1
|
Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer's disease. Neuropharmacology 2017; 136:362-373. [PMID: 29138080 DOI: 10.1016/j.neuropharm.2017.11.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are G proteincoupled receptors (GPCRs) that mediate the metabotropic actions of acetylcholine (ACh). There are five subtypes of mAChR, M1 - M5, which are expressed throughout the central nervous system (CNS) on numerous cell types and represent promising treatment targets for a number of different diseases, disorders, and conditions of the CNS. Although the present review will focus on Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), a number of conditions such as Parkinson's disease (PD), schizophrenia, and others represent significant unmet medical needs for which selective muscarinic agents could offer therapeutic benefits. Numerous advances have been made regarding mAChR localization through the use of subtype-selective antibodies and radioligand binding studies and these efforts have helped propel a number of mAChR therapeutics into clinical trials. However, much of what we know about mAChR localization in the healthy and diseased brain has come from studies employing radioligand binding with relatively modest selectivity. The development of subtype-selective small molecule radioligands suitable for in vitro and in vivo use, as well as robust, commercially-available antibodies remains a critical need for the field. Additionally, novel genetic tools should be developed and leveraged to help move the field increasingly towards a systems-level understanding of mAChR subtype action. Finally, functional, proteomic, and genetic data from ongoing human studies hold great promise for optimizing the design and interpretation of studies examining receptor levels by enabling patient stratification. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
|
2
|
Lin MS, Xiong WC, Li SJ, Gong Z, Cao X, Kuang XJ, Zhang Y, Gao TM, Mechawar N, Liu C, Zhu XH. α2-glycine receptors modulate adult hippocampal neurogenesis and spatial memory. Dev Neurobiol 2017; 77:1430-1441. [DOI: 10.1002/dneu.22549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/21/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Min-Shan Lin
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
| | - Wen-Chao Xiong
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
| | - Shu-Ji Li
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
| | - Zhi Gong
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
| | - Xiong Cao
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
| | - Xiao-Jing Kuang
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
| | - Yuan Zhang
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
| | - Tian-Ming Gao
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
| | - Naguib Mechawar
- Department of Psychiatry; McGill University, McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 LaSalle Blvd; Verdun (Québec) Canada
| | - Ce Liu
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
| | - Xin-Hong Zhu
- Institute of Mental Health, Southern Medical University; Guangzhou 510515 China
- Key Laboratory of Psychiatric Disorders of Guangdong Province; China Guangzhou 510515
- School of Traditional Chinese Medicine; Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
3
|
Neurocognitive Aging and the Hippocampus across Species. Trends Neurosci 2015; 38:800-812. [PMID: 26607684 DOI: 10.1016/j.tins.2015.10.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/27/2015] [Accepted: 10/18/2015] [Indexed: 11/23/2022]
Abstract
There is extensive evidence that aging is associated with impairments in episodic memory. Many of these changes have been ascribed to neurobiological alterations to the hippocampal network and its input pathways. A cross-species consensus is beginning to emerge suggesting that subtle synaptic and functional changes within this network may underlie the majority of age-related memory impairments. In this review we survey convergent data from animal and human studies that have contributed significantly to our understanding of the brain-behavior relationships in this network, particularly in the aging brain. We utilize a cognitive as well as a neurobiological perspective and synthesize data across approaches and species to reach a more detailed understanding of age-related alterations in hippocampal memory function.
Collapse
|
4
|
Gray DT, Barnes CA. Distinguishing adaptive plasticity from vulnerability in the aging hippocampus. Neuroscience 2015; 309:17-28. [PMID: 26255677 DOI: 10.1016/j.neuroscience.2015.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/20/2022]
Abstract
Hippocampal circuits are among the best described networks in the mammalian brain, particularly with regard to the alterations that arise during normal aging. Decades of research indicate multiple points of vulnerability in aging neural circuits, and it has been proposed that each of these changes make a contribution to observed age-related cognitive deficits. Another view has been relatively overlooked - namely that some of these changes arise in adaptive response to protect network function in aged animals. This possibility leads to a rather different view on the biological variation of function in the brain of older individuals. Using the hippocampus as a model neural circuit we discuss how, in normally aged animals, some age-related changes may arise through processes of neural plasticity that serve to enhance network function rather than to hinder it. Conceptually disentangling the initial age-related vulnerabilities from changes that result in adaptive response will be a major challenge for the future research on brain aging. We suggest that a reformulation of how normal aging could be understood from an adaptive perspective will lead to a deeper understanding of the secrets behind successful brain aging and our recent cultural successes in facilitating these processes.
Collapse
Affiliation(s)
- D T Gray
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States; ARL Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ, United States
| | - C A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States; ARL Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ, United States; Department of Psychology, Neurology, and Neuroscience, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
5
|
McQuail JA, Davis KN, Miller F, Hampson RE, Deadwyler SA, Howlett AC, Nicolle MM. Hippocampal Gαq/₁₁ but not Gαo-coupled receptors are altered in aging. Neuropharmacology 2013; 70:63-73. [PMID: 23347951 DOI: 10.1016/j.neuropharm.2013.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Normal aging may limit the signaling efficacy of certain GPCRs by disturbing the function of specific Gα-subunits and leading to deficient modulation of intracellular functions that subserve synaptic plasticity, learning and memory. Evidence suggests that Gαq/₁₁ is more sensitive to the effects of aging relative to other Gα-subunits, including Gαo. To test this hypothesis, the functionality of Gαq/₁₁ and Gαo were compared in the hippocampus of young (6 months) and aged (24 months) F344 × BNF₁ hybrid rats assessed for spatial learning ability. Basal GTPγS-binding to Gαq/₁₁ was significantly elevated in aged rats relative to young and but not reliably associated with spatial learning. mAChR stimulation of Gαq/₁₁ with oxotremorine-M produced equivocal GTPγS-binding between age groups although values tended to be lower in the aged hippocampus and were inversely related to basal activity. Downstream Gαq/₁₁ function was measured in hippocampal subregion CA₁ by determining changes in [Ca(2+)]i after mAChR and mGluR (DHPG) stimulation. mAChR-stimulated peak change in [Ca(2+)]i was lower in aged CA₁ relative to young while mGluR-mediated integrated [Ca(2+)]i responses tended to be larger in aged. GPCR modulation of [Ca(2+)]i was observed to depend on intracellular stores to a greater degree in aged than young. In contrast, measures of Gαo-mediated GTPγS-binding were stable across age, including basal, mAChR-, GABABR (baclofen)-stimulated levels. Overall, the data indicate that aging selectively modulates the activity of Gαq/₁₁ within the hippocampus leading to deficient modulation of [Ca(2+)]i following stimulation of mAChRs but these changes are not related to spatial learning.
Collapse
Affiliation(s)
- Joseph A McQuail
- Neuroscience Program, Wake Forest University Graduate School of Arts & Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
McQuail JA, Bañuelos C, LaSarge CL, Nicolle MM, Bizon JL. GABA(B) receptor GTP-binding is decreased in the prefrontal cortex but not the hippocampus of aged rats. Neurobiol Aging 2012; 33:1124.e1-12. [PMID: 22169202 PMCID: PMC3310948 DOI: 10.1016/j.neurobiolaging.2011.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022]
Abstract
Gamma aminobutyric acid (GABA)(B) receptors (GABA(B)Rs) have been linked to a wide range of physiological and cognitive processes and are of interest for treating a number of neurodegenerative and psychiatric disorders. As many of these diseases are associated with advanced age, it is important to understand how the normal aging process impacts GABA(B)R expression and signaling. Thus, we investigated GABA(B)R expression and function in the prefrontal cortex (PFC) and hippocampus of young and aged rats characterized in a spatial learning task. Baclofen-stimulated GTP-binding and GABA(B)R1 and GABA(B)R2 proteins were reduced in the prefrontal cortex of aged rats but these reductions were not associated with spatial learning abilities. In contrast, hippocampal GTP-binding was comparable between young and aged rats but reduced hippocampal GABA(B)R1 expression was observed in aged rats with spatial learning impairment. These data demonstrate marked regional differences in GABA(B)R complexes in the adult and aged brain and could have implications for both understanding the role of GABAergic processes in normal brain function and the development of putative interventions that target this system.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Program in Neuroscience, Graduate School of Arts & Sciences, Wake Forest University, Winston-Salem, NC 27157
| | - Cristina Bañuelos
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32611
| | - Candi L. LaSarge
- Department of Anesthesia, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Michelle M. Nicolle
- Program in Neuroscience, Graduate School of Arts & Sciences, Wake Forest University, Winston-Salem, NC 27157
- Department of Internal Medicine, Section of Gerontology, Wake Forest University, Winston-Salem, NC 27157
- Department of Physiology & Pharmacology, School of Medicine, Wake Forest University, Winston-Salem, NC 27157
| | - Jennifer L. Bizon
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
7
|
Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res 2011; 221:389-411. [DOI: 10.1016/j.bbr.2010.11.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 12/30/2022]
|
8
|
Bergado JA, Almaguer W, Rojas Y, Capdevila V, Frey JU. Spatial and emotional memory in aged rats: a behavioral-statistical analysis. Neuroscience 2010; 172:256-69. [PMID: 21036203 DOI: 10.1016/j.neuroscience.2010.10.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 01/20/2023]
Abstract
Age-related impairment in synaptic plasticity, like long-term potentiation (LTP), has been repeatedly reported. We had shown that late stages of LTP in the rat dentate gyrus can be modulated by emotional factors, but this is impaired by aging. In the present study we have searched for possible impairments in emotional and spatial memory tasks that may correspond to the impaired reinforcement observed at the cellular level. We have trained young and aged animals in a battery of tests: exploration (open field) object recognition, anxiety (plus maze) fear conditioning and spatial memory (Morris' water maze (MWM)). The open field, anxiety, and novelty recognition showed no age differences except a reduced velocity in aged rats. Emotional and contextual memories were preserved, but acquisition was slightly impaired. Age-dependent impairments appeared in spatial memory, evaluated in terms of latency and distance to reach the hidden escape platform in the water maze task, but these were not related with impairments in other tests, in particular there was no relation between spatial and emotional memory impairments. Age-related impairments in different paradigms were caused by different independent factors that did not correlated with each other.
Collapse
Affiliation(s)
- J A Bergado
- Centro Internacional de Restauracion Neurologica (CIREN), 11300 Playa, La Habana, Cuba.
| | | | | | | | | |
Collapse
|
9
|
Sierra-Mercado D, Dieguez D, Barea-Rodriguez EJ. Brief novelty exposure facilitates dentate gyrus LTP in aged rats. Hippocampus 2008; 18:835-43. [PMID: 18481283 DOI: 10.1002/hipo.20447] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aging is associated with a decreased capacity for dentate gyrus (DG) granule cell depolarization as well as reduced perforant path activation. Although it is well established that the maintenance of DG long-term potentiation (LTP) over days is impaired in aged, as compared to young animals, the threshold for inducing this LTP has never been investigated in aged, awake animals. In addition, although exposure to novelty prior to theta-burst stimulation (TBS) increases both the induction and longevity of DG LTP in adult rats, the effects of exposure to novelty on LTP in aged rats have never been investigated. Here, we report that although TBS delivered in the home cage induces robust and long-lasting DG LTP in young rats, TBS fails to induce DG LTP in aged rats. Interestingly, delivery of TBS to aged rats exploring novel environments induces robust and long-lasting LTP, with the induction, but not the longevity, of this LTP being similar in magnitude to that observed in young rats delivered TBS in the home cage. These results indicate that although TBS-induced DG LTP is impaired in aged, as compared to young rats, TBS during exploration of novel environments is sufficient to rescue age-related deficits in DG LTP. We discuss these observations in the context of previous findings suggesting that the facilitation of LTP by exposure to novel environments results as a consequence of reduced network inhibition in the DG and we suggest that, in spite of age-related changes in the DG, this capacity persists in aged rats and represents a nondietary and nonpharmacological way to facilitate DG LTP during aging.
Collapse
Affiliation(s)
- Demetrio Sierra-Mercado
- Neurobiology of Aging Laboratory, Department of Biology, The University of Texas, San Antonio, Texas 78249-0662, USA
| | | | | |
Collapse
|
10
|
Abstract
In humans, recognition memory declines with aging, and this impairment is characterized by a selective loss in recollection of previously studied items contrasted with relative sparing of familiarity for items in the study list. Rodent models of cognitive aging have focused on water maze learning and have demonstrated an age-associated loss in spatial, but not cued memory. The current study examined odor recognition memory in young and aged rats and compared performance in recognition with that in water maze learning. In the recognition task, young rats used both recollection and familiarity. In contrast, the aged rats showed a selective loss of recollection and relative sparing of familiarity, similar to the effects of hippocampal damage. Furthermore, performance on the recall component, but not the familiarity component, of recognition was correlated with spatial memory and recollection was poorer in aged rats that were also impaired in spatial memory. These results extend the pattern of impairment in recollection and relative sparing of familiarity observed in human cognitive aging to rats, and suggest a common age-related impairment in both spatial learning and the recollective component of nonspatial recognition memory.
Collapse
|
11
|
Wilson IA, Gallagher M, Eichenbaum H, Tanila H. Neurocognitive aging: prior memories hinder new hippocampal encoding. Trends Neurosci 2006; 29:662-70. [PMID: 17046075 PMCID: PMC2614702 DOI: 10.1016/j.tins.2006.10.002] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 07/26/2006] [Accepted: 10/04/2006] [Indexed: 02/07/2023]
Abstract
Normal aging is often accompanied by impairments in forming new memories, and studies of aging rodents have revealed structural and functional changes to the hippocampus that might point to the mechanisms behind such memory loss. In this article, we synthesize recent neurobiological and neurophysiological findings into a model of the information-processing circuit of the aging hippocampus. The key point of the model is that small concurrent changes during aging strengthen the auto-associative network of the CA3 subregion at the cost of processing new information coming in from the entorhinal cortex. As a result of such reorganization in aged memory-impaired individuals, information that is already stored would become the dominant pattern of the hippocampus to the detriment of the ability to encode new information.
Collapse
Affiliation(s)
- Iain A Wilson
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio 70211, Finland.
| | | | | | | |
Collapse
|
12
|
Gallagher M, Colantuoni C, Eichenbaum H, Haberman RP, Rapp PR, Tanila H, Wilson IA. Individual differences in neurocognitive aging of the medial temporal lobe. AGE (DORDRECHT, NETHERLANDS) 2006; 28:221-33. [PMID: 22253491 PMCID: PMC3259151 DOI: 10.1007/s11357-006-9017-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/18/2006] [Accepted: 09/19/2006] [Indexed: 05/28/2023]
Abstract
A wide spectrum of outcomes in the cognitive effects of aging is routinely observed in studies of the elderly. Individual differences in neurocognitive aging are also a characteristic of other species, such as rodents and non-human primates. In particular, investigations at behavioral, brain systems, cellular and molecular levels of analysis have provided much information on the basis for individual differences in neurocognitive aging among healthy outbred rats. These findings are likely to be relevant to an understanding of the effects of aging on the brain, apart from neurodegenerative conditions, such as Alzheimer's disease, which do not naturally occur in rodents. Here we review and integrate those findings in a model supporting the concept that certain features of cognitive decline are caused by distributed alterations in the medial temporal lobe, which alter the information processing functions of the hippocampal formation. An additional emerging concept from this research is that preserved abilities at older ages may depend on adaptive changes in the hippocampal system that distinguish successful aging.
Collapse
Affiliation(s)
- Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Krieger School of Arts and Sciences, 103 Ames Hall, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Carlo Colantuoni
- Department of Biostatistics, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD USA
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | | | - Rebecca P. Haberman
- Department of Psychological and Brain Sciences, Johns Hopkins University, Krieger School of Arts and Sciences, Baltimore, MD USA
| | - Peter R. Rapp
- Mount Sinai School of Medicine, Neurobiology of Aging Laboratories, New York, NY USA
| | - Heikki Tanila
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio, Finland
| | - Iain A. Wilson
- Division of Neuroscience, University of Edinburgh, Edinburgh, Scotland UK
| |
Collapse
|
13
|
Zhang HY, Watson ML, Gallagher M, Nicolle MM. Muscarinic receptor-mediated GTP-Eu binding in the hippocampus and prefrontal cortex is correlated with spatial memory impairment in aged rats. Neurobiol Aging 2006; 28:619-26. [PMID: 16600436 DOI: 10.1016/j.neurobiolaging.2006.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/23/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
The present study examined muscarinic receptor/G-protein coupling in the hippocampus and the prefrontal cortex of young and aged Long-Evans rats characterized for spatial learning ability in the Morris water maze. In a highly sensitive time-resolved fluorometry GTP-Eu binding assay, muscarinic-mediated GTP-Eu binding was severely blunted in hippocampus (-32%) and prefrontal cortex (-34%) as a consequence of aging. Furthermore, the magnitude of decreased muscarinic-mediated GTP-Eu binding was significantly correlated with the severity of spatial learning impairment in hippocampus and prefrontal cortex of aged rats and was specifically decreased in the subset of aged rats that were spatial learning impaired when compared to the aged unimpaired and the young rats. Western blot data indicated a preservation of the membrane-bound M1 receptor and the Galphaq/11 protein in both brain regions. These data demonstrate that muscarinic signaling is severely impaired as a consequence of normal aging in a manner that is closely associated with age-related cognitive decline.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- Roena Kulynych Center for Memory and Cognition Research, Department of Internal Medicine/Gerontology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA
| | | | | | | |
Collapse
|
14
|
Wilson IA, Ikonen S, Gallagher M, Eichenbaum H, Tanila H. Age-associated alterations of hippocampal place cells are subregion specific. J Neurosci 2006; 25:6877-86. [PMID: 16033897 PMCID: PMC6725350 DOI: 10.1523/jneurosci.1744-05.2005] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aging is associated with spatial memory impairments and with deficient encoding of information by the hippocampus. In young adult rats, recent studies on the firing properties of hippocampal neurons have emphasized the importance of the CA3 subregion in the rapid encoding of new spatial information. Here, we compared the spatial firing patterns of CA1 and CA3 neurons in aged memory-impaired rats with those of young rats as they explored familiar and novel environments. We found that CA1 place cells in aged and young rats had similar firing characteristics in the familiar and novel environments. In contrast, aged CA3 place cells had higher firing rates in general and failed to change their firing rates and place fields as much as CA3 cells of young rats when the rats were introduced to a novel environment. Thus, aged CA3 cells failed to rapidly encode new spatial information compared with young CA3 cells. These data suggest an important and selective contribution of CA3 dysfunction to age-related memory impairment.
Collapse
Affiliation(s)
- Iain A Wilson
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio 70211, Finland.
| | | | | | | | | |
Collapse
|
15
|
Topic B, Willuhn I, Palomero-Gallagher N, Zilles K, Huston JP, Hasenöhrl RU. Impaired maze performance in aged rats is accompanied by increased density of NMDA, 5-HT1A, and α-adrenoceptor binding in hippocampus. Hippocampus 2006; 17:68-77. [PMID: 17111411 DOI: 10.1002/hipo.20246] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using quantitative receptor autoradiography, we assessed binding site densities and distribution patterns of glutamate, GABA(A), acetylcholine (ACh), and monoamine receptors in the hippocampus of 32-month-old Fischer 344/Brown Norway rats. Prior to autoradiography, the rats were divided into two groups according to their retention performance in a water maze reference memory task, which was assessed 1 week after 8 days of daily maze training. The animals of the inferior group showed less long-term retention of the hidden-platform task but did not differ from superior rats in their navigation performance during place training and cued trials. The decreased retention performance in the group of inferior learners was primarily accompanied by increased alpha(1)-adrenoceptors in all hippocampal subregions under inspection (CA1-CA4 and dentate gyrus), while elevated alpha(2)-adrenoceptor binding was observed in the CA1 region and DG. Furthermore, inferior learners had higher NMDA binding in the CA2 and CA4 and increased 5-HT(1A) binding sites in the CA2, CA3, and CA4 region. No significant differences between inferior and superior learners were evident with regard to AMPA, kainate, GABA(A), muscarinergic M(1), dopamine D(1), and 5-HT(2) binding densities in any hippocampal region analyzed. These results show that increased NMDA, 5-HT(1A), and alpha-adrenoceptor binding in the hippocampus is associated with a decline in spatial memory. The increased receptor binding observed in the group of old rats with inferior maze performance might be the result of neural adaptation triggered by age-related changes in synaptic connectivity and/or synaptic activity.
Collapse
Affiliation(s)
- B Topic
- Institute of Physiological Psychology, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Rossi MA, Mash DC, deToledo-Morrell L. Spatial memory in aged rats is related to PKCgamma-dependent G-protein coupling of the M1 receptor. Neurobiol Aging 2005; 26:53-68. [PMID: 15585346 DOI: 10.1016/j.neurobiolaging.2004.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 01/27/2004] [Accepted: 02/23/2004] [Indexed: 11/30/2022]
Abstract
In the present study, individual differences in spatial memory in aged Fischer 344 (F344) rats were associated with the extent of G-protein coupling of the M1 muscarinic receptor and the dendritic-to-somal ratio of hippocampal PKCgamma (d/sPKCgamma) immunogenicity. Following testing in the eight-arm radial maze task, 7 young and 13 aged rat brains were sectioned through the dorsal hippocampal formation (HF). G-protein coupling of the M1 receptor was assessed autoradiographically using competition binding studies in the presence and absence of a G-protein uncoupler to determine high (K(H)) and low (K(L)) affinity states for agonist in the HF, neocortex, and amygdala. In aged animals, a relationship between choice accuracy in the maze and K(H), a measure of M1 receptor-G-protein coupling was seen in the dentate gyrus, CA3, CA1, and neocortex. Furthermore, choice accuracy and d/sPKCgamma immunogenicity showed a significant relationship in CA1. Lastly, a correlation was seen in the CA1 of aged animals between K(H) and d/sPKCgamma. These relationships did not hold for the amygdala. Thus, individual differences in a naturally occurring age-dependent disruption of cholinergic-PKCgamma signal transduction is associated with spatial memory dysfunction.
Collapse
Affiliation(s)
- M A Rossi
- Department of Neurological Sciences, Rush University Medical Center, Suite 334 Murdoch Building, 1653 West Congress Parkway, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
17
|
Wilson IA, Ikonen S, Gurevicius K, McMahan RW, Gallagher M, Eichenbaum H, Tanila H. Place cells of aged rats in two visually identical compartments. Neurobiol Aging 2004; 26:1099-106. [PMID: 15748790 DOI: 10.1016/j.neurobiolaging.2004.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 08/11/2004] [Accepted: 09/15/2004] [Indexed: 11/29/2022]
Abstract
Aged rats perform poorly on spatial learning tasks, a cognitive impairment which has been linked to the failure of hippocampal networks to fully encode changes in the external environment [Barnes CA, Suster MS, Shen J, McNaughton BL. Multistability of cognitive maps in the hippocampus of old rats. Nature 1997;388(6639):272-5; Wilson IA, Ikonen S, Gureviciene I, McMahan RW, Gallagher M, Eichenbaum H, et al. Cognitive aging and the hippocampus: how old rats represent new environments. J Neurosci 2004;24(15):3870-8]. To examine whether the impairment in hippocampal processing extends to conditions in which self-motion provides the cues for environmental change, we have analyzed spatial firing patterns of hippocampal pyramidal neurons in young and aged rats, as well as in young rats with selective cholinergic lesions, another model of cognitive aging. The rats walked between two visually identical environments, pitting self-motion cues that indicated environmental change against visual inputs that indicated no differences between environments. Our results indicated that place cells in both aged and cholinergic-lesioned rats were equally likely as those of young rats to create new spatial representations in the second compartment. These findings suggest that the hippocampal network of aged rats is able to process changes in internally generated cues without rigidity, but that incomplete processing of external landmark cues may lead to impaired spatial learning.
Collapse
Affiliation(s)
- Iain A Wilson
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627 (Harjulantie 1), Kuopio 70211, Finland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Wilson IA, Ikonen S, Gureviciene I, McMahan RW, Gallagher M, Eichenbaum H, Tanila H. Cognitive aging and the hippocampus: how old rats represent new environments. J Neurosci 2004; 24:3870-8. [PMID: 15084668 PMCID: PMC6729357 DOI: 10.1523/jneurosci.5205-03.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spatial learning impairment in aged rats is associated with changes in hippocampal connectivity and plasticity. Several studies have explored the age-related deficit in spatial information processing by recording the location-specific activity of hippocampal neurons (place cells). However, these studies have generated disparate characterizations of place cells in aged rats as unstable (Barnes et al., 1997), resistant to change (Tanila et al., 1997b; Oler and Markus, 2000; Wilson et al., 2003), or delayed in using external cues (Rosenzweig et al., 2003). To reconcile these findings, we recorded place cells from aged and young rats as they repeatedly explored both a highly familiar environment and an initially novel environment, and we repeatedly tested whether the place fields formed in the novel environment were anchored by external cues. Initially, spatial representations in aged rats were abnormally maintained between the familiar and novel environments. Then, new representations were formed but were also delayed in becoming anchored to the external landmarks. Finally, even when the new spatial representations became bound to the landmarks, they were multi-stable across repetitive exposures to the formerly novel environment. These observations help to reconcile previously divergent characterizations of spatial representation in aged rats and suggest a model of cognitive aging and hippocampal function.
Collapse
Affiliation(s)
- Iain A Wilson
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio 70211, Finland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
20
|
Ikonen S, McMahan R, Gallagher M, Eichenbaum H, Tanila H. Cholinergic system regulation of spatial representation by the hippocampus. Hippocampus 2002; 12:386-97. [PMID: 12099489 DOI: 10.1002/hipo.1109] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of the basal forebrain cholinergic system in hippocampal spatial representation was explored by examining the effects of immunotoxic lesions of the septo-hippocampal cholinergic neurons on the firing patterns of hippocampal place cells as rats explored familiar and novel environments. In a highly familiar environment, the basic qualities and stability of place fields were unaffected by the lesion. When first exposed to a set of novel environmental cues without otherwise disorienting the animals, place cells in both normal and lesioned animals responded with similar alterations in their firing patterns. Upon subsequent repetitive exposures to the new environment, place cells of normal rats developed a spatial representation distinct from that of the familiar environment. By contrast, place cells of lesioned animals reconverged in the direction of the representation associated with the familiar environment. These results suggest that cholinergic input may determine whether new visual information or a stored representation of the current environment will be actively processed in the hippocampal network.
Collapse
Affiliation(s)
- Sami Ikonen
- Department of Neuroscience and Neurology, University and University Hospital of Kuopio, Finland
| | | | | | | | | |
Collapse
|
21
|
Schoenbaum G, Nugent S, Saddoris MP, Gallagher M. Teaching old rats new tricks: age-related impairments in olfactory reversal learning. Neurobiol Aging 2002; 23:555-64. [PMID: 12009505 DOI: 10.1016/s0197-4580(01)00343-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent work suggests that normal aging may be associated with decline in different brain systems. In the present study, young and aged Long-Evans rats were tested in a spatial version of the Morris water maze dependent on medial temporal lobe function and also on an odor discrimination reversal task previously used to investigate orbitofrontal function. Aged rats acquired the odor discrimination problems normally but were impaired in acquiring subsequent reversals of the problems. A subset of the aged rats also exhibited impaired spatial learning in the water maze. There was no correlation between reversal performance and spatial learning in the aged rats, indicating that the reversal learning impairment was not related to decline in medial temporal lobe function. Instead the performance of the aged rats on the odor discrimination task resembled that of young rats with neurotoxic lesions of orbitofrontal cortex. These data indicate that rats show independent decline of different brain systems during normal aging and suggest orbitofrontal cortex as one prefrontal area where changes may be localized for further study.
Collapse
Affiliation(s)
- Geoffrey Schoenbaum
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, 25 Ames Hall, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
22
|
Nicolle MM, Gallagher M, McKinney M. Visualization of muscarinic receptor-mediated phosphoinositide turnover in the hippocampus of young and aged, learning-impaired Long Evans rats. Hippocampus 2002; 11:741-6. [PMID: 11811668 DOI: 10.1002/hipo.1089] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hippocampal receptor-mediated phosphoinositide (PI) turnover is severely blunted in aged rats that demonstrate cognitive deficits in the Morris water maze. To further examine the anatomical localization of this deficit, we examined the topography of muscarinic receptor-mediated PI turnover in young and aged-learning impaired rats by taking advantage of an autoradiographic method that visualizes PI turnover by measuring the diacylglycerol (DAG) branch of the PI turnover signal transduction system. Using this method, muscarinic cholinergic receptors were stimulated in hippocampal slices with agonist, and the receptor-mediated incorporation of [3H] cytidine into [3H]CDP-DAG was subsequently quantified in subregions of the hippocampus using film autoradiography. Our results show a significant decrease in basal incorporation of [ 3H]CDP-DAG in the subiculum and in the dentate gyrus in the aged rats. The muscarinic receptor-mediated [3H]CDP-DAG response was significantly blunted in the aged rats in subiculum, CA3, and CA1. In contrast, the receptor-mediated response was maintained in the dentate gyrus and hilus. These results indicate that the age-associated impairment in receptor-mediated PI turnover differs regionally, with a reduction in the subiculum and hippocampus proper that is pronounced relative to the hilus and dentate gyrus.
Collapse
Affiliation(s)
- M M Nicolle
- Department of Pharmacology, Mayo Clinic, Jacksonville, Florida 32224, USA.
| | | | | |
Collapse
|
23
|
Weeber EJ, Savage DD, Sutherland RJ, Caldwell KK. Fear conditioning-induced alterations of phospholipase C-beta1a protein level and enzyme activity in rat hippocampal formation and medial frontal cortex. Neurobiol Learn Mem 2001; 76:151-82. [PMID: 11502147 DOI: 10.1006/nlme.2000.3994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of one-trial fear conditioning on phospholipase C-beta1a catalytic activity and protein level in hippocampal formation and medial frontal cortex of untreated control rats and rats prenatally exposed to ethanol. One hour following fear conditioning of untreated control rats, phospholipase C-beta1a protein level was increased in the hippocampal cytosolic fraction and decreased in the hippocampal membrane and cortical cytosolic and cortical membrane fractions. Twenty-four hours after fear conditioning, phospholipase C-beta1a protein level was reduced in the hippocampal cytosolic fraction and elevated in the cortical nuclear fraction; in addition, 24 h after conditioning, phospholipase C-beta1a activity in the cortical cytosolic fraction was increased. Rats that were exposed prenatally to ethanol displayed attenuated contextual fear conditioning, whereas conditioning to the acoustic-conditioned stimulus was not different from controls. In behavioral control (unconditioned) rats, fetal ethanol exposure was associated with reduced phospholipase C-beta1a enzyme activity in the hippocampal nuclear, cortical cytosolic, and cortical membrane fractions and increased phospholipase C-beta1a protein level in the hippocampal membrane and cortical cytosolic fractions. In certain cases, prenatal ethanol exposure modified the relationship between fear conditioning and changes in phospholipase C-beta1a protein level and/or activity. The majority of these effects occurred 1 h, rather than 24 h, after fear conditioning. Multivariate analysis of variance revealed interactions between fear conditioning, subcellular fraction, and prenatal ethanol exposure for measures of phospholipase C-beta1a protein level in hippocampal formation and phospholipase C-beta1a enzyme activity in medial frontal cortex. In the majority of cases, fear conditioning-induced changes in hippocampal phospholipase C-beta1a protein level were augmented in rats prenatally exposed to ethanol. In contrast, fear conditioning-induced changes in cortical phospholipase C-beta1a activity were, often, in opposite directions in prenatal ethanol-exposed compared to diet control rats. We speculate that alterations in subcellular phospholipase C-beta1a catalytic activity and protein level contribute to contextual fear conditioning and that learning deficits observed in rats exposed prenatally to ethanol result, in part, from dysfunctions in phospholipase C-beta1a signal transduction.
Collapse
Affiliation(s)
- E J Weeber
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131-5223, USA
| | | | | | | |
Collapse
|
24
|
Metabotropic glutamate receptor-mediated hippocampal phosphoinositide turnover is blunted in spatial learning-impaired aged rats. J Neurosci 1999. [PMID: 10531462 DOI: 10.1523/jneurosci.19-21-09604.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Maximal phosphoinositide (PI) turnover was examined in the hippocampus of young and aged Long-Evans rats that were behaviorally characterized for spatial learning in the Morris water maze. The type 1 metabotropic glutamate receptor (mGluR) agonist 1S,3R ACPD was used to stimulate PI turnover and to determine the E(MAX) for each rat. Protein levels in hippocampus for type 1 mGluRs, Galphaq11, and phospholipase Cbeta-1 (PLCbeta-1) were also measured by quantitative Western blotting. The results show that PI turnover mediated by the mGluRs was blunted in the aged rats. The magnitude of the decrement in PI turnover was also significantly correlated with age-related spatial memory decline. The decrease in mGluR-mediated PI turnover occurred without changes in the protein level of either the mGluRs or the G-protein coupled to those receptors, Galphaq11. A significant decrease in the immunoreactivity of PLCbeta-1, however, was observed in the hippocampus of aged rats; PLCbeta-1 immunoreactivity was significantly correlated with spatial learning only when the young and aged rats were considered together. The decrement in mGluR-mediated signal transduction in the hippocampus that is related to cognitive impairment in aging may be attributable, at least in part, to a deficiency in the enzyme PLCbeta-1. That deficiency may also contribute to a blunted response in muscarinic stimulation of hippocampal PI turnover that we previously found in this same study population. An age-related alteration in this signal transduction system may provide a functional basis for cognitive decline independent of any loss of neurons in the hippocampus.
Collapse
|
25
|
van der Zee EA, Luiten PG. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 1999; 58:409-71. [PMID: 10380240 DOI: 10.1016/s0301-0082(98)00092-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunocytochemical mapping studies employing the extensively used monoclonal anti-muscarinic acetylcholine receptor (mAChR) antibody M35 are reviewed. We focus on three neuronal muscarinic cholinoceptive substrates, which are target regions of the cholinergic basal forebrain system intimately involved in cognitive functions: the hippocampus; neocortex; and amygdala. The distribution and neurochemistry of mAChR-immunoreactive cells as well as behaviorally induced alterations in mAChR-immunoreactivity (ir) are described in detail. M35+ neurons are viewed as cells actively engaged in neuronal functions in which the cholinergic system is typically involved. Phosphorylation and subsequent internalization of muscarinic receptors determine the immunocytochemical outcome, and hence M35 as a tool to visualize muscarinic receptors is less suitable for detection of the entire pool of mAChRs in the central nervous system (CNS). Instead, M35 is sensitive to and capable of detecting alterations in the physiological condition of muscarinic receptors. Therefore, M35 is an excellent tool to localize alterations in cellular cholinoceptivity in the CNS. M35-ir is not only determined by acetylcholine (ACh), but by any substance that changes the phosphorylation/internalization state of the mAChR. An important consequence of this proposition is that other neurotransmitters than ACh (especially glutamate) can regulate M35-ir and the cholinoceptive state of a neuron, and hence the functional properties of a neuron. One of the primary objectives of this review is to provide a synthesis of our data and literature data on mAChR-ir. We propose a hypothesis for the role of muscarinic receptors in learning and memory in terms of modulation between learning and recall states of brain areas at the postsynaptic level as studied by way of immunocytochemistry employing the monoclonal antibody M35.
Collapse
Affiliation(s)
- E A van der Zee
- Department of Zoology, University of Groningen, Haren, The Netherlands.
| | | |
Collapse
|
26
|
Abstract
Pertinent animal models of age-related learning deficiencies are required to elucidate the mechanism of age-related learning deficiencies and to develop novel therapeutic drugs for age-related diseases such as learning defects. Among many strains of accelerated senescence prone, senescence-accelerated mouse (SAM), SAMP8 mice have age-related defects in learning and cognitive abilities. We review recent findings on alterations in SAMP8 brain in neurochemical parameters related to neurotransmission and synaptic plasticity compared to those in SAMR1 brain as the control. In addition, we report the preventive effects of drugs on learning deficiencies in SAMP8 and discuss the usefulness of SAMP8 as an animal model of age-related learning deficiencies.
Collapse
Affiliation(s)
- Y Nomura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | |
Collapse
|
27
|
Colombo PJ, Gallagher M. Individual differences in spatial memory and striatal ChAT activity among young and aged rats. Neurobiol Learn Mem 1998; 70:314-27. [PMID: 9774524 DOI: 10.1006/nlme.1998.3857] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individual differences in spatial memory among young and aged rats were assessed using memory tasks related to integrity of the hippocampus and the neostriatum. Relationships were then examined between measures of spatial memory and regional choline acetyltransferase (ChAT) activity, a marker for cholinergic integrity. Twenty-four-month-old Long-Evans rats were impaired in comparisons with 6-month-old rats on measures of place learning, working memory, reference memory, and perseveration in water-maze tasks. Aged rats that were impaired on one measure of memory, however, were not necessarily impaired on other measures. ChAT activity in the ventromedial and dorsolateral neostriatum of aged rats was significantly reduced in comparisons with young rats whereas no difference was found in the hippocampus. Aged rats with the most ChAT activity in the anterior ventromedial neostriatum performed best on the place-learning and reference memory tasks but also made the most perseverative errors on the working memory task. In addition, young and aged rats with the most ChAT activity in the anterior dorsolateral neostriatum were those with the least accurate working memory. No relationships were found between ChAT activity in the hippocampus and spatial memory. Thus age-related memory impairment has components that can be segregated by measuring relationships between cholinergic integrity in subregions of the anterior neostriatum and memory tasks with different strategic requirements.
Collapse
Affiliation(s)
- P J Colombo
- Department of Psychology, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
| | | |
Collapse
|
28
|
Sugaya K, Greene R, Personett D, Robbins M, Kent C, Bryan D, Skiba E, Gallagher M, McKinney M. Septo-hippocampal cholinergic and neurotrophin markers in age-induced cognitive decline. Neurobiol Aging 1998; 19:351-61. [PMID: 9733168 DOI: 10.1016/s0197-4580(98)00072-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Messenger RNA (mRNA) molecules encoding proteins related to the presynaptic cholinergic and neurotrophin systems were quantitated in the hippocampus and basal forebrain of Long-Evans rats with spatial learning ability assessed in the Morris water maze. The reverse transcriptase-polymerase chain reaction showed that the mRNAs for the low-affinity neurotrophin receptor (p75-NTR) and the growth-associated protein GAP-43 were decreased in level in the basal forebrain of aged-impaired rats. In the hippocampus of these aged-impaired rats, the mRNA for VGF, another neurotrophin-inducible gene, also was decreased. In situ hybridization histochemistry revealed that mRNAs for nerve growth factor (NGF) and brain-derived neurotrophic factor increased in level in the aged rat hippocampus; when age effects were removed, NGF mRNA level remained significantly correlated with maze performance. Enzyme-linked immunosorbent assay indicated that NGF protein was expressed at normal levels in the aged rat hippocampus. These mRNA and protein alterations may signify that a defect in neurotrophin signaling exists in the brains of aged Long-Evans rats, underlying reduced plasticity responses in the basal forebrain cholinergic system.
Collapse
Affiliation(s)
- K Sugaya
- Department of Pharmacology, Mayo Clinic Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bucci DJ, Rosen DL, Gallagher M. Effects of age on pilocarpine-induced c-fos expression in rat hippocampus and cortex. Neurobiol Aging 1998; 19:227-32. [PMID: 9661997 DOI: 10.1016/s0197-4580(98)00051-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of age on pilocarpine-induced expression of the immediate-early gene c-fos was examined in the hippocampus and cortex of Long-Evans rats. Rats were treated with either pilocarpine (25 mg/kg) or saline, and sacrificed 90 min. following injection. The level of c-fos mRNA and Fos-like protein expression was determined using in situ hybridization histochemistry, and immunocytochemistry, respectively. In saline-treated animals, comparable levels of c-fos mRNA and Fos-like protein were observed in the hippocampus and cortical regions of young (6 month) and aged (24-26 months) rats. The expression of Fos-like protein following pilocarpine treatment was increased, however, in frontal, retrosplenial, and cingulate cortex of aged compared to young rats. In frontal and retrosplenial cortex, the changes in Fos-like protein were accompanied by changes in c-fos mRNA expression. In contrast, no age difference was detected in the hippocampus or parietal cortex of pilocarpine-treated rats. These regionally-specific age differences in response to pilocarpine administration suggest that mechanisms localized to those areas play an important role in determining the response to cholinergic stimulation mediated through post-synaptic muscarinic receptors.
Collapse
Affiliation(s)
- D J Bucci
- Neurobiology, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
30
|
Memory Changes during Normal Aging. Neurobiol Learn Mem 1998. [DOI: 10.1016/b978-012475655-7/50008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Abstract
Memory impairment in the elderly resembles a mild temporal lobe dysfunction. Alterations in the hippocampal formation are also a probable basis for cognitive deficits in some animal models of ageing. For example, aged rats are impaired in hippocampal-dependent tests of spatial memory. Recent studies have revealed considerable structural integrity in the aged hippocampus, even in aged rats with the most impaired spatial memory. In contrast, atrophy/loss of cholinergic neurons in the basal forebrain and deficiency in cholinergic transduction in hippocampus correlate with the severity of spatial memory impairment in aged rats. This evidence supports the longstanding view that age-related loss of memory has a cholinergic basis. In this context, it is somewhat surprising that the use of a selective cholinergic immunotoxin in young rats to further test this hypothesis has revealed normal spatial memory after removing septo-hippocampal cholinergic neurons. Young rats with immunotoxic lesions, however, have other behavioural impairments in tests of attentional processing. These lines of research have implications for understanding the neurobiological basis of memory deficits in ageing and for selecting an optimal behavioural setting in which to examine therapies aimed at restoring neurobiological function.
Collapse
Affiliation(s)
- M Gallagher
- Department of Psychology, University of North Carolina at Chapel Hill 27599, USA.
| |
Collapse
|
32
|
Court JA, Lloyd S, Johnson M, Griffiths M, Birdsall NJ, Piggott MA, Oakley AE, Ince PG, Perry EK, Perry RH. Nicotinic and muscarinic cholinergic receptor binding in the human hippocampal formation during development and aging. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:93-105. [PMID: 9263584 DOI: 10.1016/s0165-3806(97)00052-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High-affinity nicotine, alpha-bungarotoxin (alpha BT) and muscarinic receptor binding was measured in the human hippocampal formation in a series of 57 cases aged between 24 weeks gestation and 100 years. Changes in nicotine receptor binding during development and aging were more striking than differences in alpha BT and muscarinic binding. Nicotine binding was higher at the late foetal stage than at any other subsequent time in all areas investigated. In the hippocampus a fall in binding then occurred within the first six months of life, with little or no subsequent fall during aging, whereas in the entorhinal cortex and the presubiculum the major loss of nicotine binding occurred after the fourth decade. alpha BT binding was significantly elevated in the CA 1 region, but in no other region of the hippocampus, in the late foetus, and there was also a fall in alpha BT binding in the entorhinal cortex during aging from the second decade. The modest changes in total muscarinic binding, which appeared to reflect those in M1 and M3 + 4 rather than M2 binding, were a rise in the entorhinal cortex between the foetal stage and childhood and a tendency for receptors to fall with age in the hippocampus and subicular complex. These findings implicate mechanisms controlling the expression of nicotinic receptors to a greater extent than muscarinic receptors in postnatal development and aging in the human hippocampus.
Collapse
Affiliation(s)
- J A Court
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McArthur RA, Carfagna N, Banfi L, Cavanus S, Cervini MA, Fariello R, Post C. Effects of nicergoline on age-related decrements in radial maze performance and acetylcholine levels. Brain Res Bull 1997; 43:305-11. [PMID: 9227841 DOI: 10.1016/s0361-9230(97)00010-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of chronic oral administration of nicergoline (5.0 mg/kg; bid) on locomotor activity, eight-arm radial maze performance plus striatal, cortical, and hippocampal acetylcholine (ACh) levels were examined in young and aged Wistar rats. Chronic nicergoline administration did not modify either the locomotor activity or radial maze learning in young rats. Young rats learned the radial maze procedure rapidly and improved their performance throughout the successive training sessions. Radial maze performance in young rats was characterised by very few arm reentries. Aged rats were hypoactive and did not explore or enter the radial maze arms, and consequently performed poorly in the radial maze throughout the training sessions. Nicergoline treatment did not significantly modify locomotor activity in aged rats. Aged rats treated with nicergoline also performed poorly initially but improved with repeated training in the radial maze. This improvement was associated with an increasing number of arms being entered and very few arm reentries. Reduced acetylcholine (ACh) levels were also associated with age. Aged rats had significantly reduced levels of ACh in the straitum and cortex, but not the hippocampus as compared to young rats. Nicergoline treatment did not change ACh levels in young rats, but substantially restored the reduced ACh levels in aged rats. These results indicate that nicergoline is an effective cognitive enhancer in a learning model of age-related deficits and that these results may be related to changes in the cholinergic system.
Collapse
Affiliation(s)
- R A McArthur
- CNS Preclinical Research, Milan Pharmacia & Upjohn, Nerviano, (MI), Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Hörtnagl H, Hellweg R. Insights into the role of the cholinergic component of the septohippocampal pathway: what have we learned from experimental lesion studies? Brain Res Bull 1997; 43:245-55. [PMID: 9227833 DOI: 10.1016/s0361-9230(97)00005-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- H Hörtnagl
- Institute of Pharmacology and Toxicology, Medical Faculty (Charité), Humboldt-University at Berlin, Germany
| | | |
Collapse
|
35
|
Abstract
This review addresses the importance of animal models for understanding the effects of normal aging on the brain and cognitive functions. First, studies of laboratory animals can help to distinguish between healthy aging and pathological conditions that may contribute to cognitive decline late in life. Second, research on individual differences in aging, a theme of interest in studies of elderly human beings, can be advanced by the experimental control afforded in the use of animal models. The review offers a neuropsychological framework to compare the effects of aging in human beings, monkeys, and rodents. We consider aging in relation to the role of the medial temporal lobe in memory, the information processing functions of the prefrontal cortex in the strategic use of memory, and the regulation of attention by distributed neural circuitry. We also provide an overview of the neurobiological effects of aging that may account for alterations in psychological functions.
Collapse
Affiliation(s)
- M Gallagher
- Department of Psychology, University of North Carolina at Chapel Hill 27599, USA
| | | |
Collapse
|
36
|
Molecular indices of neuronal and glial plasticity in the hippocampal formation in a rodent model of age-induced spatial learning impairment. J Neurosci 1996. [PMID: 8627377 DOI: 10.1523/jneurosci.16-10-03427.1996] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spatial learning ability was quantitated in young and aged Long-Evans rats, and molecular markers were assessed in the striatum and hippocampal formation using immunocytochemical, immunoblotting, and in situ hybridization histochemical procedures. The mRNA for beta-amyloid precursor protein (beta APP), most likely the transcript encoding the 695-amino acid form of this protein, was elevated in pyramidal and granule cells in the hippocampus of aged rats exhibiting poorer spatial learning. In immunoblots of hippocampal protein extracts, however, the level of beta APP-like immunoreactivity was depressed in the more impaired subjects. Similarly, the level in hippocampus of the mRNA for manganese-dependent superoxide dismutase (Mn-SOD), a marker of oxidative stress, was positively correlated with the degree of behavioral impairment, but immunoblotting revealed that Mn-SOD protein was depressed in the aged hippocampus compared with young. The mRNAs for the neuronal form of nitric oxide synthase and for the astrocyte marker glial fibrillary acidic protein (GFAP) were elevated in the hippocampus in correlation with the extent of learning impairment. In the striatum, the levels of mRNA and protein for several candidate genes, including GFAP, were elevated in parallel with the learning index, but these were age effects. Several hippocampal proteins were unchanged (GFAP) or depressed (beta APP and Mn-SOD) in level, despite elevations in corresponding mRNAs. In the aged cohort, hippocampal GFAP mRNA, Mn-SOD mRNA, and beta APP emerged as predictors of behavioral impairment, suggesting the involvement of these hippocampal systems in age-related cognitive impairment.
Collapse
|