott T. Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
21
|
Yao ZG, Zhang L, Liang L, Liu Y, Yang YJ, Huang L, Zhu H, Ma CM, Qin C. The effect of PN-1, a Traditional Chinese Prescription, on the Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:518421. [PMID: 23476695 PMCID: PMC3588396 DOI: 10.1155/2013/518421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 01/30/2023]
Abstract
Traditional Chinese Medicine (TCM) is a complete medical system that has been practiced for more than 3000 years. Prescription number 1 (PN-1) consists of several Chinese medicines and is designed according to TCM theories to treat patients with neuropsychiatric disorders. The evidence of clinical practice suggests the benefit effects of PN-1 on cognitive deficits of dementia patients. We try to prove and explain this by using contemporary methodology and transgenic animal models of Alzheimer's disease (AD). The behavioral studies were developed to evaluate the memory of transgenic animals after intragastric administration of PN-1 for 3 months. Amyloid beta-protein (A β ) neuropathology was quantified using immunohistochemistry and ELISA. The western blotting was used to detect the levels of plasticity associated proteins. The safety of PN-1 on mice was also assessed through multiple parameters. Results showed that PN-1 could effectively relieve learning and memory impairment of transgenic animals. Possible mechanisms showed that PN-1 could significantly reduce plaque burden and A β levels and boost synaptic plasticity. Our observations showed that PN-1 could improve learning and memory ability through multiple mechanisms without detectable side effects on mice. We propose that PN-1 is a promising alternative treatment for AD in the future.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Ling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Liang Liang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Yu Liu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Ya-Jun Yang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Lan Huang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Hua Zhu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Chun-Mei Ma
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Chuan Qin
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| |
Collapse
|
22
|
Abstract
Scientific evidence based on neuroimaging approaches over the last decade has demonstrated the efficacy of physical activity improving cognitive health across the human lifespan. Aerobic fitness spares age-related loss of brain tissue during aging, and enhances functional aspects of higher order regions involved in the control of cognition. More active or higher fit individuals are capable of allocating greater attentional resources toward the environment and are able to process information more quickly. These data are suggestive that aerobic fitness enhances cognitive strategies enabling to respond effectively to an imposed challenge with a better yield in task performance. In turn, animal studies have shown that exercise has a benevolent action on health and plasticity of the nervous system. New evidence indicates that exercise exerts its effects on cognition by affecting molecular events related to the management of energy metabolism and synaptic plasticity. An important instigator in the molecular machinery stimulated by exercise is brain-derived neurotrophic factor, which acts at the interface of metabolism and plasticity. Recent studies show that exercise collaborates with other aspects of lifestyle to influence the molecular substrates of cognition. In particular, select dietary factors share similar mechanisms with exercise, and in some cases they can complement the action of exercise. Therefore, exercise and dietary management appear as a noninvasive and effective strategy to counteract neurological and cognitive disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, UCLA and Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California, USA.
| | | |
Collapse
|
23
|
Zhou X, Zheng F, Moon C, Schlüter OM, Wang H. Bi-directional regulation of CaMKIIα phosphorylation at Thr286 by NMDA receptors in cultured cortical neurons. J Neurochem 2012; 122:295-307. [PMID: 22582824 DOI: 10.1111/j.1471-4159.2012.07787.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The N-methyl-D-aspartate (NMDA) receptor (NMDAR)-stimulated autophosphorylation of calmodulin-dependent kinase IIα at Thr286 may regulate many aspects of neuroplasticity. Here, we show that low NMDA concentration (20 μM) up-regulated Thr286 phosphorylation, and high concentration (100 μM) caused dephosphorylation. We next modulated the strength of NMDAR activation by manipulating NMDAR 2A subunit (NR2A) and NMDAR 2B subunit (NR2B), which represent the major NMDAR subtypes in forebrain regions. Pharmacological inhibition and molecular knockdown of NR2A or NR2B blocked 20 μM NMDA-induced phosphorylation. Conversely, over-expression of NR2A or NR2B enhanced phosphorylation by 20 μM NMDA. The 100 μM NMDA-induced dephosphorylation was suppressed by inhibition or knockdown of NR2A or NR2B, and enhanced by over-expression of NR2A or NR2B. Compared to NR2A, NR2B showed a higher impact on the NMDA-stimulated bi-directional regulation of Thr286 phosphorylation. We further found that activation of NR2A and NR2B by 100 μM NMDA-induced dephosphorylation through protein phosphatases (PP) that are inhibited by high concentration okadaic acid (1 μM), but not by PP2A and PP2B inhibitors. This novel function of NMDAR in dynamic regulation of calmodulin-dependent kinase IIα activity provides new evidence to support the current understanding that, depending on the degree of activation, NMDAR may lead to different and even opposing effects on intracellular signaling.
Collapse
Affiliation(s)
- Xianju Zhou
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | |
Collapse
|
24
|
Craddock TJA, Tuszynski JA, Chopra D, Casey N, Goldstein LE, Hameroff SR, Tanzi RE. The zinc dyshomeostasis hypothesis of Alzheimer's disease. PLoS One 2012; 7:e33552. [PMID: 22457776 PMCID: PMC3311647 DOI: 10.1371/journal.pone.0033552] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/13/2012] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.
Collapse
|
25
|
Banerjee B, Medda BK, Schmidt J, Lang IM, Sengupta JN, Shaker R. Neuronal plasticity in the cingulate cortex of rats following esophageal acid exposure in early life. Gastroenterology 2011; 141:544-52. [PMID: 21616075 PMCID: PMC3152593 DOI: 10.1053/j.gastro.2011.04.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 04/04/2011] [Accepted: 04/15/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The cingulate cortex has been reported to be involved in processing pain of esophageal origin. However, little is known about molecular changes and cortical activation that arise from early-life esophageal acid reflux. Excitatory neurotransmission via activation of the N-methyl-d-aspartate (NMDA) receptor and its interaction with postsynaptic density protein 95 (PSD-95) at the synapse appear to mediate neuronal development and plasticity. We investigated the effect of early-life esophageal acid exposure on NMDA receptor subunits and PSD-95 expression in the developing cingulate cortex. METHODS We assessed NMDA receptor subunits and PSD-95 protein expression in rostral cingulate cortex (rCC) tissues of rats exposed to esophageal acid or saline (control), either during postnatal day (P) 7 to 14 and/or acutely at adult stage (P60) using immunoblot and immunoprecipitation analyses. RESULTS Compared with controls, acid exposure from P7 to P14 significantly increased expression of NR1, NR2A, and PSD-95, measured 6 weeks after exposure. However, acute exposure at P60 caused a transient increase in expression of NMDA receptor subunits. These molecular changes were more robust in animals exposed to acid neonatally and rechallenged, acutely, at P60. Esophageal acid exposure induced calcium calmodulin kinase II-mediated phosphorylation of the subunit NR2B at Ser1303. CONCLUSIONS Esophageal acid exposure during early stages of life has long-term effects as a result of phosphorylation of the NMDA receptor and overexpression in the rCC. This molecular alteration in the rCC might mediate sensitization of patients with acid-induced esophageal disorders.
Collapse
|
26
|
Craddock TJA, Tuszynski JA, Priel A, Freedman H. Microtubule ionic conduction and its implications for higher cognitive functions. J Integr Neurosci 2011; 9:103-22. [PMID: 20589950 DOI: 10.1142/s0219635210002421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/21/2010] [Indexed: 11/18/2022] Open
Abstract
The neuronal cytoskeleton has been hypothesized to play a role in higher cognitive functions including learning, memory and consciousness. Experimental evidence suggests that both microtubules and actin filaments act as biological electrical wires that can transmit and amplify electric signals via the flow of condensed ion clouds. The potential transmission of electrical signals via the cytoskeleton is of extreme importance to the electrical activity of neurons in general. In this regard, the unique structure, geometry and electrostatics of microtubules are discussed with the expected impact on their specific functions within the neuron. Electric circuit models of ionic flow along microtubules are discussed in the context of experimental data, and the specific importance of both the tubulin C-terminal tail regions, and the nano-pore openings lining the microtubule wall is elucidated. Overall, these recent results suggest that ions, condensed around the surface of the major filaments of the cytoskeleton, flow along and through microtubules in the presence of potential differences, thus acting as transmission lines propagating intracellular signals in a given cell. The significance of this conductance to the functioning of the electrically active neuron, and to higher cognitive function is also discussed.
Collapse
|
27
|
Neural cytoskeleton capabilities for learning and memory. J Biol Phys 2010; 36:3-21. [PMID: 19669423 PMCID: PMC2791806 DOI: 10.1007/s10867-009-9153-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 04/06/2009] [Indexed: 11/10/2022] Open
Abstract
This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory.
Collapse
|
28
|
Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA. Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus. Eur J Neurosci 2010; 31:1368-76. [DOI: 10.1111/j.1460-9568.2010.07175.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Zeng S, Holmes WR. The effect of noise on CaMKII activation in a dendritic spine during LTP induction. J Neurophysiol 2010; 103:1798-808. [PMID: 20107130 DOI: 10.1152/jn.91235.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of calcium-calmodulin dependent protein kinase II (CaMKII) during induction of long-term potentiation (LTP) is a series of complicated stochastic processes that are affected by noise. There are two main sources of noise affecting CaMKII activation within a dendritic spine. One is the noise associated with stochastic opening of N-methyl-d-aspartate (NMDA) receptor channels and the other is the noise associated with the stochastic reaction-diffusion kinetics leading to CaMKII activation. Many models have been developed to simulate CaMKII activation, but there is no fully stochastic model that studies the effect of noise on CaMKII activation. Here we construct a fully stochastic model to study these effects. Our results show that noise has important effects on CaMKII activation variability, with the effect from stochastic opening of NMDA receptor channels being 5-10 times more significant than that from stochastic reactions involving CaMKII. In addition, CaMKII activation levels and the variability of activation are greatly affected by small changes in NMDA receptor channel number at the synapse. One reason LTP induction protocols may require tetanic or repeated burst stimulation is that there is a need to overcome inherent variability to provide sufficiently large calcium signals through NMDA receptor channels; with meaningful physiological stimuli, noise may allow the calcium signal to exceed threshold for CaMKII activation when it might not do so otherwise.
Collapse
Affiliation(s)
- Shangyou Zeng
- College of Electronic Engineering, Guangxi Normal University, Guangxi, China
| | | |
Collapse
|
30
|
Developmental Iodine Deficiency and Hypothyroidism Impair Spatial Memory in Adolescent Rat Hippocampus: Involvement of CaMKII, Calmodulin and Calcineurin. Neurotox Res 2009; 19:81-93. [DOI: 10.1007/s12640-009-9142-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/15/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
|
31
|
Hescham S, Grace L, Kellaway LA, Bugarith K, Russell VA. Effect of exercise on synaptophysin and calcium/calmodulin-dependent protein kinase levels in prefrontal cortex and hippocampus of a rat model of developmental stress. Metab Brain Dis 2009; 24:701-9. [PMID: 19821017 PMCID: PMC2859295 DOI: 10.1007/s11011-009-9165-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Stress affects the brain differently depending on the timing, duration and intensity of the stressor. Separation from the dam for 3 h per day is a potent stressor for rat pups which causes activation of the hypothalamic-pituitary-adrenal (HPA) axis, evidenced by increased plasma levels of adrenocorticotropin (ACTH) and glucocorticoids. Behaviourally, animals display anxiety-like behaviour while structurally, changes occur in neuronal dendrites and spines in the hippocampus and prefrontal regions involved in emotion and behaviour control. The aim of the present study was to determine whether maternal separation alters expression of synaptic markers, synaptophysin and calcium/calmodulin-dependent protein kinase II (CaMKII), in rat hippocampus and prefrontal cortex. A second aim was to determine whether voluntary exercise had a beneficial effect on the expression of these proteins in rat brain. Maternal separation occurred from postnatal day 2 (P2) to P14 for 3 h per day. Exercised rats were housed in cages with attached running wheels from P29 to P49. At P65, the prefrontal cortex and hippocampus were removed for protein quantification. Maternal separation did not have any effect while exercise increased synaptophysin and CaMKII in the ventral hippocampus but not in the dorsal hippocampus or prefrontal cortex. Since the ventral hippocampus is associated with anxiety-related behaviour, these findings are consistent with the fact that voluntary exercise increases anxiety-like behaviour and improves learning and memory.
Collapse
Affiliation(s)
- Sarah Hescham
- Department of Human Biology, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | | | | | | | | |
Collapse
|
32
|
ElMlili N, Boix J, Ahabrach H, Rodrigo R, Errami M, Felipo V. Chronic hyperammonemia induces tonic activation of NMDA receptors in cerebellum. J Neurochem 2009; 112:1005-14. [PMID: 20002515 DOI: 10.1111/j.1471-4159.2009.06520.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reduced function of the glutamate--nitric oxide (NO)--cGMP pathway is responsible for some cognitive alterations in rats with hyperammonemia and hepatic encephalopathy. Hyperammonemia impairs the pathway in cerebellum by increasing neuronal nitric oxide synthase (nNOS) phosphorylation in Ser847 by calcium-calmodulin-dependent protein kinase II (CaMKII), reducing nNOS activity, and by reducing nNOS amount in synaptic membranes, which reduces its activation following NMDA receptors activation. The reason for increased CaMKII activity in hyperammonemia remains unknown. We hypothesized that it would be as a result of increased tonic activation of NMDA receptors. The aims of this work were to assess: (i) whether tonic NMDA activation receptors is increased in cerebellum in chronic hyperammonemia in vivo; and (ii) whether this tonic activation is responsible for increased CaMKII activity and reduced activity of nNOS and of the glutamate--NO--cGMP pathway. Blocking NMDA receptors with MK-801 increases cGMP and NO metabolites in cerebellum in vivo and in slices from hyperammonemic rats. This is because of reduced phosphorylation and activity of CaMKII, leading to normalization of nNOS phosphorylation and activity. MK-801 also increases nNOS in synaptic membranes and reduces it in cytosol. This indicates that hyperammonemia increases tonic activation of NMDA receptors leading to reduced activity of nNOS and of the glutamate--NO--cGMP pathway.
Collapse
Affiliation(s)
- Nisrin ElMlili
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer's disease. Biol Psychiatry 2009; 65:918-26. [PMID: 18849021 DOI: 10.1016/j.biopsych.2008.08.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/12/2008] [Accepted: 08/25/2008] [Indexed: 01/26/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative disorder that leads to progressive cognitive decline. Alzheimer's disease develops as a result of over-production and aggregation of beta-amyloid (Abeta) peptides in the brain. The reason for variation in the gravity of symptoms among AD patients is unknown and might result from patient-related factors including lifestyle. Individuals suffering from chronic stress are at an increased risk for developing AD. This study investigated the effect of chronic psychosocial stress in Abeta rat model of AD. METHODS Psychosocial stress was induced with a rat intruder model. The rat model of AD was induced by 14-day osmotic pump infusion of a mixture of 300 pmol/day Abeta(1-40)/Abeta(1-42). The effect of chronic stress on the severity of Abeta-induced spatial learning and memory impairment was tested by three approaches: behavioral testing in the radial arm water maze, in vivo electrophysiological recording in anesthetized rat, and immunoblot analysis to determine protein levels of learning- and memory-related molecules. RESULTS A marked impairment of learning and memory developed when stress was combined with Abeta, more so than that caused by Abeta alone. Additionally, there was a significantly greater impairment of early-phase long-term potentiation (E-LTP) in chronically stressed/Abeta-treated rats than in either the stressed or Abeta-treated rats. This might be a manifestation of the reduction in protein levels of calcium/calmodulin-dependent protein kinase II (CaMKII) and the abnormal increase in calcineurin levels. CONCLUSIONS Chronic stress significantly intensified Abeta-induced deficits of short-term memory and E-LTP by a mechanism involving decreased CaMKII activation along with increased calcineurin levels.
Collapse
|
34
|
Alzoubi KH, Aleisa AM, Alkadhi KA. In vivo expression of ganglionic long-term potentiation in superior cervical ganglia from hypertensive aged rats. Neurobiol Aging 2008; 31:805-12. [PMID: 18649973 DOI: 10.1016/j.neurobiolaging.2008.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 04/15/2008] [Accepted: 06/11/2008] [Indexed: 01/11/2023]
Abstract
Sustained increase in central sympathetic outflow to ganglia may provide the repeated high frequency presynaptic activity required for induction of long-term potentiation in sympathetic ganglia (gLTP), which is known to be involved in the manifestation of a neurogenic form of hypertension, namely stress-hypertension. Aging is often viewed as a progressive decline in physiological competence with a corresponding impaired ability to adapt to stressful stimuli. Old animals have exaggerated sympathetic activity as well as increased morbidity and mortality during prolonged exposure to stressful stimuli. Using the superior cervical ganglion (SCG) as a model for sympathetic ganglia, electrophysiological and biochemical evidence show that mildly hypertensive aged rats (22-month old) have expressed gLTP in vivo. This is suggested by a number of lines of evidence. Firstly, a shift in input/output (I/O) curve of ganglia from aged rats to the left side of I/O curve of ganglia from 6-month old (adult) rats indicating expression of gLTP. Secondly, failure of in vitro high frequency stimulation to induce gLTP in ganglia isolated from aged rats, which indicates occlusion due to saturation, which, in turn, suggests in vivo expression of gLTP in these ganglia. Thirdly, in vitro inhibition of basal ganglionic transmission by blockers of gLTP (5-HT(3) antagonists) is observed in ganglia isolated from aged rats, but not in those from adult rats. Finally, immunoblot analysis revealed that protein levels of signaling molecules such as calcium-calmodulin kinase II (CaMKII; phosphorylated and total), which normally increase during expression of LTP, are elevated in ganglia isolated from aged rats compared to those from adult ones. Protein levels of calcineurin, which dephosphorylates P-CaMKII, were reduced in ganglia isolated from aged rats, probably as a support mechanism to allow prolonged phosphorylation of CaMKII. Our findings suggest in vivo expression of gLTP in sympathetic ganglia of aged animals, which may contribute to the moderate hypertension often seen in aged subjects.
Collapse
Affiliation(s)
- K H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
35
|
Alzoubi KH, Aleisa AM, Alkadhi KA. Expression of gLTP in sympathetic ganglia of obese Zucker rats in vivo: molecular evidence. J Mol Neurosci 2008; 35:297-306. [PMID: 18563301 DOI: 10.1007/s12031-008-9110-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/21/2008] [Indexed: 12/20/2022]
Abstract
Long-term potentiation in sympathetic ganglia (gLTP) is similar to LTP of the hippocampal area CA1 in that its expression involves similar changes in signaling molecules. We have shown previously that the stress-prone, hypertensive obese Zucker rats (OZR) expressed gLTP in sympathetic ganglia and that high blood pressure was reduced by treatment with 5-HT(3) receptor antagonists. In the present study, we present additional electrophysiological evidence for the pre-expression of gLTP in sympathetic ganglia from OZR indicated by failure of repetitive stimulation to express gLTP in isolated superior cervical ganglia (SCG) and inhibition of baseline ganglionic transmission by a 5-HT(3) receptor antagonist. We have also investigated the role of key signaling molecules in the expression of gLTP in the hypertensive OZR. Immunoblot analysis showed a significant increase in the levels of phosphorylated (P-)CaMKII and protein kinase C gamma (PKCgamma) in SCG from OZR. The ratio of P-CaMKII to the total CaMKII was markedly increased in OZR ganglia, suggesting increased phosphorylation of this molecule. Additionally, there was a significant decrease in the levels of calcineurin in ganglia. Furthermore, the neural nitric oxide synthase and hemeoxygenase II, which are essential for the expression of gLTP, were significantly elevated in OZR ganglia. The present findings confirm that ganglia from OZR have expressed gLTP and that synaptic plasticity in sympathetic ganglia may involve a molecular cascade similar to that of LTP of the brain hippocampal area CA1.
Collapse
Affiliation(s)
- K H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
36
|
Chardonnet S, Le Marechal P, Cheval H, Le Caer JP, Decottignies P, Laprevote O, Laroche S, Davis S. Large-scale study of phosphoproteins involved in long-term potentiation in the rat dentate gyrusin vivo. Eur J Neurosci 2008; 27:2985-98. [DOI: 10.1111/j.1460-9568.2008.06280.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Lin SK, Pan WHT, Yeh PH. Prefrontal dopamine efflux during exposure to drug-associated contextual cues in rats with prior repeated methamphetamine. Brain Res Bull 2007; 71:365-71. [PMID: 17208653 DOI: 10.1016/j.brainresbull.2006.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/29/2006] [Accepted: 10/03/2006] [Indexed: 11/29/2022]
Abstract
Conditioned stimulus-reward response and prefrontal dopamine efflux under context previously paired with methamphetamine administration were assessed in rats with or without prior sensitizing regimen. Sensitizing pretreatment was administered with methamphetamine (1mg/kg, every other day for six sessions) for behavioral sensitization. The animals received methamphetamine (1mg/kg) or saline injection (each for six sessions) to pair with distinct contexts on alternate days to induce conditioned place preference. Then, dopamine outflows in the medial prefrontal cortex were analyzed on the next day via microdialysis study as animals exposed to the methamphetamine or saline-paired context, respectively. Prefrontal DA efflux increased in those rats without sensitizing pretreatment, while they occupied the methamphetamine-paired chamber. The rats with prior sensitizing regimen demonstrated more robust conditioned place preference than those without pretreatment, however, their dopamine efflux was attenuated, while remaining in methamphetamine-paired context. It is suggested that the attenuated responsiveness of mesocortical dopamine transmission in prior sensitized rats may, at least in part, be responsible for their augmented conditioned place preference, which resulted from activation of related brain areas that together strengthen the associative learning to drug-related stimuli. This paradigm may reflect a dysregulated prefrontal function in the methamphetamine abusers.
Collapse
Affiliation(s)
- Shi-Kwang Lin
- Institute of Pharmacology, National Yang-Ming University, 155, Section 2 Li-Noon Street, Taipei 112, Taiwan, ROC
| | | | | |
Collapse
|
38
|
Aleisa AM, Alzoubi KH, Gerges NZ, Alkadhi KA. Chronic psychosocial stress-induced impairment of hippocampal LTP: possible role of BDNF. Neurobiol Dis 2006; 22:453-62. [PMID: 16530419 DOI: 10.1016/j.nbd.2005.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 12/07/2005] [Accepted: 12/15/2005] [Indexed: 11/26/2022] Open
Abstract
Electrophysiological recording reveals that chronic nicotine treatment prevents stress-induced impairment of long-term potentiation (LTP) in the CA1 region of the hippocampus of anesthetized rats. We investigated the molecular mechanism of this action of nicotine in the CA1 region. Immunoblot analysis showed that chronic nicotine treatment (1 mg/kg, 2 times/day) normalized the stress-induced decrease in the basal levels of BDNF, CaMKII (total and phosphorylated; P-CaMKII), and calmodulin. Additionally, nicotine reversed the stress-induced increase in calcineurin basal levels. Chronic nicotine treatment also markedly increased the basal levels of BDNF in naïve rats. Furthermore, high-frequency stimulation (HFS), which increased the levels of P-CaMKII in control as well as nicotine-treated stressed rats, failed to increase P-CaMKII levels in untreated stressed rats. Compared to unstimulated control, the levels of both total CaMKII and calcineurin were increased after HFS in all groups including the stressed, but no changes were detected after HFS in the levels of BDNF and calmodulin. These results indicate that normalization by nicotine of the stress-induced changes in the levels of signaling molecules including BDNF may contribute to the recovery of LTP.
Collapse
Affiliation(s)
- A M Aleisa
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5515, USA
| | | | | | | |
Collapse
|
39
|
Alzoubi KH, Aleisa AM, Alkadhi KA. Impairment of long-term potentiation in the CA1, but not dentate gyrus, of the hippocampus in Obese Zucker rats: role of calcineurin and phosphorylated CaMKII. J Mol Neurosci 2006; 27:337-46. [PMID: 16280604 DOI: 10.1385/jmn:27:3:337] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 06/08/2005] [Indexed: 11/11/2022]
Abstract
Obese Zucker rat (OZR) is a genetic model of obesity with noninsulin-dependent diabetes and hypertension. The OZR exhibit hyperinsulinemia, hyperlipidmia, and high circulating glucocorticoid levels. We have shown previously that long-term potentiation (LTP) is impaired in the CA1 region of the hippocampus of OZR. In the present work, although electrophysiological recording from anesthetized OZR hippocampus showed impaired LTP in the CA1, an intact LTP was recorded in the dentate gyrus (DG) region of the hippocampus of the same OZR. Thus, LTP is differentially impaired in the CA1 compared with the DG region of OZR hippocampus. Immunoblotting was used to investigate the molecular mechanism responsible for impairment of LTP in the CA1 but not in the DG region. Analysis revealed reduction in the levels of phosphorylated calcium-dependent calmodulin kinase II (P-CaMKII) and total CaMKII in the CA1 region of OZR. However, in the DG region, reduction was observed only in the levels of total CaMKII, with no change in P-CaMKII levels. The ratio of P-CaMKII to total CaMKII was increased in the DG but not in the CA1 area of hippocampus of OZR. Although unchanged in the CA1, calcineurin levels were significantly reduced in the DG of OZR. These findings suggest that the DG might possess a compensatory mechanism whereby calcineurin levels are reduced to allow sufficient P-CaMKII to produce an apparently normal LTP in the DG area of OZR hippocampus.
Collapse
Affiliation(s)
- Korem H Alzoubi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|
40
|
Babcock AM, Standing D, Bullshields K, Schwartz E, Paden CM, Poulsen DJ. In vivo inhibition of hippocampal Ca2+/calmodulin-dependent protein kinase II by RNA interference. Mol Ther 2005; 11:899-905. [PMID: 15922960 DOI: 10.1016/j.ymthe.2005.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/18/2005] [Accepted: 02/18/2005] [Indexed: 11/18/2022] Open
Abstract
Hippocampal alpha-Ca2+/calmodulin-dependent protein kinase II (alpha-CaMKII) has been implicated in spatial learning, neuronal plasticity, epilepsy, and cerebral ischemia. In the present study, an adeno-associated virus (AAV) vector was designed to express green fluorescent protein (GFP) from the CBA promoter and a small hairpin RNA targeting alpha-CaMKII (AAV-shCAM) driven from the U6 promoter. The AAV-shCAM or control vector was microinfused into the rat hippocampus and behavioral testing conducted 19-26 days following surgery. Expression of the marker gene and alpha-CaMKII was evaluated 31 days following AAV infusion. GFP expression was localized to the hippocampus and extended +/-2 mm rostral and caudal from the injection site. Hippocampal alpha-CaMKII was significantly reduced following AAV-shCAM treatment as demonstrated using immunohistochemical and Western analysis. This suppression of alpha-CaMKII was associated with changes in exploratory behavior (open field task) and impaired place learning (water maze task). These results demonstrate the efficacy of a viral-based delivered shRNA to produce gene suppression in a specific circuit of the brain.
Collapse
Affiliation(s)
- A M Babcock
- Department of Psychology, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Alzoubi KH, Gerges NZ, Alkadhi KA. Levothyroxin restores hypothyroidism-induced impairment of LTP of hippocampal CA1: Electrophysiological and molecular studies. Exp Neurol 2005; 195:330-41. [PMID: 16004982 DOI: 10.1016/j.expneurol.2005.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/09/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Hypothyroidism impairs synaptic plasticity as well as learning and memory. Clinical reports are conflicting about the ability of thyroid hormone replacement therapy to fully restore the hypothyroidism-induced learning and memory impairment. Recently, we have shown that hypothyroidism impairs LTP and cognition in adult rats. We have studied the effect of thyroxin replacement therapy on hypothyroidism-induced LTP impairment using electrophysiological and molecular approaches. Recording from CA1 region of the hippocampus in anesthetized adult rat indicated that 6 weeks of thyroxin replacement therapy (20 microg/kg/day) fully restored LTP impaired by hypothyroidism. Western blotting showed reduction in phosphorylated (P)-CAMKII, total-CaMKII, neurogranin, and calmodulin basal levels in the CA1 region of the hippocampus of hypothyroid rats. The levels of these molecules were normalized by thyroxin replacement therapy. The hypothyroid-induced elevation of basal calcineurin levels and activity was also normalized by thyroxin treatment. However, thyroxin replacement therapy did not restore hypothyroidism-induced reduction in PKCgamma basal protein levels. Additionally, real-time PCR, showed a reduction in basal neurogranin mRNA level that was normalized by thyroxin replacement therapy. In the sham (control) rats, induction of LTP by high-frequency stimulation increases P-CaMKII, and total CaMKII levels as well as CaMKII phosphotransferase activity. However, in hypothyroid rats, the same stimulation protocol induced an increase only in total-CaMKII. Thyroxin treatment normalized the levels and activity of these molecules. The results demonstrated that thyroxin therapy normalized the electrophysiological and molecular effects of hypothyroidism on the CA1 region and emphasized the critical role P-CaMKII plays in hypothyroidism-induced LTP impairment.
Collapse
Affiliation(s)
- K H Alzoubi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5515, USA
| | | | | |
Collapse
|
42
|
Singleton MW, Holbert WH, Lee AT, Bracey JM, Churn SB. Modulation of CaM Kinase II Activity Is Coincident with Induction of Status Epilepticus in the Rat Pilocarpine Model. Epilepsia 2005; 46:1389-400. [PMID: 16146433 DOI: 10.1111/j.1528-1167.2005.19205.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE This study was conducted to characterize the early cellular changes in CaM kinase II activity that occur during the induction of status epilepticus (SE). METHODS The pilocarpine model of SE was characterized both behaviorally and electrographically. At specific time points after the first discrete seizure, specific brain regions were isolated for biochemical study. Phosphate incorporation into a CaM kinase II-specific substrate, autocamtide III, was used to determine kinase activity. RESULTS After the development of SE, the data show an immediate inhibition of both cortical and hippocampal CaM kinase II activity in homogenate, but a delayed inhibition in synaptic kinase activity. The maintenance of synaptic kinase activity was due to a translocation of CaM kinase II protein to the synapse. However, despite the translocation of functional kinase, CaM kinase II activity was not maintained, membrane potential was not restored, and the newly translocated CaM kinase II did not terminate the SE event. Unlike the homogenate samples, in the crude synaptoplasmic membrane (SPM) subcellular fractions, a positive correlation is found between the duration of SE and the inhibition of CaM kinase II activity in both the cortex and hippocampus. CONCLUSIONS The data support the hypothesis that alterations of CaM kinase II activity are involved in the early events of SE pathology.
Collapse
Affiliation(s)
- Michael W Singleton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298-0599, USA
| | | | | | | | | |
Collapse
|
43
|
Gerges NZ, Alzoubi KH, Alkadhi KA. Role of phosphorylated CaMKII and calcineurin in the differential effect of hypothyroidism on LTP of CA1 and dentate gyrus. Hippocampus 2005; 15:480-90. [PMID: 15714506 DOI: 10.1002/hipo.20073] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypothyroidism impairs early long-term potentiation (LTP) in the CA1 but not in the dentate gyrus (DG) of hippocampus of anesthetized adult rats. Protein levels and activities of signaling molecules in both the CA1 and DG of surgically thyroidectomized and sham-operated euthyroid rats were measured. Basal levels of total calmodulin kinase II (CaMKII) protein in both the CA1 and DG were decreased in hypothyroidism. Marked reduction of basal P-CaMKII levels and CaMKII activity was seen in CA1, but not in the DG of the same hypothyroid animals. Basal levels of calmodulin and protein kinase Cgamma (PKCgamma) were decreased in CA1 but remained unchanged in the DG of hypothyroid rats. Basal calcineurin levels and activity, although enhanced in CA1, were reduced in the DG of hypothyroid rats. These findings suggest that the DG may possess a compensatory mechanism whereby calcineurin levels are reduced, to allow sufficient CaMKII activity to produce an apparently normal LTP in hypothyroid rats.
Collapse
Affiliation(s)
- N Z Gerges
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5515, USA
| | | | | |
Collapse
|
44
|
Kriz J, Beaulieu JM, Julien JP, Krnjević K. Up-regulation of peripherin is associated with alterations in synaptic plasticity in CA1 and CA3 regions of hippocampus. Neurobiol Dis 2005; 18:409-20. [PMID: 15686970 DOI: 10.1016/j.nbd.2004.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 09/08/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022] Open
Abstract
Peripherin is a type III intermediate filament protein normally undetectable in most brain neurons. Here, we report a similar pattern of peripherin expression in the brains of both mice treated with systemic injections of kainic acid (KA) and in peripherin transgenic mice (Per mice) over-expressing the normal peripherin gene under its own promoter. Double-immunofluorescence labeling revealed a partial co-localization of peripherin with the microtubule-associated protein MAP2, but not with neurofilament proteins. Electrophysiological studies revealed that synaptic plasticity was markedly altered in Per mice: in CA1, long-term potentiation (LTP) was decreased in Per slices (+29 +/- 2.0%, vs. +58 +/- 5.4%, in WT); while in CA3, LTP was increased in Per (+63 +/- 3.5% vs. +43 +/- 2.4.0%). In the hippocampus of Per mice, the levels of MAP2 were decreased, though synaptophysin and PSD95 remained unchanged. These intriguing findings suggest a role of peripherin in the alteration of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Jasna Kriz
- Centre Hospitalier de l'Universite Laval Research Center, Quebec City, Quebec, Canada.
| | | | | | | |
Collapse
|
45
|
Dai Y, Wang H, Ogawa A, Yamanaka H, Obata K, Tokunaga A, Noguchi K. Ca2+/calmodulin-dependent protein kinase II in the spinal cord contributes to neuropathic pain in a rat model of mononeuropathy. Eur J Neurosci 2005; 21:2467-74. [PMID: 15932604 DOI: 10.1111/j.1460-9568.2005.04091.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to subserve activity-dependent neuronal plasticity in the central nervous system. To examine in vivo the implication of spinal CaMKII activity in the generation and development of neuropathic pain after peripheral nerve injury, we used an animal model of mononeuropathy, the chronic constriction injury (CCI) model, in the rat. We found that, 3 days after CCI, the total CaMKII (tCaMKII) immunoreactivity increased in the superficial laminae of the spinal cord and this increase continued for up to 14 days. The immunoreactivity of phosphorylated CaMKII showed an increase from 1 day after CCI, which preceded the up-regulation of tCaMKII. A non-selective N-methyl-d-aspartate receptor antagonist, MK801, significantly attenuated the increase of tCaMKII and phosphorylated CaMKII. Moreover, intrathecal administration of an inhibitor of CaMKII, KN93, before the CCI surgery attenuated the development of thermal hyperalgesia and mechanical allodynia. In addition, KN93 significantly reduced the nociceptive behavior in phase II of the formalin test. These findings demonstrate that the activity of CaMKII in spinal neurons is elevated after peripheral nerve injury and may be involved in central sensitization. The alteration of CaMKII is considered to be a neuroplastic change that occurs in spinal neurons that contributes to neuropathic pain, suggesting the potential for the development of novel therapeutics for neuropathic pain that target CaMKII.
Collapse
Affiliation(s)
- Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Almaguer-Melian W, Cruz-Aguado R, Riva CDL, Kendrick KM, Frey JU, Bergado J. Effect of LTP-reinforcing paradigms on neurotransmitter release in the dentate gyrus of young and aged rats. Biochem Biophys Res Commun 2005; 327:877-83. [PMID: 15649427 DOI: 10.1016/j.bbrc.2004.12.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Indexed: 11/19/2022]
Abstract
Long-term potentiation (LTP) is considered a cellular correlate of memory processing. A short-lasting early-LTP can be prolonged into a late-L TP (>4h) by stimulation of the basolateral amygdala (BLA) or motivational behavioral stimuli in young, but not in aged, cognitively impaired rats. We measured the changes in transmitter release-induced by BLA or behavioral reinforcement-in young and aged cognitively impaired rats, after implanting a microdialysis cannula at the dentate gyrus. Samples were taken under baseline conditions and during stimulation of BLA. Rats were water deprived and tested again next day, taking samples after allowing access to water. Higher concentrations of choline, HIAA, aspartate, glutamate, and glycine were found in baseline samples from young animals compared to aged. In young animals, BLA stimulation increased the levels of ACh and reduced norepinephrine and serotonine, while behavioral reinforcement reduced the levels of glutamate and glycine. These effects were absent among aged rats, suggesting that this reduced neurochemical response might be linked to the impaired LTP-reinforcement reported previously.
Collapse
|
47
|
Lengyel I, Voss K, Cammarota M, Bradshaw K, Brent V, Murphy KPSJ, Giese KP, Rostas JAP, Bliss TVP. Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Eur J Neurosci 2005; 20:3063-72. [PMID: 15579161 DOI: 10.1111/j.1460-9568.2004.03748.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A major role has been postulated for a maintained increase in the autonomous activity of CaMKII in the expression of long-term potentiation (LTP). However, attempts to inhibit the expression of LTP with CaMKII inhibitors have yielded inconsistent results. Here we compare the changes in CaMKII autonomous activity and phosphorylation at Thr286 of alphaCaMKII in rat hippocampal slices using chemical or tetanic stimulation to produce either LTP or short-term potentiation (STP). Tetanus-induced LTP in area CA1 requires CaMKII activation and Thr286 phosphorylation of alphaCaMKII, but we did not observe an increase in autonomous activity. Next we induced LTP by 10 min exposure to 25 mM tetraethyl-ammonium (TEA) or 5 min exposure to 41 mM potassium (K) after pretreatment with calyculin A. Exposure to K alone produced STP. These protocols allowed us to monitor temporal changes in autonomous activity during and after exposure to the potentiating chemical stimulus. In chemically induced LTP, autonomous activity was maximally increased within 30 s whereas this increase was significantly delayed in STP. However, in both LTP and STP the two-fold increase in autonomous activity measured immediately after stimulation was short-lived, returning to baseline within 2-5 min after re-exposure to normal ACSF. In LTP, but not in STP, the phosphorylation of alphaCaMKII at Thr286 persisted for at least 60 min after stimulation. These results confirm that LTP is associated with a maintained increase in autophosphorylation at Thr286 but indicate that a persistent increase in the autonomous activity of CaMKII is not required for the expression of LTP.
Collapse
Affiliation(s)
- I Lengyel
- Department of Biochemistry, Biological Research Centre, Szeged, Hungary, H-6726
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dunn TW, Mercier AJ. Synaptic modulation by a Drosophila neuropeptide is motor neuron-specific and requires CaMKII activity. Peptides 2005; 26:269-76. [PMID: 15629538 DOI: 10.1016/j.peptides.2004.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 09/15/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
The Drosophila FMRFamide-related peptide, DPKQDFMRFamide modulates synaptic transmission at the larval neuromuscular junction. The amplitude of excitatory junctional potentials (EJPs) produced by the selective stimulation of motor neuron MN6/7-Ib increases following application of 1 microM DPKQDFMRFamide. EJPs elicited by stimulating motor neuron MNSNb/d-Is, however, exhibit no significant increase with the same concentration of neuropeptide. The mechanisms underlying the modulatory effects of DPKQDFMRFamide were examined using a combination of pharmacological and genetic methods. Three independent lines of evidence implicate CaMKII as an essential effector protein or part of the signal transduction pathway. The effect of the neuropeptide is suppressed by 1 microM KN-93 (CaMKII inhibitor) and by heat-shock induced expression of a CaMKII inhibitor. A heterozygous CaM kinase mutant responds poorly to the peptide.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ont., Canada L2S 3A1
| | | |
Collapse
|
49
|
Kato K, Murota SI. NMDA receptor stimulation in the absence of extracellular Ca2+ potentiates Ca2+ influx-dependent cell death system. Brain Res 2005; 1035:177-87. [PMID: 15722057 DOI: 10.1016/j.brainres.2004.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 12/03/2004] [Accepted: 12/04/2004] [Indexed: 10/25/2022]
Abstract
The meaning of Ca2+ influx in the time course of glutamate stimulation of neuronal cells was addressed. We demonstrated that Ca2+ influx did not work straightforward in the determination of the fate of neuronal cells. There appears to be a critical period for Ca2+ influx to work efficiently in glutamate-induced neuronal cell death. When Ca2+ influx for 5 min from the beginning of glutamate stimulation was allowed in the whole stimulation period for 15 min, potent neuronal cell death could not be attained. On the other hand, when neuronal cells had been pre-treated with glutamate or NMDA for 5-10 min in the absence of extracellular Ca2+ following Ca2+ influx for 5 min fully induced neuronal cell death. APV inhibited this pre-treatment effect. It appears that the pre-treatment of neuronal cells with glutamate or NMDA in the absence of extracellular Ca2+ promotes the Ca2+ influx-dependent process executing cell death. The pre-treatment itself did not change the pattern of intracellular Ca2+ elevation by the activation of NMDA receptors. These results imply that glutamate activation of NMDA receptors consists of two different categories of pathways relating to neuronal cell death, i.e., Ca2+ influx independent and dependent, and that the former facilitates the latter to drive neuronal cells to death. This study clarified a mechanism by which glutamate quickly determines cell fate.
Collapse
Affiliation(s)
- Kohtaro Kato
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo-113-8549, Japan.
| | | |
Collapse
|
50
|
Cavallaro S. DNA microarrays and animal models of learning and memory. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 60:97-133. [PMID: 15474588 DOI: 10.1016/s0074-7742(04)60004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, 95123 Catania, Italy
| |
Collapse
|