1
|
Abdul-Wahid A, Huang EHB, Cydzik M, Bolewska-Pedyczak E, Gariépy J. The carcinoembryonic antigen IgV-like N domain plays a critical role in the implantation of metastatic tumor cells. Mol Oncol 2013; 8:337-50. [PMID: 24388361 DOI: 10.1016/j.molonc.2013.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/06/2013] [Indexed: 01/06/2023] Open
Abstract
The human carcinoembryonic antigen (CEA) is a cell adhesion molecule involved in both homotypic and heterotypic interactions. The aberrant overexpression of CEA on adenocarcinoma cells correlates with their increased metastatic potential. Yet, the mechanism(s) by which its adhesive properties can lead to the implantation of circulating tumor cells and expansion of metastatic foci remains to be established. In this study, we demonstrate that the IgV-like N terminal domain of CEA directly participates in the implantation of cancer cells through its homotypic and heterotypic binding properties. Specifically, we determined that the recombinant N terminal domain of CEA directly binds to fibronectin (Fn) with a dissociation constant in the nanomolar range (K(D) 16 ± 3 nM) and interacts with itself (K(D) 100 ± 17 nM) and more tightly to the IgC-like A(3) domain (K(D) 18 ± 3 nM). Disruption of these molecular associations through the addition of antibodies specific to the CEA N or A(3)B(3) domains, or by adding soluble recombinant forms of the CEA N, A(3) or A(3)B(3) domains or a peptide corresponding to residues 108-115 of CEA resulted in the inhibition of CEA-mediated intercellular aggregation and adherence events in vitro. Finally, pretreating CEA-expressing murine colonic carcinoma cells (MC38.CEA) with rCEA N, A3 or A(3)B(3) modules blocked their implantation and the establishment of tumor foci in vivo. Together, these results suggest a new mechanistic insight into how the CEA IgV-like N domain participates in cellular events that can have a macroscopic impact in terms of cancer progression and metastasis.
Collapse
Affiliation(s)
- Aws Abdul-Wahid
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Eric H-B Huang
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5
| | - Marzena Cydzik
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Jean Gariépy
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Orava EW, Abdul-Wahid A, Huang EHB, Mallick AI, Gariépy J. Blocking the attachment of cancer cells in vivo with DNA aptamers displaying anti-adhesive properties against the carcinoembryonic antigen. Mol Oncol 2013; 7:799-811. [PMID: 23656757 DOI: 10.1016/j.molonc.2013.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 01/28/2023] Open
Abstract
The formation of metastatic foci occurs through a series of cellular events, initiated by the attachment and aggregation of cancer cells leading to the establishment of micrometastases. We report the derivation of synthetic DNA aptamers bearing anti-adhesive properties directed at cancer cells expressing the carcinoembryonic antigen (CEA). Two DNA aptamers targeting the homotypic and heterotypic IgV-like binding domain of CEA were shown to block the cell adhesion properties of CEA, while not recognizing other IgV-like domains of CEACAM family members that share strong sequence and structural homologies. More importantly, the pre-treatment of CEA-expressing tumour cells with these aptamers prior to their intraperitoneal implantation resulted in the prevention of peritoneal tumour foci formation. Taken together, these results highlight the effectiveness of targeting the cell adhesion properties of cancer cells with aptamers in preventing tumour implantation.
Collapse
Affiliation(s)
- Erik W Orava
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
3
|
Dallas MR, Liu G, Chen WC, Thomas SN, Wirtz D, Huso DL, Konstantopoulos K. Divergent roles of CD44 and carcinoembryonic antigen in colon cancer metastasis. FASEB J 2012; 26:2648-56. [PMID: 22415308 DOI: 10.1096/fj.12-203786] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After separating from a primary tumor, metastasizing cells enter the circulatory system and interact with host cells before lodging in secondary organs. Previous studies have implicated the surface glycoproteins CD44 and carcinoembryonic antigen (CEA) in adhesion, migration, and invasion, suggesting that they may influence metastatic progression. To elucidate the role of these multifunctional molecules while avoiding the potential drawbacks of ectopic expression or monoclonal antibody treatments, we silenced the expression of CD44 and/or CEA in LS174T colon carcinoma cells and analyzed their ability to metastasize in 2 independent mouse models. Quantitative PCR revealed that CD44 knockdown increased lung and liver metastasis >10-fold, while metastasis was decreased by >50% following CEA knockdown. These findings were corroborated by in vitro experiments assessing the metastatic potential of LS174T cells. Cell migration was decreased as a result of silencing CEA but was enhanced in CD44-knockdown cells. In addition, CD44 silencing promoted homotypic aggregation of LS147T cells, a phenotype that was reversed by additional CEA knockdown. Finally, CD44-knockdown cells exhibited greater mechanical compliance than control cells, a property that correlates with increased metastatic potential. Collectively, these data indicate that CEA, but not CD44, is a viable target for therapeutics aimed at curbing colon carcinoma metastasis.
Collapse
Affiliation(s)
- Matthew R Dallas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Ishibashi Y, Imai S, Inouye Y, Okano T, Taniguchi A. Effects of carbocisteine on sialyl-Lewis x expression in an airway carcinoma cell line stimulated with tumor necrosis factor-alpha. Eur J Pharmacol 2006; 530:223-8. [PMID: 16387297 DOI: 10.1016/j.ejphar.2005.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 11/01/2005] [Accepted: 11/08/2005] [Indexed: 02/02/2023]
Abstract
Carbocisteine is a mucoregulatory drug normalizing sialic acid and fucose contents in mucins through the regulation of glycosyltransferase activities. Tumor necrosis factor (TNF)-alpha-induced overexpression of sialyl-Lewis x epitopes, containing sialic acid and fucose, in mucins were previously reported to be regulated by glycosyltransferase mRNAs expression through phosphatidyl inositol-specific phospholipase C (PI-PLC) signaling pathways [Ishibashi, Y., Inouye, Y., Okano, T., Taniguchi, A., 2005. Regulation of sialyl-Lewis x epitope expression by TNF-alpha and EGF in an airway carcinoma cell line. Glycoconj. J. 22, 53-62]. To investigate the mechanism behind the mucoregulatory action of carbocisteine, the present study evaluated the effects of carbocisteine on TNF-alpha-induced overexpression of sialyl-Lewis x epitopes in NCI-H292 cells. 100 mug/ml of carbocisteine was able to inhibit the TNF-alpha-induced expression of hST3GallV mRNA, FUT3 mRNA, C2/4GnT mRNA and sialyl-Lewis x epitopes as well as the TNF-alpha-induced activity of PI-PLC in NCI-H292 cells. These findings suggest that carbocisteine may normalize the sialyl-Lewis x epitopes expression in mucins through the inhibition of cellular PI-PLC activity in vivo.
Collapse
Affiliation(s)
- Yuji Ishibashi
- Bionic Materials Technology Group, Biomaterials Center, National Institute for Materials Science, 305-0044 Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
5
|
Blumenthal RD, Osorio L, Hayes MK, Horak ID, Hansen HJ, Goldenberg DM. Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft. Cancer Immunol Immunother 2005; 54:315-27. [PMID: 15592930 PMCID: PMC11032782 DOI: 10.1007/s00262-004-0597-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 07/13/2004] [Indexed: 11/28/2022]
Abstract
PURPOSE In addition to its use as a blood marker for many carcinomas, elevated expression of carcinoembryonic antigen (CEA, CD66e, CEACAM5) has been implicated in various biological aspects of neoplasia, especially tumor cell adhesion, metastasis, the blocking of cellular immune mechanisms, and having antiapoptosis functions. However, it is not known if treatment with anti-CEA antibodies can affect tumor metastasis or alter the effects of cytotoxic drugs. METHODS In vitro, human colon cancer cell lines were treated with anti-CEA MAb IgG1, hMN-14 (labetuzumab), to assess direct effects on proliferation, as well as antibody-dependent cellular cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC). In vivo studies were undertaken in nude mice bearing s.c. (local growth) or i.v. (metastatic model) GW-39 and LS174T human colon cancer grafts, to evaluate the MAb alone and in combination with either CPT-11 or 5-fluorouracil (5FU). RESULTS In vitro, labetuzumab did not induce apoptosis, nor did it affect tumor cell proliferation directly or by CDC, but it did inhibit tumor cell proliferation by ADCC. In vivo, labetuzumab did not increase median survival in the GW-39 metastatic model unless the mice were pretreated with GM-CSF to increase their peripheral WBC counts; GM-CSF alone was ineffective. Also, if GW-39 tumors were pretreated with IFN-gamma to up-regulate CEA expression threefold prior to i.v. injection, labetuzumab significantly increased median survival of the mice. When nude mice received labetuzumab with CPT-11 or 5FU, median survival increased significantly as compared to the drug or antibody alone. CONCLUSIONS Labetuzumab, a CEA-specific MAb, induces effector-cell function in vitro against CEA-positive colonic tumor cells, and also inhibits growth of lung metastasis when CEA expression is up-regulated or if peripheral WBCs are increased. The MAb also shows chemosensitizing properties.
Collapse
Affiliation(s)
- Rosalyn D. Blumenthal
- Center for Molecular Medicine and Immunology, Garden State Cancer Center, 520 Belleville Avenue, Belleville, NJ 07109 USA
| | - Lou Osorio
- Center for Molecular Medicine and Immunology, Garden State Cancer Center, 520 Belleville Avenue, Belleville, NJ 07109 USA
| | | | | | | | - David M. Goldenberg
- Center for Molecular Medicine and Immunology, Garden State Cancer Center, 520 Belleville Avenue, Belleville, NJ 07109 USA
| |
Collapse
|
6
|
Ishibashi Y, Inouye Y, Okano T, Taniguchi A. Regulation of sialyl-Lewis x epitope expression by TNF-α and EGF in an airway carcinoma cell line. Glycoconj J 2005; 22:53-62. [PMID: 15864435 DOI: 10.1007/s10719-005-0292-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 11/25/2004] [Accepted: 12/08/2004] [Indexed: 01/07/2023]
Abstract
Sialyl-Lewis x epitopes and MUC5AC protein are known to be overexpressed in mucins secreted by patients suffering from various respiratory diseases. To investigate the mechanisms by which airway inflammatory agents mediate the expression of sialyl-Lewis x epitopes and MUC5AC mucin, we examined the effects of tumor necrosis factor (TNF)-alpha and epidermal growth factor (EGF) in the human lung carcinoma cell line, NCI-H292. Basal expression levels of hST3GalIV, FUT3 and C2/4GnT mRNA, involved in the biosynthesis of sialyl-Lewis x, were higher than those of other glycosyltransferases in NCI-H292 cells. TNF-alpha induced expression of hST3GalIV, FUT3, C2/4GnT and MUC5AC mRNAs in NCI-H292 cells. When cells were pretreated with U73122, a phosphatidylinositol-phospholipase C (PI-PLC) inhibitor, the expression of these glycosyltransferase mRNAs was suppressed. Treating cells with EGF induced the down-regulation of these glycosyltransferase mRNAs and sialyl-Lewis x epitopes, while inducing an increase in expression of MUC5AC mRNA. These EGF-mediated effects on the glycosyltransferase and MUC5AC mRNAs were blocked when cells were first exposed to AG1478, an EGF receptor tyrosine kinase inhibitor. These findings suggest that the expression of sialyl-Lewis x epitopes, which is regulated separately from the expression of MUC5AC protein, may be controlled through pathways such as the EGF receptor tyrosine kinase and PI-PLC signaling cascades in NCI-H292 cells.
Collapse
Affiliation(s)
- Yuji Ishibashi
- Bionic Materials Technology Group, Biomaterials Center, National Institute for Materials Science, Ibaraki, Japan
| | | | | | | |
Collapse
|
7
|
Green SK, Francia G, Isidoro C, Kerbel RS. Antiadhesive antibodies targeting E-cadherin sensitize multicellular tumor spheroids to chemotherapy in vitro. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.149.3.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Multicellular resistance, a subtype of therapeutic resistance manifested in cancer cells grown as three-dimensional multicellular masses, such as spheroids in vitro and solid tumors in vivo, occurs with respect to a variety of anticancer treatment strategies including chemotherapy, ionizing radiation, and even host-mediated antibody-dependent cellular cytotoxicity. Previous studies from our laboratory have shown that multicellular resistance to chemotherapy demonstrated by aggregates of EMT-6 murine mammary carcinoma cells can be overcome by using hyaluronidase to disrupt intercellular adhesive interactions and associated patterns of protein expression. In this proof of principle study, we explored the concept of antiadhesive chemosensitization in the context of human cancer cells by using a monoclonal antibody to disrupt E-cadherin-mediated cell-cell interactions in multicellular spheroids of HT29 human colorectal adenocarcinoma. In so doing, we found that disruption of E-cadherin-mediated adhesion sensitizes multicellular spheroids of HT29 in vitro to treatment with 5-fluorouracil, paclitaxel, vinblastine, and etoposide but not cisplatin. Furthermore, we have found that antibody-mediated blockage of E-cadherin function leads to decreased expression and activity of protein kinase C α and β1, both of which have previously been implicated in chemoresistance exhibited by HT29 cells; however, we have found that the chemosensitization effects of the anti-E-cadherin antibody are independent of its influence on protein kinase C β1.
Collapse
Affiliation(s)
- Shane K. Green
- 1Molecular and Cellular Biology Research, Sunnybrook and Women's College Health Sciences Center and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada and
| | - Giulio Francia
- 1Molecular and Cellular Biology Research, Sunnybrook and Women's College Health Sciences Center and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada and
| | - Ciro Isidoro
- 2Laboratory of Molecular Pathology, Department of Medical Sciences, “Amedeo Avogadro” University, Novara, Italy
| | - Robert S. Kerbel
- 1Molecular and Cellular Biology Research, Sunnybrook and Women's College Health Sciences Center and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada and
| |
Collapse
|
8
|
Nasu T, Fukuda Y, Hashino J, Nagahira K, Kawashima H, Noguchi C, Oikawa S, Nakanishi T. Epitope mapping of monoclonal antibodies against N-domain of carcinoembryonic antigen. Immunol Lett 1999; 67:57-62. [PMID: 10217206 DOI: 10.1016/s0165-2478(98)00144-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Monoclonal antibodies (MoAbs) against N-domain of carcinoembryonic antigen (CEA), C249, K348, K1338, and K1444, that inhibit CEA-mediated cell adhesion, did not crossreact with nonspecific cross-reacting antigen (NCA). To determine amino acid sequences involved in the adhesion, epitopes of the MoAbs were mapped with recombinant NCAs carrying CEA-NCA chimeric N-domain. The data showed that the epitopes of C249, K1338, K1444 are located within the regions 1-32, 1-32, and 33-59 of CEA, respectively, and that two discrete regions 1-32 and 60-93 may be related to the epitope of K348. Comparison of amino acid sequences between CEA and NCA suggested that four residues (21, 27-29), eight residues (21, 27-29, 66, 78, 79, 89), and three residues (43, 44, 46) are important for recognition by C249 (or K1338), K348, and K1444, respectively. These residues seem to participate in the cell adhesion mediated by CEA.
Collapse
Affiliation(s)
- T Nasu
- Suntory Institute for Biomedical Research, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nomoto K, Tomita N, Miyake M, Xhu DB, LoGerfo PR, Weinstein IB. Growth inhibition, enhancement of intercellular adhesion, and increased expression of carcinoembryonic antigen by overexpression of phosphoinositides-specific phospholipase C beta 1 in LS174T human colon adenocarcinoma cell line. Jpn J Cancer Res 1998; 89:1257-66. [PMID: 10081486 PMCID: PMC5921740 DOI: 10.1111/j.1349-7006.1998.tb00522.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
By using a retrovirus-derived system we generated derivatives of the human colon adenocarcinoma cell line LS174T (ATCC CL 188) that stably overexpress a full-length cDNA encoding the beta 1 isoform of bovine phosphoinositides-specific phospholipase C (PI-PLC). This was confirmed by the elevated levels of catalytic activity to release phosphoinositides from phosphatidylinositol (PI-PLC) or phosphatidylinositol-bis-phosphate (PIP2-PLC), and the enhanced expressions of messenger RNA and protein. PI-PLC beta 1 overexpresser clones grew to form cell clumps floating in liquid medium, whereas the pMV7-introduced control clones displayed morphologic characteristics that were very similar to those of the parent LS174T cell line. Three individual PI-PLC beta 1 overexpresser cell lines displayed increased doubling time (18.0 h, 21.5 h, and 23.8 h) when compared with 4 individual pMV7-introduced control cell lines (13.1 h, 10.7 h, 12.9 h, and 9.3 h). Anchorage-independent growth ability in soft agar medium was dramatically suppressed by overexpression of PLC beta 1, and the ability of PLC-overproducer clones to form aggregates when cultured in liquid medium was dramatically enhanced when compared with that of pMV7-introduced control clones. Tumorigenicity of PLC beta 1-overproducers was much weaker than that of vector-transduced control clones. The spontaneous release of carcinoembryonic antigen from PLC beta 1-overproducer clones was much higher than that from pMV7 control clones. The ability of PLC beta 1-overproducer clones to form aggregates during suspension culture was much stronger than that of the control clones. These results provide the first evidence that elevated levels of endogenous PI-PLC beta 1 suppress tumor cell growth, but enhance the ability to form cell aggregates and to release carcinoembryonic antigen, an intercellular adhesion molecule.
Collapse
Affiliation(s)
- K Nomoto
- Columbia-Presbyterian Cancer Center, Columbia University Health Sciences, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
10
|
Mueller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1109-23. [PMID: 9357753 DOI: 10.1152/ajpcell.1997.273.4.c1109] [Citation(s) in RCA: 375] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This article reviews actual advances in the development and application of three-dimensional (3-D) cell culture systems. Recent therapeutically oriented studies include characterization of multicellular-mediated drug resistance, novel ways of quantifying hypoxia, and new approaches to more efficient immunotherapy. Recent progress toward understanding the development of necrosis in tumor spheroids has been made using novel spheroid models. 3-D cultures have been used for studies on molecular mechanisms involved in invasion and metastasis, with a major focus on the role of E-cadherin. Similarly, tumor angiogenesis and the significance of vascular endothelial growth factor have been investigated in a variety of 3-D culture systems. There are many ongoing developments in tissue modeling or remodeling that promise significant progress toward the development of bioartificial liver support and artificial blood. Perhaps one of the most interesting areas of basic research with 3-D cultures is the characterization of embryoid bodies obtained from stable embryonic stem cells. These models have greatly increased the understanding of embryonic development, in particular through the notable exceptional advances in cardiogenesis.
Collapse
Affiliation(s)
- W Mueller-Klieser
- Institute of Physiology and Pathophysiology, Johannes Gutenberg-University Mainz, Germany
| |
Collapse
|
11
|
Abstract
There is a general consensus that cell-cell and cell-matrix interactions determine, at least in part, the behaviour of colon cancer. The biological mediators responsible for these interactions are cell adhesion molecules belonging to several major receptor families called integrins, cadherins, the immunoglobulin superfamily, hyaluronate receptors and mucins. Emerging data indicate that certain patterns of adhesion receptor expression are associated with more aggressive disease. The present review examines the role of each of the receptor families in the development and progression of large bowel cancer.
Collapse
Affiliation(s)
- M V Agrez
- Faculty of Medicine and Health Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|