1
|
Inhibition of nNOS in the paraventricular nucleus of hypothalamus decreases exercise-induced hyperthermia. Brain Res Bull 2021; 177:64-72. [PMID: 34536522 DOI: 10.1016/j.brainresbull.2021.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic control, which integrates thermoregulation centers and sympathetic outflow to thermoeffector organs. PVN neurons express the neuronal isoform of nitric oxide synthase (nNOS) whose expression is locally upregulated by physical exercise. Thus, the aim of the present study was to evaluate the role of nNOS in the PVN in the exercise-induced hyperthermia. Seven days after surgery, male Wistar rats received bilateral intra-PVN microinjections of the selective nNOS inhibitor Nw-Propyl-L-Arginine (NPLA) or vehicle (saline) and were submitted to an acute progressive exercise session on a treadmill until fatigue. Abdominal and tail skin temperature (Tabd and Ttail, respectively) were measured, and the threshold (Hthr; °C) and sensitivity (Hsen) for heat dissipation calculated. Performance variables were also collected. During the progressive exercise protocol, all animals displayed an increase in the Tabd. However, compared to vehicle group, the microinjection of NPLA in the PVN attenuated the exercise-induced hyperthermia. There was no difference in Ttail or Hthr between NPLA and control rats. In contrast, Hsen was increased in the NPLA group compared to vehicle. In addition, heat storage was lower in NPLA-treated animals. Despite the temperature differences, inhibition of nNOS in the PVN did not affect running performance on the treadmill. These results suggest that nitrergic signaling within the PVN, under nNOS activation, drives the increase of body temperature, being necessary for the proper thermal regulatory mechanisms during progressive exercise-induced hyperthermia.
Collapse
|
2
|
Kreier F, Swaab DF. History of hypothalamic research: "The spring of primitive existence". HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:7-43. [PMID: 34225985 DOI: 10.1016/b978-0-12-819975-6.00031-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The central brain region of interest for neuroendocrinology is the hypothalamus, a name coined by Wilhelm His in 1893. Neuroendocrinology is the discipline that studies hormone production by neurons, the sensitivity of neurons for hormones, as well as the dynamic, bidirectional interactions between neurons and endocrine glands. These interactions do not only occur through hormones, but are also partly accomplished by the autonomic nervous system that is regulated by the hypothalamus and that innervates the endocrine glands. A special characteristic of the hypothalamus is that it contains neuroendocrine neurons projecting either to the neurohypophysis or to the portal vessels of the anterior lobe of the pituitary in the median eminence, where they release their neuropeptides or other neuroactive compounds into the bloodstream, which subsequently act as neurohormones. In the 1970s it was found that vasopressin and oxytocin not only are released as hormones in the circulation but that their neurons project to other neurons within and outside the hypothalamus and function as neurotransmitters or neuromodulators that regulate central functions, including the autonomic innervation of all our body organs. Recently magnocellular oxytocin neurons were shown to send not only an axon to the neurohypophysis, but also axon collaterals of the same neuroendocrine neuron to a multitude of brain areas. In this way, the hypothalamus acts as a central integrator for endocrine, autonomic, and higher brain functions. The history of neuroendocrinology is described in this chapter from the descriptions in De humani corporis fabrica by Vesalius (1537) to the present, with a timeline of the scientists and their findings.
Collapse
Affiliation(s)
- Felix Kreier
- Department Pediatrics, OLVG Hospitals, Amsterdam, The Netherlands.
| | - Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Loutit AJ, Vickery RM, Potas JR. Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. J Comp Neurol 2020; 529:187-220. [PMID: 32374027 DOI: 10.1002/cne.24942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
The dorsal column nuclei complex (DCN-complex) includes the dorsal column nuclei (DCN, referring to the gracile and cuneate nuclei collectively), external cuneate, X, and Z nuclei, and the median accessory nucleus. The DCN are organized by both somatotopy and modality, and have a diverse range of afferent inputs and projection targets. The functional organization and connectivity of the DCN implicate them in a variety of sensorimotor functions, beyond their commonly accepted role in processing and transmitting somatosensory information to the thalamus, yet this is largely underappreciated in the literature. To consolidate insights into their sensorimotor functions, this review examines the morphology, organization, and connectivity of the DCN and their associated nuclei. First, we briefly discuss the receptors, afferent fibers, and pathways involved in conveying tactile and proprioceptive information to the DCN. Next, we review the modality and somatotopic arrangements of the remaining constituents of the DCN-complex. Finally, we examine and discuss the functional implications of the myriad of DCN-complex projection targets throughout the diencephalon, midbrain, and hindbrain, in addition to their modulatory inputs from the cortex. The organization and connectivity of the DCN-complex suggest that these nuclei should be considered a complex integration and distribution hub for sensorimotor information.
Collapse
Affiliation(s)
- Alastair J Loutit
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Richard M Vickery
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jason R Potas
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
4
|
Busnardo C, Crestani CC, Scopinho AA, Packard BA, Resstel LBM, Correa FMA, Herman JP. Nitrergic neurotransmission in the paraventricular nucleus of the hypothalamus modulates autonomic, neuroendocrine and behavioral responses to acute restraint stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:16-27. [PMID: 30395879 DOI: 10.1016/j.pnpbp.2018.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023]
Abstract
We investigated the involvement of nitrergic neurotransmission within the paraventricular nucleus of the hypothalamus (PVN) in modulation of local neuronal activation, autonomic and neuroendocrine responses and behavioral consequences of acute restraint stress in rats. Bilateral microinjections of the selective neuronal nitric oxide (NO) synthase (nNOS) inhibitor Nw-Propyl-L-arginine (NPLA) or the NO scavenger carboxy-PTIO into the PVN reduced arterial pressure and heart rate increases, as well as the fall in cutaneous tail temperature induced by restraint stress. PVN injection of either NPLA or carboxy-PTIO also inhibited restraint-induced increases in anxiety-related behaviors in the elevated plus-maze 24 h later. Local microinjection of NPLA or carboxy-PTIO into the PVN reduced the number of c-fos-immunoreactive neurons in the dorsal parvocellular, ventromedial, medial parvocellular and lateral magnocelllular portions of the PVN in animals subjected to restraint stress. However, neither NPLA nor carboxy-PTIO into the PVN affected restraint-induced increases in plasma corticosterone concentration. The present results indicate that PVN nitrergic neurotransmission acting via nNOS activation has a facilitatory influence on autonomic responses to acute restraint and the delayed emotional consequences of restraint stress. Our results also provide evidence of a prominent role of local nitrergic neurotransmission in PVN neuronal activation during stress.
Collapse
Affiliation(s)
- Cristiane Busnardo
- Departments of Pharmacology of the School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | - Carlos C Crestani
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara 14800-903, Brazil
| | - América A Scopinho
- Departments of Pharmacology of the School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Benjamin A Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Leonardo B M Resstel
- Departments of Pharmacology of the School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Fernando M A Correa
- Departments of Pharmacology of the School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Mankivska OP, Vlasenko OV, Mayevskii OE, Vereshchaka IV, Buzyka TV, Maisky VO, Maznychenko AV. Cerebral Structures Responsible for the Formation of Autonomic Reflexes Related to Realization of Motivated Operant Movements by Rats. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Hashikawa Y, Hashikawa K, Falkner AL, Lin D. Ventromedial Hypothalamus and the Generation of Aggression. Front Syst Neurosci 2017; 11:94. [PMID: 29375329 PMCID: PMC5770748 DOI: 10.3389/fnsys.2017.00094] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Aggression is a costly behavior, sometimes with severe consequences including death. Yet aggression is prevalent across animal species ranging from insects to humans, demonstrating its essential role in the survival of individuals and groups. The question of how the brain decides when to generate this costly behavior has intrigued neuroscientists for over a century and has led to the identification of relevant neural substrates. Various lesion and electric stimulation experiments have revealed that the hypothalamus, an ancient structure situated deep in the brain, is essential for expressing aggressive behaviors. More recently, studies using precise circuit manipulation tools have identified a small subnucleus in the medial hypothalamus, the ventrolateral part of the ventromedial hypothalamus (VMHvl), as a key structure for driving both aggression and aggression-seeking behaviors. Here, we provide an updated summary of the evidence that supports a role of the VMHvl in aggressive behaviors. We will consider our recent findings detailing the physiological response properties of populations of VMHvl cells during aggressive behaviors and provide new understanding regarding the role of the VMHvl embedded within the larger whole-brain circuit for social sensation and action.
Collapse
Affiliation(s)
- Yoshiko Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Koichi Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Annegret L Falkner
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York University, New York, NY, United States.,Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
7
|
Lopes-Azevedo S, Busnardo C, Corrêa FMA. Central mechanism of the cardiovascular responses caused by L-proline microinjected into the paraventricular nucleus of the hypothalamus in unanesthetized rats. Brain Res 2016; 1652:43-52. [PMID: 27693394 DOI: 10.1016/j.brainres.2016.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/30/2016] [Accepted: 09/28/2016] [Indexed: 12/01/2022]
Abstract
Previously, we reported that microinjection of L-proline (L-Pro) into the paraventricular nucleus of the hypothalamus (PVN) caused vasopressin-mediated pressor responses in unanesthetized rats. In the present study, we report on the central mechanisms involved in the mediation of the cardiovascular effects caused by the microinjection of L-Pro into the PVN. Microinjection of increasing doses of L-Pro (3-100nmol/100nL) into the PVN caused dose-related pressor and bradycardic responses. No cardiovascular responses were observed after the microinjection of equimolar doses (33nmol/100nL) of its isomer D-Proline (D-Pro) or Mannitol. The PVN pretreatment with either a selective non-NMDA (NBQX) or selective NMDA (LY235959 or DL-AP7) glutamate receptor antagonists blocked the cardiovascular response to L-Pro (33nmol/100nL). The dose-effect curve for the pretreatment with increasing doses of LY235959 was located at the left in relation to the curves for NBQX and DL-AP7, showing that LY235959 is more potent than NBQX, which is more potent than DL-AP7 in inhibiting the cardiovascular response to L-Pro. The cardiovascular response to the microinjection of L-Pro into the PVN was not affected by local pretreatment with Nω-Propyl-l-arginine (N-Propyl), a selective inhibitor of the neuronal nitric oxide synthase (nNOS), suggesting that NO does not mediate the responses to L-Pro in the PVN. In conclusion, the results suggest that ionotropic receptors in the PVN, blocked by both NMDA and non-NMDA receptor antagonists, mediate the pressor response to L-Pro that results from activation of PVN vasopressinergic magnocellular neurons and vasopressin release into the systemic circulation.
Collapse
Affiliation(s)
- Silvana Lopes-Azevedo
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Cristiane Busnardo
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Fernando Morgan Aguiar Corrêa
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
8
|
Tzabazis A, Mechanic J, Miller J, Klukinov M, Pascual C, Manering N, Carson DS, Jacobs A, Qiao Y, Cuellar J, Frey WH, Jacobs D, Angst M, Yeomans DC. Oxytocin receptor: Expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders. Cephalalgia 2016; 36:943-50. [DOI: 10.1177/0333102415618615] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/25/2015] [Indexed: 11/17/2022]
Abstract
Aims Our studies investigated the location of oxytocin receptors in the peripheral trigeminal sensory system and determined their role in trigeminal pain. Methods Oxytocin receptor expression and co-localization with calcitonin gene-related peptide was investigated in rat trigeminal ganglion using immunohistochemistry. Enzyme-linked immunosorbent assay was used to determine the effects of facial electrocutaneous stimulation and adjuvant-induced inflammation of the temporomandibular joint on oxytocin receptor expression in the trigeminal ganglion. Finally, the effects of oxytocin on capsaicin-induced calcitonin gene-related peptide release from dural nociceptors were investigated using isolated rat dura mater. Results Oxytocin receptor immunoreactivity was present in rat trigeminal neurons. The vast majority of oxytocin receptor immunoreactive neurons co-expressed calcitonin gene-related peptide. Both electrocutaneous stimulation and adjuvant-induced inflammation led to a rapid upregulation of oxytocin receptor protein expression in trigeminal ganglion neurons. Oxytocin significantly and dose-dependently decreased capsaicin-induced calcitonin gene-related peptide release from dural nociceptors. Conclusion Oxytocin receptor expression in calcitonin gene-related peptide containing trigeminal ganglion neurons, and the blockade of calcitonin gene-related peptide release from trigeminal dural afferents suggests that activation of these receptors may provide therapeutic benefit in patients with migraine and other primary headache disorders.
Collapse
Affiliation(s)
- Alexander Tzabazis
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Neil Manering
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dean S Carson
- Trigemina, Inc., Moraga, CA, USA
- Department of Psychiatry, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Yanli Qiao
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jason Cuellar
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - William H Frey
- HealthPartners Center for Memory and Aging, Regions Hospital, St. Paul, MN, USA
| | - Daniel Jacobs
- Trigemina, Inc., Moraga, CA, USA
- Department of Plastic Surgery, Kaiser Permanente Medical Center, San Jose, CA, USA
| | - Martin Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Trigemina, Inc., Moraga, CA, USA
| | - David C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Trigemina, Inc., Moraga, CA, USA
| |
Collapse
|
9
|
Saper CB, Loewy AD, Swanson LW. Commentary on: Saper CB, Loewy AD, Swanson LW, Cowan WM. (1976) Direct hypothalamo-autonomic connections. Brain Research 117:305-312. Brain Res 2016; 1645:12-4. [PMID: 26944298 DOI: 10.1016/j.brainres.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
The 1970s saw the introduction of new technologies for tracing axons both anterogradely and retrogradely. These methods allowed us to visualize fine, unmyelinated pathways for the first time, such as the hypothalamic pathways that control the autonomic nervous system. As a result, we were able to identify the paraventricular nucleus and lateral hypothalamus as the key sites that provide direct inputs to the autonomic preganglionic neurons in the medulla and spinal cord. These findings revolutionized our understanding of hypothalamic control of the autonomic nervous system.
Collapse
Affiliation(s)
- Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Arthur D Loewy
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Larry W Swanson
- Department of Biology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
10
|
Busnardo C, Crestani CC, Fassini A, Resstel LBM, Corrêa FMA. NMDA and non-NMDA glutamate receptors in the paraventricular nucleus of the hypothalamus modulate different stages of hemorrhage-evoked cardiovascular responses in rats. Neuroscience 2016; 320:149-59. [PMID: 26861418 DOI: 10.1016/j.neuroscience.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Here we report the involvement of N-Methyl-d-Aspartate (NMDA) and non-NMDA glutamate receptors from the paraventricular nucleus of the hypothalamus (PVN) in the mediation of cardiovascular changes observed during hemorrhage and post-bleeding periods. In addition, the present study provides further evidence of the involvement of circulating vasopressin and cardiac sympathetic activity in cardiovascular responses to hemorrhage. Systemic treatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 μg/kg, i.v.) increased the latency to the onset of hypotension during hemorrhage and slowed post-bleeding recovery of blood pressure. Systemic treatment with the β1-adrenergic receptor antagonist atenolol (1 mg/kg, i.v.) also increased the latency to the onset of hypotension during hemorrhage. Moreover, atenolol reversed the hemorrhage-induced tachycardia into bradycardia. Bilateral microinjection of the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) into the PVN blocked the hypotensive response to hemorrhage and reduced the tachycardia during the post-hemorrhage period. Systemic treatment with dTyr(CH2)5(Me)AVP inhibited the effect of LY235959 on hemorrhage-induced hypotension, without affecting the post-bleeding tachycardia. PVN treatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) reduced the recovery of blood pressure to normal levels in the post-bleeding phase and reduced hemorrhage-induced tachycardia. Combined blockade of both NMDA and non-NMDA glutamate receptors in the PVN completely abolished the hypotensive response in the hemorrhage period and reduced the tachycardiac response in the post-hemorrhage period. These results indicate that local PVN glutamate neurotransmission is involved in the neural pathway mediating cardiovascular responses to hemorrhage, via an integrated control involving autonomic nervous system activity and vasopressin release into the circulation.
Collapse
Affiliation(s)
- C Busnardo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - C C Crestani
- School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
| | - A Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F M A Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Hashikawa K, Hashikawa Y, Falkner A, Lin D. The neural circuits of mating and fighting in male mice. Curr Opin Neurobiol 2016; 38:27-37. [PMID: 26849838 DOI: 10.1016/j.conb.2016.01.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 01/02/2023]
Abstract
Tinbergen proposed that instinctive behaviors can be divided into appetitive and consummatory phases. During mating and aggression, the appetitive phase contains various actions to bring an animal to a social target and the consummatory phase allows stereotyped actions to take place. Here, we summarize recent advances in elucidating the neural circuits underlying the appetitive and consummatory phases of sexual and aggressive behaviors with a focus on male mice. We outline the role of the main olfactory inputs in the initiation of social approach; the engagement of the accessory olfactory system during social investigation, and the role of the hypothalamus and its downstream pathways in orchestrating social behaviors through a suite of motor actions.
Collapse
Affiliation(s)
- Koichi Hashikawa
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | - Yoshiko Hashikawa
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | - Annegret Falkner
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | - Dayu Lin
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
12
|
Commentary on: Efferent connections of the parabrachial nucleus in the rat. C.B. Saper and A.D. Loewy, Brain Research 197:291-317, 1980. Brain Res 2016; 1645:15-7. [PMID: 26790347 DOI: 10.1016/j.brainres.2016.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
By the late 1970׳s, the pathways had been identified from neurons in the nucleus of the solitary tract that control visceral sensory inflow and from the paraventricular nucleus and lateral hypothalamus that directly innervate the autonomic preganglionic neurons, thereby controlling autonomic outflow. However, the connections between the two were not yet clear. This paper identified the parabrachial nucleus as a key intermediary, receiving the bulk of outflow from the nucleus of the solitary tract and distributing it to a set of brainstem and forebrain sites that constituted a central autonomic control network. This work also identified the insular cortex as a key visceral sensory cortical area. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
Collapse
|
13
|
Etude Histopathologique et Neurochimique Suite a des Lesions Unilaterales du Locus Coeruleus Chez le Rat et de la Region Postlocus Chez le Chat (Part 2). Can J Neurol Sci 2015. [DOI: 10.1017/s0317167100119493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryUnilateral lesions involving the area immediately caudal to the locus coeruleus in the cat are associated with slight decreases of noradrenaline (NA) in both sides of the spinal cord without any important change of serotonin (5-HT) concentration in the spinal cord and of N A and 5-HT concentrations in the cerebral cortex of both sides. In other cats with similar lesions involving the same area bilaterally (postlocus lesions) NA is markedly decreased and 5-H T slightly decreased in the hypothalamus and spinal cord but the concentrations of NA and 5-HT of the cerebral cortex, striât urn and thalamus are not conspicuously modified by such postlocus lesions.Unilateral lesions in the area of the loci coeruleus and subcoeruleus in the rat are associated with a marked decrease of noradrenaline (NA) in the ipsilateral cerebral cortex without any important change of NA in the contralateral cortex and in the spinal cord of both sides. Under such conditions the concentrations of serotonin (5-HT) are not significantly modified in the cerebral cortex and spinal cord of both sides. NA and 5-HT concentrations of the cerebral cortex of both sides are unmodified by unilateral lesions of the cerebellar nuclei in the rat. In the latter group of animals slight increases of NA and 5-HT in the spinal cord are significant in comparison to the values obtained in the control animals but not from one side of the spinal cord to the other.These results further support the suggestion that the noradrenergic coeruleo-cortical pathway originating in the loci coeruleus and subcoeruleus ascends on the same side and ends in the ipsilateral cerebral cortex. In the light of the results of this investigation and of those reported in a companion paper (Marchand et ai, 1979) NA fibers reaching the hypothalamus and spinal cord most likely arise from neurons located caudally in respect to the locus coeruleus. Moreover NA fibers ending in the hypothalamus do not ascend in the dorsolateral part of the isthmic area and, therefore, have a different course than the N A fibers reaching the cerebral cortex and thalamus.
Collapse
|
14
|
Man’kovskaya YP, Maisky VA, Vlasenko OV, Maznychenko AV. 7-Nitroindazole enhances c-Fos expression in spinal neurons in rats realizing operant movements. Acta Histochem 2014; 116:1427-33. [PMID: 25306252 DOI: 10.1016/j.acthis.2014.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/12/2014] [Accepted: 09/21/2014] [Indexed: 01/11/2023]
Abstract
The expression of c-Fos and NADPH-diaphorase reactivity (NADPH-dr) in the cervical spinal cord was studied in adult male Wistar rats that realized operant reflexes after inhibition of neuronal nitric oxide synthase. Fos-immunoreactive neurons were visualized immunohistochemically in the C6/C7 spinal segments in the control, realized operant movements animals, and/or 7-nitroindazole (7-NI) injected rats. The mean numbers of immunoreactive interneurons and motoneurons (per section) were significantly greater in the Nucleus proprius (+240%) and motor nuclei (+600%) in rats of the 7-NI-pretreated and operant reflex realized group than in the isolated operant reflex realized group. Our study showed intensive staining of NADPH-dr axon terminals on the somata and initial parts of dendrites of motoneurons in experimental rats when the disodium salt of malic acid was added to the staining solution. Suppression of NO release is associated with potentiation of neuronal activation induced by descending supraspinal and proprioceptive signaling within the spinal cord.
Collapse
|
15
|
Holden JE, Wang E, Moes JR, Wagner M, Maduko A, Jeong Y. Differences in carbachol dose, pain condition, and sex following lateral hypothalamic stimulation. Neuroscience 2014; 270:226-35. [PMID: 24759771 PMCID: PMC6025747 DOI: 10.1016/j.neuroscience.2014.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/21/2023]
Abstract
Lateral hypothalamic (LH) stimulation produces antinociception in female rats in acute, nociceptive pain. Whether this effect occurs in neuropathic pain or whether male-female sex differences exist is unknown. We examined the effect of LH stimulation in male and female rats using conditions of nociceptive and neuropathic pain. Neuropathic groups received chronic constriction injury (CCI) to induce thermal hyperalgesia, a sign of neuropathic pain. Nociceptive rats were naive for CCI, but received the same thermal stimulus following LH stimulation. To demonstrate that CCI ligation produced thermal hyperalgesia, males and females received either ligation or sham surgery for control. Both males and females demonstrated significant thermal hyperalgesia following CCI ligation (p<0.05), but male sham surgery rats also showed a significant left-right difference not present in female sham rats. In the second experiment, rats randomly assigned to CCI or nociceptive groups were given one of three doses of the cholinergic agonist carbachol (125, 250, or 500 nmol) or normal saline for control, microinjected into the left LH. Paw withdrawal from a thermal stimulus (paw withdrawal latency; PWL) was measured every 5 min for 45 min. Linear mixed models analysis showed that males and females in both pain conditions demonstrated significant antinociception, with the 500-nmol dose producing the greatest effect across groups compared with controls for the left paw (p<0.05). Female CCI rats showed equivalent responses to the three doses, while male CCI rats showed more variability for dose. However, nociceptive females responded only to the 500-nmol dose, while nociceptive males responded to all doses (p<0.05). For right PWL, only nociceptive males showed a significant carbachol dose response. These findings are suggestive that LH stimulation produces antinociception in male and female rats in both nociceptive and neuropathic pain, but dose response differences exist based on sex and pain condition.
Collapse
Affiliation(s)
- J E Holden
- The University of Michigan School of Nursing, 400 N. Ingalls Building, Ann Arbor, MI 48109-5482, United States; College of Nursing Science, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| | - E Wang
- University of Illinois at Chicago, College of Applied Health Sciences, 1919 W. Taylor Street, Chicago, IL 60612, United States.
| | - J R Moes
- Calvin College Nursing Department, Science Building Room 245, 1734 Knollcrest Circle SE, Grand Rapids, MI, United States.
| | - M Wagner
- The University of Michigan School of Nursing, 400 N. Ingalls Building, Ann Arbor, MI 48109-5482, United States.
| | - A Maduko
- The University of Michigan School of Nursing, 400 N. Ingalls Building, Ann Arbor, MI 48109-5482, United States.
| | - Y Jeong
- College of Nursing Science, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
16
|
Huma Z, Du Beau A, Brown C, Maxwell DJ. Origin and neurochemical properties of bulbospinal neurons projecting to the rat lumbar spinal cord via the medial longitudinal fasciculus and caudal ventrolateral medulla. Front Neural Circuits 2014; 8:40. [PMID: 24808828 PMCID: PMC4009430 DOI: 10.3389/fncir.2014.00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/04/2014] [Indexed: 12/28/2022] Open
Abstract
Bulbospinal systems (BS) originate from various regions of the brainstem and influence spinal neurons by classical synaptic and modulatory mechanisms. Our aim was to determine the brainstem locations of cells of origin of BS pathways passing through the medial longitudinal fasciculus (MLF) and the caudal ventrolateral medulla (CVLM). We also examined the transmitter content of spinal terminations of the CVLM pathway. Six adult rats received Fluorogold (FG) injections to the right intermediate gray matter of the lumbar cord (L1–L2) and the b-subunit of cholera toxin (CTb) was injected either into the MLF or the right CVLM (3 animals each). Double-labeled cells were identified within brainstem structures with confocal microscopy and mapped onto brainstem diagrams. An additional 3 rats were injected with CTb in the CVLM to label axon terminals in the lumbar spinal cord. Double-labeled cells projecting via the MLF or CVLM were found principally in reticular regions of the medulla and pons but small numbers of cells were also located within the midbrain. CVLM projections to the lumbar cord were almost exclusively ipsilateral and concentrated within the intermediate gray matter. Most (62%) of terminals were immunoreactive for the vesicular glutamate transporter 2 while 23% contained the vesicular GABA transporter. The inhibitory subpopulation was glycinergic, GABAergic or contained both transmitters. The proportions of excitatory and inhibitory axons projecting via the CVLM to the lumbar cord are similar to those projecting via the MLF. Unlike the MLF pathway, CVLM projections are predominantly ipsilateral and concentrated within intermediate gray but do not extend into motor nuclei or laminia VIII. Terminations of the CVLM pathway are located in a region of the gray matter that is rich in premotor interneurons; thus its primary function may be to coordinate activity of premotor networks.
Collapse
Affiliation(s)
- Zilli Huma
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow Glasgow, UK
| | - Amy Du Beau
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow Glasgow, UK
| | - Christina Brown
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow Glasgow, UK
| | - David J Maxwell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow Glasgow, UK
| |
Collapse
|
17
|
Angiotensinergic neurotransmission in the paraventricular nucleus of the hypothalamus modulates the pressor response to acute restraint stress in rats. Neuroscience 2014; 270:12-9. [PMID: 24717718 DOI: 10.1016/j.neuroscience.2014.03.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that the angiotensinergic neurotransmission, specifically in the paraventricular nucleus of the hypothalamus (PVN), is involved in the cardiovascular modulation during acute restraint stress (RS) in rats. The intravenous pretreatment with the angiotensin AT1 receptor antagonist losartan (5mg/kg) inhibited the pressor response to RS, but did not affect the concomitant RS-evoked tachycardiac response. Because similar effects were observed after the PVN pretreatment with CoCl2, and considering the high density of angiotensin receptors reported in the PVN, we studied the effect of the pretreatment of the PVN with either losartan or the angiotensin-converting enzyme (ACE) inhibitor lisinopril on the RS-evoked cardiovascular response. The bilateral microinjection of losartan (0.5 nmol/100 nL) or lisinopril (0.5 nmol/100nL) into the PVN inhibited the RS-related pressor response without affecting the tachycardiac response, suggesting that the PVN angiotensinergic neurotransmission modulates the vascular component of the stress response. Finally, to exclude the possibility that centrally injected drugs could be leaking to the circulation and acting on peripheral vascular receptors, we tested the effect of the intravenous pretreatment with either losartan (0.5 nmol/animal) or lisinopril (0.5 nmol/animal), assuming the hypothesis of a total spread of drugs from the CNS to the peripheral circulation. When animals were pretreated with such doses of either losartan or lisinopril, the cardiovascular RS-evoked response was not affected, thus indicating that even if there were a complete leakage of the drug to the periphery, it would not affect the cardiovascular response to RS. This observation favors the idea that the effect of the intravenous injection of 5mg/kg of losartan on the RS-related cardiovascular response would be explained by an action across the blood-brain barrier, possibly in the PVN. In conclusion, the results suggest that an angiotensinergic neurotransmission in the PVN acting on AT1-receptors modulates the vascular component of the RS-evoked cardiovascular response.
Collapse
|
18
|
Busnardo C, Alves FHF, Crestani CC, Scopinho AA, Resstel LBM, Correa FMA. Paraventricular nucleus of the hypothalamus glutamate neurotransmission modulates autonomic, neuroendocrine and behavioral responses to acute restraint stress in rats. Eur Neuropsychopharmacol 2013. [PMID: 23201369 DOI: 10.1016/j.euroneuro.2012.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, the involvement of paraventricular nucleus of the hypothalamus (PVN) glutamate receptors in the modulation of autonomic (arterial blood pressure, heart rate and tail skin temperature) and neuroendocrine (plasma corticosterone) responses and behavioral consequences evoked by the acute restraint stress in rats was investigated. The bilateral microinjection of the selective non-NMDA glutamate receptor antagonist NBQX (2 nmol/ 100 nL) into the PVN reduced the arterial pressure increase as well as the fall in the tail cutaneous temperature induced by the restraint stress, without affecting the stress-induced tachycardiac response. On the other hand, the pretreatment of the PVN with the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) was able to increase the stress-evoked pressor and tachycardiac response, without affecting the fall in the cutaneous tail temperature. The treatment of the PVN with LY235959 also reduced the increase in plasma corticosterone levels during stress and inhibited the anxiogenic-like effect observed in the elevated plus-maze 24h after the restraint session. The present results show that NMDA and non-NMDA receptors in the PVN differently modulate responses associated to stress. The PVN glutamate neurotransmission, via non-NMDA receptors, has a facilitatory influence on stress-evoked autonomic responses. On the other hand, the present data point to an inhibitory role of PVN NMDA receptors on the cardiovascular responses to stress. Moreover, our findings also indicate an involvement of PVN NMDA glutamate receptors in the mediation of the plasma corticosterone response as well as in the delayed emotional consequences induced by the restraint stress.
Collapse
Affiliation(s)
- Cristiane Busnardo
- Department of Pharmacology of the School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
19
|
Neural Mechanisms That Underlie Angina-Induced Referred Pain in the Trigeminal Nerve Territory: A c-Fos Study in Rats. ISRN PAIN 2013; 2013:671503. [PMID: 27335881 PMCID: PMC4893399 DOI: 10.1155/2013/671503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/08/2013] [Indexed: 11/17/2022]
Abstract
The present study was designed to determine whether the trigeminal sensory nuclear complex (TSNC) is involved in angina-induced referred pain in the trigeminal nerve territory and to identify the peripheral nerve conducting nociceptive signals that are input into the TSNC. Following application of the pain producing substance (PPS) infusion, the number of Fos-labeled cells increased significantly in the subnucleus caudalis (Sp5C) compared with other nuclei in the TSNC. The Fos-labeled cells in the Sp5C disappeared when the left and right cervical vagus nerves were sectioned. Lesion of the C1-C2 spinal segments did not reduce the number of Fos-labeled cells. These results suggest that the nociceptive signals that conduct vagal afferent fibers from the cardiac region are input into the Sp5C and then projected to the thalamus.
Collapse
|
20
|
Busnardo C, Ferreira-Junior NC, Cruz JC, Machado BH, Correa FMA, Resstel LBM. Cardiovascular responses to ATP microinjected into the paraventricular nucleus are mediated by nitric oxide and NMDA glutamate receptors in awake rats. Exp Physiol 2013; 98:1411-21. [PMID: 23733521 DOI: 10.1113/expphysiol.2013.073619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We hypothesize that a local ATP-NO-NMDA glutamate receptor interaction in the paraventricular nucleus (PVN) modulates the baseline mean arterial pressure and heart rate in unanaesthetized rats. The microinjection of α,β-methylene ATP [methyl ATP; 0.06, 0.12 and 1.2 nmol (100 nl)(-1)] into the PVN caused pressor and tachycardiac responses. Cardiovascular responses evoked by methyl ATP [0.12 nmol (100 nl)(-1)] in the PVN were blocked by pretreatment with the ganglion blocker pentolinium (5 mg kg(-1) i.v.). Also, responses to the injection of methyl ATP [0.12 nmol (100 nl)(-1)] into the PVN were reduced by pretreatment with the selective P2 purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid [0.5 nmol (100 nl)(-1)], the neuronal NO synthase inhibitor N(ω)-propyl-l-arginine [0.04 nmol (100 nl)(-1)] or the selective NMDA glutamate receptor antagonist LY235959 [2 nmol (100 nl)(-1)]. In addition, an injection of the NO donor sodium nitroprusside [27 nmol (100 nl)(-1)] into the PVN caused similar cardiovascular responses to those observed after methyl ATP, which were blocked by local pretreatment with LY235959. Therefore, the present results suggest that cardiovascular responses evoked by methyl ATP in the PVN involve a local production of NO, which promotes local glutamate release and activation of NMDA receptors that are probably located in pre-autonomic parvocellular neurons, leading to sympathetic nervous system stimulation.
Collapse
Affiliation(s)
- Cristiane Busnardo
- C. Busnardo: Department of Pharmacology, School of Medicine of Ribeirão Preto, USP, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
21
|
Hancock MB. Cells of origin of hypothalamo-spinal projections in the rat. Neurosci Lett 2012; 3:179-84. [PMID: 19604883 DOI: 10.1016/0304-3940(76)90070-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1976] [Accepted: 09/28/1976] [Indexed: 10/27/2022]
Abstract
The retrograde transport of horseradish peroxidase (HRP) was used to determine the distribution of hypothalamic neurons which send axonal projections to the spinal cord. Labeled cells were observed in the paraventricular nucleus (PV) and in the lateral hypothalamic area following HRP injections into the lower thoracic and upper lumbar spinal cords of rats. In PV, the HRP-labeled cells were located in the parvocellular portion of the nucleus. Hypothalamo-spinal projections are predominantly uncrossed.
Collapse
Affiliation(s)
- M B Hancock
- Department of Anatomy, University of Texas Medical Branch, Galveston, Texas 77550 U.S.A
| |
Collapse
|
22
|
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 2011; 63:772-810. [PMID: 21752874 PMCID: PMC3141878 DOI: 10.1124/pr.110.004135] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Pharmacology, School of Medical Science, University of Adelaide, South Australia, Australia, 5005.
| | | | | | | | | | | |
Collapse
|
23
|
Spinal projections from the presumptive midbrain locomotor region in the mouse. Brain Struct Funct 2011; 217:211-9. [PMID: 21735296 DOI: 10.1007/s00429-011-0337-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
The mesencephalic locomotor region (MLR) plays an important role in the control of locomotion, but there is ongoing debate about the anatomy of its connections with the spinal cord. In this study, we have examined the spinal projections of the mouse precuneiform nucleus (PrCnF), which lies within the boundaries of the presumptive MLR. We used both retrograde and anterograde labeling techniques. Small clusters of labeled neurons were seen in the medial portion of the PrCnF following fluoro-gold injections in the upper cervical spinal cord. Fewer labeled neurons were seen in the PrCnF after upper thoracic injections. Following the injection of anterograde tracer (biotinylated dextran amine) into the PrCnF, labeled fibers were clearly observed in the spinal cord. These fibers traveled in the ventral and lateral funiculi, and terminated mainly in the medial portions of laminae 7, 8, and 9, as well as area 10, with an ipsilateral predominance. Our observations indicate that projections from the PrCnF to the spinal cord may provide an anatomical substrate for the role of the MLR in locomotion.
Collapse
|
24
|
|
25
|
|
26
|
Jones EG. Organization of the Thalamocortical Complex and its Relation to Sensory Processes. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
|
28
|
|
29
|
|
30
|
|
31
|
Projections from the brain to the spinal cord in the mouse. Brain Struct Funct 2010; 215:159-86. [DOI: 10.1007/s00429-010-0281-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/23/2010] [Indexed: 12/20/2022]
|
32
|
Paraventricular nucleus modulates autonomic and neuroendocrine responses to acute restraint stress in rats. Auton Neurosci 2010; 158:51-7. [PMID: 20594922 DOI: 10.1016/j.autneu.2010.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 05/08/2010] [Accepted: 06/06/2010] [Indexed: 11/20/2022]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) has been implicated in several aspects of neuroendocrine and cardiovascular control. The PVN contains parvocellular neurons that release the corticotrophin release hormone (CRH) under stress situations. In addition, this brain area is connected to several limbic structures implicated in defensive behavioral control, as well to forebrain and brainstem structures involved in cardiovascular control. Acute restraint is an unavoidable stress situation that evokes corticosterone release as well as marked autonomic changes, the latter characterized by elevated mean arterial pressure (MAP), intense heart rate (HR) increases and decrease in the tail temperature. We report the effect of PVN inhibition on MAP and HR responses, corticosterone plasma levels and tail temperature response during acute restraint in rats. Bilateral microinjection of the nonspecific synaptic blocker CoCl(2) (1 mM/100 nL) into the PVN reduced the pressor response; it inhibited the increase in plasma corticosterone concentration as well as the fall in tail temperature associated with acute restraint stress. Moreover, bilateral microinjection of CoCl(2) into areas surrounding the PVN did not affect the blood pressure, hormonal and tail vasoconstriction responses to restraint stress. The present results show that a local PVN neurotransmission is involved in the neural pathway that controls autonomic and neuroendocrine responses, which are associated with the exposure to acute restraint stress.
Collapse
|
33
|
Rice CD, Weber SA, Waggoner AL, Jessell ME, Yates BJ. Mapping of neural pathways that influence diaphragm activity and project to the lumbar spinal cord in cats. Exp Brain Res 2010; 203:205-11. [PMID: 20186399 DOI: 10.1007/s00221-010-2197-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/10/2010] [Indexed: 11/26/2022]
Abstract
During breathing, the diaphragm and abdominal muscles contract out of phase. However, during other behaviors (including vomiting, postural adjustments, and locomotion) simultaneous contractions are required of the diaphragm and other muscle groups including abdominal muscles. Recent studies in cats using transneuronal tracing techniques showed that in addition to neurons in the respiratory groups, cells in the inferior and lateral vestibular nuclei (VN) and medial pontomedullary reticular formation (MRF) influence diaphragm activity. The goal of the present study was to determine whether neurons in these regions have collateralized projections to both diaphragm motoneurons and the lumbar spinal cord. For this purpose, the transneuronal tracer rabies virus was injected into the diaphragm, and the monosynaptic retrograde tracer Fluoro-Gold (FG) was injected into the Th13-L1 spinal segments. A large fraction of MRF and VN neurons (median of 72 and 91%, respectively) that were infected by rabies virus were dual-labeled by FG. These data show that many MRF and VN neurons that influence diaphragm activity also have a projection to the lumbar spinal cord and thus likely are involved in coordinating behaviors that require synchronized contractions of the diaphragm and other muscle groups.
Collapse
Affiliation(s)
- C D Rice
- Department of Otolaryngology, University of Pittsburgh, Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
34
|
Kreier F, Swaab DF. Chapter 23: history of neuroendocrinology "the spring of primitive existence". HANDBOOK OF CLINICAL NEUROLOGY 2010; 95:335-360. [PMID: 19892126 DOI: 10.1016/s0072-9752(08)02123-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The history of neuroendocrinology is intimately related to one of the key questions, i.e. how does the brain manage to keep us alive and let our species survive? Neuroendocrinology, part of the answer to this question, is the discipline that studies hormone production by neurons, the sensitivity of neurons to hormones, and the dynamic, bidirectional interactions between neurons and endocrine glands. These interactions do not only occur through hormones, but are partly executed by the autonomic system that is regulated by the hypothalamus and that innervates not only the endocrine glands, but all our organs. The hypothalamus acts as a central integrator for endocrine, autonomic, and higher brain functions. The history of neuroendocrinology begins in 200 AD, with Galenus, who postulated that the brain excreted a residue from animal spirits (pituita), and continues into the last century, when researchers from different disciplines tried to understand how the brain regulates the vital functions of the body. Thanks to massive recent electronic publications of English and German scientific journals from the early 20th century we were able to rediscover fascinating articles, written in Europe before World War II, which showed that some of our most recent "innovative" concepts had in fact already been thought up some 50-100 years earlier. Apparently, World War II and the migration and exile of many researchers interrupted the development of concepts in this field and made rediscovery necessary. Our chapter gives an overview of the developments, both new and newly discovered.
Collapse
Affiliation(s)
- Felix Kreier
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | | |
Collapse
|
35
|
Sugimoto T, Itoh K, Mizuno N. Direct projections from the Ediger-Westphal nucleus to the cerebellum and spinal cord in the cat: an HRP study. Neurosci Lett 2009; 9:17-22. [PMID: 19605187 DOI: 10.1016/0304-3940(78)90041-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1978] [Accepted: 04/17/1978] [Indexed: 10/27/2022]
|
36
|
Berrevoets CE, Kuypers HG. Pericruciate cortical neurons projecting to brain stem reticular formation, dorsal column nuclei and spinal cord in the cat. Neurosci Lett 2009; 1:257-62. [PMID: 19604787 DOI: 10.1016/0304-3940(75)90040-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1975] [Accepted: 10/31/1975] [Indexed: 10/27/2022]
|
37
|
Armand J, Aurenty R. Dual organization of motor corticospinal tract in the cat. Neurosci Lett 2009; 6:1-7. [PMID: 19605020 DOI: 10.1016/0304-3940(77)90056-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/1977] [Revised: 06/27/1977] [Accepted: 06/30/1977] [Indexed: 10/27/2022]
|
38
|
DeSantana JM, Da Silva LFS, De Resende MA, Sluka KA. Transcutaneous electrical nerve stimulation at both high and low frequencies activates ventrolateral periaqueductal grey to decrease mechanical hyperalgesia in arthritic rats. Neuroscience 2009; 163:1233-41. [PMID: 19576962 DOI: 10.1016/j.neuroscience.2009.06.056] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/24/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
Abstract
Transcutaneous electric nerve stimulation (TENS) is widely used for the treatment of pain. TENS produces an opioid-mediated antinociception that utilizes the rostroventromedial medulla (RVM). Similarly, antinociception evoked from the periaqueductal grey (PAG) is opioid-mediated and includes a relay in the RVM. Therefore, we investigated whether the ventrolateral or dorsolateral PAG mediates antinociception produced by TENS in rats. Paw and knee joint mechanical withdrawal thresholds were assessed before and after knee joint inflammation (3% kaolin/carrageenan), and after TENS stimulation (active or sham). Cobalt chloride (CoCl(2); 5 mM) or vehicle was microinjected into the ventrolateral periaqueductal grey (vlPAG) or dorsolateral periaqueductal grey (dlPAG) prior to treatment with TENS. Either high (100 Hz) or low (4 Hz) frequency TENS was then applied to the inflamed knee for 20 min. Active TENS significantly increased withdrawal thresholds of the paw and knee joint in the group microinjected with vehicle when compared to thresholds prior to TENS (P<0.001) or to sham TENS (P<0.001). The increases in withdrawal thresholds normally observed after TENS were prevented by microinjection of CoCl(2) into the vlPAG, but not the dlPAG prior to TENS and were significantly lower than controls treated with TENS (P<0.001). In a separate group of animals, microinjection of CoCl(2) into the vlPAG temporarily reversed the decreased mechanical withdrawal threshold suggesting a role for the vlPAG in the facilitation of joint pain. No significant difference was observed for dlPAG. We hypothesize that the effects of TENS are mediated through the vlPAG that sends projections through the RVM to the spinal cord to produce an opioid-mediated analgesia.
Collapse
Affiliation(s)
- J M DeSantana
- Department of Physical Therapy, Federal University of Sergipe, Cidade Universitária Professor José Aloísio de Campos. Av. Marechal Rondon s/n, Jardim Rosa Else, São Cristóvão/Sergipe, Brazil.
| | | | | | | |
Collapse
|
39
|
Busnardo C, Tavares RF, Corrêa FM. Role of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors in the cardiovascular effects of L-glutamate microinjection into the hypothalamic paraventricular nucleus of unanesthetized rats. J Neurosci Res 2009; 87:2066-77. [DOI: 10.1002/jnr.22028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Reyes S, Mitrofanis J. Patterns of FOS expression in the spinal cord and periaqueductal grey matter of 6OHDA-lesioned rats. Int J Neurosci 2008; 118:1053-79. [PMID: 18576208 DOI: 10.1080/00207450701239210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A less well-known feature of Parkinson disease is that up to 40% of patients experience distinct sensory disturbances, including hyperalgesia and chronic pain. There is a limited understanding of the neural mechanisms that generate these symptoms, however. This study explores the patterns of Fos expression (a well-known marker for changes in cell activity) in the spinal cord and periaqueductal grey matter (PaG), two major sensory (nociceptive) centers, of hemiParkinsonian rats. The medial forebrain bundle (mfb; major tract carrying dopaminergic nigrostriatal axons) was injected with either 6OHDA or saline (controls). A week later, some rats were subjected to mechanical stimulation (pinching) of the hindpaw for 2 h, whereas others received no stimulation. Thereafter, brains were processed using routine tyrosine hydroxylase (marker for dopaminergic cells) or Fos immunocytochemistry. In the PaG, there were many more Fos(+) cells in the 6OHDA-lesioned than in the Control group, in both the stimulation and, in particular, the non-stimulation cases. In the spinal cord, there were also more Fos(+) cells in the 6OHDA-lesioned than in the Control group, but in the stimulation cases only. Overall, the results show distinct changes in Fos expression in the spinal cord and PaG of 6OHDA-lesioned rats, suggesting a substrate for some of the abnormal sensory (nociceptive) circuits that may be evident in parkinsonian cases.
Collapse
Affiliation(s)
- Stephanie Reyes
- Department Anatomy and Histology, University of Sydney, Sydney, Australia
| | | |
Collapse
|
41
|
Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006; 58:87-114. [PMID: 16507884 PMCID: PMC2233605 DOI: 10.1124/pr.58.1.6] [Citation(s) in RCA: 834] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The prototypical xanthine oxidase (XO) inhibitor allopurinol, has been the cornerstone of the clinical management of gout and conditions associated with hyperuricemia for several decades. More recent data indicate that XO also plays an important role in various forms of ischemic and other types of tissue and vascular injuries, inflammatory diseases, and chronic heart failure. Allopurinol and its active metabolite oxypurinol showed considerable promise in the treatment of these conditions both in experimental animals and in small-scale human clinical trials. Although some of the beneficial effects of these compounds may be unrelated to the inhibition of the XO, the encouraging findings rekindled significant interest in the development of additional, novel series of XO inhibitors for various therapeutic indications. Here we present a critical overview of the effects of XO inhibitors in various pathophysiological conditions and also review the various emerging therapeutic strategies offered by this approach.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute on Alcohol Aabuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane MSC 9413, Room 2N-17, Bethesda, Maryland 20892-9413, USA.
| | | | | |
Collapse
|
42
|
Condés-Lara M, Rojas-Piloni G, Martínez-Lorenzana G, Rodríguez-Jiménez J, López Hidalgo M, Freund-Mercier MJ. Paraventricular hypothalamic influences on spinal nociceptive processing. Brain Res 2006; 1081:126-37. [PMID: 16497280 DOI: 10.1016/j.brainres.2006.01.050] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/12/2006] [Accepted: 01/16/2006] [Indexed: 11/29/2022]
Abstract
Oxytocin properties have been studied in different experimental models in order to obtain evidence for its analgesic properties. The analgesic effect of an oxytocinergic pathway descending from the hypothalamus reaching the dorsal horn of the spinal cord has been studied. In anesthetized rats, we recorded single units at the L4-L5 spinal dorsal horn level and stimulated the peripheral receptive field. The evoked responses were classified according to their latencies in A-beta, A-delta, C fibers, and postdischarge. We used these responses to evaluate the effects of electrical stimulation of the paraventricular nucleus (PV) of the hypothalamus. We observed a selective blockage of A-delta and C fibers related to the duration of the train stimulus duration. Similar effects were observed when oxytocin (OT) was applied directly on the spinal cord. The effects of OT and of PV electrical stimulation were reversed in a dose-dependent manner by application of the specific OT antagonist (OTA). These effects were observed in cells with reduced wind-up and cells displaying a clear wind-up response to peripheral stimulation. Superficial and deeper cells in the dorsal spinal cord were involved. The recorded cells were marked by pontamine blue iontophoretic injection after each cell recording, and their histological locations were specified. In order to obtain a behavioral correlation, we used rats with a loose ligature of the sciatic nerve and a chronic intrathecal catheter reaching the L4-L5 spinal cord level. We tested the hyperalgesia and allodynia of these animals using von Frey filaments and the application of acetone to the hind paws. Our results show a significant reduction in the mechanical and thermal test after the administration of 15 microl of 10(-6) M OT. Our electrophysiological, pharmacological, and behavioral results point out a clear OT antialgesic effect. The results are discussed on the basis of a previous work showing an OT blockage of glutamate activation. The paraventricular hypothalamic descending OT pathway is proposed as an interesting mechanism producing analgesia.
Collapse
Affiliation(s)
- Miguel Condés-Lara
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México.
| | | | | | | | | | | |
Collapse
|
43
|
Coote JH. The organisation of cardiovascular neurons in the spinal cord. Rev Physiol Biochem Pharmacol 2005; 110:147-285. [PMID: 3285441 DOI: 10.1007/bfb0027531] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Abstract
Despite the many advances in our understanding of the mechanisms underlying pain processing, pain continues to be a major healthcare problem in the United States. Each day, millions of Americans are affected by both acute and chronic pain conditions, costing in excess of $100 billion for treatment-related costs and lost work productivity. Thus, it is imperative that better treatment strategies be developed. One step toward improving pain management is through increased knowledge of pain physiology. Within the nervous system, there are several pathways that transmit information about pain from the periphery to the brain. There is also a network of pathways that carry modulatory signals from the brain and brainstem that alter the incoming flow of pain information. This article provides a review to the physiology and processing of pain.
Collapse
Affiliation(s)
- Cynthia L Renn
- Department of Organizational Systems and Adult Health, School of Nursing, University of Maryland, Baltimore, Maryland 21201-1579, USA.
| | | |
Collapse
|
45
|
Condés-Lara M, Maie IAS, Dickenson AH. Oxytocin actions on afferent evoked spinal cord neuronal activities in neuropathic but not in normal rats. Brain Res 2005; 1045:124-33. [PMID: 15910770 DOI: 10.1016/j.brainres.2005.03.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 03/04/2005] [Accepted: 03/15/2005] [Indexed: 01/28/2023]
Abstract
A hypothalamic oxytocinergic-descending pathway that reaches the dorsal horn of the spinal cord has been well documented and recently related to states of pain and analgesia. In order to study the action of the neuropeptide oxytocin (OT) on pain-related responses, we compared dorsal horn neuronal responses to electrical and mechanical stimulation of receptive fields in normal and neuropathic rats. Spinal nerve (L5 and L6) ligation (Chung rats) was used to produce experimental neuropathy. Single unit activity was recorded at the L4-L5 level from neurons identified as wide dynamic range presenting latency responses corresponding to A-beta, A-delta, C fibers and also exhibiting post-discharge, and wind-up. We tested intrathecally applied doses of 0.05, 0.1, 1, 2, 5, 10 I.U. of OT. Minor effects on responses to electrical stimulation were present in normal rats. Mechanical responses evoked by von Frey filaments were slightly reduced in normal animals. In neuropathic rats a dose of 1 I.U. produced a significant reduction in C-fibers and post-discharge activities, and doses of 2 I.U. caused a further, pronounced reduction in post-discharge, wind-up, and input values. However, the most marked change was the post-discharge reduction at 10 and 20 min after OT administration. Mechanical responses were significantly reduced in terms of their discharge rate response in neuropathic rats. The contrasting results obtained in normal and neuropathic rats revealed an important distinction between these animals and indicate that plastic changes occur as a consequence of nerve damage. In neuropathic rats, mechanisms involving ascending noxious information to the paraventricular nuclei and descending OT activities could be altered so sensitizing the OT receptors of the spinal dorsal horn cells and could explain our observations. Our results point out an anti-algesic OT effect in neuropathic rats.
Collapse
Affiliation(s)
- Miguel Condés-Lara
- Departamento de Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, México.
| | | | | |
Collapse
|
46
|
Salamon E, Esch T, Stefano GB. Role of amygdala in mediating sexual and emotional behavior via coupled nitric oxide release. Acta Pharmacol Sin 2005; 26:389-95. [PMID: 15780186 DOI: 10.1111/j.1745-7254.2005.00083.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although the anatomical configuration of the amygdala has been studied a great deal, very little research has been conducted on understanding the precise mechanism by which this emotional regulatory center exerts its control on emotional and sexual behavior. By applying research methodology from the Neuroscience Research Institute, State University of New York, College at Old Westbury, we intended to demonstrate that much of the mediated effects of the amygdala, specifically the regulation of the male and female sexual response cycles, as well as related emotional considerations, exert their effects coupled to nitric oxide (NO) release. Furthermore, by using current anatomical and histological data, we demonstrated that amygdalar tissue rich in endocannabinoid and opiate, as well as catecholamine, receptors could exert its neurochemical effects within an NO-mediated paradigm. This paradigm, together with the existence of estrogen and androgen signaling within the amygdala, further lends credence to our theoretical framework. We begin with a brief anatomical and functional review of amygdalar function, and then proceed to demonstrate its relationship with NO.
Collapse
Affiliation(s)
- Elliott Salamon
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, New York 11568, USA.
| | | | | |
Collapse
|
47
|
Abstract
The parasubthalamic nucleus (PSTN) is a differentiation of the lateral hypothalamic area, characterized by a distinct population of neurons expressing beta-preprotachykinin (beta-PPT) mRNA. The axonal projections from the PSTN have been analyzed with the PHAL anterograde tract tracing method in rats. The results indicate that the cell group is distinguished by massive projections to parasympathetic preganglionic neurons in the brainstem (especially in the salivatory nuclei and dorsal motor nucleus of the vagus nerve) and to parts of the parabrachial nucleus and nucleus of the solitary tract that relay viscerosensory and gustatory information. In addition, the PSTN projects to cortical parts of the cerebral hemisphere (infralimbic, agranular insular, postpiriform transition and lateral entorhinal areas, and posterior basolateral amygdalar nucleus)-directly and also indirectly via thalamic feedback loops involving the paraventricular and mediodorsal nuclei-and to nuclear parts of the cerebral hemisphere (central amygdalar nucleus, striatal fundus, rhomboid nucleus of the bed nuclei of the stria terminalis, and substantia innominata). The PSTN is thus positioned to influence directly many cerebral hemisphere and hindbrain components of the central parasympathetic control network that is active, for example, during feeding behavior and cardiovascular regulation.
Collapse
Affiliation(s)
- Marina Goto
- Laboratory of Neurosciences, City University of São Paulo, São Paulo, São Paulo 03071-000, Brazil
| | | |
Collapse
|
48
|
Badoer E, Ng CW, De Matteo R. Glutamatergic input in the PVN is important in renal nerve response to elevations in osmolality. Am J Physiol Renal Physiol 2003; 285:F640-50. [PMID: 12954592 DOI: 10.1152/ajprenal.00372.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevations in plasma osmolality elicit reflex humoral and neural responses. The hypothalamic paraventricular nucleus (PVN) is important in humoral responses. We have investigated whether the PVN contributed to the renal nerve reduction that is normally elicited by increased plasma osmolality in the conscious rabbit. Renal sympathetic nerve activity (RSNA) was monitored after an intravenous infusion of hypertonic saline (1.7 M NaCl, 2 ml/min for 7 min). The responses were examined in animals microinjected with muscimol (10 nmol) into, and outside, the PVN to acutely inhibit neuronal function or with kynurenate (25 nmol) to block glutamate receptors. Compared with vehicle, the maximum reduction in RSNA elicited by hypertonic saline was significantly less with muscimol or kynurenate pretreatment into the PVN. A similar study with kynurenate was also performed in sinoaortically denervated rabbits, and similar effects were observed. The effect was specific to the PVN because microinjections of the drugs outside the PVN had no effect on the response. The findings suggest that excitatory inputs into the PVN may be important in the neural responses elicited by elevations in plasma osmolality.
Collapse
Affiliation(s)
- Emilio Badoer
- School of Medical Sciences, Royal Melbourne Institute of Technology University, PO Box 71, Bundoora 3083, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
49
|
Tsuruoka M, Arai YCP, Nomura H, Matsutani K, Willis WD. Unilateral hindpaw inflammation induces bilateral activation of the locus coeruleus and the nucleus subcoeruleus in the rat. Brain Res Bull 2003; 61:117-23. [PMID: 12831996 DOI: 10.1016/s0361-9230(03)00099-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several lines of evidence have shown that unilateral hindpaw inflammation produces activation of the locus coeruleus (LC) and the nucleus subcoeruleus (SC), resulting in descending modulation of nociceptive processing in the dorsal horn. However, it is unclear if the LC/SC is activated unilaterally or bilaterally following the development of unilateral hindpaw inflammation. The present study was designed to clarify this question. For the induction of unilateral hindpaw inflammation, lambda carrageenan (2.0mg in 0.15ml saline) was injected subcutaneously into the plantar surface of the left hindpaw. Four hours after carrageenan injection, in the LC/SC both ipsilateral and contralateral to the inflamed paw, the number of Fos-positive cells increased significantly in carrageenan-injected rats when compared to vehicle (saline)-injected and untreated control rats. The Fos expression in the LC/SC was equivalent bilaterally in the carrageenan-injected rats, as well as in vehicle-injected and untreated control rats. For nociceptive testing, the paw withdrawal latency, which measures cutaneous hyperalgesia in response to thermal stimuli, was determined in rats receiving a unilateral lesion of the LC/SC either ipsilateral or contralateral to the inflamed paw. Two and a half hours after the induction of inflammation, in both groups of rats with unilateral lesion, paw withdrawal latencies decreased significantly in the LC/SC-lesioned rats. However, there was no significant difference in paw withdrawal latencies between the LC/SC-lesioned rats and sham-operated rats, indicating that unilateral activation of the LC/SC is sufficient for modulating nociceptive processing in the dorsal horn. These results suggest that unilateral hindpaw inflammation induces bilateral activation of the LC/SC.
Collapse
Affiliation(s)
- Masayoshi Tsuruoka
- Department of Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | |
Collapse
|
50
|
Condés-Lara M, González NM, Martínez-Lorenzana G, Delgado OL, Freund-Mercier MJ. Actions of oxytocin and interactions with glutamate on spontaneous and evoked dorsal spinal cord neuronal activities. Brain Res 2003; 976:75-81. [PMID: 12763624 DOI: 10.1016/s0006-8993(03)02690-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among the numerous pain control mechanisms that have been proposed, those acting at the spinal cord have been broadly studied, but little is known about how neuropeptides originating in supraspinal structures may relate to pain and analgesic mechanisms. Oxytocin (OT), in addition to its well known hormonal action, produces neuronal effects in various regions of the central nervous system. Indeed, some parvocellular neurons in the hypothalamic paraventricular nucleus (PVN) are oxytocinergic and project to the caudal part of the brain and the spinal cord. Moreover, the rat spinal cord shows a good overlap between the oxytocinergic hypothalamo-spinal neuron projections and the distribution of OT binding sites. However, the physiological significance of these binding sites is largely unknown. Extracellular unit activity of spinal cord neurons was recorded at the T13-L1 levels in male rats anesthetized with halotane. Somatic stimulation was applied to the inner and outer thigh of the ipsilateral hindpaw, and glutamate (GLU) and OT were locally delivered by pressure using pipettes coupled to recording electrodes. Our results show that spinal cord neurons, mainly located in the dorsal horn, in the intermediolateral cell column (IML) and in the intermediomedial gray matter (IMM), respond to the application of OT (71.5%) with activation (48%) or inhibition (52%). In some cases, opposite OT effects were observed during simultaneous recordings of two cells, suggesting OT activation of an inhibitory interneuron followed by the inhibition of the second recorded neuron. Increases in neuronal firing rate produced by GLU could be blocked by prior OT application. Finally, OT could reduce or partially block the responses to tactile and nociceptive somatic stimulation. We found that spinal cord neurons are sensitive to OT indicating that OT binding sites are functionally active. OT effects suggest the activation of inhibitory interneurons acting on a second order projecting cells to modulate afferent tactile and nociceptive information.
Collapse
Affiliation(s)
- Miguel Condés-Lara
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico.
| | | | | | | | | |
Collapse
|