1
|
Kyung J, Kim D, Shin K, Park D, Hong SC, Kim TM, Choi EK, Kim YB. Repeated Intravenous Administration of Human Neural Stem Cells Producing Choline Acetyltransferase Exerts Anti-Aging Effects in Male F344 Rats. Cells 2023; 12:2711. [PMID: 38067139 PMCID: PMC10706332 DOI: 10.3390/cells12232711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major features of aging might be progressive decreases in cognitive function and physical activity, in addition to withered appearance. Previously, we reported that the intracerebroventricular injection of human neural stem cells (NSCs named F3) encoded the choline acetyltransferase gene (F3.ChAT). The cells secreted acetylcholine and growth factors (GFs) and neurotrophic factors (NFs), thereby improving learning and memory function as well as the physical activity of aged animals. In this study, F344 rats (10 months old) were intravenously transplanted with F3 or F3.ChAT NSCs (1 × 106 cells) once a month to the 21st month of age. Their physical activity and cognitive function were investigated, and brain acetylcholine (ACh) and cholinergic and dopaminergic system markers were analyzed. Neuroprotective and neuroregenerative activities of stem cells were also confirmed by analyzing oxidative damages, neuronal skeletal protein, angiogenesis, brain and muscle weights, and proliferating host stem cells. Stem cells markedly improved both cognitive and physical functions, in parallel with the elevation in ACh levels in cerebrospinal fluid and muscles, in which F3.ChAT cells were more effective than F3 parental cells. Stem cell transplantation downregulated CCL11 and recovered GFs and NFs in the brain, leading to restoration of microtubule-associated protein 2 as well as functional markers of cholinergic and dopaminergic systems, along with neovascularization. Stem cells also restored muscular GFs and NFs, resulting in increased angiogenesis and muscle mass. In addition, stem cells enhanced antioxidative capacity, attenuating oxidative damage to the brain and muscles. The results indicate that NSCs encoding ChAT improve cognitive function and physical activity of aging animals by protecting and recovering functions of multiple organs, including cholinergic and dopaminergic systems, as well as muscles from oxidative injuries through secretion of ACh and GFs/NFs, increased antioxidant elements, and enhanced blood flow.
Collapse
Affiliation(s)
- Jangbeen Kyung
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dajeong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyungha Shin
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Republic of Korea
| | - Soon-Cheol Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| |
Collapse
|
2
|
Gardner RS, Newman LA, Mohler EG, Tunur T, Gold PE, Korol DL. Aging is not equal across memory systems. Neurobiol Learn Mem 2020; 172:107232. [PMID: 32315762 DOI: 10.1016/j.nlm.2020.107232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
The present experiments compared the effects of aging on learning several hippocampus- and striatum-sensitive tasks in young (3-4 month) and old (24-28 month) male Fischer-344 rats. Across three sets of tasks, aging was accompanied not only by deficits on hippocampal tasks but also by maintained or even enhanced abilities on striatal tasks. On two novel object recognition tasks, rats showed impaired performance on a hippocampal object location task but enhanced performance on a striatal object replacement task. On a dual solution task, young rats predominately used hippocampal solutions and old rats used striatal solutions. In addition, on two maze tasks optimally solved using either hippocampus-sensitive place or striatum-sensitive response strategies, relative to young rats, old rats had impaired learning on the place version but equivalent learning on the response version. Because glucose treatments can reverse deficits in learning and memory across many tasks and contexts, levels of available glucose in the brain may have particular importance in cognitive aging observed across tasks and memory systems. During place learning, training-related rises in extracellular glucose levels were attenuated in the hippocampus of old rats compared to young rats. In contrast, glucose levels in the striatum increased comparably in young and old rats trained on either the place or response task. These extracellular brain glucose responses to training paralleled the impairment in hippocampus-sensitive learning and the sparing of striatum-sensitive learning seen as rats age, suggesting a link between age-related changes in learning and metabolic substrate availability in these brain regions.
Collapse
Affiliation(s)
- R S Gardner
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| | - L A Newman
- Department of Psychological Science, Vassar College, Poughkeepsie, NY 12604, United States
| | - E G Mohler
- Research and Development, AbbVie, North Chicago, IL 60064, United States
| | - T Tunur
- Department of Kinesiology, California State University San Marcos, San Marcos, CA 92096, United States
| | - P E Gold
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States
| | - D L Korol
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
3
|
The effect of nucleus basalis magnocellularis deep brain stimulation on memory function in a rat model of dementia. BMC Neurol 2016; 16:6. [PMID: 26757896 PMCID: PMC4711102 DOI: 10.1186/s12883-016-0529-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/06/2016] [Indexed: 11/15/2022] Open
Abstract
Background Deep brain stimulation has recently been considered a potential therapy in improving memory function. It has been shown that a change of neurotransmitters has an effect on memory function. However, much about the exact underlying neural mechanism is not yet completely understood. We therefore examined changes in neurotransmitter systems and spatial memory caused by stimulation of nucleus basalis magnocellularis in a rat model of dementia. Methods We divided rats into four groups: Normal, Lesion, Implantation, and Stimulation. We used 192 IgG-saporin for degeneration of basal forebrain cholinergic neuron related with learning and memory and it was injected into all rats except for the normal group. An electrode was ipsilaterally inserted in the nucleus basalis magnocellularis of all rats of the implantation and stimulation group, and the stimulation group received the electrical stimulation. Features were verified by the Morris water maze, immunochemistry and western blotting. Results All groups showed similar performances during Morris water maze training. During the probe trial, performance of the lesion and implantation group decreased. However, the stimulation group showed an equivalent performance to the normal group. In the lesion and implantation group, expression of glutamate acid decarboxylase65&67 decreased in the medial prefrontal cortex and expression of glutamate transporters increased in the medial prefrontal cortex and hippocampus. However, expression of the stimulation group showed similar levels as the normal group. Conclusion The results suggest that nucleus basalis magnocellularis stimulation enhances consolidation and retrieval of visuospatial memory related to changes of glutamate acid decarboxylase65&67 and glutamate transporter.
Collapse
|
4
|
Differential balance of prefrontal synaptic activity in successful versus unsuccessful cognitive aging. J Neurosci 2013; 33:1344-56. [PMID: 23345211 DOI: 10.1523/jneurosci.3258-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Normal aging is associated with a variable decline in cognitive functions. Among these, executive function, decision-making, and working memory are primarily associated with the prefrontal cortex. Although a number of studies have examined the structural substrates of cognitive decline associated with aging within this cortical area, their functional correlates remain poorly understood. To fill this gap, we aimed to identify functional synaptic substrates of age-associated frontal-dependent deficits in layer 2/3 pyramidal neurons of medial prefrontal cortex of 3-, 9-, and ≥ 23-month-old Fischer 344 rats. We combined, in the same animals, novelty recognition and exploratory behavioral tasks with assessment of structural and functional aspects of prefrontal synaptic properties. We found that subsets of aged animals displayed stereotyped exploratory behavior or memory deficits. Despite an age-dependent dendritic spine loss, patch-clamp recording of synaptic activity revealed an increase in miniature EPSC frequency restricted to aged animals with preserved exploratory behavior. In contrast, we found a strong positive relationship between miniature IPSC frequency and the occurrence of both stereotyped exploratory behavior and novelty-related memory deficits. The enhanced miniature inhibitory tone was accompanied by a deficit in activity-driven inhibition, also suggesting an impaired dynamic range for modulation of inhibition in the aged, cognitively impaired animals. Together, our data indicate that differential changes in the balance of inhibitory to excitatory synaptic tone may underlie distinct trajectories in the evolution of cognitive performance during aging.
Collapse
|
5
|
A metabolic and functional overview of brain aging linked to neurological disorders. Biogerontology 2009; 10:377-413. [DOI: 10.1007/s10522-009-9226-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/02/2009] [Indexed: 12/21/2022]
|
6
|
Wilber AA, Southwood CJ, Sokoloff G, Steinmetz JE, Wellman CL. Neonatal maternal separation alters adult eyeblink conditioning and glucocorticoid receptor expression in the interpositus nucleus of the cerebellum. Dev Neurobiol 2007; 67:1751-64. [PMID: 17659594 DOI: 10.1002/dneu.20549] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neonatal maternal separation alters learning and memory. Glucocorticoids also modulate adult learning and memory, and neonatal maternal separation alters forebrain glucocorticoid receptor (GR) concentrations. We used eyeblink classical conditioning to assess the effect of neonatal maternal separation on associative learning. We assessed delay eyeblink conditioning, GR expression, and total neuron number in the interpositus nucleus, a critical site of plasticity in eyeblink conditioning, in adult rats that had undergone either standard animal facilities rearing, handling for 15 min, or maternal separation for either 15 or 60 min per day on postnatal days 2-14. At 2-3 months of age, delay eyeblink classical conditioning was assessed. Brains were processed for GR immunohistochemistry, and GR expression in the interpositus nucleus was assessed using a computer-based densitometry system. Neuron counts and nuclear volumes were obtained from an alternate series of thionin-stained sections. Maternal separation significantly impaired eyeblink conditioning in male but not female rats. Handling and maternal separation did not significantly affect interpositus neuron number and volume. However, prolonged maternal separation significantly increased GR expression in the posterior interpositus in males, and increases were correlated with eyeblink conditioning. In female rats, maternal separation and handling did not significantly alter interpositus neuron number, volume, or GR protein expression, and GR expression did not correlate with eyeblink conditioning. Thus, neonatal maternal separation produces adult deficits in eyeblink conditioning and alterations in GR expression in its neural substrate in a sex-dependent manner.
Collapse
Affiliation(s)
- Aaron A Wilber
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
7
|
Shi L, Pang H, Linville MC, Bartley AN, Argenta AE, Brunso-Bechtold JK. Maintenance of inhibitory interneurons and boutons in sensorimotor cortex between middle and old age in Fischer 344 X Brown Norway rats. J Chem Neuroanat 2006; 32:46-53. [PMID: 16720092 DOI: 10.1016/j.jchemneu.2006.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 04/04/2006] [Accepted: 04/11/2006] [Indexed: 11/19/2022]
Abstract
Ultrastructurally identified inhibitory synapses in layer II of rat sensorimotor cortex decline between middle and old age [Poe, B.H., Linville, C., Brunso-Bechtold, J., 2001. Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector. J. Comp. Neurol. 439, 65-72]. The current study investigated whether a loss or shrinkage of gamma-aminobutyric acid (GABA)ergic interneurons contribute to that decline. Coronal sections from middle-aged (15-17 months) and old (25-29 months) Fischer 344 X Brown Norway male rats were immunoreacted with antibodies to the GABA synthesizing enzyme glutamic acid decarboxylase (GAD); the calcium-binding protein parvalbumin (PV), or the neuronal marker NeuN. The number of GAD-immunoreactive (IR), PV-IR, and NeuN-IR cells were determined stereologically using the optical disector technique and the cross-sectional areas of GAD-IR cells were measured in layers II/III, IV, V and VI of sensorimotor cortex. Neither the number of GAD-IR or NeuN-IR cells, nor the size of GAD-IR cells, declined significantly between middle and old age. A modest decline in the PV-IR subset of inhibitory interneurons was observed, predominantly due to changes in layers V and VI. Stereological analysis of layer II/III GAD-IR boutons revealed a stability of immunocytochemically identified inhibitory terminals. Taken together, these results indicate a general maintenance of overall GABAergic neurons in sensorimotor cortex between middle and old age and the loss of ultrastructurally identified inhibitory synapses may be due to the decline of a subset of GABAergic terminals.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurobiology & Anatomy, Wake Forest University Health Sciences, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Rosenzweig ES, Barnes CA. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 2003; 69:143-79. [PMID: 12758108 DOI: 10.1016/s0301-0082(02)00126-0] [Citation(s) in RCA: 553] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aging is associated with specific impairments of learning and memory, some of which are similar to those caused by hippocampal damage. Studies of the effects of aging on hippocampal anatomy, physiology, plasticity, and network dynamics may lead to a better understanding of age-related cognitive deficits. Anatomical and electrophysiological studies indicate that the hippocampus of the aged rat sustains a loss of synapses in the dentate gyrus, a loss of functional synapses in area CA1, a decrease in the NMDA-receptor-mediated response at perforant path synapses onto dentate gyrus granule cells, and an alteration of Ca(2+) regulation in area CA1. These changes may contribute to the observed age-related impairments of synaptic plasticity, which include deficits in the induction and maintenance of long-term potentiation (LTP) and lower thresholds for depotentiation and long-term depression (LTD). This shift in the balance of LTP and LTD could, in turn, impair the encoding of memories and enhance the erasure of memories, and therefore contribute to cognitive deficits experienced by many aged mammals. Altered synaptic plasticity may also change the dynamic interactions among cells in hippocampal networks, causing deficits in the storage and retrieval of information about the spatial organization of the environment. Further studies of the aged hippocampus will not only lead to treatments for age-related cognitive impairments, but may also clarify the mechanisms of learning in adult mammals.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Arizona Research Laboratories, Division of Neural Systems, Memory, and Aging, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
9
|
Bassant MH, Poindessous-Jazat F. Sleep-related increase in activity of mesopontine neurons in old rats. Neurobiol Aging 2002; 23:615-24. [PMID: 12009510 DOI: 10.1016/s0197-4580(01)00339-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Relationships between age-related changes in sleep patterns and neuronal activity have received scant attention. In the present study, reticularis pontis oralis (RPO) and ventral tegmental nucleus of Gudden (VTN) neurons were recorded in unanesthetized restrained young (3 months) and old (23 months) Sprague-Dawley rats during wakefulness (W), slow wave sleep (SWS) and rapid eye movement (REM) sleep. All RPO neurons displayed a tonic activity. Firing rates were similar during W in young and old rats. In contrast, firing rates were higher during SWS in old rats (P < 0.001). In both young and old rats, firing rates increased significantly during REM sleep as compared to W and SWS but this increase was markedly greater in old rats. Neurons recorded from VTN displayed bursting activity at theta frequencies during W and REM sleep. The frequency of VTN bursting neurons was higher during REM sleep as compared to W in both groups of age. This difference was significantly more pronounced in old as compared to young rats (P < 0.001). Sleep-related hyperactivity of pontine neurons is discussed in terms of a possible deficit in inhibitory processes in old rats.
Collapse
Affiliation(s)
- M H Bassant
- Neurobiologie de la croissance et de la sénescence, INSERM U 549, 2 ter rue d'Alésia, 75014 Paris, France.
| | | |
Collapse
|
10
|
Poe BH, Linville C, Brunso-Bechtold J. Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector. J Comp Neurol 2001; 439:65-72. [PMID: 11579382 DOI: 10.1002/cne.1335] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The synapse, as the site of functional neural interaction, has been suggested as a possible substrate for age-related impairment of cognitive ability. Using the physical disector probe with tissue prepared for ultrastructural analysis, we find an age-related decline in the numerical density of presumptive inhibitory synapses in layer 2 of the sensorimotor cortex of the Brown Norway x Fisher 344 rat. This age-related decline in presumptive inhibitory synapses is maintained when the density of synapses is combined with the numerical density of neurons quantified from the same anatomical space to arrive at a ratio of synapses per neuron. The numerical density of these synapses declines between middle-aged (18 months) and old (29 months) animals by 36% whereas numerical density of neurons does not change between these ages, resulting in a decline in the ratio of presumptive inhibitory synapses per neuron in this cortical area. This study demonstrates a deficit in the intrinsic inhibitory circuitry of the aging neocortex, which suggests an anatomical substrate for age-related cognitive impairment.
Collapse
Affiliation(s)
- B H Poe
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA.
| | | | | |
Collapse
|
11
|
Hodges H, Veizovic T, Bray N, French SJ, Rashid TP, Chadwick A, Patel S, Gray JA. Conditionally immortal neuroepithelial stem cell grafts reverse age-associated memory impairments in rats. Neuroscience 2001; 101:945-55. [PMID: 11113344 DOI: 10.1016/s0306-4522(00)00408-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to investigate the effects of stem cell grafts on water maze deficits in aged (22-month-old) rats, three groups of aged rats, assigned by pre-training latency scores to unimpaired, impaired control and impaired grafted groups, were compared with young (five-month-old) controls, six to eight weeks after implantation of cells from the conditionally immortal Maudsley hippocampal stem cell line, clone 36 (MHP36 stem cell line), in the cortex, striatum and hippocampus. Grafted rats were substantially superior to their matched impaired aged controls, and learned to find the platform as rapidly as unimpaired aged rats, although young controls were more efficient than all aged groups in several measures of spatial search during training. On the probe trial, however, aged rats with grafts showed significantly better recall of the precise position of the platform than any other group, including young controls, possibly indicating some perseveration. A further comparison found that groups of unimpaired and moderately impaired aged rats showed far less improvement from water maze pre-training to acquisition phases than young controls, indicative of progressive deficits over time. Histological investigation showed that beta-galactosidase-positive MHP36 cells migrated widely from the implantation sites to infiltrate the striatal matrix, all hippocampal fields and areas of the cortex. Grafted cells showed both astrocytic and neuronal morphologies, with cells of pyramidal and granular appearance in appropriate hippocampal strata.Taken together, these results indicate that neuroepithelial stem cell grafts extensively colonize the aged rat brain and substantially reverse progressive cognitive decline associated with ageing.
Collapse
Affiliation(s)
- H Hodges
- Department of Psychology, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, SE5 8AF, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Segovia G, Porras A, Del Arco A, Mora F. Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 2001; 122:1-29. [PMID: 11163621 DOI: 10.1016/s0047-6374(00)00225-6] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of aging on glutamate neurotransmission in the brain is reviewed and evaluated. Glutamate is the neurotransmitter in most of the excitatory synapses and appears to be involved in functions such as motor behaviour, cognition and emotion, which alter with age. However, relatively few studies have been conducted to study the relationship between glutamate and aging of the brain. The studies presented here indicate the existence of a number of changes in the glutamatergic system during the normal process of aging. First, an age-related decrease of glutamate content in tissue from cerebral cortex and hippocampus has been reported, although it may be mainly a consequence of changes in metabolic activity rather than glutamatergic neurotransmission. On the other hand, studies in vitro and in vivo have shown no changes in glutamate release during aging. Since glutamate sampled in most of these studies is the result of a balance between release and uptake processes, the lack of changes in glutamate release may be due to compensatory changes in glutamate uptake. In fact, a reduced glutamate uptake capacity, as well as a loss in the number of high affinity glutamate transporters in glutamatergic terminals of aged rats, have been described. However, the most significant and consistent finding is the decrease in the density of glutamatergic NMDA receptors with age. A new perspective, in which glutamate interacts with other neurotransmitters to conform the substrates of specific circuits of the brain and its relevance to aging, is included in this review. In particular, studies from our laboratory suggest the existence of age-related changes in the interaction between glutamate and other neurotransmitters, e.g. dopamine and GABA, which are regionally specific.
Collapse
Affiliation(s)
- G Segovia
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Maughan PH, Scholten KJ, Schmidt RH. Recovery of water maze performance in aged versus young rats after brain injury with the impact acceleration model. J Neurotrauma 2000; 17:1141-53. [PMID: 11186228 DOI: 10.1089/neu.2000.17.1141] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Clinically, elderly patients have a higher cognitive morbidity from head trauma than young patients. We have modeled injury in aged rats in an effort to elucidate the pathophysiology of this enhanced sensitivity and, in particular, to determine if there are susceptibility differences in forebrain cholinergic innervation in young versus aged rats. Aged (20-23 months) and young (2-3 months) rats were subjected to injury under halothane anesthesia using the Marmarou impact acceleration model. Injury parameters required adjustment downward for the aged rats (323 g at 1.61 m versus 494 g at 2.06 m) to provide equivalent mortality (30% versus 20%) and loss of righting-reflex times (10-12 min average). At 1 week following injury, the aged animals were markedly more impaired in water maze performance than were young rats, and this difference persisted at least up to 5 weeks following injury. The extent of improvement in performance from 1 to 5 weeks was markedly worse for aged animals compared to young animals. Forebrain synaptosomal choline uptake was decreased in aged injured rats by 8-14% at 1, 3, and 5 weeks postinjury, but not decreased in young injured rats. No differences were noted in entorhinal cortex or hippocampal choline uptake. This model effectively demonstrates the markedly increased susceptibility of older animals to head injury and their decreased capacity for recovery. The neurophysiological basis for this difference is presently unknown, but the differences in cognitive dysfunction between young and aged rats appears to be much greater than would seem to be explained by the small differences in forebrain cholinergic innervation.
Collapse
Affiliation(s)
- P H Maughan
- Department of Neurosurgery, University of Utah, Salt Lake City 84132, USA
| | | | | |
Collapse
|
14
|
Zhang YQ, Ji YP, Mei J. Behavioral training-induced c-Fos expression in the rat nucleus basalis of Meynert during aging. Brain Res 2000; 879:156-62. [PMID: 11011017 DOI: 10.1016/s0006-8993(00)02765-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the behavioral training-induced c-Fos expression in the nucleus basalis of Meynert (nbM) in differently aged rats. This study demonstrated that the c-Fos expression in nbM was significantly increased and the peak occurred at 2 h after dark-avoidance training. Although the increase of c-Fos expression was also observed after pseudotraining, the number of Fos-like immunoreactive neurons in pseudotrained rats was significantly less than that in dark-avoidance trained rats at each time-point. This result suggested that c-Fos expression might be involved in learning and memory processes. In addition, all the pseudotraining-, training- and memory arousing-induced c-Fos expression was decreased with increasing age, and the decrease was more notable in trained and memory aroused rats. This suggested that the total number of nbM neurons and/or the sensitivity of nbM neurons to experimental manipulations, especially learning and memory performance, might reduce during aging.
Collapse
Affiliation(s)
- Y Q Zhang
- Department of Physiology, Xi'an Medical University, Xi'an, 710061, Shaanxi, China.
| | | | | |
Collapse
|
15
|
Apartis E, Poindessous-Jazat F, Epelbaum J, Bassant MH. Age-related changes in rhythmically bursting activity in the medial septum of rats. Brain Res 2000; 876:37-47. [PMID: 10973591 DOI: 10.1016/s0006-8993(00)02571-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of aging on the firing of septohippocampal neurons were estimated in unanesthetized, restrained young, old and very old rats (respectively 3, 23 and 30 months). Extracellular recordings were obtained during various states of arousal. The mean spontaneous activity for the overall neuronal population was not modified by aging. In contrast, the percentage of rhythmically bursting neurons was significantly lower in aged rats. During wakefulness, decrease of bursting activity was observed in old and very old rats (P<0.01 and P<0.001) whereas during rapid eye movement sleep it appeared only in the oldest group (P<0.01). The frequency of the bursts decreased in 30-month-old rats during wakefulness while it remained unchanged in both aged groups during rapid eye movement sleep. In old rats, at a time when the cholinergic septal neurons already deteriorated, a third of neurons recorded during rapid eye movement sleep exhibited a pattern of activity composed of long duration bursts with higher intraburst frequency than in young or very old rats. Our study shows that rhythmically bursting septal activity is impaired in aged rats and that the amplitude of the changes depends on advancing age and on states of arousal. Our findings suggest that age-induced loss and atrophy of cholinergic septal neurons contribute to the disorganization of the rhythmic activity but that functional alterations, influenced by the states of arousal, may also be considered.
Collapse
Affiliation(s)
- E Apartis
- Unité de Dynamique des Systèmes Neuroendocriniens, INSERM U 159, 2ter rue d'Alésia, 75014, Paris, France
| | | | | | | |
Collapse
|
16
|
Giorgetti M, Bacciottini L, Giovannini MG, Colivicchi MA, Goldfarb J, Blandina P. Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. Eur J Neurosci 2000; 12:1941-8. [PMID: 10886335 DOI: 10.1046/j.1460-9568.2000.00079.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical perfusion with GABA agonists and antagonists modulates the spontaneous release of cortical acetylcholine and GABA in freely moving rats. Twenty-four hours after implantation of a dialysis fibre, cerebral cortex spontaneously released acetylcholine (3.8 +/- 0.2 pmol/10 min) and GABA (6.6 +/- 0.4 pmol/10 min) at a stable rate. Local administration of GABA (1 or 5 mM) or the GABAA agonist muscimol (25 or 50 microM) had no effect on the spontaneous release of acetylcholine. However, bicuculline (1-25 microM), a GABAA antagonist, added to the dialysis perfusate, elicited a concentration-dependent increase of acetylcholine release to approximately double that of control. This effect of bicuculline (25 microM) was completely prevented by coperfusion with muscimol (50 microM). Local administration of the GABAB receptor agonist baclofen (10 or 50 microM) elicited a concentration-dependent increase in spontaneous acetylcholine release with a maximal increase of about 60%. Intracortical administration of baclofen also decreased the spontaneous release of GABA. The GABAB receptor antagonist CGP 35348 (1 mM), administered alone for 20 min through the dialysis fibre, was without effect on spontaneous acetylcholine release; however, it completely blocked both the baclofen-induced increase in acetylcholine release and the decrease in GABA release. These results suggest that cortically released GABA exerts a tonic influence on cholinergic activity.
Collapse
Affiliation(s)
- M Giorgetti
- Dipartimento di Farmacologia Preclinica e Clinica, Universitá di Firenze, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Fadel J, Sarter M, Bruno JP. Age-related attenuation of stimulated cortical acetylcholine release in basal forebrain-lesioned rats. Neuroscience 1999; 90:793-802. [PMID: 10218780 DOI: 10.1016/s0306-4522(98)00515-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vivo microdialysis was used to measure the effects of partial deafferentation of cortical cholinergic inputs on acetylcholine efflux in young (four to seven months) and aged (24-28 months) male F344/BNNIA rats. Partial deafferentation was produced by bilateral infusions of the immunotoxin 192 immunoglobulin G-saporin (0.56 microg/1.0 microl) or its vehicle solution into the ventral pallidum/substantia innominata region of the basal forebrain. The lesion produced comparable (65%) decreases in basal cortical acetylcholine efflux in young and aged rats. Presentation of a complex environmental stimulus (exposure to darkness/palatable food), in conjunction with the systemic administration of the benzodiazepine receptor weak inverse agonist ZK 93 426, increased cortical acetylcholine efflux in young shams, aged shams and young lesioned rats, but not in aged lesioned rats. Administration of the benzodiazepine receptor partial inverse agonist FG 7142, in the absence of the environmental stimulus, comparably stimulated cortical acetylcholine efflux in young and aged sham rats. FG 7142-induced increases in acetylcholine efflux were attenuated by approximately 50% following partial deafferentation in both young and aged rats. These results suggests that, under certain conditions, ageing potently interacts with the integrity of the cortical cholinergic afferent system. The effects of ageing on cortical cholinergic function may be most potently revealed by experiments assessing age-related limitations in the responsiveness of a partially deafferented cholinergic system to certain behavioral and/or pharmacological stimuli.
Collapse
Affiliation(s)
- J Fadel
- Department of Psychology, The Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
18
|
Herron P, Li Z, Schweitzer JB. Effects of cholinergic depletion on evoked activity in the cortex of young and aged rats. Int J Dev Neurosci 1998; 16:633-43. [PMID: 10198812 DOI: 10.1016/s0736-5748(98)00074-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Degeneration of cholinergic neurons in the basal forebrain is a neural marker of Alzheimer's disease and is associated with perceptual and cognitive deficits. An idea that has attracted scientific scutiny is that aging makes the brain more susceptible to neurodegenerative diseases such as Alzheimer's. The purpose of this study was to compare the effects of the loss of cholinergic input from nucleus basalis of Meynert on evoked activity in the posteromedial barrel subfield of the somatosensory cortex in young (2-2.5 months) and aged (28-30 months) male Fisher hybrid rats. The mean firing rate and receptive fields of single neurons in the posteromedial barrel subfield of the somatosensory cortex were examined after selective lesions of cholinergic neurons in the nucleus basalis of Meynert with an immunotoxin. IgG 192-saporin. Functional properties of single neurons in young animals were affected much more significantly by cholinergic depletion than those in aged animals. In cholinergic-depleted young animals, the mean firing rate of evoked activity and receptive field of posteromedial barrel subfield neurons were significantly decreased. Cholinergic depletion caused a 14% decrease in evoked activity and a 33% increase in receptive field size in young animals. The mean firing rate and receptive field of single neurons were not affected by cholinergic depletion in aged animals. It is concluded that functional properties of cortical sensory neurons in young animals are more vulnerable to cholinergic depletion than are those of aged animals and that cholinergic depletion does not further impact the properties of neurons exposed to the processes of aging.
Collapse
Affiliation(s)
- P Herron
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163, USA.
| | | | | |
Collapse
|
19
|
Abstract
The postnatal limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the rodent is remarkably different from the adult, both in structure and function. The first 2 weeks postnatally are characterized by a 'silent period' during which the developing animal is hyporesponsive to stress (stress hyporesponsive period-SHRP), followed by a new and unique phase of stress responsiveness when the animal fails to swiftly terminate glucocorticoid secretion. In this review, we summarize our work which focuses on the regulatory biology of the components of the LHPA system and the consequences of its disruption on the adaptive responses of the developing organism. We find that the animal during the first 2 weeks of life responds to an intermittent chronic challenge increasing anterior pituitary POMC post-translational events, while the adult increases genomic events. The result for both the mature and the developing animal is the same, an increase in corticosterone (CS) levels. In addition, we have found evidence of impaired rate sensitive feedback in the weanling animal, as well as changes in ACTH clearance. Similar to the young animal emerging from SHRP, maternally deprived pups during the first week of life exhibit a substantial and sustained ACTH and CS response to stress. In the deprived animal these changes are accompanied by decreases in mineralocorticoid receptor gene expression in the hippocampus, suggesting that changes in mineralocorticoid to glucocorticoid receptor ratios may be important in this phenomena. What has become evident from our studies is that mechanisms underlying normal LHPA development are dynamic, age dependent and distinct to the strategies used by the mature organism to cope with stress.
Collapse
Affiliation(s)
- D M Vázquez
- Mental Health Research Institute, University of Michigan, Ann Arbor 48109-0646, USA.
| |
Collapse
|
20
|
Ouanounou A, Carlen PL, El-Beheiry H. Enhanced isoflurane suppression of excitatory synaptic transmission in the aged rat hippocampus. Br J Pharmacol 1998; 124:1075-82. [PMID: 9720776 PMCID: PMC1565481 DOI: 10.1038/sj.bjp.0701911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The effects of the volatile anaesthetic, isoflurane, were investigated on evoked dendritic field excitatory postsynaptic potentials (f.e.p.s.p.) and antidromic and orthodromic population spikes recorded extracellularly in the CA1 cell layer region in the in vitro hippocampal slice taken from young mature (2-3 months) and old (24-27 months) Fisher 344 rats. 2. Isoflurane depressed the f.e.p.s.ps and the orthodromically-evoked population spikes in both old and young hippocampi. However, the magnitude of the anaesthetic-induced depression was greater in slices taken from old rats compared to those taken from young rats during the application of different isoflurane concentrations (0.5-5%). 3. In the presence of the GABA(A) antagonist, bicuculline methiodide (15 microM), isoflurane suppressed the f.e.p.s.ps to the same extent as was observed in the absence of the GABA(A) antagonist. 4. Orthodromically evoked population spikes were suppressed by isoflurane in a manner quantitatively similar to the suppression of the f.e.p.s.ps. However, antidromic population spikes and presynaptic volleys evoked in young and old slices were resistant to anaesthetic action. In addition, paired pulse facilitation ratio of the evoked dendritic f.e.p.s.ps was not affected in both young and old slices during the application of isoflurane. 5. When slices were exposed to low Ca2+/high Mg2+ solution, isoflurane (1 and 3%) depressed the f.e.p.s.ps in aged slices to the same extent as in young slices. 6. The augmented anaesthetic depression of f.e.p.s.ps in old compared to young hippocampi in the absence and presence of bicuculline, and the lack of anaesthetic effects on antidromic population spikes and presynaptic volleys in old and young slices, suggest that the increased sensitivity of anaesthetic actions in old hippocampi is due to age-induced attenuation of synaptic excitation rather than potentiation of synaptic inhibition. Furthermore, elimination of the increased sensitivity of old slices to anaesthetic actions when the slices were perfused with low Ca2+/high Mg2+ medium, which presumably would decrease intracellular [Ca2+], suggests that the enhanced anaesthetic effects in aged neurones might be related to increased intraneuronal [Ca2+] in the synaptic terminal.
Collapse
Affiliation(s)
- A Ouanounou
- Department of Medicine (Neurology), University of Toronto, The Toronto Hospital, Western Division, Ontario, Canada
| | | | | |
Collapse
|
21
|
Memory Changes during Normal Aging. Neurobiol Learn Mem 1998. [DOI: 10.1016/b978-012475655-7/50008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Gulyaeva NV. Biochemical correlates of individual behavior. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1997; 27:462-9. [PMID: 9253004 DOI: 10.1007/bf02462948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This article is a review of data (results of the authors' investigations and data from the literature) concerning neurochemical correlates of individual behavior in rats. The "emotional resonance" test was used for behavioral selection of rats. Individual behavior in this test is related to the differences in free radical-mediated processes, membrane lipid content, nitric oxide synthase activity, and cAMP pattern in cerebral macrostructures. Behavior-related differences may be revealed in intact animals; however, most of them are reactive (induced by significant external factors). These differences depend on age; they may be global, specific for selected brain regions, and/or related to interhemisphere lateralization of biochemical parameters.
Collapse
Affiliation(s)
- N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Abdulla FA, Calaminici M, Gray JA, Stephenson JD, Sinden JD. Behavioural specificity of neocortical grafts of fetal basal forebrain tissue after unilateral lesion of the nucleus basalis with alpha-amino-3-OH-4-isoxozole propionic acid (AMPA). Brain Res Bull 1997; 42:407-14. [PMID: 9128913 DOI: 10.1016/s0361-9230(96)00438-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The previous articles in this series [4,9] have shown that unilateral AMPA lesions of the nucleus basalis magnocellularis (nbm) produced widespread morphological and functional changes to the forebrain cholinergic projection system that could be reversed by transplants of fetal cholinergic tissue. At earlier postgraft time points, the effects of cholinergic grafts were specific to the neocortical region (frontal or parietal cortex) into which the grafts were targeted. Here we report that nbm lesion-induced spatial learning and memory deficits in the Morris water maze were reversed at 6-8 weeks postsurgery only by cholinergic grafts placed in the frontal cortex or frontal and parietal cortices combined. Similar grafts to parietal cortex only and noncholinergic fetal transplants to any cortical site were ineffective. In contrast, using separate groups of animals, deficits in sensorimotor function could be reversed in only one measure (open field turning) by cholinergic transplants targeted to the parietal (somatosensory) cortex or frontal and parietal cortex combined. These behavioural dissociations demonstrate that the frontal cortical cholinergic innervation from the nbm is necessary for effective spatial cognitive performance.
Collapse
Affiliation(s)
- F A Abdulla
- Department of Psychology, Institute of Psychiatry, London, UK
| | | | | | | | | |
Collapse
|
24
|
Ruano D, Araujo F, Bentareha R, Vitorica J. Age-related modifications on the GABAA receptor binding properties from Wistar rat prefrontal cortex. Brain Res 1996; 738:103-8. [PMID: 8949932 DOI: 10.1016/0006-8993(96)00764-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present communication we have investigated the pharmacological properties of the GABAA receptor from adult (3 months old) and aged (24 months old) Wistar rat prefrontal cortex. The prefrontal cortex is implicated in cognitive functions and stress and both processes seem to be altered during aging. These changes could be mediated by modifications in the GABAA receptor properties. Our results indicated the absence of generalized age-related modifications on the pharmacological properties of the GABAA receptor from prefrontal cortical membranes. Saturation experiments using the non-selective benzodiazepine [3H]flunitrazepam revealed that neither the Kd values or the Bmax were modified during aging. Moreover, Cl 218 872 displacement of [3H]flunitrazepam showed no age-related modifications on either the Kis or the relative proportion between the Type I and Type II benzodiazepine binding sites. Therefore, the benzodiazepine binding sites are well preserved in aged prefrontal cortex. On the other hand, saturation experiments using the GABA agonist [3H]muscimol demonstrated in the Bmax of the low affinity [3H]muscimol binding sites in aged rats (4.3 +/- 0.8 pmol/mg protein vs. 2.3 +/- 0.2 pmol/mg protein in adult and aged rats, respectively). However, no age-dependent modifications were observed in the allosteric interaction between GABA and benzodiazepine binding sites. These results demonstrate that the benzodiazepine binding sites and the GABA binding sites of the GABAA receptor complex from rat prefrontal cortical membranes are differentially affected by the aging process.
Collapse
Affiliation(s)
- D Ruano
- Departamento de Bioquímica, Bromatología y Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
25
|
Pelleymounter MA, Cullen MJ, Baker MB, Gollub M, Wellman C. The effects of intrahippocampal BDNF and NGF on spatial learning in aged Long Evans rats. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 29:211-26. [PMID: 8971697 DOI: 10.1007/bf02815003] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spatial learning rate was compared in cognitively impaired aged rats infused with either brain-derived neurotrophic factor (BDNF) or nerve growth factor (NGF). BDNF or NGF was infused into the dorsal hippocampus/third ventricle while animals were being trained on the Morris water maze. Training continued until all rats met a spatial learning criterion. Seven weeks later, they were tested for retention of the task, and sacrificed for assessment of hippocampal high-affinity choline uptake (HACU) or hypothalamic biogenic amine levels. NGF, but not BDNF, improved spatial learning rate in aged rats and increased hippocampal choline uptake weeks after withdrawal of NGF. Although BDNF did not improve spatial learning, it did induce a partial, long-term normalization of the elevated hypothalamic 5-HT levels observed in our aged rats. These data suggest that (1) intrahippocampal/intraventricular infusion of NGF can improve the learning rate of aged, spatial learning-impaired rats, and that this improvement in acquisition could be associated with increased hippocampal cholinergic activity, and (2) that the BDNF-induced normalization of hypothalamic 5-HT levels in aged rats was not sufficient to improve learning rate in aged, spatial learning-impaired rats.
Collapse
|
26
|
Moore H, Stuckman S, Sarter M, Bruno JP. Potassium, but not atropine-stimulated cortical acetylcholine efflux, is reduced in aged rats. Neurobiol Aging 1996; 17:565-71. [PMID: 8832631 DOI: 10.1016/0197-4580(96)00075-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using in vivo microdialysis, cortical acetylcholine (ACh) efflux was measured in freely moving Brown Norway/Fischer 344 F1 rats, aged 4 or 22 months. The effects of local, intracortical perfusion of atropine (1.0 or 100.0 microM) via the dialysis probe were compared to local K+ (100.0 mM) stimulation in the presence of elevated extracellular Ca2+ (2.5 mM). Basal cortical ACh efflux in aged rats was similar to that of young animals. Administration of atropine (1.0 or 100.0 microM) via the cortical dialysis probe substantially increased cortical ACh efflux, but did not differentially stimulate ACh efflux in young and aged rats. In contrast, ACh efflux stimulated locally with K+ and Ca2+ was significantly reduced in aged rats relative to young adults. The implications of the dissociable effects of K(+)-depolarization and muscarinic blockade for local regulation of cortical ACh efflux in aged animals are discussed.
Collapse
Affiliation(s)
- H Moore
- Department of Psychology, Ohio State University, Columbus 43210 USA
| | | | | | | |
Collapse
|
27
|
Ramírez MJ, Cenarruzabeitia E, Lasheras B, Del Río J. Involvement of GABA systems in acetylcholine release induced by 5-HT3 receptor blockade in slices from rat entorhinal cortex. Brain Res 1996; 712:274-80. [PMID: 8814902 DOI: 10.1016/0006-8993(95)01471-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to examine the role of 5-HT3 receptors in spontaneous and K(+)-evoked acetylcholine (ACh) release from rat entorhinal cortex and striatal slices. The 5-HT3 receptor antagonists ondansetron and granisetron (0.01-10 microM) produced a concentration-dependent increase in both spontaneous and K(+)-evoked [3H]ACh release in the two brain regions studied. The release of ACh was Ca(2+)-dependent and tetrodotoxin-sensitive. 5-HT3 receptor agonists, such as 2-methyl-5-HT and 1-phenylbiguanide, at concentrations up to 1 microM, did not show any intrinsic effect on [3H]ACh release in both rat brain regions. However, 2-methyl-5-HT, 1 microM, fully blocked the ondansetron-induced enhancement in both basal and K(+)-evoked ACh release, suggesting that 5-HT, through 5-HT3 receptor activation, tonically inhibits ACh release. The possible implication of interposed inhibitory systems in ACh release after 5-HT3 receptor blockade was subsequently analyzed. While the effect of ondansetron was not modified by haloperidol or naloxone, the GABAA receptor antagonist bicuculline produced a marked potentiation of ACh release in the entorhinal cortex but not in the striatum. The results suggest that in this cortical area 5-HT activates 5-HT3 receptors located on GABAergic neurons which in turn inhibit cholinergic function.
Collapse
Affiliation(s)
- M J Ramírez
- Department of Pharmacology, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|