1
|
Milinkeviciute G, Green KN. Clusterin/apolipoprotein J, its isoforms and Alzheimer's disease. Front Aging Neurosci 2023; 15:1167886. [PMID: 37122381 PMCID: PMC10133478 DOI: 10.3389/fnagi.2023.1167886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Giedre Milinkeviciute
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Kim N. Green
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Herring SK, Moon HJ, Rawal P, Chhibber A, Zhao L. Brain clusterin protein isoforms and mitochondrial localization. eLife 2019; 8:48255. [PMID: 31738162 PMCID: PMC6860991 DOI: 10.7554/elife.48255] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
Clusterin (CLU), or apolipoprotein J (ApoJ), is the third most predominant genetic risk factor associated with late-onset Alzheimer’s disease (LOAD). In this study, we use multiple rodent and human brain tissue and neural cell models to demonstrate that CLU is expressed as multiple isoforms that have distinct cellular or subcellular localizations in the brain. Of particular significance, we identify a non-glycosylated 45 kDa CLU isoform (mitoCLU) that is localized to the mitochondrial matrix and expressed in both rodent and human neurons and astrocytes. In addition, we show that rodent mitoCLU is translated from a non-canonical CUG (Leu) start site in Exon 3, a site that coincides with an AUG (Met) in human CLU. Last, we reveal that mitoCLU is present at the gene and protein level in the currently available CLU–/– mouse model. Collectively, these data provide foundational knowledge that is integral in elucidating the relationship between CLU and the development of LOAD.
Collapse
Affiliation(s)
- Sarah K Herring
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States
| | - Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States
| | - Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States
| | - Anindit Chhibber
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States.,Neuroscience Graduate Program, University of Kansas, Lawrence, United States
| |
Collapse
|
3
|
Time-Dependent Decrease of Clusterin as a Potential Cerebrospinal Fluid Biomarker for Drug-Resistant Epilepsy. J Mol Neurosci 2014; 54:1-9. [DOI: 10.1007/s12031-014-0237-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
|
4
|
Zinkie S, Gentil BJ, Minotti S, Durham HD. Expression of the protein chaperone, clusterin, in spinal cord cells constitutively and following cellular stress, and upregulation by treatment with Hsp90 inhibitor. Cell Stress Chaperones 2013; 18:745-58. [PMID: 23595219 PMCID: PMC3789872 DOI: 10.1007/s12192-013-0427-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/01/2022] Open
Abstract
Clusterin, a protein chaperone found at high levels in physiological fluids, is expressed in nervous tissue and upregulated in several neurological diseases. To assess relevance to amyotrophic lateral sclerosis (ALS) and other motor neuron disorders, clusterin expression was evaluated using long-term dissociated cultures of murine spinal cord and SOD1(G93A) transgenic mice, a model of familial ALS. Motor neurons and astrocytes constitutively expressed nuclear and cytoplasmic forms of clusterin, and secreted clusterin accumulated in culture media. Although clusterin can be stress inducible, heat shock failed to increase levels in these neural cell compartments despite robust upregulation of stress-inducible Hsp70 (HspA1) in non-neuronal cells. In common with HSPs, clusterin was upregulated by treatment with the Hsp90 inhibitor, geldanamycin, and thus could contribute to the neuroprotection previously identified for such compounds in disease models. Clusterin expression was not altered in cultured motor neurons expressing SOD1(G93A) by gene transfer or in presymptomatic SOD1(G93A) transgenic mice; however, clusterin immunolabeling was weakly increased in lumbar spinal cord of overtly symptomatic mice. More striking, mutant SOD1 inclusions, a pathological hallmark, were strongly labeled by anti-clusterin. Since secreted, as well as intracellular, mutant SOD1 contributes to toxicity, the extracellular chaperoning property of clusterin could be important for folding and clearance of SOD1 and other misfolded proteins in the extracellular space. Evaluation of chaperone-based therapies should include evaluation of clusterin as well as HSPs, using experimental models that replicate the control mechanisms operant in the cells and tissue of interest.
Collapse
Affiliation(s)
- Samantha Zinkie
- Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St., Montreal, QC Canada H3A 2B4
| | - Benoit J. Gentil
- Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St., Montreal, QC Canada H3A 2B4
| | - Sandra Minotti
- Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St., Montreal, QC Canada H3A 2B4
| | - Heather D. Durham
- Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St., Montreal, QC Canada H3A 2B4
| |
Collapse
|
5
|
Abstract
Clusterin, also known as apolipoprotein J, is a ubiquitous multifunctional glycoprotein. Following its identification in 1983, clusterin was found to be clearly increased in Alzheimer's disease (AD). Later research demonstrated that clusterin could bind amyloid-beta (Abeta) peptides and prevent fibril formation, a hallmark of AD pathology. In addition to preventing excessive inflammation, intracellular clusterin was found to reduce apoptosis and oxidative stress. Although early studies were inconclusive, two recent large-scale genome-wide association studies (GWAS) independently identified variants within the clusterin gene as risk factors for developing AD. This review focuses on the characteristics of clusterin and possible mechanisms of its relationship to AD.
Collapse
Affiliation(s)
- Zhong-Chen Wu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | | | | | | |
Collapse
|
6
|
Abstract
Clusterin (CLU) is a multifunctional glycoprotein that has secretory and nuclear isoforms. The two isoforms are known to play opposite roles in cell survival/death. In this review, we summarize recent progress on the pro-apoptotic function of nuclear CLU in vitro and in vivo and discuss previous reports on the role of CLU in brain damage and neurodegeneration.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Anatomy and Neurobiology, Medical Research Center for Neural Dysfunction, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Korea
| | | |
Collapse
|
7
|
Noh HS, Kim DW, Kang SS, Cho GJ, Choi WS. Ketogenic diet prevents clusterin accumulation induced by kainic acid in the hippocampus of male ICR mice. Brain Res 2005; 1042:114-8. [PMID: 15823260 DOI: 10.1016/j.brainres.2005.01.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 11/22/2022]
Abstract
We investigated the effect of ketogenic diet (KD) on clusterin accumulation in the kainic acid (KA)-induced seizure model. Two days after KA administration, strong clusterin-like immunoreactivity (IR) was detected in the hippocampus in the normal diet (ND)-fed mice. But in the KD-fed mice, few clusterin-like IR was detected. These results indicate that KD has neuroprotective effects throughout diminishing nuclear clusterin accumulation that is involved in caspase-3 independent cell death mechanism.
Collapse
Affiliation(s)
- Hae Sook Noh
- Department of Anatomy and Neurobiology, Institute of Health Science, College of Medicine, Gyeongsang National University, Chinju, Kyungnam 660-751, South Korea
| | | | | | | | | |
Collapse
|
8
|
Wiggins AK, Shen PJ, Gundlach AL. Delayed, but prolonged increases in astrocytic clusterin (ApoJ) mRNA expression following acute cortical spreading depression in the rat: evidence for a role of clusterin in ischemic tolerance. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:20-30. [PMID: 12782389 DOI: 10.1016/s0169-328x(03)00124-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clusterin is a sulfated glycoprotein produced by neurons and by resting and activated astrocytes that has several putative functions, including protective responses to brain injury. Cortical spreading depression (CSD) is a powerful yet largely benign stimulus that acutely is capable of providing long-lasting ischemic tolerance. The current study investigated possible alterations in expression of clusterin mRNA in the cerebral cortex of the rat at various times after unilateral CSD. Using semiquantitative in situ hybridization histochemistry, significant increases (30-100%; P< or =0.05) in clusterin mRNA were detected in layers I-III and IV-VI of the ipsilateral cortex at 1, 2, 7 and 14 (layers I-III only) days after CSD. Transcript levels in the ipsilateral cortex were again equivalent to contralateral (control) levels at 28 days after CSD. These molecular anatomical studies also revealed that both neurons and nonneuronal cells (presumed reactive astrocytes) increased their expression of clusterin mRNA following CSD. Notably the time-course of increases in clusterin mRNA after CSD (1-14 days) overlaps that during which CSD reportedly provides neuroprotection against subsequent cerebral ischemia. These findings along with other evidence suggest that increased clusterin production and secretion, particularly by astrocytes, could be neuroprotective-perhaps via one or more of its putative actions that include inhibition of complement activation and cytolysis, effects on chemotaxis and apoptosis, and actions as an anti-stress protein chaperone.
Collapse
Affiliation(s)
- Amanda K Wiggins
- Howard Florey Institute of Experimental Physiology and Medicine and Department of Medicine, Austin and Repatriation Medical Centre, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
9
|
Wehrli P, Charnay Y, Vallet P, Zhu G, Harmony J, Aronow B, Tschopp J, Bouras C, Viard-Leveugle I, French LE, Giannakopoulos P. Inhibition of post-ischemic brain injury by clusterin overexpression. Nat Med 2001; 7:977-9. [PMID: 11533682 DOI: 10.1038/nm0901-977] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
|
11
|
Abstract
Apolipoprotein J (clusterin) is a ubiquitous multifunctional glycoprotein capable of interacting with a broad spectrum of molecules. In pathological conditions, it is an amyloid associated protein, co-localizing with fibrillar deposits in systemic and localized amyloid disorders. In Alzheimer's disease, the most frequent form of amyloidosis in humans and the major cause of dementia in the elderly, apoJ is present in amyloid plaques and cerebrovascular deposits but is rarely seen in NFT-containing neurons. ApoJ expression is up-regulated in a wide variety of insults and may represent a defense response against local damage to neurons. Four different mechanisms of action could be postulated to explain the role of apoJ as a neuroprotectant during cellular stress: (1) function as an anti-apoptotic signal, (2) protection against oxidative stress, (3) inhibition of the membrane attack complex of complement proteins locally activated as a result of inflammation, and (4) binding to hydrophobic regions of partially unfolded, stressed proteins, and therefore avoiding aggregation in a chaperone-like manner. This review focuses on the association of apoJ in biological fluids with Alzheimer's soluble Abeta. This interaction prevents Abeta aggregation and fibrillization and modulates its blood-brain barrier transport at the cerebrovascular endothelium.
Collapse
Affiliation(s)
- M Calero
- Department of Pathology, New York University School of Medicine, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
12
|
Feldman JD, Vician L, Crispino M, Hoe W, Baudry M, Herschman HR. The salt-inducible kinase, SIK, is induced by depolarization in brain. J Neurochem 2000; 74:2227-38. [PMID: 10820182 DOI: 10.1046/j.1471-4159.2000.0742227.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Membrane depolarization of neurons is thought to lead to changes in gene expression that modulate neuronal plasticity. We used representational difference analysis to identify a group of cDNAs that are induced by membrane depolarization or by forskolin, but not by neurotrophins or growth factors, in PC12 pheochromocytoma cells. One of these genes, SIK (salt-inducible kinase), is a member of the sucrose-nonfermenting 1 protein kinase/AMP-activated protein kinase protein kinase family that was also recently identified from the adrenal gland of rats treated with high-salt diets. SIK mRNA is induced up to eightfold in specific regions of the hippocampus and cortex in rats, following systemic kainic acid administration and seizure induction.
Collapse
Affiliation(s)
- J D Feldman
- Department of Pediatrics, University of Southern California, Los Angeles, USA
| | | | | | | | | | | |
Collapse
|
13
|
Fagan AM, Holtzman DM, Munson G, Mathur T, Schneider D, Chang LK, Getz GS, Reardon CA, Lukens J, Shah JA, LaDu MJ. Unique lipoproteins secreted by primary astrocytes from wild type, apoE (-/-), and human apoE transgenic mice. J Biol Chem 1999; 274:30001-7. [PMID: 10514484 DOI: 10.1074/jbc.274.42.30001] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Composition of central nervous system lipoproteins affects the metabolism of lipoprotein constituents within the brain. The epsilon4 allele of apolipoprotein E (apoE) is a risk factor for Alzheimer's disease via an unknown mechanism(s). As glia are the primary central nervous system cell type that synthesize apoE, we characterized lipoproteins secreted by astrocytes from wild type (WT), apoE (-/-), and apoE transgenic mice expressing human apoE3 or apoE4 in a mouse apoE (-/-) background. Nondenaturing size exclusion chromatography demonstrates that WT, apoE3, and apoE4 astrocytes secrete particles the size of plasma high density lipoprotein (HDL) composed of phospholipid, free cholesterol, and protein, primarily apoE and apoJ. However, the lipid:apoE ratio of particles containing human apoE is significantly lower than WT. ApoE localizes across HDL-like particle sizes. ApoJ localizes to the smallest HDL-like particles. ApoE (-/-) astrocytes secrete little phospholipid or free cholesterol despite comparable apoJ expression, suggesting that apoE is required for normal secretion of astrocyte lipoproteins. Further, particles were not detected in apoE (-/-) samples by electron microscopy. Nondenaturing immunoprecipitation experiments indicate that apoE and apoJ reside predominantly on distinct particles. These studies suggest that apoE expression influences the unique structure of astrocyte lipoproteins, a process further modified by apoE species.
Collapse
Affiliation(s)
- A M Fagan
- Center for the Study of Nervous System Injury, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Walton M, Connor B, Lawlor P, Young D, Sirimanne E, Gluckman P, Cole G, Dragunow M. Neuronal death and survival in two models of hypoxic-ischemic brain damage. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:137-68. [PMID: 10209230 DOI: 10.1016/s0165-0173(98)00053-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two unilateral hypoxic-ischemia (HI) models (moderate and severe) in immature rat brain have been used to investigate the role of various transcription factors and related proteins in delayed neuronal death and survival. The moderate HI model results in an apoptotic-like neuronal death in selectively vulnerable regions of the brain while the more severe HI injury consistently produces widespread necrosis resulting in infarction, with some necrosis resistant cell populations showing evidence of an apoptotic type death. In susceptible regions undergoing an apoptotic-like death there was not only a prolonged induction of the immediate early genes, c-jun, c-fos and nur77, but also of possible target genes amyloid precursor protein (APP751) and CPP32. In contrast, increased levels of BDNF, phosphorylated CREB and PGHS-2 were found in cells resistant to the moderate HI insult suggesting that these proteins either alone or in combination may be of importance in the process of neuroprotection. An additional feature of both the moderate and severe brain insults was the rapid activation and/or proliferation of glial cells (microglia and astrocytes) in and around the site of damage. The glial response following HI was associated with an upregulation of both the CCAAT-enhancer binding protein alpha (microglia only) and NFkappaB transcription factors.
Collapse
Affiliation(s)
- M Walton
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Simantov R, Crispino M, Hoe W, Broutman G, Tocco G, Rothstein JD, Baudry M. Changes in expression of neuronal and glial glutamate transporters in rat hippocampus following kainate-induced seizure activity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 65:112-23. [PMID: 10036313 DOI: 10.1016/s0169-328x(98)00349-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The expression of excitatory amino acid transporters (EAATs) in rat hippocampus was studied following kainic acid-induced seizure activity in vivo and in hippocampal slice cultures. Protein and mRNA levels of the glial (EAAT2) and neuronal (EAAT3) transporters were determined with affinity-purified antibodies and oligonucleotide probes, respectively. Kainate treatment decreased EAAT3 immunoreactivity in stratum lacunosum moleculare within 4 h of seizure onset. Upon pyramidal cell death (5 days after kainate treatment), EAAT3 immunoreactivity in stratum pyramidale of CA1 and in stratum lacunosum moleculare was almost completely eliminated. The rapid effect of kainate on EAAT3 expression was confirmed by in situ hybridization; EAAT3 mRNA levels were decreased in CA1 and CA3 regions within 4-8 h of seizure onset. Kainate treatment had an opposite effect on levels and expression of EAAT2. Developmental studies indicated that the rapid regulation of transporter expression was not observed in rats younger than 21 days, an observation congruent with previous reports regarding the resistance of young rats to kainate. In hippocampal organotypic cultures, which lack a major excitatory input from the entorhinal cortex, kainate produced a slow decrease in [3H]d-aspartate uptake. This study indicates that an early effect of kainate treatment consists of down-regulation of the neuronal transporter EAAT3 in restricted hippocampal regions, together with a modest increase in the expression of the glial transporter EAAT2. Differential regulation of neuronal and glial glutamate transporters may thus play a role in kainate-induced seizure, neurotoxicity and neuronal plasticity.
Collapse
Affiliation(s)
- R Simantov
- Neuroscience Program, Hedco Neuroscience Building, Room 309, University of Southern California, Los Angeles, CA 90089-2520, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Crispino M, Tocco G, Feldman JD, Herschman HR, Baudry M. Nurr1 mRNA expression in neonatal and adult rat brain following kainic acid-induced seizure activity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 59:178-88. [PMID: 9729370 DOI: 10.1016/s0169-328x(98)00143-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nurr1 is an immediate early gene encoding a member of the steroid-thyroid hormone receptor family. In PC12 cells, Nurr1 is readily induced by membrane depolarization, but not by growth factors. Nurr1 is predominantly expressed in the brain, and is essential to the differentiation of midbrain dopaminergic neurons. However, Nurr1 is also expressed in brain regions unrelated to dopaminergic neurons, e.g., hippocampus and cerebral cortex, and its immediate induction following seizure activity suggests a potential involvement of this transcription factor in modulating gene expression in the nervous system. To investigate the response of Nurr1 to neuronal activation, we analyzed Nurr1 mRNA expression in neonatal and adult rat brain following kainic acid (KA)-induced seizure. In P7 animals, systemic injection of KA increased Nurr1 mRNA levels in a few hilar cells of the dentate gyrus and some pyramidal cells of the CA3 region of the hippocampus. In older animals, Nurr1 induction progressively expanded to all hippocampal regions (P14, P21) and eventually to cortical regions (adult). The increase was rapid and transient in the dentate gyrus, a structure resistant to the neurotoxic effect of KA, and was more prolonged in other regions more susceptible to KA toxicity. Induction of Nurr1 at early postnatal stages and rapid increase in the dentate gyrus following KA-induced seizure, suggest that Nurr1 expression is modulated by neuronal activity. On the other hand, prolonged Nurr1 induction in regions sensitive to KA toxicity indicates a possible involvement of Nurr1 in selective neuronal vulnerability.
Collapse
Affiliation(s)
- M Crispino
- Neuroscience Program, Hedco Neuroscience Building, Room 311, University of Southern California, Los Angeles, CA 90089-2520, USA.
| | | | | | | | | |
Collapse
|
17
|
Feldman JD, Vician L, Crispino M, Tocco G, Marcheselli VL, Bazan NG, Baudry M, Herschman HR. KID-1, a protein kinase induced by depolarization in brain. J Biol Chem 1998; 273:16535-43. [PMID: 9632723 DOI: 10.1074/jbc.273.26.16535] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane depolarization leads to changes in gene expression that modulate neuronal plasticity. Using representational difference analysis, we have identified a previously undiscovered cDNA, KID-1 (kinase induced by depolarization), that is induced by membrane depolarization or forskolin, but not by neurotrophins or growth factors, in PC12 pheochromocytoma cells. KID-1 is an immediate early gene that shares a high degree of sequence similarity with the family of PIM-1 serine/threonine protein kinases. Recombinant KID-1 fusion protein is able to catalyze both histone phosphorylation and autophosphorylation. KID-1 mRNA is present in a number of unstimulated tissues, including brain. In response to kainic acid and electroconvulsive shock-induced seizures, KID-1 is induced in specific regions of the hippocampus and cortex.
Collapse
Affiliation(s)
- J D Feldman
- Department of Pediatrics, UCLA Center for the Health Sciences, Los Angeles, California 90095-1570, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wener KM, Morales CR, Brawer JR. The effect of estradiol-induced hypothalamic pathology on sulfated glycoprotein-2 (clusterin) expression in the hypothalamus. Brain Res 1997; 745:37-45. [PMID: 9037392 DOI: 10.1016/s0006-8993(96)01124-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfated glycoprotein-2 (SGP-2 or clusterin) is a complex multifunctional molecule that has been recently been implicated in neuronal degeneration and remodeling. We have shown that estradiol treatment results in a selective destruction of beta-endorphin neurons in the hypothalamic arcuate nucleus. We have used immunocytochemistry to determine the distribution of SGP-2 immunoreactivity in the rat hypothalamus and to assess the effects of the estradiol-induced destruction of beta-endorphin neurons on SGP-2 expression. We have found that SGP-2-immunopositive neurons normally occur in the medial preoptic area (MPOA), supraoptic nucleus (SON), paraventricular nucleus (PVN), dorsomedial nucleus (DM), and the lateral hypothalamic area (LHA) in both males and females. The neuropil appears free of label. Treatment with estradiol valerate results in the appearance of immunopositive punctate deposits in the neuropil in the MPOA, PVN and DM. The number and distribution of SGP-2-positive neurons are unaffected by estradiol treatment except in the MPOA, where there are twice as many SGP-2-positive neurons as in controls. These effects are precluded by treatment with vitamin E, with blocks the cytotoxic action of estradiol on beta-endorphin neurons. Thus, we interpret these changes as responses to the loss of beta-endorphin afferents.
Collapse
Affiliation(s)
- K M Wener
- Department of Anatomy and Cell Biology, McGill University, Montreal P.Q., Canada
| | | | | |
Collapse
|
19
|
May PC, Clemens JA, Panetta JA, Smalstig EB, Stephenson D, Fuson KS. Induction of sulfated glycoprotein-2 (clusterin) and glial fibrillary acidic protein (GFAP) RNA expression following transient global ischemia is differentially attenuated by LY231617. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:145-8. [PMID: 8915593 DOI: 10.1016/s0169-328x(96)00155-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfated glycoprotein-2 (SGP-2) is a secreted glycoprotein that along with GFAP has emerged as a prominent molecular marker of neurodegeneration. In the present study, we have evaluated further the relationship between SGP-2, GFAP and neurodegeneration, by examining the effects of LY231617, a potent antioxidant, on expression of SGP-2 and GFAP following four vessel occlusion (4VO). GFAP and SGP-2 RNA levels increased several fold in hippocampus and caudate nucleus in response to 30 min of 4VO. LY231617 treatment markedly attenuated the induction of GFAP RNA in both hippocampus and caudate nucleus, consistent with the significant neuroprotection observed histologically. In contrast, LY231617 treatment blunted SGP-2 RNA expression only in the hippocampus; SGP-2 RNA expression in caudate nucleus was similar to vehicle-treated 4VO, despite the marked attenuation of neuronal damage in both areas by LY231617. These data suggest region-specific differential regulation of SGP-2 and GFAP RNA induction.
Collapse
Affiliation(s)
- P C May
- Lilly Research Laboratories, CNS Research, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
20
|
Pasinetti GM. Inflammatory mechanisms in neurodegeneration and Alzheimer's disease: the role of the complement system. Neurobiol Aging 1996; 17:707-16. [PMID: 8892343 DOI: 10.1016/0197-4580(96)00113-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review discusses key findings indicating potential roles of the complement (C)-system in chronic inflammation in Alzheimer's disease (AD) brain. Although there is no means to cure or prevent the disease, recent studies suggest that antiinflammatory drugs may delay the onset of AD dementia. One target of these drugs may be the (C)-system, which is best known for its roles in inflammatory processes in peripheral tissues. However, recent data show C-system expression and regulation in brain cells, and C-system protein deposition in AD plaques. It is still nuclear whether C-system activation contributes to neuropathology in the AD brain, as shown in multiple sclerosis (MS). New clinical studies with antiinflammatory agents are now under general consideration by the Alzheimer's Disease Cooperative Study program. In this review I outline research directions which address possible C-system contributions to neurodegeneration. Finally, I discuss potential pharmacological interventions designed to control segments of classical inflammatory cascades in which the C-system is highly implicated. These aspects are critical to the understanding of C-mediated responses in normal and pathologic brain.
Collapse
Affiliation(s)
- G M Pasinetti
- Mount Sinai Medical Center, Department of Psychiatry, New York, NY 10029-6574, USA
| |
Collapse
|
21
|
Walton M, Young D, Sirimanne E, Dodd J, Christie D, Williams C, Gluckman P, Dragunow M. Induction of clusterin in the immature brain following a hypoxic-ischemic injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 39:137-52. [PMID: 8804722 DOI: 10.1016/0169-328x(96)00019-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A unilateral hypoxic-ischemic (HI) insult in the 21 day old rat has been used to assess the role of clusterin in nerve cell death. Both clusterin mRNA and protein levels were measured at various time points after moderate (15 min) and severe (60 min) HI insult using in situ hybridisation and immunocytochemistry respectively. The severe HI insult lead primarily to necrotic neuronal death and showed very little if any clusterin mRNA and protein induction on the ligated side of the brain. However, following the moderate HI insult there was a dramatic time-dependent accumulation of clusterin protein in neurons of the CA1-CA2 pyramidal cell layers in the hippocampus and cortical layers 3-5, regions undergoing delayed neuronal death. Clusterin mRNA expression, in contrast to neuronal protein accumulation, appeared to be glial in origin (probably astrocytes) with increases in mRNA in and around the hippocampal fissure and only a weak signal over the CA1-CA2 pyramidal cell layer. These results support the hypothesis that the clusterin protein is synthesised in the astrocytes, secreted and then taken up by dying neurons. Clusterin immunoreactivity and in situ DNA end-labelling performed on the same sections revealed that clusterin was accumulating in neurons destined to die by programmed cell death. However the relative time-courses of DNA fragmentation and clusterin immunoreactivity suggest that clusterin production was a result of the selective delayed neuronal death rather than being involved in the biochemical cascade of events that cause it.
Collapse
Affiliation(s)
- M Walton
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schreiber SS, Baudry M. Selective neuronal vulnerability in the hippocampus--a role for gene expression? Trends Neurosci 1995; 18:446-51. [PMID: 8545911 DOI: 10.1016/0166-2236(95)94495-q] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proposed mechanisms of neurodegeneration focus generally on the triggering of toxic biochemical pathways by an increased intracellular concentration of Ca2+. Recent evidence also suggests that Ca2+ causes transcriptional activation of so-called 'cell-death genes'. Efforts to elucidate the basis of selective vulnerability have relied on animal models of delayed neuronal death in the hippocampus. Biochemical and morphological data indicate that delayed neuronal death is a form of programmed cell death, or apoptosis. Observations that specific genes are activated transcriptionally for prolonged times in neuronal populations that are undergoing delayed death suggest that active gene expression is part of the neuronal-death cascade. Although a direct causal role remains to be proven, evidence implicates certain genes in neuronal-death pathways.
Collapse
Affiliation(s)
- S S Schreiber
- Dept of Neurology, University of Southern California, School of Medicine, Los Angeles 90033, USA
| | | |
Collapse
|
23
|
Dragunow M, Preston K, Dodd J, Young D, Lawlor P, Christie D. Clusterin accumulates in dying neurons following status epilepticus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 32:279-90. [PMID: 7500839 DOI: 10.1016/0169-328x(95)00088-a] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Clusterin is a protein that has been implicated in cell death and remodelling in a number of different tissues. To further investigate the role of clusterin in nerve cell death its expression was measured in the rat brain at various times after status epilepticus (SE) induced by 1 h of hippocampal stimulation, by using in situ hybridization, immunocytochemistry, and immunoblotting. SE lead to a dramatic time-dependent increase in clusterin mRNA in non-nerve cells resembling astrocytes in the hippocampus beginning after 24 h. There was also an earlier induction of clusterin mRNA in dentate granule cells, that survive SE. Only a low mRNA signal was observed over the CA1 pyramidal cells, which die after SE. In contrast to these mRNA results, massive clusterin-like immunoreactivity was observed in CA1 pyramidal cells and dentate hilar neurons (and both of these neuronal populations die after SE), but not in dentate granule cells. We speculate that astrocytes produce clusterin after SE and that the clusterin is then secreted and taken up by hippocampal neurons destined to die. Thus, the role of clusterin in nerve cell death/ regeneration warrants further investigation.
Collapse
Affiliation(s)
- M Dragunow
- Department of Pharmacology, University of Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Clusterin is a heterodimeric glycoprotein produced by a wide array of tissues and found in most biologic fluids. A number of physiologic functions have been proposed for clusterin based on its distribution and in vitro properties. These include complement regulation, lipid transport, sperm maturation, initiation of apoptosis, endocrine secretion, membrane protection, and promotion of cell interactions. A prominent and defining feature of clusterin is its induction in such disease states as glomerulonephritis, polycystic kidney disease, renal tubular injury, neurodegenerative conditions including Alzheimer's disease, atherosclerosis, and myocardial infarction. The expression of clusterin in these states is puzzling, from the specific molecular species and cellular pathways eliciting such expression, to the roles subserved by clusterin once induced. This review will discuss these physiologic and pathophysiologic aspects of clusterin and speculate on its role in disease.
Collapse
Affiliation(s)
- M E Rosenberg
- Department of Medicine, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
25
|
Dragunow M, Preston K. The role of inducible transcription factors in apoptotic nerve cell death. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 21:1-28. [PMID: 8547952 DOI: 10.1016/0165-0173(95)00003-l] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies have shown that certain types of nerve cell death in the brain occur by an apoptotic mechanism. Researchers have demonstrated that moderate hypoxic-ischemic (HI) episodes and status epilepticus (SE) can cause DNA fragmentation as well as other morphological features of apoptosis in neurons destined to die, whereas more severe HI episodes lead to neuronal necrosis and infarction. Although somewhat controversial, some studies have demonstrated that protein synthesis inhibition prevents HI-and SE-induced nerve cell death in the brain, suggesting that apoptotic nerve cell death in the adult brain is de novo protein synthesis-dependent (i.e., programmed). The identity of the proteins involved in HI-and SE-induced apoptosis in the adult brain is unclear, although based upon studies in cell culture, a number of potential cell death and anti-apoptosis genes have been identified. In addition, a number of studies have demonstrated that inducible transcription factors (ITFs) are expressed for prolonged periods in neurons undergoing apoptotic death following HI and SE. These results suggest that prolonged expression of ITFs (in particular c-jun) may form part of the biological cascade that induces apoptosis in adult neurons. These various studies are critically discussed and in particular the role of inducible transcription factors in neuronal apoptosis is evaluated.
Collapse
Affiliation(s)
- M Dragunow
- Department of Pharmacology and Clinical Pharmacology, School of Medicine, University of Auckland, New Zealand
| | | |
Collapse
|
26
|
Rozovsky I, Morgan TE, Willoughby DA, Dugichi-Djordjevich MM, Pasinetti GM, Johnson SA, Finch CE. Selective expression of clusterin (SGP-2) and complement C1qB and C4 during responses to neurotoxins in vivo and in vitro. Neuroscience 1994; 62:741-58. [PMID: 7870303 DOI: 10.1016/0306-4522(94)90473-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study concerns expression of the genes encoding three multifunctional proteins: clusterin and two complement cascade components, C1q and C4. Previous work from this and other laboratories has established that clusterin, Clq and C4 messenger RNAs are elevated during Alzheimer's disease, and in response to deafferenting and excitotoxic brain lesion. This study addresses hippocampal clusterin, ClqB and C4 expression in response to neurotoxins that caused selective neuron death. Kainate, which preferentially kills hippocampal CA3 pyramidal neurons but not dentate gyrus granule neurons induced clusterin immunoreactivity in CA1 and CA3 pyramidal neurons and adjacent astrocytes, but not in dentate gyrus granule neurons. In contrast, colchicine, which preferentially kills the dentate gyrus granule neurons, induced clusterin immunoreactivity in the local neuropil as punctate deposits, but not in the surviving or degenerating dentate gyrus granule neurons. Clusterin messenger RNA was increased in astrocytes. ClqB and C4 messenger RNAs increased within 48 h after kainate injections, particularly in the CA3 pyramidal layer, less in the dentate gyrus-CA4, and less in CA1. Clq immunoreactivity was detected in CA1 pyramidal neurons and also as small punctate deposits in the CA1 region at eight and 14 days after kainate. The increase of both clusterin and ClqB messenger RNAs after kainate injections was blocked by barbiturates that prevented seizures and neurodegeneration. In primary hippocampal neuronal cultures treated with glutamate, a subpopulation of cultured neurons that survived glutamate toxicity also had parallel elevations of clusterin and ClqB messenger RNA. In conclusion, cytotoxins that target selective hippocampal neurons increase the expression of both clusterin and ClqB in vivo and in vitro. These results show that elevations of clusterin messenger RNA or protein can be dissociated from each other and from cell death. These increased messenger RNAs were associated with immunoreactive deposits that differed by cell type and intra- versus extracellular locations. These results suggest that the complement system is involved in brain responses to injury.
Collapse
Affiliation(s)
- I Rozovsky
- Neurogerontology Division, Andrus Gerontology Center, Los Angeles, CA
| | | | | | | | | | | | | |
Collapse
|