1
|
Akmese C, Sevinc C, Halim S, Unal G. Differential role of GABAergic and cholinergic ventral pallidal neurons in behavioral despair, conditioned fear memory and active coping. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110760. [PMID: 37031946 DOI: 10.1016/j.pnpbp.2023.110760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The ventral pallidum (VP), a major component of the reward circuit, is well-associated with appetitive behaviors. Recent evidence suggests that this basal forebrain nucleus may have an overarching role in affective processing, including behavioral responses to aversive stimuli. We investigated this by utilizing selective immunotoxin lesions and a series of behavioral tests in adult male Wistar rats. We made bilateral GAT1-Saporin, 192-IgG-Saporin or PBS (vehicle) injections into the VP to respectively eliminate GABAergic and cholinergic neurons, and tested the animals in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), Morris water maze (MWM) and cued fear conditioning. Both GAT1-Saporin and 192-IgG-Saporin injections reduced behavioral despair without altering general locomotor activity. During the acquisition phase of cued fear conditioning, this antidepressant effect was accompanied by reduced freezing and increased darting in the 192-IgG-Saporin group, and increased jumping in the GAT1-Saporin group. In the extinction phase, cholinergic lesions impaired fear memory irrespective of the context, while GABAergic lesions reduced memory durability only during the early phases of extinction in a novel context. In line with this, selective cholinergic, but not GABAergic, lesions impaired spatial memory in the MWM. We observed no consistent effect in anxiety-like behavior assessed in the OFT and EPM. These findings indicate that both the GABAergic and cholinergic neuronal groups of the VP may contribute to emotion regulation through modulation of behavioral despair and acquired fear by suppressing active coping and promoting species-specific passive behaviors.
Collapse
Affiliation(s)
- Cemal Akmese
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Cem Sevinc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Sahar Halim
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
2
|
Kupchik YM, Prasad AA. Ventral pallidum cellular and pathway specificity in drug seeking. Neurosci Biobehav Rev 2021; 131:373-386. [PMID: 34562544 DOI: 10.1016/j.neubiorev.2021.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/12/2023]
Abstract
The ventral pallidum (VP) is central to the reinforcing effects across a variety of drugs and relapse to drug seeking. Emerging studies from animal models of reinstatement reveal a complex neurobiology of the VP that contributes to different aspects of relapse to drug seeking. This review builds on classical understanding of the VP as part of the final common pathway of relapse but also discusses the properties of the VP as an independent structure. These include VP neural anatomical subregions, cellular heterogeneity, circuitry, neurotransmitters and peptides. Collectively, this review provides a current understanding of the VP from molecular to circuit level architecture that contributes to both the appetitive and aversive symptoms of drug addiction. We show the complex neurobiology of the VP in drug seeking, emphasizing its critical role in addiction, and review strategic approaches that target the VP to reduce relapse rates.
Collapse
Affiliation(s)
- Yonatan M Kupchik
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem. P.O. Box 12271, Jerusalem, 9112102, Israel
| | - Asheeta A Prasad
- School of Psychology, UNSW Sydney, NSW, 2052, Australia; Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Prasad AA, McNally GP. The ventral pallidum and relapse in alcohol seeking. Br J Pharmacol 2020; 177:3855-3864. [PMID: 32557550 DOI: 10.1111/bph.15160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Alcohol-use disorders are chronically relapsing conditions characterized by cycles of use, abstinence and relapse. The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to alcohol seeking and a key target of pharmacotherapies for relapse prevention. There has been a significant increase in our understanding of the molecular, anatomical, pharmacological and functional properties of the ventral pallidum, laying foundations for a new understanding of its role in relapse to alcohol seeking and motivation. Here we review these advances, placing special emphasis on how advances in understanding in the cellular and circuit architectures of ventral pallidum contributes to the relapse to alcohol seeking. We show how this knowledge improves mechanistic understanding of current relapse prevention pharmacotherapies, how it may be used to tailor these against different forms of relapse and how it may help provide insights into the mental health problems frequently co-morbid with alcohol-use disorders.
Collapse
|
4
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
5
|
Abstract
The neural mechanisms of sleep, a fundamental biological behavior from invertebrates to humans, have been a long-standing mystery and present an enormous challenge. Gradually, perspectives on the neurobiology of sleep have been more various with the technical innovations over the recent decades, and studies have now identified many specific neural circuits that selectively regulate the initiation and maintenance of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. The cholinergic system in basal forebrain (BF) that fire maximally during waking and REM sleep is one of the key neuromodulation systems related to waking and REM sleep. Here we outline the recent progress of the BF cholinergic system in sleep-wake cycle. The intricate local connectivity and multiple projections to other cortical and subcortical regions of the BF cholinergic system elaborately presented here form a conceptual framework for understanding the coordinating effects with the dissecting regions. This framework also provides evidences regarding the relationships between the general anesthesia and wakefulness/sleep cycle focusing on the neural circuitry of unconsciousness induced by anesthetic drugs.
Collapse
|
6
|
Richard JM, Stout N, Acs D, Janak PH. Ventral pallidal encoding of reward-seeking behavior depends on the underlying associative structure. eLife 2018; 7:33107. [PMID: 29565248 PMCID: PMC5864276 DOI: 10.7554/elife.33107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Despite its being historically conceptualized as a motor expression site, emerging evidence suggests the ventral pallidum (VP) plays a more active role in integrating information to generate motivation. Here, we investigated whether rat VP cue responses would encode and contribute similarly to the vigor of reward-seeking behaviors trained under Pavlovian versus instrumental contingencies, when these behavioral responses consist of superficially similar locomotor response patterns but may reflect distinct underlying decision-making processes. We find that cue-elicited activity in many VP neurons predicts the latency of instrumental reward seeking, but not of Pavlovian response latency. Further, disruption of VP signaling increases the latency of instrumental but not Pavlovian reward seeking. This suggests that VP encoding of and contributions to response vigor are specific to the ability of incentive cues to invigorate reward-seeking behaviors upon which reward delivery is contingent. Sounds or other cues associated with receiving a reward can have a powerful effect on an individual’s behavior or emotions. For example, the sound of an ice cream truck might cause salivation and motivate an individual to stand in a long line. Cues may prompt specific actions necessary to receive a reward, for example, approaching the ice cream truck and paying to get an ice cream. This is called instrumental conditioning. Some cues predict reward delivery, without requiring a specific action. This is called Pavlovian conditioning. Pavlovian cues can still prompt actions, such as approaching the truck, even though the action is not required. But exactly what happens in the brain to generate these actions during the two types of learning, is unclear. Learning more about these reward-driven brain mechanisms might help scientists to develop better treatments for people with addiction or other conditions that involve compulsive reward-seeking behavior. Currently, scientists do not know enough about how the brain triggers this kind of behavior or how these processes lead to relapse in individuals who have been abstinent. Basic studies on the brain mechanisms that trigger reward-seeking behavior are needed. Now, Richard et al. show that a greater activity in neurons, or brain cells, in a part of the brain called the ventral pallidum predicts a faster response to a reward cue. In the experiments, some rats were trained to approach a certain location when they heard a particular sound in order to receive sugar water, a form of instrumental conditioning. Another group of rats underwent Pavlovian training and learned to expect sugar water every time they heard sound even if they did nothing. Both groups learned to approach the sugar water location when they heard the cue, despite the different training requirements. Richard et al. measured the activity of neurons in the ventral pallidum when the rats in the two groups heard the reward-associated sound. The experiments showed that the amount of activity in the brain cells in this area predicted whether a rat would approach the sugar-water delivery area and how quickly they would approach the reward after hearing the cue. The predictions were most reliable for rats that had to do something to get the sugar water. When Richard et al. reduced the activity in these cells they found the rats took longer to approach the reward source, but only when this action was required to receive sugar water. The experiments show that the ventral pallidum may provide the motivation to undertake reward-seeking behavior.
Collapse
Affiliation(s)
- Jocelyn M Richard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Nakura Stout
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Deanna Acs
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States.,Solomon H Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
7
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
8
|
Chavez C, Zaborszky L. Basal Forebrain Cholinergic-Auditory Cortical Network: Primary Versus Nonprimary Auditory Cortical Areas. Cereb Cortex 2017; 27:2335-2347. [PMID: 27073229 DOI: 10.1093/cercor/bhw091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acetylcholine (ACh) release in the cortex is critical for learning, memory, attention, and plasticity. Here, we explore the cholinergic and noncholinergic projections from the basal forebrain (BF) to the auditory cortex using classical retrograde and monosynaptic viral tracers deposited in electrophysiologically identified regions of the auditory cortex. Cholinergic input to both primary (A1) and nonprimary auditory cortical (belt) areas originates in a restricted area in the caudal BF within the globus pallidus (GP) and in the dorsal part of the substantia innominata (SId). On the other hand, we found significant differences in the proportions of cholinergic and noncholinergic projection neurons to primary and nonprimary auditory areas. Inputs to A1 projecting cholinergic neurons were restricted to the GP, caudate-putamen, and the medial part of the medial geniculate body, including the posterior intralaminar thalamic group. In addition to these areas, afferents to belt-projecting cholinergic neurons originated from broader areas, including the ventral secondary auditory cortex, insular cortex, secondary somatosensory cortex, and the central amygdaloid nucleus. These findings support a specific BF projection pattern to auditory cortical areas. Additionally, these findings point to potential functional differences in how ACh release may be regulated in the A1 and auditory belt areas.
Collapse
Affiliation(s)
- Candice Chavez
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Richard JM, Ambroggi F, Janak PH, Fields HL. Ventral Pallidum Neurons Encode Incentive Value and Promote Cue-Elicited Instrumental Actions. Neuron 2016; 90:1165-1173. [PMID: 27238868 DOI: 10.1016/j.neuron.2016.04.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023]
Abstract
The ventral pallidum (VP) is posited to contribute to reward seeking by conveying upstream signals from the nucleus accumbens (NAc). Yet, very little is known about how VP neuron responses contribute to behavioral responses to incentive cues. Here, we recorded activity of VP neurons in a cue-driven reward-seeking task previously shown to require neural activity in the NAc. We find that VP neurons encode both learned cue value and subsequent reward seeking and that activity in VP neurons is required for robust cue-elicited reward seeking. Surprisingly, the onset of VP neuron responses occurs at a shorter latency than cue-elicited responses in NAc neurons. This suggests that this VP encoding is not a passive response to signals generated in the NAc and that VP neurons integrate sensory and motivation-related information received directly from other mesocorticolimbic inputs.
Collapse
Affiliation(s)
- Jocelyn M Richard
- Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Frederic Ambroggi
- Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, CA 94158, USA; Aix-Marseille Université, CNRS, LNC UMR 7291, 13331 Marseille, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Howard L Fields
- Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 2015; 130:29-70. [PMID: 25857550 PMCID: PMC4687907 DOI: 10.1016/j.pneurobio.2015.03.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 03/19/2015] [Accepted: 03/29/2015] [Indexed: 12/17/2022]
Abstract
The ventral pallidum (VP) plays a critical role in the processing and execution of motivated behaviors. Yet this brain region is often overlooked in published discussions of the neurobiology of mental health (e.g., addiction, depression). This contributes to a gap in understanding the neurobiological mechanisms of psychiatric disorders. This review is presented to help bridge the gap by providing a resource for current knowledge of VP anatomy, projection patterns and subregional circuits, and how this organization relates to the function of VP neurons and ultimately behavior. For example, ventromedial (VPvm) and dorsolateral (VPdl) VP subregions receive projections from nucleus accumbens shell and core, respectively. Inhibitory GABAergic neurons of the VPvm project to mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area, and this VP subregion helps discriminate the appropriate conditions to acquire natural rewards or drugs of abuse, consume preferred foods, and perform working memory tasks. GABAergic neurons of the VPdl project to subthalamic nucleus and substantia nigra pars reticulata, and this VP subregion is modulated by, and is necessary for, drug-seeking behavior. Additional circuits arise from nonGABAergic neuronal phenotypes that are likely to excite rather than inhibit their targets. These subregional and neuronal phenotypic circuits place the VP in a unique position to process motivationally relevant stimuli and coherent adaptive behaviors.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, New Brunswick, NJ 08854, United States.
| | - Roberto I Melendez
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, United States.
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, United States.
| | - T Celeste Napier
- Departments of Pharmacology and Psychiatry, Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
11
|
Perry CJ, McNally GP. A role for the ventral pallidum in context-induced and primed reinstatement of alcohol seeking. Eur J Neurosci 2013; 38:2762-73. [DOI: 10.1111/ejn.12283] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Christina J. Perry
- School of Psychology; University of New South Wales; Sydney; NSW; 2052; Australia
| | - Gavan P. McNally
- School of Psychology; University of New South Wales; Sydney; NSW; 2052; Australia
| |
Collapse
|
12
|
Demeter E, Sarter M. Leveraging the cortical cholinergic system to enhance attention. Neuropharmacology 2013; 64:294-304. [PMID: 22796110 PMCID: PMC3445745 DOI: 10.1016/j.neuropharm.2012.06.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/18/2012] [Accepted: 06/28/2012] [Indexed: 12/26/2022]
Abstract
Attentional impairments are found in a range of neurodegenerative and neuropsychiatric disorders. However, the development of procognitive enhancers to alleviate these impairments has been hindered by a lack of comprehensive hypotheses regarding the circuitry mediating the targeted attentional functions. Here we discuss the role of the cortical cholinergic system in mediating cue detection and attentional control and propose two target mechanisms for cognition enhancers: stimulation of prefrontal α4β2* nicotinic acetylcholine receptors (nAChR) for the enhancement of cue detection and augmentation of tonic acetylcholine levels for the enhancement of attentional control. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Elise Demeter
- Psychiatry Department, 4250 Plymouth Road, University of Michigan, Ann Arbor, MI 48109-5765, USA.
| | | |
Collapse
|
13
|
McDonald AJ, Mascagni F, Zaric V. Subpopulations of somatostatin-immunoreactive non-pyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex. Front Neural Circuits 2012; 6:46. [PMID: 22837739 PMCID: PMC3402756 DOI: 10.3389/fncir.2012.00046] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/06/2012] [Indexed: 11/13/2022] Open
Abstract
The hippocampus and amygdala are key structures of the limbic system whose connections include reciprocal interactions with the basal forebrain (BF). The hippocampus receives both cholinergic and GABAergic afferents from the medial septal area of the BF. Hippocampal projections back to the medial septal area arise from non-pyramidal GABAergic neurons that express somatostatin (SOM), calbindin (CB), and neuropeptide Y (NPY). Recent experiments in our lab have demonstrated that the basolateral amygdala, like the hippocampus, receives both cholinergic and GABAergic afferents from the BF. These projections arise from neurons in the substantia innominata (SI) and ventral pallidum (VP). It remained to be determined, however, whether the amygdala has projections back to the BF that arise from GABAergic non-pyramidal neurons. This question was investigated in the present study by combining Fluorogold (FG) retrograde tract tracing with immunohistochemistry for GABAergic non-pyramidal cell markers, including SOM, CB, NPY, parvalbumin, calretinin, and glutamic acid decarboxylase (GAD). FG injections into the BF produced a diffuse array of retrogradely labeled neurons in many nuclei of the amygdala. The great majority of amygdalar FG+ neurons did not express non-pyramidal cell markers. However, a subpopulation of non-pyramidal SOM+ neurons, termed “long-range non-pyramidal neurons” (LRNP neurons), in the external capsule, basolateral amygdala, and cortical and medial amygdalar nuclei were FG+. About one-third of the SOM+ LRNP neurons were CB+ or NPY+, and one-half were GAD+. It remains to be determined if these inhibitory amygdalar projections to the BF, like those from the hippocampus, are important for regulating synchronous oscillations in the amygdalar-BF network.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine Columbia, SC, USA
| | | | | |
Collapse
|
14
|
Hawryluk JM, Ferrari LL, Keating SA, Arrigoni E. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons. J Neurophysiol 2012; 107:2769-81. [PMID: 22357797 PMCID: PMC3362278 DOI: 10.1152/jn.00528.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/15/2012] [Indexed: 01/03/2023] Open
Abstract
Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A(1) receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated.
Collapse
Affiliation(s)
- J M Hawryluk
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
15
|
Sarter M, Paolone G. Deficits in attentional control: cholinergic mechanisms and circuitry-based treatment approaches. Behav Neurosci 2011; 125:825-35. [PMID: 22122146 PMCID: PMC3235713 DOI: 10.1037/a0026227] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cognitive control of attention involves maintaining task rules in working memory (or "online"), monitoring reward and error rates, filtering distractors, and suppressing prepotent, and competitive responses. Weak attentional control increases distractibility and causes attentional lapses, impulsivity, and attentional fatigue. Levels of tonic cholinergic activity (changes over tens of seconds or minutes) modulate cortical circuitry as a function of the demands on cognitive control. Increased cholinergic modulation enhances the representation of cues, by augmenting cue-evoked activity in thalamic glutamatergic afferents, thereby increasing the rate of detection. Such cholinergic modulation is mediated primarily via α4β2* nicotinic acetylcholine receptors. Animal experiments and clinical trials in adult patients with ADHD indicate that attentional symptoms and disorders may benefit from drugs that stimulate this receptor. Tonic cholinergic modulation of cue-evoked glutamatergic transients in prefrontal regions is an essential component of the brain's executive circuitry. This circuitry model guides the development of treatments of deficits in attentional control.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48103-8862, USA.
| | | |
Collapse
|
16
|
Hur EE, Edwards RH, Rommer E, Zaborszky L. Vesicular glutamate transporter 1 and vesicular glutamate transporter 2 synapses on cholinergic neurons in the sublenticular gray of the rat basal forebrain: a double-label electron microscopic study. Neuroscience 2009; 164:1721-31. [PMID: 19778580 DOI: 10.1016/j.neuroscience.2009.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The basal forebrain (BF) comprises morphologically and functionally heterogeneous cell populations, including cholinergic and non-cholinergic corticopetal neurons that are implicated in sleep-wake modulation, learning, memory and attention. Several studies suggest that glutamate may be among inputs affecting cholinergic corticopetal neurons but such inputs have not been demonstrated unequivocally. We examined glutamatergic axon terminals in the sublenticular substantia innominata in rats using double-immunolabeling for vesicular glutamate transporters (Vglut1 and Vglut2) and choline acetyltransferase (ChAT) at the electron microscopic level. In a total surface area of 30,000 microm(2), we classified the pre- and postsynaptic elements of 813 synaptic boutons. Vglut1 and Vglut2 boutons synapsed with cholinergic dendrites, and occasionally Vglut2 axon terminals also synapsed with cholinergic cell bodies. Vglut1 terminals formed synapses with unlabeled dendrites and spines with equal frequency, while Vglut2 boutons were mainly in synaptic contact with unlabeled dendritic shafts and occasionally with unlabeled spines. In general, Vglut1 boutons contacted more distal dendritic compartments than Vglut2 boutons. About 21% of all synaptic boutons (n=347) detected in tissue that was stained for Vglut1 and ChAT were positive for Vglut1, and 14% of the Vglut1 synapses were made on cholinergic profiles. From separate cases stained for Vglut2 and ChAT, 35% of all synaptic boutons (n=466) were positive for Vglut2, and 23% of the Vglut2 synapses were made on cholinergic profiles. On average, Vglut1 boutons were significantly smaller than Vglut2 synaptic boutons. The Vglut2 boutons that synapsed cholinergic profiles tended to be larger than the Vglut2 boutons that contacted unlabeled, non-cholinergic postsynaptic profiles. The presence of two different subtypes of Vgluts, the size differences of the Vglut synaptic boutons, and their preference for different postsynaptic targets suggest that the action of glutamate on BF neurons is complex and may arise from multiple afferent sources.
Collapse
Affiliation(s)
- E E Hur
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | | | | | | |
Collapse
|
17
|
Mascagni F, McDonald AJ. Parvalbumin-immunoreactive neurons and GABAergic neurons of the basal forebrain project to the rat basolateral amygdala. Neuroscience 2009; 160:805-12. [PMID: 19285116 PMCID: PMC2676771 DOI: 10.1016/j.neuroscience.2009.02.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/22/2009] [Accepted: 02/25/2009] [Indexed: 11/20/2022]
Abstract
The basal forebrain (BF) contains a diffuse array of cholinergic and non-cholinergic neurons that project to the cerebral cortex and basolateral nuclear complex of the amygdala (BLC). Previous studies have shown that the GABAergic subpopulation of non-cholinergic corticopetal BF neurons selectively innervates cortical interneurons. Although several investigations in both rodents and primates have indicated that some BF neurons projecting to the BLC are non-cholinergic, there have been no studies that have attempted to identify the neurochemical phenotype(s) of these neurons. The present study combined Fluorogold retrograde tract tracing with immunohistochemistry for two markers of BF GABAergic neurons, parvalbumin (PV) or glutamic acid decarboxylase (GAD), to determine if a subpopulation of BF GABAergic cells projects to the BLC. Injections of Fluorogold confined to the rat BLC, and centered in the basolateral nucleus, produced extensive retrograde labeling in the ventral pallidum and substantia innominata regions of the BF. Although the great majority of retrogradely labeled neurons were not double-labeled, about 10% of these neurons, located mainly along the ventral aspects of the fundus striati and globus pallidus, exhibited immunoreactivity for PV or GAD. The results of this investigation contradict the long-held belief that there is no extra-amygdalar source of GABAergic inputs to the BLC, and indicate that the cortex-like BLC, in addition to the cortex proper, receives inhibitory inputs from the basal forebrain.
Collapse
Affiliation(s)
- Franco Mascagni
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Alexander J. McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208
| |
Collapse
|
18
|
Lennart Heimer: in memoriam (1930–2007). Brain Struct Funct 2008; 213:3-10. [DOI: 10.1007/s00429-008-0194-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 12/22/2022]
|
19
|
Turner MS, Gray TS, Mickiewicz AL, Napier TC. Fos expression following activation of the ventral pallidum in normal rats and in a model of Parkinson's Disease: implications for limbic system and basal ganglia interactions. Brain Struct Funct 2008; 213:197-213. [PMID: 18663473 DOI: 10.1007/s00429-008-0190-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
The circuit-related consequences of activating the ventral pallidum (VP) are not well known, and lacking in particular is how these effects are altered in various neuropathological states. To help to address these paucities, this study investigated the brain regions affected by VP activation by quantifying neurons that stain for Fos-like immunoreactivity (ir). Fos-ir was assessed after intra-pallidal injections of the excitatory amino acid agonist, NMDA, or the GABA(A) antagonist, bicuculline in normal rats and in those rendered Parkinsonian-like by lesioning dopaminergic neurons with the neurotoxin, 6-OHDA. We hypothesized that activation of the VP will alter the activity state of brain regions associated with both the basal ganglia and limbic system, and that this influence would be modified in the Parkinsonian state. Blocking tonically activated GABA(A) receptors with bicuculline (50 ng/0.5 microl) elevated Fos-ir in the VP to 423% above the contralateral, vehicle-injected side. Likewise, intra-VP NMDA (0.23 microg or 0.45 microg/0.5 microl), dose-dependently increased the number of pallidal neurons expressing Fos-ir by 224 and 526%, respectively. At higher NMDA doses, the density of Fos-ir neurons was not elevated above control levels. This inverted U-shaped profile was mirrored by a VP output structure, the medial subthalamic nucleus (mSTN). The mSTN showed a 289% increase in Fos-ir neurons with intra-VP injections of 0.45 microg NMDA, and this response was halved following intra-VP injections of 0.9 microg NMDA. Of the 12 other brain regions measured, three showed VP NMDA-induced enhancements in Fos-ir: the frontal cortex, entopeduncular nucleus and substantia nigra pars reticulata, all regions associated with the basal ganglia. In a second study, we evaluated the NMDA activation profile in a rat model of Parkinson's Disease (PD) which was created by a unilateral injection of 6-OHDA into the rostral substantia nigra pars compacta. Comparisons of responses to intra-VP NMDA between the hemispheres ipsilateral and contralateral to the lesion revealed that Fos-ir cells in the pedunculopontine nucleus was reduced by 62%, whereas Fos-ir for the basolateral amygdala and STN was reduced by 32 and 42%, respectively. These findings support the concept that the VP can influence both the basal ganglia and the limbic system, and that that the nature of this influence is modified in an animal model of PD. As the VP regulates motivation and cognition, adaptations in this system may contribute to the mood and mnemonic disorders that can accompany PD.
Collapse
Affiliation(s)
- Michael S Turner
- M.D./Ph.D. Program and the Neuroscience Graduate Program, Loyola University Chicago, Medical Center, Maywood, IL, USA
| | | | | | | |
Collapse
|
20
|
Gyengési E, Zaborszky L, Détári L. The effect of prefrontal stimulation on the firing of basal forebrain neurons in urethane anesthetized rat. Brain Res Bull 2008; 75:570-80. [PMID: 18355633 PMCID: PMC2423328 DOI: 10.1016/j.brainresbull.2007.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/29/2007] [Accepted: 09/20/2007] [Indexed: 02/06/2023]
Abstract
The basal forebrain (BF) contains a heterogeneous population of cholinergic and non-cholinergic corticopetal neurons and interneurons. Neurons firing at a higher rate during fast cortical EEG activity (f>16Hz) were called F cells, while neurons that increase their firing rate during high-amplitude slow-cortical waves (f<4Hz) were categorized as S-cells. The prefrontal cortex (PFC) projects heavily to the BF, although little is known how it affects the firing of BF units. In this study, we investigated the effect of stimulation of the medial PFC on the firing rate of BF neurons (n=57) that were subsequently labeled by biocytin using juxtacellular filling (n=22). BF units were categorized in relation to tail-pinch induced EEG changes. Electrical stimulation of the medial PFC led to responses in 28 out of 41 F cells and in 8 out of 9 S cells. Within the sample of responsive F cells, 57% showed excitation (n=8) or excitation followed by inhibitory period (n=8). The remaining F cells expressed a short (n=6) or long inhibitory (n=6) response. In contrast, 6 out of the 8 responsive S cells reduced their firing after prefrontal stimulation. Among the F cells, we recovered one cholinergic neuron and one parvalbumin-containing (PV) neuron using juxtacellular filling and subsequent immunocytochemistry. While the PV cell displayed short latency facilitation, the cholinergic cell showed significant inhibition with much longer latency in response to the prefrontal stimulus. This is in agreement with previous anatomical data showing that prefrontal projections directly target mostly non-cholinergic cells, including GABAergic neurons.
Collapse
Affiliation(s)
- Erika Gyengési
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| | | | | |
Collapse
|
21
|
Loopuijt LD, Zahm DS. Synaptologic and fine structural features distinguishing a subset of basal forebrain cholinergic neurons embedded in the dense intrinsic fiber network of the caudal extended amygdala. J Comp Neurol 2006; 498:93-111. [PMID: 16933208 DOI: 10.1002/cne.21044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cholinergic basal forebrain neurons confined within the intrinsic connections of the extended amygdala in the caudal sublenticular region and anterior amygdaloid area (cSLR/AAA) differ from other basal forebrain cholinergic neurons in several morphological and neurochemical respects. These cSLR/AAA cholinergic neurons have been subjected to additional investigations described in this report. First, fibers traced anterogradely following injections of Phaseolus vulgaris-leucoagglutinin in the central amygdaloid nucleus were shown to contact cSLR/AAA cholinergic neurons and dendrites. Second, these neurons were shown to be contacted by numerous GABAergic boutons with symmetric synaptic specializations. Third, the numbers of synaptic densities of morphologically characterized symmetric contacts on the somata and proximal dendrites of cSLR/AAA cholinergic neurons were shown to significantly exceed those of extra-cSLR/AAA cholinergic neurons. Fourth, fine structural features distinguishing cSLR/AAA cholinergic neurons from other basal forebrain cholinergic neurons were revealed. Specifically, cSLR/AAA cholinergic neurons have less abundant cytoplasm and a less well-organized system of rough endoplasmic reticulum than their counterparts in other parts of the basal forebrain. Thus, morphologically and neurochemically distinct cSLR/AAA cholinergic neurons exhibit robust proximal inhibitory inputs, of which a significant number originate in the extended amygdala, while cholinergic neurons outside this region lack a substrate for strong proximal inhibitory input. The implications of these findings for interaction of fear, anxiety, and attention are considered.
Collapse
Affiliation(s)
- Louise D Loopuijt
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
22
|
Momiyama T, Zaborszky L. Somatostatin presynaptically inhibits both GABA and glutamate release onto rat basal forebrain cholinergic neurons. J Neurophysiol 2006; 96:686-94. [PMID: 16571735 PMCID: PMC1850939 DOI: 10.1152/jn.00507.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A whole cell patch-clamp study was carried out in slices obtained from young rat brain to elucidate the roles of somatostatin in the modulation of synaptic transmission onto cholinergic neurons in the basal forebrain (BF), a region that contains cholinergic and GABAergic corticopetal neurons and somatostatin (SS)-containing local circuit neurons. Cholinergic neurons within the BF were identified by in vivo prelabeling with Cy3 IgG. Because in many cases SS is contained in GABAergic neurons in the CNS, we investigated whether exogenously applied SS can influence GABAergic transmission onto cholinergic neurons. Bath application of somatostatin (1 muM) reduced the amplitude of the evoked GABAergic inhibitory presynaptic currents (IPSCs) in cholinergic neurons. SS also reduced the frequency of miniature IPSCs (mIPSCs) without affecting their amplitude distribution. SS-induced effect on the mIPSC frequency was significantly larger in the solution containing 7.2 mM Ca(2+) than in the standard (2.4 mM Ca(2+)) external solution. Similar effects were observed in the case of non-NMDA glutamatergic excitatory postsynaptic currents (EPSCs). SS inhibited the amplitude of evoked EPSCs and reduced the frequency of miniature EPSCs dependent on the external Ca(2+) concentration with no effect on their amplitude distribution. Pharmacological analyses using SS-receptor subtype-specific drugs suggest that SS-induced action of the IPSCs is mediated mostly by the sst(2) subtype, whereas sst subtypes mediating SS-induced inhibition of EPSCs are mainly sst(1) or sst(4). These findings suggest that SS presynaptically inhibits both GABA and glutamate release onto BF cholinergic neurons in a Ca(2+)-dependent way, and that SS-induced effect on IPSCs and EPSCs are mediated by different sst subtypes.
Collapse
Affiliation(s)
- Toshihiko Momiyama
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan.
| | | |
Collapse
|
23
|
Dringenberg HC, Kuo MC, Tomaszek S. Stabilization of thalamo-cortical long-term potentiation by the amygdala: cholinergic and transcription-dependent mechanisms. Eur J Neurosci 2004; 20:557-65. [PMID: 15233765 DOI: 10.1111/j.1460-9568.2004.03515.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptic potentiation allows neurons to enhance excitability and store information for extended time periods. We examined the role of the amygdaloid complex, known to facilitate long-term memory encoding, to influence synaptic strength at thalamo-cortical synapses. In urethane-anaesthetized rats, theta-burst stimulation of the dorsal lateral geniculate nucleus of the thalamus induced early phase (1-2 h) long-term potentiation (LTP) of the field postsynaptic potential (fPSP) recorded in the ipsilateral primary visual cortex. Electrical stimulation (100 Hz) of the amygdala 5 min after thalamic stimulation converted early phase LTP to stable late-phase (> 4 h) LTP. This effect was not correlated with the degree of electrocorticographic activation of V1 induced by amygdala stimulation. Amygdala stimulation without thalamic theta-burst stimulation did not change thalamo-cortical fPSPs. The centrally acting cholinergic-muscarinic receptor antagonist scopolamine (1 mg/kg, i.p.), but not peripherally acting methyl-scopolamine, completely blocked the amygdala-induced conversion of early to late-phase thalamo-cortical LTP. Further, ventricular application of the transcription inhibitor anisomycin (250 micro g) reduced amygdala-induced late-phase LTP induction. These results demonstrate that the amygdaloid complex transforms time-limited synaptic enhancement of thalamo-cortical transmission into long lasting increases in synaptic strength. These processes are mediated, at least in part, by cholinergic and transcription-dependent mechanisms. These amygdaloid-induced effects provide a potential mechanism underlying long-term enhancement of sensory transmission and information encoding in thalamo-cortical networks.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, Ont., K7L 3N6, Canada.
| | | | | |
Collapse
|
24
|
Fournier GN, Materi LM, Semba K, Rasmusson DD. Cortical acetylcholine release and electroencephalogram activation evoked by ionotropic glutamate receptor agonists in the rat basal forebrain. Neuroscience 2004; 123:785-92. [PMID: 14706791 DOI: 10.1016/j.neuroscience.2003.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To determine the sensitivity of basal forebrain cholinergic neurons to ionotropic glutamate receptor activation, acetylcholine was collected from the cerebral cortex of urethane-anesthetized rats using microdialysis while monitoring cortical electroencephalographic (EEG) activity. alpha-Amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA; 1, 10, or 100 microM), N-methyl-D-aspartate (NMDA; 100 or 1000 microM) or a combination of AMPA (10 microM) and NMDA (100 microM) was administered to the basal forebrain using reverse microdialysis. Both glutamate receptor agonists produced concentration-dependent, several-fold increases in acetylcholine release indicating that they activated basal forebrain cholinergic neurons; AMPA was more potent, increasing acetylcholine release at a lower concentration than NMDA. The combination of AMPA and NMDA did not produce any greater release than each drug alone, indicating that the effects of these two drugs on cholinergic neurons are not additive. EEG was analyzed by fast Fourier transforms to determine the extent of physiological activation of the cortex. The highest concentrations of AMPA and NMDA tested produced small (25%) but significant increases in high frequency activity. There was a positive correlation across animals between the increases in power in the beta (14-30 Hz) and gamma (30-58 Hz) ranges and increases in acetylcholine release. These results indicate that glutamate can activate cholinergic basal forebrain neurons via both AMPA and NMDA ionotropic receptors but has a more modest effect on EEG activation.
Collapse
Affiliation(s)
- G N Fournier
- Department of Physiology and Biophysics, Dalhousie University, NS, B3H 1X5, Halifax, Canada
| | | | | | | |
Collapse
|
25
|
Dringenberg HC, Yahia N, Cirasuolo J, McKee D, Kuo MC. Neocortical activation by electrical and chemical stimulation of the rat inferior colliculus: intra-collicular mapping and neuropharmacological characterization. Exp Brain Res 2003; 154:461-9. [PMID: 14614580 DOI: 10.1007/s00221-003-1675-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 08/12/2003] [Indexed: 12/22/2022]
Abstract
Classic experiments suggested that the midbrain reticular formation plays an important role in the induction and maintenance of high-frequency, low-amplitude activation of the electrocorticogram (ECoG). However, recent studies have shown that generalized activating systems are not restricted to the reticular formation in that non-reticular brain systems (e.g., basal forebrain, amygdala, superior colliculus) can effectively produce ECoG activation. Here, we investigated the role of the inferior colliculus (IC) in regulating ECoG activation in rats. Urethane-anesthetized rats displayed continuous large amplitude ECoG activity with peak power in the delta frequency range (0.5-3.9 Hz). Electrical 100-Hz stimulation (0.1-0.5 mA) of 40/88 (46%) stimulation sites in the IC suppressed low frequency oscillations and induced ECoG activation (>/=50% suppression of peak delta power). Systematic mapping of different IC territories (central nucleus, external and dorsal cortex) revealed that stimulation of all IC parts was equally effective in producing activation. Chemical stimulation of the IC with intra-collicular glutamate infusions (50 mM, 0.5 micro l) produces similar, but more consistent effects, with ECoG activation elicited in eight of nine rats. Pharmacological experiments were carried out in order to identify transmitters that mediate cortical activation in response to IC stimulation. The muscarinic receptor antagonist scopolamine (1 mg/kg, i.p.) reduced, but did not abolish, activation, as did the serotonergic receptor antagonist methiothepin (1 mg/kg, i.p.). A combination of the two drugs produced a complete block of IC-induced ECoG activation. These experiments demonstrate that the IC contains a distributed network, spanning all IC territories, which can participate in regulating the generalized activation state of the rat neocortex. Rather than by some direct cortical projections, IC neurons appear to induce ECoG activation by acting through both cholinergic and serotonergic systems, thought to provide the final effector mechanisms for cortical activation.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology, Queen's University, K7L 3N6, Kingston, Ontario, Canada.
| | | | | | | | | |
Collapse
|
26
|
Hajszán T, Zaborszky L. Direct catecholaminergic-cholinergic interactions in the basal forebrain. III. Adrenergic innervation of choline acetyltransferase-containing neurons in the rat. J Comp Neurol 2002; 449:141-57. [PMID: 12115685 DOI: 10.1002/cne.10279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The central adrenergic neurons have been suggested to play a role in the regulation of arousal and in the neuronal control of the cardiovascular system. To provide morphological evidence that these functions could be mediated via the basal forebrain, we performed correlated light and electron microscopic double-immunolabeling experiments using antibodies against phenylethanolamine N-methyltransferase (PNMT) and choline acetyltransferase, the synthesizing enzymes for adrenaline and acetylcholine, respectively. Most adrenergic/cholinergic appositions were located in the horizontal limb of diagonal band of Broca, within the substantia innominata, and in a narrow band bordering the substantia innominata and the globus pallidus. Quantitative analysis indicated that cholinergic neurons of the substantia innominata receive significantly higher numbers of adrenergic appositions than cholinergic cells in the rest of the basal forebrain. In the majority of cases, the ultrastructural analysis revealed axodendritic asymmetric synapses. By comparing the number and distribution of dopamine beta-hydroxylase (DBH)/cholinergic appositions, described earlier, with those of PNMT/cholinergic interactions in the basal forebrain, it can be concluded that a significant proportion of putative DBH/cholinergic contacts may represent adrenergic input. Our results support the hypothesis that the adrenergic/cholinergic link in the basal forebrain may represent a critical component of a central network coordinating autonomic regulation with cortical activation.
Collapse
Affiliation(s)
- Tibor Hajszán
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | | |
Collapse
|
27
|
Jolkkonen E, Miettinen R, Pikkarainen M, Pitkänen A. Projections from the amygdaloid complex to the magnocellular cholinergic basal forebrain in rat. Neuroscience 2002; 111:133-49. [PMID: 11955718 DOI: 10.1016/s0306-4522(01)00578-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The amygdaloid complex has a key role in the modulation of behavioral responses in life-threatening situations, including the direction of attentional responses to sensory stimuli. The pathways from the amygdala to the basal forebrain cholinergic system, which projects to the cortex, are proposed to contribute to the modulation. To further explore the topography and postsynaptic targets of these pathways, we investigated the projections from the different divisions of the lateral, basal, accessory basal, and central nuclei of the amygdala to the cholinergic basal forebrain in rat using a sensitive anterograde tracer, Phaseolus vulgaris leucoagglutinin. The most substantial projections from the amygdala to the basal forebrain are directed to the ventrolateral and dorsomedial aspects of the substantia innominata and the fundus of the striatum. The heaviest projections originate in the capsular, lateral, and intermediate divisions of the central nucleus as well as in the magnocellular and parvicellular divisions of the basal nucleus. Light microscopic analysis of double-stained preparations revealed that the distribution of amygdaloid efferents and cholinergic neurons overlaps most prominently in the ventrolateral substantia innominata. Despite the fact that the central nucleus efferents and cholinergic elements overlap in the ventrolateral substantia innominata, electron microscopic analysis revealed, first, that the postsynaptic targets of the central nucleus efferents are non-cholinergic, probably GABAergic, neurons. Second, 80% of the synaptic contacts were symmetric. The present data extend previous observations showing that the different amygdaloid nuclei provide projections to the selective basal forebrain areas. Further, the central nucleus efferents modulate cholinergic neurons in the basal forebrain indirectly via the GABAergic interneurons.
Collapse
Affiliation(s)
- E Jolkkonen
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
| | | | | | | |
Collapse
|
28
|
Dringenberg HC, Saber AJ, Cahill L. Enhanced frontal cortex activation in rats by convergent amygdaloid and noxious sensory signals. Neuroreport 2001; 12:2395-8. [PMID: 11496117 DOI: 10.1097/00001756-200108080-00022] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The modulation of frontal cortical EEG activation to noxious somatosensory (tail pressure) and olfactory (acetone) stimulation by the basal amygdala was examined in urethane-anesthetized rats. Mild tail pressure produced no EEG activation, while acetone (sniffed by freely breathing rats or drawn across the olfactory epithelium in tracheotomized rats) produced a moderate suppression of large-amplitude synchronized EEG patterns. Concurrent, low-intensity 100 Hz stimulation of the basal amygdala permitted EEG activation to tail pressure to occur, and strongly enhanced olfactory-induced cortical activation. These results indicate that excitation of the basal amygdala potentiates frontal cortical responsiveness to aversive sensory events. This may provide a mechanism to facilitate cortical excitability and processing by amygdaloid neuronal activity.
Collapse
Affiliation(s)
- H C Dringenberg
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| | | | | |
Collapse
|
29
|
Abstract
Single, biocytin filled neurons in combination with immunocytochemistry and retrograde tracing as well as material with traditional double-immunolabeling were used at the light and electron microscopic levels to study the neural circuitry within the basal forebrain. Cholinergic neurons projecting to the frontal cortex exhibited extensive local collaterals terminating on non-cholinergic, (possible GABAergic) neurons within the basal forebrain. Elaborate axon arbors confined to the basal forebrain region also originated from NPY, somatostatin and other non-cholinergic interneurons. It is proposed that putative interneurons together with local collaterals from projection neurons contribute to regional integrative processing in the basal forebrain that may participate in more selective functions, such as attention and cortical plasticity.
Collapse
Affiliation(s)
- L Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| | | |
Collapse
|
30
|
Bengtson CP, Osborne PB. Electrophysiological properties of cholinergic and noncholinergic neurons in the ventral pallidal region of the nucleus basalis in rat brain slices. J Neurophysiol 2000; 83:2649-60. [PMID: 10805665 DOI: 10.1152/jn.2000.83.5.2649] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventral pallidum is a major source of output for ventral corticobasal ganglia circuits that function in translating motivationally relevant stimuli into adaptive behavioral responses. In this study, whole cell patch-clamp recordings were made from ventral pallidal neurons in brain slices from 6- to 18-day-old rats. Intracellular filling with biocytin was used to correlate the electrophysiological and morphological properties of cholinergic and noncholinergic neurons identified by choline acetyltransferase immunohistochemistry. Most cholinergic neurons had a large whole cell conductance and exhibited marked fast (i.e., anomalous) inward rectification. These cells typically did not fire spontaneously, had a hyperpolarized resting membrane potential, and also exhibited a prominent spike afterhyperpolarization (AHP) and strong spike accommodation. Noncholinergic neurons had a smaller whole cell conductance, and the majority of these cells exhibited marked time-dependent inward rectification that was due to an h-current. This current activated slowly over several hundred milliseconds at potentials more negative than -80 mV. Noncholinergic neurons fired tonically in regular or intermittent patterns, and two-thirds of the cells fired spontaneously. Depolarizing current injection in current clamp did not cause spike accommodation but markedly increased the firing frequency and in some cells also altered the pattern of firing. Spontaneous tetrodotoxin-sensitive GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) were frequently recorded in noncholinergic neurons. These results show that cholinergic pallidal neurons have similar properties to magnocellular cholinergic neurons in other parts of the forebrain, except that they exhibit strong spike accommodation. Noncholinergic ventral pallidal neurons have large h-currents that could have a physiological role in determining the rate or pattern of firing of these cells.
Collapse
Affiliation(s)
- C P Bengtson
- Department of Physiology and Pharmacology, The University of Queensland, Brisbane Qld 4072, Australia
| | | |
Collapse
|
31
|
Sarter M, Bruno JP. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 2000; 95:933-52. [PMID: 10682701 DOI: 10.1016/s0306-4522(99)00487-x] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Basal forebrain corticopetal neurons participate in the mediation of arousal, specific attentional functions and rapid eye movement sleep-associated dreaming. Recent studies on the afferent regulation of basal forebrain neurons by telencephalic and brainstem inputs have provided the basis for hypotheses which, collectively, propose that the involvement of basal forebrain corticopetal projections in arousal, attention and dreaming can be dissociated on the basis of their regulation via major afferent projections. While the processing underlying sustained, selective and divided attention performance depends on the integrity of the telencephalic afferent regulation of basal forebrain corticopetal neurons, arousal-induced attentional processing (i.e. stimulus detection, selection and processing as a result of a novel, highly salient, aversive or incentive stimuli) is mediated via the ability of brainstem ascending noradrenergic projections to the basal forebrain to activate or "recruit" these telencephalic afferent circuits of the basal forebrain. In rapid eye movement sleep, both the basal forebrain and thalamic cortiocopetal projections are stimulated by cholinergic afferents originating mainly from the pedunculopontine and laterodorsal tegmenta in the brainstem. Rapid eye movement sleep-associated dreaming is described as a form of hyperattentional processing, mediated by increased activity of cortical cholinergic inputs and their cortical interactions with activated thalamic efferents. In this context, long-standing speculations about the similarities between dreaming and psychotic cognition are substantiated by describing the role of an over(re)active cortical cholinergic input system in either condition. Finally, while determination of the afferent regulation of basal forebrain corticopetal neurons in different behavioral/cognitive states assists in defining the general cognitive functions of cortical acetylcholine, this research requires a specification of the precise anatomical organization of basal forebrain afferents and their interactions in the basal forebrain. Furthermore, the present hypotheses remain incomplete because of the paucity of data concerning the regulation and role of basal forebrain non-cholinergic, particularly GABAergic, efferents.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, The Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
32
|
Venero JL, Revuelta M, Machado A, Cano J. Delayed apoptotic pyramidal cell death in CA4 and CA1 hippocampal subfields after a single intraseptal injection of kainate. Neuroscience 2000; 94:1071-81. [PMID: 10625049 DOI: 10.1016/s0306-4522(99)00226-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have performed a detailed time-course analysis of cell death in the hippocampal formation, basal forebrain and amygdala following a single intraseptal injection of kainate in adult rats. Acetylcholinesterase histochemistry revealed a profound loss of staining in the medial septum but not in the diagonal band, and cholinergic fiber density was highly reduced in the hippocampus and amygdala at 10 days postinjection. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphatebiotin nick end labeling (TUNEL) histochemistry was performed for precise location of apoptotic cells. Both the medial septum and amygdala exhibited numerous TUNEL-positive nuclei after the intraseptal injection of kainate, while the lateral septum exhibited a lower but significant incidence in terms of apoptotic cells. In the medial septum, the presence of apoptotic cells was at a location displaying acetylcholinesterase staining. TUNEL histochemistry revealed a time-dependent sequential apoptotic cell death in hippocampal pyramidal cells. During the first two days postinjection, apoptosis in the hippocampus was only evident in the CA3 region. At five days postinjection, the entire CA4 region became apoptotic. At 10 days postinjection, the whole extent of the CA1 pyramidal cell layer exhibited numerous TUNEL-positive nuclei. The time-course of kainate-induced apoptosis in Ammons's horn correlated with the disappearance of hippocampal pyramidal neurons as detected by Nissl staining, which is suggestive of a prominent apoptotic death for these cells. The temporal delayed distant damage to CA4 and CA1 hippocampal subfields after a single intraseptal kainate injection is not seen in other models employing kainate and may be a valuable tool for exploring the cellular mechanisms leading to cell death in conditions of status epilepticus.
Collapse
Affiliation(s)
- J L Venero
- Departamento de Bioquímica, Bromatología y Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
33
|
Arousal-related associative response characteristics of dorsal lateral geniculate nucleus neurons during acoustic Pavlovian fear conditioning. Behav Neurosci 2000. [DOI: 10.1037/0735-7044.114.2.241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Manfridi A, Brambilla D, Mancia M. Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1488-92. [PMID: 10564223 DOI: 10.1152/ajpregu.1999.277.5.r1488] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleus basalis of Meynert (NBM), a heterogeneous area in the basal forebrain involved in the modulation of sleep and wakefulness, is rich in glutamate receptors, and glutamatergic fibers represent an important part of the input to this nucleus. With the use of unilateral infusions in the NBM, the effects of two different glutamatergic subtype agonists, namely N-methyl-D-aspartic acid (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) hydrobromide, on sleep and wakefulness parameters were determined in freely moving rats by means of polygraphic recordings. NMDA (5 nmol) and AMPA (0.4 nmol) induced an increase in wakefulness and an inhibition of slow-wave sleep. AMPA, but not NMDA, also caused a decrease in desynchronized sleep. These AMPA- and NMDA-mediated effects were counteracted by a pretreatment with the specific NMDA antagonist 2-amino-5-phosphonopentanoic acid (20 nmol) and the specific AMPA antagonist 6,7-dinitroquinoxaline-2,3-dione (2 nmol), respectively. The results reported here indicate that 1) the NBM activation of both NMDA and AMPA glutamate receptors exert a modulatory influence on sleep and wakefulness, and 2) AMPA, but not NMDA receptors, are involved in the modulation of desynchronized sleep, suggesting a different role for NBM NMDA and non-NMDA receptors in sleep modulation.
Collapse
Affiliation(s)
- A Manfridi
- Istituto di Fisiologia Umana II, Università degli Studi, 20133 Milano, Italy
| | | | | |
Collapse
|
35
|
Li L, Fulton JD, Yeomans JS. Effects of bilateral electrical stimulation of the ventral pallidum on acoustic startle. Brain Res 1999; 836:164-72. [PMID: 10415415 DOI: 10.1016/s0006-8993(99)01651-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ventral pallidum (VP) is believed to occupy a critical position between the limbic and the motor systems, for transferring motive information into motor commands. To estimate the time course of signaling from the VP to motor outputs, in the present study we examined the effects of bilateral electrical stimulation of the VP on the acoustic startle reflex in awake rats. When the interstimulus interval (ISI) between VP stimulation and acoustic stimulation was shorter than 5 ms, VP stimulation potentiated acoustic startle. When the ISI was longer than 5 ms, VP stimulation inhibited acoustic startle over a large range of ISIs with the maximum inhibition at ISIs between 15 and 25 ms. In contrast, bilateral electrical stimulation of the amygdala did not have a significant inhibitory effect on acoustic startle, but strongly augmented acoustic startle at shorter ISIs (0-10 ms). Compared to unilateral electrical stimulation of the inferior colliculus (IC), bilateral stimulation of the VP gave rise to a rightward shift of the ISI curve, indicating that the neural pathways conveying the inhibitory influence from the VP to the acoustic startle circuit are longer than those from the IC.
Collapse
Affiliation(s)
- L Li
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Abstract
The medial septum, diagonal bands, ventral pallidum, substantia innominata, globus pallidus, and internal capsule contain a heterogeneous population of neurons, including cholinergic and noncholinergic (mostly GABA containing), corticopetal projection neurons, and interneurons. This highly complex brain region, which constitutes a significant part of the basal forebrain has been implicated in attention, motivation, learning, as well as in a number of neuropsychiatric disorders, such as Alzheimer's disease, Parkinson's disease, and schizophrenia. Part of the difficulty in understanding the functions of the basal forebrain, as well as the aberrant information-processing characteristics of these disease states lies in the fact that the organizational principles of this brain area remained largely elusive. On the basis of new anatomical data, it is proposed that a large part of the basal forebrain corticopetal system be organized into longitudinal bands. Considering the topographic organization of cortical afferents to different divisions of the prefrontal cortex and a similar topographic projection of these prefrontal areas to basal forebrain regions, it is suggested that several functionally segregated cortico-prefronto-basal forebrain-cortical circuits exist. It is envisaged that such specific "triangular" circuits could amplify selective attentional processing in posterior sensory cortical areas.
Collapse
Affiliation(s)
- L Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The amygdala has been implicated in the neuronal sequelae of stress, although little is known about the neurochemical mechanisms underlying amygdala transmission. In vivo microdialysis was employed to measure extracellular levels of dopamine in the basolateral nucleus of the amygdala in awake rats. Once it was established that impulse-dependent release of dopamine could be measured reliably in the amygdala, the effect of stress, induced by mild handling, on amygdala dopamine release was compared with that in three other dopamine-innervated regions, the medial prefrontal cortex, nucleus accumbens, and caudate nucleus. The magnitude of increase in dopamine in response to the handling stimulus was significantly greater in the amygdala than in the nucleus accumbens and prefrontal cortex. This increase was maximal during the application of stress and diminished after the cessation of stress. In contrast, the increases in extracellular dopamine levels in other regions, in particular the nucleus accumbens, were prolonged, reaching maximal values after the cessation of stress. These results suggest that dopaminergic innervation of the amygdala may be more responsive to stress than that of other dopamine-innervated regions of the limbic system, including the prefrontal cortex, and implicate amygdalar dopamine in normal and pathophysiological processes subserving an organism's response to stress.
Collapse
Affiliation(s)
- F M Inglis
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut 06516, USA
| | | |
Collapse
|
38
|
Smiley JF, Mesulam MM. Cholinergic neurons of the nucleus basalis of Meynert receive cholinergic, catecholaminergic and GABAergic synapses: an electron microscopic investigation in the monkey. Neuroscience 1999; 88:241-55. [PMID: 10051204 DOI: 10.1016/s0306-4522(98)00202-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An electron microscopic analysis of the nucleus basalis in the macaque monkey was carried out following the immunohistochemical labeling of choline acetyltransferase, either by itself or in conjunction with glutamate decarboxylase or tyrosine hydroxylase. Cholinergic axon varicosities were frequently encountered, and formed large, usually asymmetric, synapses on both choline acetyltransferase-immunopositive and -immunonegative dendrites of nucleus basalis neurons. Catecholaminergic (tyrosine hydroxylase-immunoreactive) axon varicosities formed synapses which in most cases were classified as asymmetric, and glutamate decarboxylase-immunoreactive (GABAergic) axons formed clearly symmetric synapses, each on to choline acetyltransferase-immunopositive or -immunonegative dendrites. These findings indicate that cholinergic cells in the nucleus basalis of the monkey, also known as Ch4 neurons, receive numerous synaptic inputs from cholinergic, catecholaminergic and GABAergic axons.
Collapse
Affiliation(s)
- J F Smiley
- The Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
39
|
Mesulam MM. Some cholinergic themes related to Alzheimer's disease: synaptology of the nucleus basalis, location of m2 receptors, interactions with amyloid metabolism, and perturbations of cortical plasticity. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:293-8. [PMID: 9789826 DOI: 10.1016/s0928-4257(98)80036-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cholinergic neurons in the nucleus basalis of Meynert (nbM) receive cholinergic, GABAergic and monoaminergic synapses. Only few of these neurons display the sort of intense m2 immunoreactivity that would be expected if they were expressing m2 as their presynaptic autoreceptor. The depletion of cortical m2 in Alzheimer's disease (AD) appears to reflect the loss of presynaptic autoreceptors located on incoming axons from the nucleus basalis of Meynert (nbM) and also the loss of postsynaptic receptors located on a novel group of nitric oxide producing interstitial neurons in the cerebral cortex. The defect of cholinergic transmission in AD may enhance the neurotoxicity of amyloid beta, leading to a vicious cycle which can potentially accelerate the pathological process. Because acetylcholine plays a critical role in regulating axonal growth and synaptic remodeling, the cholinergic loss in AD can perturb cortical plasticity so as to undermine the already fragile compensatory reserve of the aging cerebral cortex.
Collapse
Affiliation(s)
- M M Mesulam
- Department of Neurology and Psychiatry, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
40
|
Mitrovic I, Napier TC. Substance P attenuates and DAMGO potentiates amygdala glutamatergic neurotransmission within the ventral pallidum. Brain Res 1998; 792:193-206. [PMID: 9593891 DOI: 10.1016/s0006-8993(98)00130-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The amygdala (AMG), nucleus accumbens (NA) and ventral pallidum (VP) influence goal-oriented behaviors. However, the nature of the interactions among these regions has not been well characterized. Anatomical studies indicate that excitatory amino acids are contained in VP inputs from the AMG, and the NA is a primary source of VP substance P (SP) and opioids. The present study was designed to functionally characterize the NA and AMG projections to the VP, and to assess if opioids and SP can modulate AMG-mediated excitatory neurotransmission within the VP. To do so, extracellularly recorded electrophysiological responses of single VP neurons to electrical activation of VP afferents were monitored during microiontophoretic application of treatment ligands in chloral hydrate-anesthetized rats. The anatomically described glutamatergic inputs from the AMG, and SP inputs from the NA, were pharmacologically verified. It also was determined that even though iontophoretically applied SP increased the spontaneous activity of VP neurons, at ejection current levels that were below those necessary to produce this effect (termed sub-threshold), the tachykinin attenuated AMG stimulation-evoked glutamatergic neurotransmission. SP failed to modulate the excitations induced by iontophoretically applied glutamate suggesting that SP modulation of AMG-evoked excitations were mediated via a decrease in the pre-synaptic release of glutamate. Like SP, the effects of sub-threshold ejection currents of micro opioid agonist DAMGO on AMG-evoked responses were not predicted by the opioid's effects on spontaneous VP neuronal activity; DAMGO inhibited spontaneous firing but potentiated AMG-evoked glutamatergic neurotransmission. The opioid also potentiated effects of exogenous glutamate implying an interaction at a post-synaptic site. These results indicate that tachykinin and opioid neuropeptides contained in NA projection neurons can differentially modulate AMG glutamatergic inputs to the VP.
Collapse
Affiliation(s)
- I Mitrovic
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | |
Collapse
|
41
|
Abstract
Cholinergic neurons in the basal forebrain are the focus of considerable interest because they are severely affected in Alzheimer's disease. However, both cholinergic and noncholinergic neurons are intermingled in this region. The goal of the present study was to characterize the morphology and in vivo electrophysiology of noncholinergic basal forebrain neurons. Neurons in the ventral pallidum and substantia innominata were recorded extracellularly, labeled juxtacellularly with biocytin and characterized for the presence of choline acetyltransferase immunoreactivity. Two types of ventral pallidal cells were observed. Type I ventral pallidal neurons had axons that rarely branched near the cell body and tended to have smaller somata and lower spontaneous firing rates than did type II ventral pallidal neurons, which displayed extensive local axonal arborizations. Subtypes of substantia innominata neurons could not be distinguished based on axonal morphology. These noncholineregic neurons exhibited local axon arborizations along a continuum that varied from no local collaterals to quite extensive arbors. Substantia innominata neurons had lower spontaneous firing rates, more variable interspike intervals, and different spontaneous firing patterns than did type II ventral pallidal neurons and could be antidromically activated from cortex or substantia nigra, indicating that they were projection neurons. Ventral pallidal neurons resemble, both morphologically and electrophysiologically, previously described neurons in the globus pallidus, whereas the substantia innominata neurons bore similarities to isodendritic neurons of the reticular formation. These results demonstrate the heterogeneous nature of noncholinergic neurons in the basal forebrain.
Collapse
Affiliation(s)
- K Pang
- Center for Molecular and Behavioral Neurosciences, Rutgers, The State University of New Jersey, Newark 07102, USA.
| | | | | |
Collapse
|
42
|
Hajnal A, Pothos EN, Lénárd L, Hoebel BG. Effects of feeding and insulin on extracellular acetylcholine in the amygdala of freely moving rats. Brain Res 1998; 785:41-8. [PMID: 9526040 DOI: 10.1016/s0006-8993(97)01291-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular levels of acetylcholine (ACh) were measured in the central nucleus of the amygdala using microdialysis in 20-min intervals before, during, and after 1 h feeding in food-deprived rats. The results were compared to the effects of peripheral injections of glucose or 'low' (200 mU) and 'high' (1 U) doses of insulin. Feeding caused a 40% increase in extracellular ACh in the amygdala during the hour-long meal. Acetylcholine returned to baseline 1 h after food was removed. Systemic injections of either glucose or insulin in ad libitum fed rats also resulted in an increase in ACh levels (+50-60%), but with a different time course. Glucose elevated ACh to a plateau within 20 min for an hour's duration; whereas both doses of insulin caused a peak in ACh release in the first 20 min followed by gradual return to baseline. The 'low' and 'high' doses of insulin had similar effects on ACh release even though they had different hypoglycemic potency as measured in blood samples. These results suggest that ACh in the AMY is involved in feeding and the response to glucose utilization.
Collapse
Affiliation(s)
- A Hajnal
- Department of Psychology, Princeton University, Princeton, NJ 08544-1010, USA
| | | | | | | |
Collapse
|
43
|
Engber TM, Koury EJ, Dennis SA, Miller MS, Contreras PC, Bhat RV. Differential patterns of regional c-Fos induction in the rat brain by amphetamine and the novel wakefulness-promoting agent modafinil. Neurosci Lett 1998; 241:95-8. [PMID: 9507929 DOI: 10.1016/s0304-3940(97)00962-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We examined the neuronal targets in the rat brain for the novel wakefulness-promoting agent modafinil and for amphetamine using c-Fos immunohistochemistry. Both modafinil and amphetamine induced neuronal expression of c-Fos-like immunoreactivity in the paraventricular nucleus of the hypothalamus, anterior hypothalamus and central nucleus of the amygdala. Modafinil also increased c-Fos-like immunoreactivity in the suprachiasmatic nucleus, while amphetamine had no effect. Brain regions in which amphetamine increased c-Fos-like immunoreactivity, but modafinil had no effect, included frontal cortex, striatum, lateral habenula, supraoptic nucleus and basolateral nucleus of the amygdala. These findings suggest that the mechanism of action of modafinil is different from that of amphetamine and that the neuronal targets for modafinil in the brain include nuclei of the hypothalamus and amygdala.
Collapse
Affiliation(s)
- T M Engber
- Department of Pharmacology, Cephalon Inc., West Chester, PA 19380, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The arborization pattern and postsynaptic targets of corticofugal axons in basal forebrain areas have been studied by the combination of anatomical tract-tracing and pre- and postembedding immunocytochemistry. The anterograde neuronal tracer Phaseolus vulgaris leucoagglutinin was iontophoretically delivered into different neocortical (frontal, parietal, occipital), allocortical (piriform) and mesocortical (insular, prefrontal) areas in rats. To identify the transmitter phenotype in pre- or postsynaptic elements, the tracer staining was combined with immunolabeling for either glutamate or GABA, or with immunolabeling for choline acetyltransferase or parvalbumin. Tracer injections into medial and ventral prefrontal areas gave rise to dense terminal arborizations in extended basal forebrain areas, particularly in the horizontal limb of the diagonal band and the region ventral to it. Terminals were also found to a lesser extent in the ventral part of the substantia innominata and in ventral pallidal areas adjoining ventral striatal territories. Similarly, labeled fibers from the piriform and insular cortices were found to reach lateral and ventral parts of the substantia innominata, where terminal varicosities were evident. In contrast, descending fibers from neocortical areas were smooth, devoid of terminal varicosities, and restricted to the myelinated fascicles of the internal capsule en route to more caudal targets. Ultrastructural studies obtained indicated that corticofugal axon terminals in the basal forebrain areas form synaptic contact primarily with dendritic spines or small dendritic branches (89%); the remaining axon terminals established synapses with dendritic shafts. All tracer labeled axon terminals were immunonegative for GABA, and in the cases investigated, were found to contain glutamate immunoreactivity. In material stained for the anterograde tracer and choline acetyltransferase, a total of 63 Phaseolus vulgaris leucoagglutinin varicosities closely associated with cholinergic profiles were selected for electron microscopic analysis. From this material, 37 varicosities were identified as establishing asymmetric synaptic contacts with neurons that were immunonegative for choline acetyltransferase, including spines and small dendrites (87%) or dendritic shafts (13%). Unequivocal evidence for synaptic interactions between tracer labeled terminals and cholinergic profiles could not be obtained in the remaining cases. From material stained for the anterograde tracer and parvalbumin, 40% of the labeled terminals investigated were found to establish synapses with parvalbumin-positive elements; these contacts were on dendritic shafts and were of the asymmetrical type. The present data suggest that corticofugal axons innervate forebrain neurons that are primarily inhibitory and non-cholinergic; local forebrain axonal arborizations of these cells may represent a mechanism by which prefrontal cortical areas control basal forebrain cholinergic neurons outside the traditional boundaries of pallidal areas.
Collapse
Affiliation(s)
- L Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Previous studies have indicated that galanin is one of the most abundant peptides in the basal forebrain and that it has a significant modulatory influence on cholinergic transmission. The aim of the present study was to use a light electron microscopic correlation technique to determine whether galanin-immunoreactive terminals form synaptic contacts with basal forebrain cholinergic cells of the rat. Sections from fixed-perfused brains were stained at the light and electron microscopic levels for galanin and choline acetyltransferase immunoreactivity in the same section by using a dual-colour immunohistochemical method. The results showed that galanin-immunoreactive axonal terminals are unevenly distributed in the medial septal nucleus, the diagonal band, and the nucleus basalis. Galanin-positive synapses were most prominent on choline acetyltransferase-positive neurons in the lateral parts of the nucleus of the diagonal band and in the posterior half of the nucleus basalis, which is where there was the greatest overlap between the distribution of galanin-immunoreactive terminals and choline acetyltransferase-positive neurons. The origins of these galanin-positive terminals are not known, but the results confirm that the basal forebrain galaninergic system has a synaptic influence on basal forebrain cholinergic neurons in the rat.
Collapse
Affiliation(s)
- Z Henderson
- Department of Physiology, University of Leeds, United Kingdom.
| | | |
Collapse
|
46
|
Henderson Z. The projection from the striatum to the nucleus basalis in the rat: an electron microscopic study. Neuroscience 1997; 78:943-55. [PMID: 9174063 DOI: 10.1016/s0306-4522(96)00636-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that the striatum provides synaptic inputs to the globus pallidus and entopeduncular nucleus in which GABA is co-localized with the peptides enkephalin and substance P. The aim of this study in the rat was to determine whether the striatal projections also make synaptic contact with the cholinergic neurons of the nucleus basalis, which lie near to the pallidal areas in the rat brain. The anterograde tracer biocytin was injected into different parts of the striatum, and brain sections were stained for biocytin and choline acetyltransferase immunoreactivity by using a dual colour method. Terminals labelled with biocytin by anterograde transport and which made synaptic contact with choline acetyltransferase-positive soma and dendrites were identified by light-electron microscopic correlation methods. In the cases where the biocytin injections had been made in the dorsal or lateral striatum, biocytin-labelled terminals made synaptic contact with cholinergic cells in the region between the main termination zones in the globus pallidus and the entopeduncular nucleus. In the cases where the injections had been made in the ventromedial and posterior striatum, there was greater overlap between choline acetyltransferase-positive structures and biocytin-labelled terminals in the main termination zones in the globus pallidus or entopeduncular nucleus, but relatively few of these terminals made synaptic contacts on to the cholinergic neurons. The results therefore indicate that the cholinergic nucleus basalis cells receive a relatively sparse synaptic input from all parts of the striatum. It has recently been shown that the cholinergic cells of the nucleus basalis selectively express high levels of substance P and opioid receptor messenger RNAs, while the non-cholinergic pallidal cells have much higher levels of GABA(A) receptor subunit messenger RNAs. It is concluded that the cholinergic neurons of the nucleus basalis in the rat may be selectively responsive to the peptidergic components of the striatal outputs, and that they are most likely to be influenced by both the limbic and sensorimotor parts of the striatum.
Collapse
Affiliation(s)
- Z Henderson
- Department of Physiology, University of Leeds, U.K
| |
Collapse
|
47
|
Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J. Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 1997; 76:957-1006. [PMID: 9027863 DOI: 10.1016/s0306-4522(96)00405-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Comparative neuroanatomical investigations in primates and non-primates have helped disentangle the anatomy of the basal forebrain region known as the substantia innominata. The most striking aspect of this region is its subdivision into two major parts. This reflects the fundamental organizational scheme for this portion of the forebrain. According to this scheme, two major subcortical telencephalic structures, i.e. the striatopallidal complex and extended amygdala, form large diagonally oriented bands. The rostroventral extension of the pallidum accounts for a large part of the rostral subcommissural substantia innominata, while the sublenticular substantia innominata is primarily occupied by elements of the extended amygdala. Also dispersed across this region is the basal nucleus of Meynert, which is part of a more or less continuous collection of cholinergic and non-cholinergic corticopetal and thalamopetal cells, which stretches from the septum diagonal band rostrally to the caudal globus pallidus. The basal nucleus of Meynert is especially prominent in the primate, where it is sometimes inappropriately applied as a synonym for the substantia innominata, thereby tacitly ignoring the remaining components. In most mammals, the extended amygdala presents itself as a ring of neurons encircling the internal capsule and basal ganglia. The extended amygdala may be further subdivided, i.e. into the central extended amygdala (related to the central amygdaloid nucleus) and the medial extended amygdala (related to the medial amygdaloid nucleus), which generally form separate corridors both in the sublenticular region and along the supracapsular course of the stria terminalis. The extended amygdala is directly continuous with the caudomedial shell of the accumbens, and to some extent appears to merge with it. Together the accumbens shell and extended amygdala form an extensive forebrain continuum, which establishes specific neuronal circuits with the medial prefrontal-orbitofrontal cortex and medial temporal lobe. This continuum is particularly characterized by a prominent system of long intrinsic association fibers, and a variety of highly differentiated downstream projections to the hypothalamus and brainstem. The various components of the extended amygdala, together with the shell of the accumbens, are ideally structured to generate endocrine, autonomic and somatomotor aspects of emotional and motivational states. Behavioral observations support this proposition and demonstrate the relevance of these structures to a variety of functions, ranging from the various elements of the reproductive cycle to drug-seeking behavior. The neurochemical and connectional features common to the accumbens shell and the extended amygdala are especially relevant to understanding the etiology and treatment of neuropsychiatric disorders. This is discussed in general terms, and also in specific relation to the neurodevelopmental theory of schizophrenia and to the neurosurgical treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- L Heimer
- Department of Otolaryngology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
48
|
Zaborszky L, Cullinan WE. Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-beta-hydroxylase- and tyrosine hydroxylase input to cholinergic neurons. J Comp Neurol 1996; 374:535-54. [PMID: 8910734 DOI: 10.1002/(sici)1096-9861(19961028)374:4<535::aid-cne5>3.0.co;2-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunocytochemical double-labeling techniques were used at the light and electron microscopic levels to investigate whether dopamine-beta-hydroxylase and tyrosine hydroxylase-containing axons contact basal forebrain cholinergic neurons. Dopamine-beta-hydroxylase- and tyrosine hydroxylase-positive fibers and terminals were found in close proximity to cholinergic neurons throughout extensive basal forebrain areas, including the vertical and horizontal limb of the diagonal band nuclei, the sublenticular substantia innominata, bed nucleus of the stria terminalis, ventral pallidum, and ventrolateral globus pallidus. Cholinergic cells in some aspects of the globus pallidus appeared to be contacted by tyrosine hydroxylase-positive but not dopamine-beta-hydroxylase-positive fibers, suggesting dopaminergic input to cholinergic neurons in these regions. Direct evidence for the termination of dopamine-beta-hydroxylase and tyrosine hydroxylase-positive fibers on cholinergic neurons was obtained in electron microscopic double-immunolabeling studies. Using high magnification light microscopic screening, both qualitative and quantitative differences were noted in the catecholaminergic innervation of forebrain cholinergic neurons. For example, while many cholinergic neurons were in close proximity to single dopamine-beta-hydroxylase-positive varicosities, others, particularly those located in the substantia innominatabed nucleus of the stria terminalis continuum, were apparently contacted by labeled fibers in repetitive fashion. The findings of the present study, together with our preliminary biochemical experiments (Zaborszky et al. [1993] Prog. Brain Res. 98:31-49) suggest that catecholaminergic afferents can differentially modulate forebrain cholinergic neurons. Such interactions may be important in learning and memory processes, and their perturbations may contribute to the cognitive decline seen in aging and in disorders such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- L Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | | |
Collapse
|
49
|
Abstract
The distribution of the limbic system-associated membrane protein in the amygdaloid complex and hippocampal formation of cynomolgus monkeys (Macaca fascicularis) was studied with immunohistochemical procedures. A highly complex and heterogeneous staining pattern is encountered in the macaque amygdala. The basal, lateral, and accessory basal nuclei display the most intense immunostaining with local heterogeneities. The lateral division of the central nucleus also stains intensely, whereas the medial division of the central nucleus and the medial nucleus are more weakly stained. The dorsal division of the bed nucleus-amygdala continuum (extended amygdala) is strongly immunoreactive. The hippocampus displays the strongest immunoreactivity encountered so far in the primate brain. The intensity of the immunostaining is highest in the cornu Ammonis (Ammon's horn; CA1-CA3 fields) and gradually decreases toward the dentate gyrus or the subicular area. In the hippocampus proper, the stratum radiatum, the pyramidal layer, the stratum oriens, and the alveus all display intense immunoreactivity. The immunostaining is much less prominent in the dentate gyrus, whose granule cell layer is completely devoid of labeling. In the subicular area, there is a lateromedial decreasing gradient in immunostaining intensity, the subiculum being moderately stained and the parasubiculum weakly stained. These results reveal that the limbic system-associated membrane protein labels structures that form the core of the limbic system in primates. Within each of these structures, however, the labeling is highly heterogeneous and appears to be confined to specific functional domains.
Collapse
Affiliation(s)
- P Y Côté
- Centre de Recherche en Neurobiologie, Hôpital de l'Enfant-Jésus, Québec, Canada
| | | | | |
Collapse
|
50
|
Henderson Z. Expression of GABAA receptor subunit messenger RNA in non-cholinergic neurons of the rat basal forebrain. Neuroscience 1995; 65:1077-86. [PMID: 7617163 DOI: 10.1016/0306-4522(94)00542-d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A previous in situ hybridization study by Wisden et al., J. Neurosci. 12, 1040-1062, showed a high expression of the GABAA receptor alpha 1, beta 2 and gamma 2 subunit messenger RNAs in the medial septal nucleus and nucleus of the diagonal band of the rat. The aim of the present study was to determine whether this high expression of GABAA receptor subunit messenger RNAs is found in the cholinergic neurons of these areas. Adjacent 4-5 microns sections of rat forebrain were submitted to choline acetyltransferase immunocytochemistry or to in situ hybridization histochemistry using oligonucleotides complementary to parts of the GABAA receptor alpha 1, alpha 2, beta 2, delta 1 and gamma 2 subunit messenger RNAs. It was found that the high expression for the GABAA receptor alpha 1, beta 2 and gamma 2 subunit messenger RNAs in the medial septal nucleus, the nucleus of the diagonal band and the nucleus basalis is located almost exclusively in non-cholinergic neurons. It was also found that these non-cholinergic cells are also continuous in distribution with neurons in the globus pallidus and ventral pallidum that similarly express high levels of messenger RNA for the GABAA receptor alpha 1, beta 2 and gamma 2 subunits. It was concluded that the basal forebrain cholinergic neurons may not be as sensitive to GABAA receptor influences as their non-cholinergic neighbours.
Collapse
Affiliation(s)
- Z Henderson
- Department of Physiology, University of Leeds, UK
| |
Collapse
|