1
|
Carter F, Cossette MP, Trujillo-Pisanty I, Pallikaras V, Breton YA, Conover K, Caplan J, Solis P, Voisard J, Yaksich A, Shizgal P. Does phasic dopamine release cause policy updates? Eur J Neurosci 2024; 59:1260-1277. [PMID: 38039083 DOI: 10.1111/ejn.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
Phasic dopamine activity is believed to both encode reward-prediction errors (RPEs) and to cause the adaptations that these errors engender. If so, a rat working for optogenetic stimulation of dopamine neurons will repeatedly update its policy and/or action values, thus iteratively increasing its work rate. Here, we challenge this view by demonstrating stable, non-maximal work rates in the face of repeated optogenetic stimulation of midbrain dopamine neurons. Furthermore, we show that rats learn to discriminate between world states distinguished only by their history of dopamine activation. Comparison of these results to reinforcement learning simulations suggests that the induced dopamine transients acted more as rewards than RPEs. However, pursuit of dopaminergic stimulation drifted upwards over a time scale of days and weeks, despite its stability within trials. To reconcile the results with prior findings, we consider multiple roles for dopamine signalling.
Collapse
Affiliation(s)
- Francis Carter
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Montreal Institute for Learning Algorithms, Université de Montréal, Montreal, Quebec, Canada
| | | | - Ivan Trujillo-Pisanty
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Department of Psychology, Langara College, Vancouver, British Columbia, Canada
| | | | | | - Kent Conover
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Jill Caplan
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Pavel Solis
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Jacques Voisard
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Alexandra Yaksich
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Peter Shizgal
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Spataro S, Maco B, Escrig S, Jensen L, Polerecky L, Knott G, Meibom A, Schneider BL. Stable isotope labeling and ultra-high-resolution NanoSIMS imaging reveal alpha-synuclein-induced changes in neuronal metabolism in vivo. Acta Neuropathol Commun 2023; 11:157. [PMID: 37770947 PMCID: PMC10540389 DOI: 10.1186/s40478-023-01608-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/30/2023] Open
Abstract
In Parkinson's disease, pathogenic factors such as the intraneuronal accumulation of the protein α-synuclein affect key metabolic processes. New approaches are required to understand how metabolic dysregulations cause degeneration of vulnerable subtypes of neurons in the brain. Here, we apply correlative electron microscopy and NanoSIMS isotopic imaging to map and quantify 13C enrichments in dopaminergic neurons at the subcellular level after pulse-chase administration of 13C-labeled glucose. To model a condition leading to neurodegeneration in Parkinson's disease, human α-synuclein was unilaterally overexpressed in the substantia nigra of one brain hemisphere in rats. When comparing neurons overexpressing α-synuclein to those located in the control hemisphere, the carbon anabolism and turnover rates revealed metabolic anomalies in specific neuronal compartments and organelles. Overexpression of α-synuclein enhanced the overall carbon turnover in nigral neurons, despite a lower relative incorporation of carbon inside the nucleus. Furthermore, mitochondria and Golgi apparatus showed metabolic defects consistent with the effects of α-synuclein on inter-organellar communication. By revealing changes in the kinetics of carbon anabolism and turnover at the subcellular level, this approach can be used to explore how neurodegeneration unfolds in specific subpopulations of neurons.
Collapse
Affiliation(s)
- Sofia Spataro
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bohumil Maco
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Louise Jensen
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lubos Polerecky
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Graham Knott
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Bioelectron Microscopy Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland.
- EPFL ENAC IIE LGB, Station 2, 1015, Lausanne, Switzerland.
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- EPFL SV PTECH PTBTG, Ch. Des Mines 9, 1202, Geneva, Switzerland.
| |
Collapse
|
3
|
Zampese E, Wokosin DL, Gonzalez-Rodriguez P, Guzman JN, Tkatch T, Kondapalli J, Surmeier WC, D’Alessandro KB, De Stefani D, Rizzuto R, Iino M, Molkentin JD, Chandel NS, Schumacker PT, Surmeier DJ. Ca 2+ channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons. SCIENCE ADVANCES 2022; 8:eabp8701. [PMID: 36179023 PMCID: PMC9524841 DOI: 10.1126/sciadv.abp8701] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/12/2022] [Indexed: 05/08/2023]
Abstract
How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca2+) entry through Cav1 channels triggered Ca2+ release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca2+-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - David L. Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patricia Gonzalez-Rodriguez
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jaime N. Guzman
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jyothisri Kondapalli
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - William C. Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Karis B. D’Alessandro
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Masamitsu Iino
- Department of Physiology, Nihon University School of Medicine, 30-1, Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Jeffery D. Molkentin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Navdeep S. Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paul T. Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D. James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Frehner SS, Dooley KT, Palumbo MC, Smith AL, Goodman MM, Bales KL, Freeman SM. Effect of sex and autism spectrum disorder on oxytocin receptor binding and mRNA expression in the dopaminergic pars compacta of the human substantia nigra. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210118. [PMID: 35858098 PMCID: PMC9272142 DOI: 10.1098/rstb.2021.0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/13/2022] [Indexed: 12/22/2022] Open
Abstract
Oxytocin is an endogenous neuropeptide hormone that influences social behaviour and bonding in mammals. Variations in oxytocin receptor (OXTR) expression may play a role in the social deficits seen in autism spectrum disorder. Previous studies from our laboratory found a dense population of OXTR in the human substantia nigra (SN), a basal ganglia structure in the midbrain that is important in both movement and reward pathways. Here, we explore whether differences in OXTR can be identified in the dopaminergic SN pars compacta of individuals with autism. Postmortem human brain tissue specimens were processed for OXTR autoradiography from four groups: males with autism, females with autism, typically developing (TD) males and TD females. We found that females with autism had significantly lower levels of OXTR than the other groups. To examine potential gene expression differences, we performed in situ hybridization in adjacent slides to visualize and quantify OXTR mRNA as well as mRNA for tyrosine hydroxylase. We found no differences in mRNA levels for either gene across the four groups. These results suggest that a dysregulation in local OXTR protein translation or increased OXTR internalization/recycling may contribute to the differences in social symptoms seen in females with autism. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Sage S. Frehner
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Kip T. Dooley
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Michelle C. Palumbo
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
- Department of Behavioral Neuroscience, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Aaron L. Smith
- Department of Radiology, Emory University, Atlanta, GA 30322, USA
| | - Mark M. Goodman
- Department of Radiology, Emory University, Atlanta, GA 30322, USA
| | - Karen L. Bales
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| | - Sara M. Freeman
- Department of Biology, Utah State University, Logan, UT 84322, USA
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Morphological Heterogeneity of the Endoplasmic Reticulum within Neurons and Its Implications in Neurodegeneration. Cells 2021; 10:cells10050970. [PMID: 33919188 PMCID: PMC8143122 DOI: 10.3390/cells10050970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multipurpose organelle comprising dynamic structural subdomains, such as ER sheets and tubules, serving to maintain protein, calcium, and lipid homeostasis. In neurons, the single ER is compartmentalized with a careful segregation of the structural subdomains in somatic and neurite (axodendritic) regions. The distribution and arrangement of these ER subdomains varies between different neuronal types. Mutations in ER membrane shaping proteins and morphological changes in the ER are associated with various neurodegenerative diseases implying significance of ER morphology in maintaining neuronal integrity. Specific neurons, such as the highly arborized dopaminergic neurons, are prone to stress and neurodegeneration. Differences in morphology and functionality of ER between the neurons may account for their varied sensitivity to stress and neurodegenerative changes. In this review, we explore the neuronal ER and discuss its distinct morphological attributes and specific functions. We hypothesize that morphological heterogeneity of the ER in neurons is an important factor that accounts for their selective susceptibility to neurodegeneration.
Collapse
|
6
|
Deshpande P, Flinkman D, Hong Y, Goltseva E, Siino V, Sun L, Peltonen S, Elo LL, Kaasinen V, James P, Coffey ET. Protein synthesis is suppressed in sporadic and familial Parkinson's disease by LRRK2. FASEB J 2020; 34:14217-14233. [PMID: 32926469 DOI: 10.1096/fj.202001046r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/12/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
Gain of function LRRK2-G2019S is the most frequent mutation found in familial and sporadic Parkinson's disease. It is expected therefore that understanding the cellular function of LRRK2 will provide insight on the pathological mechanism not only of inherited Parkinson's, but also of sporadic Parkinson's, the more common form. Here, we show that constitutive LRRK2 activity controls nascent protein synthesis in rodent neurons. Specifically, pharmacological inhibition of LRRK2, Lrrk2 knockdown or Lrrk2 knockout, all lead to increased translation. In the rotenone model for sporadic Parkinson's, LRRK2 activity increases, dopaminergic neuron translation decreases, and the neurites atrophy. All are prevented by LRRK2 inhibitors. Moreover, in striatum and substantia nigra of rotenone treated rats, phosphorylation changes are observed on eIF2α-S52(↑), eIF2s2-S2(↓), and eEF2-T57(↑) in directions that signify protein synthesis arrest. Significantly, translation is reduced by 40% in fibroblasts from Parkinson's patients (G2019S and sporadic cases alike) and this is reversed upon LRRK2 inhibitor treatment. In cells from multiple system atrophy patients, translation is unchanged suggesting that repression of translation is specific to Parkinson's disease. These findings indicate that repression of translation is a proximal function of LRRK2 in Parkinson's pathology.
Collapse
Affiliation(s)
| | - Dani Flinkman
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ye Hong
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elena Goltseva
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lihua Sun
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura L Elo
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Valtteri Kaasinen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Peter James
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Immunotechnology, Lund University, Lund, Sweden
| | - Eleanor T Coffey
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
7
|
Neurorestorative effects of sub-chronic administration of ambroxol in rodent model of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:429-444. [DOI: 10.1007/s00210-019-01737-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
|
8
|
Walker CK, Roche JK, Sinha V, Roberts RC. Substantia nigra ultrastructural pathology in schizophrenia. Schizophr Res 2018; 197:209-218. [PMID: 29274737 PMCID: PMC6013319 DOI: 10.1016/j.schres.2017.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a severe mental illness affecting approximately 1% of the population worldwide. Despite its prevalence, the cause remains unknown, and treatment is not effective in all patients. Dopamine is thought to play a role in schizophrenia pathology, yet the substantia nigra (SN), the origin of dopaminergic pathways, has not been studied extensively in schizophrenia. In this study, electron microscopy was used to examine neurons, oligodendrocytes, and myelinated axons in the SN of normal controls (NCs, n=9) and schizophrenia subjects with varying response to antipsychotic drugs [SZ, n=14; treatment resistant (TR)=6, treatment responsive (RESP)=6, unknown=2]. Postmortem tissue was analyzed for qualitative and quantitative markers of ultrastuctural integrity. A significantly higher percentage of axons in the schizophrenia group had inclusions in the myelin sheath compared to NCs (SZ: 3.9±1.7, NC: 2.6±2.0). When considering treatment response, a significantly higher percentage of axons lacked cytoplasm (TR: 9.7±5.5, NC: 3.5±2.3), contained cellular debris (TR: 7.5±3.2, NC: 2.3±1.3) or had protrusions in the myelin sheath (TR: 0.4±0.5, NC: 0.2±0.3). The G-ratio, a measure of myelin thickness, was significantly different between treatment response groups and was greater in TR (0.72±0.02) as compared to NCs (0.68±0.03), indicating decreased myelination in TR. These findings, which suggest myelin pathology in the SN in schizophrenia, are consistent with findings elsewhere in the brain. In addition, our results suggest cytoskeletal abnormalities, which may or may not be associated with myelin pathology.
Collapse
Affiliation(s)
| | - Joy K. Roche
- Department of Psychology, University of Alabama at Birmingham
| | - Vidushi Sinha
- Department of Psychology, University of Alabama at Birmingham
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
9
|
Gondré-Lewis MC, Darius PJ, Wang H, Allard JS. Stereological analyses of reward system nuclei in maternally deprived/separated alcohol drinking rats. J Chem Neuroanat 2016; 76:122-132. [PMID: 26939765 DOI: 10.1016/j.jchemneu.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/19/2016] [Accepted: 02/26/2016] [Indexed: 12/15/2022]
Abstract
The experience of early life stress can trigger complex neurochemical cascades that influence emotional and addictive behaviors later in life in both adolescents and adults. Recent evidence suggests that excessive alcohol drinking and drug-seeking behavior, in general, are co-morbid with depressive-like behavior. Both behaviors are reported in humans exposed to early life adversity, and are prominent features recapitulated in animal models of early life stress (ELS) exposure. Currently, little is known about whether or how ELS modulates reward system nuclei. In this study we use operant conditioning of rats to show that the maternal separation stress (MS) model of ELS consumes up to 3-fold greater quantities of 10% vol/vol EtOH in 1-h, consistently over a 3-week period. This was correlated with a significant 22% reduction in the number of dopaminergic-like neurons in the VTA of naïve MS rats, similar to genetically alcohol-preferring (P) rats which show a 35% reduction in tyrosine hydroxylase (TH)-positive dopaminergic neurons in the VTA. MS rats had a significantly higher 2-fold immobility time in the forced swim test (FST) and reduced sucrose drinking compared to controls, indicative of depressive-like symptomology and anhedonia. Consistent with this finding, stereological analysis revealed that amygdala neurons were 25% greater in number at P70 following MS exposure. Our previous examination of the dentate gyrus of hippocampus, a region involved in encoding emotional memory, revealed fewer dentate gyrus neurons after MS, but we now report this reduction in neurons occurs without effect on the number of astrocytes or length of astrocytic fibers. These data indicate that MS animals exhibit neuroanatomical changes in reward centers similar to those reported for high alcohol drinking rats, but aspects of astrocyte morphometry remained unchanged. These data are of high relevance to understand the breadth of neuronal pathology that ensues in reward loci following ELS.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, United States; Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, United States.
| | - Philippe J Darius
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, United States; Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, United States
| | - Hong Wang
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, United States
| | - Joanne S Allard
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, United States
| |
Collapse
|
10
|
Hong S, Hikosaka O. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience 2014; 282:139-55. [PMID: 25058502 DOI: 10.1016/j.neuroscience.2014.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/16/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023]
Abstract
Dopamine (DA) neurons in the midbrain are crucial for motivational control of behavior. However, recent studies suggest that signals transmitted by DA neurons are heterogeneous. This may reflect a wide range of inputs to DA neurons, but which signals are provided by which brain areas is still unclear. Here we focused on the pedunculopontine tegmental nucleus (PPTg) in macaque monkeys and characterized its inputs to DA neurons. Since the PPTg projects to many brain areas, it is crucial to identify PPTg neurons that project to DA neuron areas. For this purpose we used antidromic activation technique by electrically stimulating three locations (medial, central, lateral) in the substantia nigra pars compacta (SNc). We found SNc-projecting neurons mainly in the PPTg, and some in the cuneiform nucleus. Electrical stimulation in the SNc-projecting PPTg regions induced a burst of spikes in presumed DA neurons, suggesting that the PPTg-DA (SNc) connection is excitatory. Behavioral tasks and clinical tests showed that the SNc-projecting PPTg neurons encoded reward, sensorimotor and arousal/alerting signals. Importantly, reward-related PPTg neurons tended to project to the medial and central SNc, whereas sensorimotor/arousal/alerting-related PPTg neurons tended to project to the lateral SNc. Most reward-related signals were positively biased: excitation and inhibition when a better and worse reward was expected, respectively. These PPTg neurons tended to retain the reward value signal until after a reward outcome, representing 'value state'; this was different from DA neurons which show phasic signals representing 'value change'. Our data, together with previous studies, suggest that PPTg neurons send positive reward-related signals mainly to the medial-central SNc where DA neurons encode motivational values, and sensorimotor/arousal signals to the lateral SNc where DA neurons encode motivational salience.
Collapse
Affiliation(s)
- S Hong
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - O Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Bukhatwa S, Iravani MM, Zeng BY, Cooper JD, Rose S, Jenner P. An immunohistochemical and stereological analysis of PSI-induced nigral neuronal degeneration in the rat. J Neurochem 2009; 109:52-9. [DOI: 10.1111/j.1471-4159.2009.05956.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Nauta WJ, Domesick VB. Afferent and efferent relationships of the basal ganglia. CIBA FOUNDATION SYMPOSIUM 2008; 107:3-29. [PMID: 6437774 DOI: 10.1002/9780470720882.ch2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A survey of the known circuitry of the basal ganglia leads to the following conclusions. (1) No complete account can yet be given of the neural pathways by which the basal ganglia affect the bulbospinal motor apparatus. Channels of exit from the basal ganglia originate from the internal pallidal segment, the pars reticulata of the substantia nigra, and the subthalamic nucleus, and each of these is directed in part rostrally to the cerebral cortex by way of the thalamus, in part caudally to the midbrain. The postsynaptic extension of the mesencephalic channels to bulbar and spinal motor neurons is largely unknown. Since the ascending channels are collectively of greatest volume, the notion remains plausible that the basal ganglia act in considerable part by modulating motor mechanisms of the cortex. (2) Recent findings in the rat suggest that the striatum is subdivided into a ventromedial, limbic system-afferented region and a dorsolateral, 'non-limbic' region largely corresponding to the main distribution of corticostriatal fibres from the motor cortex. These two subdivisions appear to give rise to different striatofugal lines, the outflow from the limbic-afferented sector partly re-entering the circuitry of the limbic system. (3) The limbic-afferented striatal sector suggests itself as an interface between the motivational and the more strictly motor aspects of movement. This suggestion is strengthened by evidence that the 'limbic striatum' seems enabled by its striatonigral efferents to modulate not only the source of its own dopamine innervation but also that of a large additional striatal region.
Collapse
|
13
|
BUBAR MJ, CUNNINGHAM KA. Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience 2007; 146:286-97. [PMID: 17367945 PMCID: PMC1939890 DOI: 10.1016/j.neuroscience.2006.12.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 12/23/2006] [Accepted: 12/27/2006] [Indexed: 10/23/2022]
Abstract
Serotonin 2C receptors (5-HT2CR) appear to exert tonic inhibitory influence over dopamine (DA) neurotransmission in the ventral tegmental area (VTA), the origin of the mesolimbic DA system, thought to be important in psychiatric disorders including addiction and schizophrenia. Current literature suggests that the inhibitory influence of 5-HT2CR on DA neurotransmission occurs via indirect activation of GABA inhibitory neurons, rather than via a direct action of 5-HT2CR on DA neurons. The present experiments were performed to establish the distribution of 5-HT2CR protein on DA and GABA neurons in the VTA of male rats via double-label immunofluorescence techniques. The 5-HT2CR protein was found to be co-localized with the GABA synthetic enzyme glutamic acid decarboxylase (GAD), confirming the presence of the 5-HT2CR on GABA neurons within the VTA. The 5-HT2CR immunoreactivity was also present in cells that contained immunoreactivity for tyrosine hydroxylase (TH), the DA synthetic enzyme, validating the localization of 5-HT2CR to DA neurons in the VTA. While the degree of 5-HT2CR+GAD co-localization was similar across the rostro-caudal levels of VTA subnuclei, 5-HT2CR+TH co-localization was highest in the middle relative to rostral and caudal levels of the VTA, particularly in the paranigral, parabrachial, and interfascicular subnuclei. The present results suggest that the inhibitory influence of the 5-HT2CR over DA neurotransmission in the VTA is a multifaceted and complex interplay of 5-HT2CR control of the output of both GABA and DA neurons within this region.
Collapse
Affiliation(s)
- M. J. BUBAR
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA
| | - K. A. CUNNINGHAM
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA
| |
Collapse
|
14
|
Deniau JM, Mailly P, Maurice N, Charpier S. The pars reticulata of the substantia nigra: a window to basal ganglia output. PROGRESS IN BRAIN RESEARCH 2007; 160:151-72. [PMID: 17499113 DOI: 10.1016/s0079-6123(06)60009-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Together with the internal segment of the globus pallidus (GP(i)), the pars reticulata of the substantia nigra (SNr) provides a main output nucleus of the basal ganglia (BG) where the final stage of information processing within this system takes place. In the last decade, progress on the anatomical organization and functional properties of BG output neurons have shed some light on the mechanisms of integration taking place in these nuclei and leading to normal and pathological BG outflow. In this review focused on the SNr, after describing how the anatomical arrangement of nigral cells and their afferents determines specific input-output registers, we examine how the basic electrophysiological properties of the cells and their interaction with synaptic inputs contribute to the spatio-temporal shaping of BG output. The reported data show that the intrinsic membrane properties of the neurons subserves a tonic discharge allowing BG to gate the transmission of information to motor and cognitive systems thereby contributing to appropriate selection of behavior.
Collapse
Affiliation(s)
- J M Deniau
- Dynamique et Physiopathologie des Réseaux Neuronaux, INSERM U667, UPMC, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
15
|
Nakadate K, Noda T, Sakakibara SI, Kumamoto K, Matsuura T, Joyce JN, Ueda S. Progressive dopaminergic neurodegeneration of substantia nigra in the zitter mutant rat. Acta Neuropathol 2006; 112:64-73. [PMID: 16609850 DOI: 10.1007/s00401-006-0058-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/22/2006] [Accepted: 02/23/2006] [Indexed: 11/29/2022]
Abstract
Zitter mutant rats exhibit abnormal metabolism of superoxide species and demonstrate progressive degeneration of dopamine (DA) neurons in the substantia nigra (SN). Furthermore, long-term intake of vitamin E, an effective free radical scavenger, prevents the loss of DA neurons caused by free radicals. However, it is unclear how this degeneration progresses. In this study, we ultrastructurally examined cell death in the zitter mutant rat SN. Conventional electron-microscopic examination revealed two different types of neurons in the SN pars compacta. In zitter mutant rats, although the first type (clear neurons) exhibited no obvious ultrastructural changes with aging, the second type (dark neurons) demonstrated age-related damage from 2 months. Immunoelectron-microscopic analysis clarified that the second-type neurons were dopaminergic neurons. In the dopaminergic neuronal somata, many lipofuscin granules and abnormal endoplasmic reticula were observed from 2 months of age, and these dopaminergic neurons showed progressive degeneration with age. Moreover, in zitter mutant rats, abnormally enlarged myelinated axons with dense bodies and splitting myelin with dense material were observed in the SN at 2, 4, and 12 months, and oligodendrocytes with numerous lipofuscin, multivesicular bodies, multilamellar bodies, and dense bodies were frequently observed at 4 and 12 months. These findings clarified that dopaminergic neurons in zitter mutant rats had degenerated with age, and that myelinated axons also exhibited age-related injury. Moreover, ubiquitin-immunohistochemical analysis indicated that the accumulation of products of the endosomal-lysosomal system may be involved in this degeneration.
Collapse
Affiliation(s)
- Kazuhiko Nakadate
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, 321-0293, Tochigi, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Emmett SR, Greenfield SA. Correlation between dopaminergic neurons, acetylcholinesterase and nicotinic acetylcholine receptors containing the α3- or α5-subunit in the rat substantia nigra. J Chem Neuroanat 2005; 30:34-44. [PMID: 15975762 DOI: 10.1016/j.jchemneu.2005.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 08/28/2004] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the relationship between the cells possessing the alpha3 or alpha5 nicotinic acetylcholine receptor subunits and the enzyme acetylcholinesterase, with respect to tyrosine hydroxylase immunoreactive dopaminergic neurons in the rat substantia nigra. Most, but certainly not all, acetylcholinesterase immunoreactive cells were located in the pars compacta. In the substantia nigra pars compacta there were in turn two populations of acetylcholinesterase containing neurons: those that were tyrosine hydroxylase reactive and those that were not. Double label studies, that included an antibody immunoreactive against a common immunogen on alpha1 of muscle and alpha3 and alpha5 neuronal nicotinic acetylcholine receptor subunits, revealed that nearly all nicotinic receptor positive cells were also tyrosine hydroxylase neurons. However, a minority non-tyrosine hydroxylase population was alpha3- and/or alpha5-nAChR positive and these were always AChE-immunoreactive. In summary, there appears to be a close correlation between nicotinic receptors and acetylcholinesterase in the substantia nigra, irrespective of the transmitter phenotype in different neuronal subpopulations.
Collapse
Affiliation(s)
- Stevan R Emmett
- University Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
17
|
Bentivoglio M, Morelli M. Chapter I The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. HANDBOOK OF CHEMICAL NEUROANATOMY 2005. [DOI: 10.1016/s0924-8196(05)80005-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Hayakawa T, Takanaga A, Tanaka K, Maeda S, Seki M. Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat. Brain Res 2004; 1006:66-73. [PMID: 15047025 DOI: 10.1016/j.brainres.2004.01.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2004] [Indexed: 01/01/2023]
Abstract
Almost all parasympathetic preganglionic motor neurons contain acetylcholine, whereas quite a few motor neurons in the dorsal motor nucleus of the vagus (DMV) contain dopamine. We determined the distribution and ultrastructure of these dopaminergic neurons with double-labeling immunohistochemistry for tyrosine hydroxylase (TH) and the retrograde tracer cholera toxin subunit b (CTb) following its injection into the stomach. A few TH-immunoreactive (TH-ir) neurons were found in the rostral half of the DMV, while a moderate number of these neurons were found in the caudal half. Most of the TH-ir neurons (78.4%) were double-labeled for CTb in the half of the DMV caudal to the area postrema, but only a few TH-ir neurons (5.5%) were double-labeled in the rostral half. About 20% of gastric motor neurons showed TH-immunoreactivity in the caudal half of the DMV, but only 0.3% were TH-ir in the rostral half. In all gastric motor neurons, 8.1% were double-labeled for TH. The ultrastructure of the TH-ir neurons in the caudal DMV was determined with immuno-gold-silver labeling. The TH-ir neurons were small (20.4 x 12.4 microm), round or oval, and contained numerous mitochondria, many free ribosomes, several Golgi apparatuses, a round nucleus and a few Nissl bodies. The average number of axosomatic terminals per section was 4.0. More than half of them contained round synaptic vesicles and made asymmetric synaptic contacts (Gray's type I). Most of the axodendritic terminals contacting TH-ir dendrites were Gray's type I (90%), but a few contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II).
Collapse
Affiliation(s)
- Tetsu Hayakawa
- Department of Anatomy, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | |
Collapse
|
19
|
Narita M, Takagi M, Aoki K, Kuzumaki N, Suzuki T. Implication of Rho-associated kinase in the elevation of extracellular dopamine levels and its related behaviors induced by methamphetamine in rats. J Neurochem 2003; 86:273-82. [PMID: 12871568 DOI: 10.1046/j.1471-4159.2003.01784.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A growing body of evidence suggests that several protein kinases are involved in the expression of pharmacological actions induced by a psychostimulant methamphetamine. The present study was designed to investigate the role of the Rho/Rho-associated kinase (ROCK)-dependent pathway in the expression of the increase in extracellular levels of dopamine in the nucleus accumbens and its related behaviors induced by methamphetamine in rats. Methamphetamine (1 mg/kg, subcutaneously) produced a substantial increase in extracellular levels of dopamine in the nucleus accumbens, with a progressive augmentation of dopamine-related behaviors including rearing and sniffing. Methamphetamine also induced the decrease in levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA). Both the increase in extracellular levels of dopamine and the induction of dopamine-related behaviors by methamphetamine were significantly suppressed by pretreatment with an intranucleus accumbens injection of a selective ROCK inhibitor Y-27632. In contrast, Y-27632 had no effect on the decrease in levels of DOPAC and HVA induced by methamphetamine. Under these conditions, there were no changes in protein levels of membrane-bound RhoA in the nucleus accumbens following methamphetamine treatment. It is of interest to note that the microinjection of Y-27632 into the nucleus accumbens failed to suppress the increases in extracellular levels of dopamine, DOPAC, and HVA in the nucleus accumbens induced by subcutaneous injection of a prototype of micro -opioid receptor agonist morphine (10 mg/kg). Furthermore, perfusion of a selective blocker of voltage-dependent Na+ channels, tetrodotoxin (TTx) into the rat nucleus accumbens did not affect the increase in extracellular levels of dopamine in the rat nucleus accumbens by methamphetamine, whereas the morphine-induced dopamine elevation was eliminated by this application of TTx. The extracellular level of dopamine in the nucleus accumbens was also increased by perfusion of a selective dopamine re-uptake inhibitor 1-[2-[bis(4-fluorophenyl)methoxy]-4-(3-phenylpropyl)piperazine (GBR-12909) in the nucleus accumbens. This effect was not affected by pretreatment with intranucleus accumbens injection of Y-27632. These findings provide first evidence that Rho/ROCK pathway in the nucleus accumbens may contribute to the increase in extracellular levels of dopamine in the nucleus accumbens evoked by a single subcutaneous injection of methamphetamine. In contrast, this pathway is not essential for the increased level of dopamine in this region induced by morphine, providing further evidence for the different mechanisms of dopamine release by methamphetamine and morphine in rats.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, School of Pharmacy and Pharmaceutical Science, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
20
|
Grant RJ, Clarke PBS. Susceptibility of ascending dopamine projections to 6-hydroxydopamine in rats: effect of hypothermia. Neuroscience 2003; 115:1281-94. [PMID: 12453497 DOI: 10.1016/s0306-4522(02)00385-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aims of this study were to determine (1) whether mesolimbic and nigrostriatal DA cell bodies degenerate to different extents after 6-hydroxydopamine (6-OHDA) is administered into their respective terminal fields and (2) whether hypothermia, associated with sodium pentobarbital anesthesia, protects DA neurons from the toxic effects of 6-OHDA. To address these questions, 6-OHDA or vehicle was infused into either the ventral or dorsal striatum or into the medial forebrain bundle, under conditions of brain normothermia or hypothermia. Two weeks post-surgery, tyrosine hydroxylase-positive cell bodies were counted in the ventral tegmental area (VTA) and substantia nigra. In addition, autoradiographic labeling of tyrosine hydroxylase protein and dopamine transporter was quantified in dopamine terminal fields and cell body areas. Overall, DA cell bodies in the VTA were substantially less susceptible than those in the substantia nigra to depletion of dopaminergic markers. Hypothermia provided two types of neuroprotection. The first occurred when 6-OHDA was administered into the dorsal striatum, and was associated with a 30-50% increase in residual dopaminergic markers in the lateral portion of the VTA. The second neuroprotective effect of hypothermia occurred when 6-OHDA was given into the medial forebrain bundle. This was associated with a 200-300% increase in residual dopaminergic markers in the mesolimbic and nigrostriatal terminal fields; no significant protection occurred in the cell body regions.Collectively, these findings show that (1) the dopaminergic somata in the substantia nigra are more susceptible than those in the VTA to 6-OHDA-induced denervation, and (2) hypothermia can provide anatomically selective neuroprotection within the substantia nigra-VTA cell population. The continued survival of mesolimbic dopamine cell bodies after a 6-OHDA lesion may have functional implications relating to drugs of abuse, as somatodendritic release of dopamine in the VTA has been shown to play a role in the effectiveness of cocaine reward.
Collapse
Affiliation(s)
- R J Grant
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6, Montreal, QC, Canada
| | | |
Collapse
|
21
|
Giorgetti M, Hotsenpiller G, Froestl W, Wolf ME. In vivo modulation of ventral tegmental area dopamine and glutamate efflux by local GABA(B) receptors is altered after repeated amphetamine treatment. Neuroscience 2002; 109:585-95. [PMID: 11823068 DOI: 10.1016/s0306-4522(01)00510-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activity of dopamine neurons in the ventral tegmental area is modulated by excitatory (glutamatergic) and inhibitory (GABAergic) afferents. GABA, released by intrinsic neurons and by projection neurons originating in the nucleus accumbens and other regions, inhibits dopamine neurons via activation of GABA(A) and GABA(B) receptor subtypes. Using in vivo microdialysis in freely moving rats, we investigated the role of ventral tegmental area GABA(B) receptors in modulating levels of dopamine and glutamate within the ventral tegmental area, both in naive rats and in rats treated repeatedly with saline or amphetamine (5 mg/kg i.p., for 5 days). In naive rats, administration of a potent and selective GABA(B) receptor antagonist (CGP 55845A) into the ventral tegmental area elicited a concentration-dependent increase in dopamine levels, but did not alter glutamate levels. In rats tested 3 days after discontinuing repeated amphetamine administration, 50 microM CGP 55845A increased dopamine levels to a greater extent than in saline controls. This difference was no longer present in rats tested 10-14 days after discontinuing repeated amphetamine injections. CGP 55845A (50 microM) had no effect on glutamate levels in the ventral tegmental area of saline-treated rats. However, it produced a robust increase in glutamate levels in rats tested 3 days, but not 10-14 days, after discontinuing repeated amphetamine injections. These results suggest that somatodendritic dopamine release is normally under strong tonic inhibitory control by GABA(B) receptors. Repeated amphetamine administration enhances GABA(B) receptor transmission in the ventral tegmental area during the early withdrawal period, increasing inhibitory tone on both dopamine and glutamate levels. This is the first demonstration, in an intact animal, that drugs of abuse alter GABA(B) receptor transmission in the ventral tegmental area.
Collapse
Affiliation(s)
- M Giorgetti
- Department of Neuroscience, FUHS/The Chicago Medical School, North Chicago, IL 60064-3095, USA
| | | | | | | |
Collapse
|
22
|
Azam L, Winzer-Serhan UH, Chen Y, Leslie FM. Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons. J Comp Neurol 2002; 444:260-74. [PMID: 11840479 DOI: 10.1002/cne.10138] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many behavioral effects of nicotine result from activation of nigrostriatal and mesolimbic dopaminergic systems. Nicotine regulates dopamine release not only by stimulation of nicotinic acetylcholine receptors (nAChRs) on dopamine cell bodies within the substantia nigra and ventral tegmental area (SN/VTA), but also on presynaptic nAChRs located on striatal terminals. The nAChR subtype(s) present on both cell bodies and terminals is still a matter of controversy. The purpose of this study was to use double-labeling in situ hybridization to identify nAChR subunit mRNAs expressed within dopamine neurons of the SN/VTA, by using a digoxigenin-labeled riboprobe for tyrosine hydroxylase as the dopamine cell marker and (35)S-labeled riboprobes for nAChR subunits. The results reveal a heterogeneous population of nAChR subunit mRNAs within midbrain dopamine neurons. Within the SN, almost all dopamine neurons express alpha2, alpha4, alpha5, alpha6, beta2, and beta3 nAChR mRNAs, with more than half also expressing alpha3 and alpha7 mRNAs. In contrast, less than 10% express beta4 mRNA. Within the VTA, a similar pattern of nAChR subunit mRNA expression is observed except that most subunits are expressed in a slightly lower percentage of dopamine neurons than in the SN. Within the SN, alpha4, beta2, alpha7, and beta4 mRNAs are also expressed in a significant number of nondopaminergic neurons, whereas within the VTA this only occurs for beta4. The heterogeneity in the expression of nAChR subunits within the SN/VTA may indicate the formation of a variety of different nAChR subtypes on cell bodies and terminals of the nigrostriatal and mesolimbic pathways.
Collapse
Affiliation(s)
- Layla Azam
- Department of Pharmacology, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
23
|
Garzón M, Pickel VM. Plasmalemmal mu-opioid receptor distribution mainly in nondopaminergic neurons in the rat ventral tegmental area. Synapse 2001; 41:311-28. [PMID: 11494402 DOI: 10.1002/syn.1088] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Opiate-evoked reward and motivated behaviors reflect, in part, the enhanced release of dopamine produced by activation of the mu-opioid receptor (muOR) in the ventral tegmental area (VTA). We examined the functional sites for muOR activation and potential interactions with dopaminergic neurons within the rat VTA by using electron microscopy for the immunocytochemical localization of antipeptide antisera raised against muOR and tyrosine hydroxylase (TH), the synthesizing enzyme for catecholamines. The cellular and subcellular distribution of muOR was remarkably similar in the two major VTA subdivisions, the paranigral (VTApn) and parabrachial (VTApb) nuclei. In each region, somatodendritic profiles comprised over 50% of the labeled structures. MuOR immunolabeling was often seen at extrasynaptic/perisynaptic sites on dendritic plasma membranes, and 10% of these dendrites contained TH. MuOR-immunoreactivity was also localized to plasma membranes of axon terminals and small unmyelinated axons, none of which contained TH. The muOR-immunoreactive axon terminals formed either symmetric or asymmetric synapses that are typically associated with inhibitory and excitatory amino acid transmitters. Their targets included unlabeled (30%), muOR-labeled (25%), and TH-labeled (45%) dendrites. Our results suggest that muOR agonists in the VTA affect dopaminergic transmission mainly indirectly through changes in the postsynaptic responsivity and/or presynaptic release from neurons containing other neurotransmitters. They also indicate, however, that muOR agonists directly affect a small population of dopaminergic neurons expressing muOR on their dendrites in VTA and/or terminals in target regions.
Collapse
Affiliation(s)
- M Garzón
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
24
|
Abstract
Dopamine-containing projections from the ventral tegmental area (VTA) to the prefrontal cortex (PFC) have been extensively characterized since their discovery over 25 years ago. However, the VTA projection to the PFC also contains a substantial nondopamine component, whose neurochemical phenotype is unknown. To examine if a portion of this nondopamine VTA projection contains GABA, anterograde and retrograde tract-tracing in the rat was combined with GABA immunocytochemistry and electron microscopy. Following injections of Fluoro-Gold (FG) into the PFC, many VTA neurons were retrogradely labeled, as visualized by immunoperoxidase staining for FG. A large portion of FG-labeled somata (58%) and dendrites (33%) within the VTA also contained immunogold-silver labeling for GABA. These dually labeled profiles exhibited a morphology similar to dopamine-containing cells within the VTA. To confirm and extend these findings, anterograde transport of biotinylated dextran amine (BDA) from the VTA was combined with immunogold-silver labeling for GABA within the PFC. Consistent with the results obtained from retrograde tracing, a portion of BDA-labeled terminals in the PFC also contained immunoreactivity for GABA. These dually labeled terminals formed symmetric synapses onto small caliber dendrites and dendritic spines. Some PFC dendrites contacted by GABA-containing VTA terminals were themselves GABA-labeled. The results of this investigation have identified a substantial population of GABA-containing neurons in the VTA that send axons to the PFC where they synapse on the distal processes of both pyramidal and local circuit neurons. This GABA-containing mesocortical pathway may provide substrates for both inhibitory and disinhibitory influences on PFC neuronal activity.
Collapse
Affiliation(s)
- D B Carr
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
25
|
Alonso-Vanegas MA, Fawcett JP, Causing CG, Miller FD, Sadikot AF. Characterization of dopaminergic midbrain neurons in a DBH:BDNF transgenic mouse. J Comp Neurol 1999; 413:449-62. [PMID: 10502251 DOI: 10.1002/(sici)1096-9861(19991025)413:3<449::aid-cne7>3.0.co;2-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the survival and differentiation of central nervous system neurons, including dopaminergic cells in culture. To determine whether BDNF might play a role in the development of dopaminergic neurons in vivo, we used a previously characterized transgenic mouse (DBH:BDNF) that overexpresses BDNF in adrenergic and noradrenergic neurons as a result of fusion of the BDNF gene to the dopamine beta-hydroxylase (DBH) gene promoter. We quantified dopaminergic neuronal profiles at four midbrain coronal levels and compared DBH:BDNF transgenic animals with wild-type mice of the same genetic background. Analysis of sections immunostained with tyrosine hydroxylase (TH) showed that the mean number of dopaminergic neurons in the four selected midbrain sections was 52% greater (one-way analysis of variance, P < 0.0005) in transgenic mice (2,165 +/- 55 S. E.M., n = 4) than in control mice (1,428 +/- 71 S.E.M., n = 4). The increase in dopaminergic neuron profile count in DBH:BDNF transgenic animals was confirmed by analysis of the pars compacta of the substantia nigra on Nissl-stained sections. Surface area of the reference region of interest containing TH-immunoreactive neurons was similar in transgenic and control mice. Regional analysis of different midbrain areas containing dopaminergic neurons suggested that the increase in cell profile count occurs in a relatively homogeneous manner. Comparison of TH-immunoreactive cell size showed a tendency for smaller neurons in transgenic animals, but the difference was not statistically significant. We conclude that DBH:BDNF transgenic mice show increased number of TH-immunoreactive cells in the midbrain. We propose that BDNF rescues dopaminergic neurons from the perinatal period of developmental cell death as a consequence of increased anterograde transport of the neurotrophin via the coeruleonigral projection.
Collapse
Affiliation(s)
- M A Alonso-Vanegas
- Department of Neurology and Neurosurgery, Cone Laboratory and Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
26
|
Xu SG, Prasad C, Smith DE. Neurons exhibiting dopamine D2 receptor immunoreactivity in the substantia nigra of the mutant weaver mouse. Neuroscience 1999; 89:191-207. [PMID: 10051229 DOI: 10.1016/s0306-4522(98)00286-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurons exhibiting D2 receptor-like immunoreactivity were investigated in the substantia nigra pars compacta of weaver mice at the light and electron microscope levels using immunocytochemical techniques. At the light microscope level, there was significant loss of D2-like immunoreactive cells in weaver mice and the remaining labeled cells exhibited less intense immunoreactivity. At the ultrastructural level, there was a decrease in the number of immunoreactive profiles and fewer synapses were observed abutting labeled dendritic profiles. In addition, degenerative changes were noted in some of the D2 receptor-like immunoreactive profiles. Double labeling with D2 and tyrosine hydroxylase indicated that the majority of the labeled profiles were double labeled. Eight-week-old homozygous weavers were paired with wild-type littermates as controls and perfused with a buffered solution of acrolein/paraformadehyde. Midbrain sections were reacted immunocytochemically either with an antiserum to D2 or with antisera to D2 and tyrosine hydroxylase, using a double-labeling technique. Sections were processed for light and electron microscopy by standard methods. The results of this study confirm the autoreceptor-like activity of D2 receptors on nigral dopamine neurons. The cell degeneration, down-regulation of D2 receptors, and decreased dendritic and synaptic components in the neuropil suggest that the synaptic integrity of the substantia nigra has been compromised, which in turn would affect the functional efficacy of the basal ganglia circuitry. This altered circuity is expressed in the Parkinson-like symptoms displayed by this mutant mouse.
Collapse
Affiliation(s)
- S G Xu
- Department of Cell Biology and Anatomy, LSU Medical Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
27
|
Richards CD, Shiroyama T, Kitai ST. Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience 1997; 80:545-57. [PMID: 9284356 DOI: 10.1016/s0306-4522(97)00093-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurons in the substantia nigra pars reticulata and pars compacta of the rat were studied using a combination of intracellular electrophysiological recording in in vitro and subsequent immunocytochemical double and triple labelling techniques. The neurons recorded in the pars reticulata were identified as either GABA or dopamine neurons: neurons were considered to be GABA neurons if they were immunopositive for glutamate decarboxylase, whereas those neurons which were immunopositive for tyrosine hydroxylase were considered to be dopaminergic. The GABA neurons had short duration action potentials (0.45+/-0.03 ms halfwidth), no apparent rectifying currents, no low threshold calcium spikes, were spontaneously active (7.4+/-3.7 Hz), and could maintain high firing rates. The dopamine neurons had long duration action potentials (1.49+/-0.10 ms), displayed both anomalous inward and transient outward rectifying currents, and more than half (12/17 neurons) displayed a low threshold calcium spike. Their spontaneous firing rate was lower than that of the GABA neurons (2.3+/-1.0 Hz), and they displayed strong frequency adaptation. Morphological reconstruction of neurobiotin-filled neurons revealed that the pars reticulata GABA neurons had more extensive local dendritic arborization than the dopamine neurons from either the pars reticulata or the pars compacta. All of the neurons recorded from the pars compacta were dopamine neurons; they were found not to be different either electrophysiologically or morphologically from pars reticulata dopamine neurons. The electrophysiology of the GABA neurons suggests that input activity is translated linearly to spike frequency. These GABA neurons probably represent the projection neurons of the pars reticulata, and it is thus likely that this basal ganglia output is frequency coded. The close similarity between the dopamine neurons in the pars compacta, which give rise to the nigrostriatal pathway, and those in the pars reticulata supports the notion that the dopamine neurons in these two regions are part of the same neuronal population.
Collapse
Affiliation(s)
- C D Richards
- Department of Anatomy and Neurobiology, University of Tennessee, College of Medicine, Memphis 38163, U.S.A
| | | | | |
Collapse
|
28
|
Immunogold localization of the dopamine transporter: an ultrastructural study of the rat ventral tegmental area. J Neurosci 1997. [PMID: 9204909 DOI: 10.1523/jneurosci.17-14-05255.1997] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dopamine transporter (DAT) plays an important role in the plasmalemmal reuptake of dopamine and, thus, in the termination of normal dopaminergic neurotransmission. DAT is also a major binding site for cocaine and other stimulants, the psychoactive effects of which are associated primarily with the inhibition of dopamine reuptake within mesocorticolimbic dopaminergic neurons. We used electron microscopy with an anti-peptide antiserum directed against the N-terminal domain of DAT to determine the subcellular localization of this transporter in the rat ventral tegmental area (VTA), the region that contains the cell bodies and dendrites of these dopaminergic neurons. We show that in the VTA, almost 95% of the DAT immunogold-labeled profiles are neuronal perikarya and dendrites, and the remainder are unmyelinated axons. Within perikarya and large proximal dendrites, almost all of the DAT immunogold particles are associated with intracellular membranes, including saccules of Golgi and cytoplasmic tubulovesicles. In contrast, within medium- to small-diameter dendrites and unmyelinated axons, most of the DAT gold particles are located on plasma membranes. In dually labeled tissue, peroxidase reaction product for the catecholamine-synthesizing enzyme tyrosine hydroxylase is present in DAT-immunoreactive profiles. These findings suggest that intermediate and distal dendrites are both the primary sites of dopamine reuptake and the principal targets of cocaine and related psychostimulants within dopaminergic neurons in the VTA.
Collapse
|
29
|
Immunogold localization of the dopamine transporter: an ultrastructural study of the rat ventral tegmental area. J Neurosci 1997. [PMID: 9151720 DOI: 10.1523/jneurosci.17-11-04037.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dopamine transporter (DAT) plays an important role in the plasmalemmal reuptake of dopamine and, thus, in the termination of normal dopaminergic neurotransmission. DAT is also a major binding site for cocaine and other stimulants, the psychoactive effects of which are associated primarily with the inhibition of dopamine reuptake within mesocorticolimbic dopaminergic neurons. We used electron microscopy with an anti-peptide antiserum directed against the N-terminal domain of DAT to determine the subcellular localization of this transporter in the rat ventral tegmental area (VTA), the region that contains the cell bodies and dendrites of these dopaminergic neurons. We show that in the VTA, almost 95% of the DAT immunogold-labeled profiles are neuronal perikarya and dendrites, and the remainder are unmyelinated axons. Within perikarya and large proximal dendrites, almost all of the DAT immunogold particles are associated with intracellular membranes, including saccules of Golgi and cytoplasmic tubulovesicles. In contrast, within medium- to small-diameter dendrites and unmyelinated axons, most of the DAT gold particles are located on plasma membranes. In dually labeled tissue, peroxidase reaction product for the catecholamine-synthesizing enzyme tyrosine hydroxylase is present in DAT-immunoreactive profiles. These findings suggest that intermediate and distal dendrites are both the primary sites of dopamine reuptake and the principal targets of cocaine and related psychostimulants within dopaminergic neurons in the VTA.
Collapse
|
30
|
Bischoff S, Barhanin J, Bettler B, Mulle C, Heinemann S. Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. J Comp Neurol 1997; 379:541-62. [PMID: 9067842 DOI: 10.1002/(sici)1096-9861(19970324)379:4<541::aid-cne6>3.0.co;2-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In an attempt to gain knowledge of the possible functions of kainate receptors, we have used in situ hybridization to examine the regional and cellular expression patterns of glutamate receptor subunits GluR5-7, KA1 and KA2 in the adult mouse basal ganglia, known to play a pivotal role in the translation of motivation into actions. Kainate receptor subunits were found to be differentially expressed in the circuitry forming the basal ganglia. They differ from each other in expression levels and their spatial localization. GluR6 appeared as the key subunit for the descending gamma-aminobutyric acid (GABA)ergic-glutamatergic pathways, with highest message levels in the caudate putamen, globus pallidus and subthalamic nucleus as well as in the nucleus accumbens and olfactory tubercle. GluR7 exhibited highest expression in the ascending nigrostriatal and mesolimbic dopaminergic neurons. GluR5 had a restricted distribution pattern, with high expression in the ventral pallidum, the islands of Calleja and pars compacta of the substantia nigra. KA2 was usually coexpressed with GluR6, although with a generally lower level of expression. Finally, KA1 mRNA was barely detectable in these neuronal circuits. These data suggest that kainate receptors in general may be involved in the functions associated with the basal ganglia, with a key role in the control of the central dopaminergic transmission. Thus, they might be implicated in the neurodegenerative and psychic disorders associated with an impairment of the basal ganglia.
Collapse
Affiliation(s)
- S Bischoff
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
31
|
Hernandez-Gonzalez M, Guevara MA, Morali G, Cervantes M. Subcortical multiple unit activity changes during rat male sexual behavior. Physiol Behav 1997; 61:285-91. [PMID: 9035260 DOI: 10.1016/s0031-9384(96)00367-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple unit activity (MUA) was recorded from the ventral tegmental area (VTA) and mesencephalic locomotor region (MLR) during copulatory behavior of freely moving male rats. Simultaneous accelerometric recordings of the copulatory pelvic thrusting performed by the male rat were taken to precisely correlate in time the changes in MUA with well defined elements of copulation. The baseline MUA firing rates recorded in the quiet-alert condition in the VTA and in the MLR were significantly increased during pursuit of the female by the male; significantly higher MUA firing rates were found in the VTA at the 500 ms periods before and during the execution of pelvic thrusting in mount, intromission, and ejaculation responses as compared to the baseline, and returned to this value when these responses ended. The maximum MUA firing rate in the MLR was obtained during the execution of pelvic thrusting in each copulatory response, and it remained significantly elevated, as compared to the baseline, after thrusting and at the postintromission and postejaculatory genital grooming, then decreasing to basal values at the initial part of the postejaculatory interval. The fact that the highest changes in MUA were related to pelvic thrusting suggests a major participation of both structures in the execution of motor copulatory responses.
Collapse
|
32
|
Charara A, Smith Y, Parent A. Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J Comp Neurol 1996; 364:254-66. [PMID: 8788248 DOI: 10.1002/(sici)1096-9861(19960108)364:2<254::aid-cne5>3.0.co;2-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To verify the possibility that the pedunculopontine nucleus is a source of glutamatergic terminals in contact with midbrain dopaminergic neurons in the squirrel monkey, we used the anterograde transport of Phaseolus vulgaris-leucoagglutinin in combination with preembedding immunohistochemistry for tyrosine hydroxylase and for calbindin D-28k and postembedding immunocytochemistry for glutamate and for gamma-aminobutyric acid. Following tracer injections in the pedunculopontine nucleus, numerous anterogradely labeled fibers emerged from the injection sites to innervate densely the pars compacta of the substantia nigra and ventral tegmental area. The major type of labeled fibers were thin with multiple collaterals and varicosities that established intimate contacts with midbrain dopaminergic neurons. At the electron microscopic level, the anterogradely labeled boutons were medium sized (maximum diameter between 0.9 microns and 2.5 microns) and contained numerous round vesicles and mitochondria. Postembedding immunocytochemistry revealed that 40-60% of anterogradely labeled terminals were enriched in glutamate and formed asymmetric synapses with dendritic shafts of substantia nigra and ventral tegmental area neurons. In triple-immunostained sections, some of the postsynaptic targets to these terminals were found to be dopaminergic. In addition, 30-40% of the anterogradely labeled terminals in both regions displayed immunoreactivity for gamma-aminobutyric acid and, in some cases, formed symmetric synapses with dendritic shafts. In conclusion, our results provide the first ultrastructural evidence for the existence of synaptic contacts between glutamate-enriched terminals from the pedunculopontine nucleus and midbrain dopaminergic neurons in primates. Our results also show that the pedunculopontine nucleus is a potential source of gamma-aminobutyric acid input to this region. These findings suggest that the pedunculopontine nucleus may play an important role in the modulation of the activity of midbrain dopaminergic cells by releasing glutamate or gamma-aminobutyric acid as neurotransmitter.
Collapse
Affiliation(s)
- A Charara
- Centre de Recherche en Neurobiologie, Hôpital de l'Enfant-Jésus and Université Laval, Québec, Canada
| | | | | |
Collapse
|
33
|
Abstract
Drugs of abuse share with conventional reinforcers the activation of specific neural pathways in the CNS that are the substrate of their motivational properties. Dopamine is recognized as the transmitter of one such neural pathway, being involved in at least three major aspects of motivation: modulation of motivational state, acquisition (incentive learning) and expression of incentive properties by motivational stimuli. Drugs of abuse of different pharmacological classes stimulate in the low dose range dopamine transmission particularly in the ventral striatum. Apart from psychostimulants, the evidence that stimulation of dopamine transmission by drugs of abuse provides the primary motivational stimulus for drug self-administration is either unconvincing or negative. However, stimulation of dopamine transmission is essential for the activational properties of drugs of abuse and might be instrumental for the acquisition of responding to drug-related incentive stimuli (incentive learning). Dopamine is involved in the induction and in the expression of behavioural sensitization by repeated exposure to various drugs of abuse. Sensitization to the dopamine-stimulant properties of specific drug classes leading to facilitation of incentive learning of drug-related stimuli might account for the strong control over behaviour exerted by these stimuli in the addiction state. Withdrawal from drugs of abuse results in a reduction in basal dopamine transmission in vivo and in reduced responding for conventional reinforcers. Although these changes are likely to be the expression of a state of dependence of the dopamine system their contribution to the motivational state of drug addiction is unclear.
Collapse
Affiliation(s)
- G Di Chiara
- Department of Toxicology, University of Cagliari, Italy
| |
Collapse
|
34
|
Ma TP, Hazlett JC. Cytoarchitecture of the substantia nigra pars lateralis in the opossum (Didelphis virginiana): a correlated light and electron microscopic study. Anat Rec (Hoboken) 1995; 241:563-78. [PMID: 7604970 DOI: 10.1002/ar.1092410414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The substantia nigra has been divided into three subdivisions. However, the cytoarchitecture of one of these subdivisions, the pars lateralis (SNl), has not been previously examined in detail at the light and electron microscopic levels in any species. In the adult opossum, the three nigral subdivisions can be easily distinguished as distinct, rostrocaudally oriented cell groups separated by neuron-free zones. Thus it was possible to determine the boundaries of the SNl unambiguously. This report covers the results of an examination of the morphology and organization of the SNl in the opossum. METHODS Material from 13 opossums was used for this study. Eight of the animals had been previously stained for Nissl substance (n = 4) or impregnated by the Golgi technique (n = 4). The remaining five animals were prepared for electron microscopic studies using standard procedures. RESULTS Two cell types were identified on the basis of morphological differences, small and medium-large neurons. Small neurons (10-18 microns long axis) have large nuclei with moderate amounts of heterochromatin and a thin rim of cytoplasm. They have long (up to 500 microns), spine-free dendrites. Medium-large neurons (18-54 microns long axis) have rounded nuclei with electron-lucent nucleoplasm. Few indentations of the nuclear envelope were observed. The surrounding cytoplasm has dense arrays of organelles. Nissl bodies are particularly prominent in the form of pyramids with their bases at juxtanuclear positions and their apices directed toward emerging dendrites. Dendrites of medium-large neurons are long (some > 1 mm in length), are primarily oriented in the frontal plane, and extend along the dorsal surface of or into the cerebral peduncle. Some cells have dendrites that are moderately spinous, whereas other neurons possess sparsely spinous dendrites. Relatively few synaptic profiles are observed to contact somata and proximal dendrites. CONCLUSION This report provides added morphological support for the idea that the SNl is a distinct subdivision of the substantia nigra, a distinction previously made on the basis of the physiologically characterized relationship between the lateral substantia nigra and orienting behaviors and seizure-related function.
Collapse
Affiliation(s)
- T P Ma
- Department of Anatomy and Neurology, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | |
Collapse
|
35
|
Jiang C, Haddad GG. Oxygen deprivation inhibits a K+ channel independently of cytosolic factors in rat central neurons. J Physiol 1994; 481 ( Pt 1):15-26. [PMID: 7853238 PMCID: PMC1155862 DOI: 10.1113/jphysiol.1994.sp020415] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. K+ channel modulation has been shown to be an integral and important cellular response to O2 deprivation. Although part of this modulation occurs as a result of changes in concentrations of several cytosolic factors such as ATP and Ca2+, it is unknown whether there are mechanisms other than those originating from the cytosol. To test the hypothesis that membrane-delimited mechanisms participate in the O2-sensing process and are involved in the modulation of K+ channel activity in central neurons, we performed experiments using patch-clamp techniques and dissociated cells from the rat neocortex and substantia nigra. 2. Whole-cell outward currents were studied in voltage-clamp mode using Na(+)-free or low-Na+ (5 mM, with 1 microM tetrodotoxin) extracellular medium plus 0.5 mM Co2+. O2 deprivation produced a biphasic response in current amplitude, i.e. an initial transient increase followed by a pronounced decrease in outward currents. The reduction in outward currents was a reversible process since perfusion with a medium of PO2 > 100 mmHg (1 mmHg = 133 Pa) led to a complete recovery. 3. In cell-free excised membrane patches, we found that a specific K+ current (large conductance, inhibited by micromolar concentrations of ATP and activated by Ca2+) was reversibly inhibited by lack of O2. This was characterized by a marked decrease in channel open-state probability and a slight reduction in unitary conductance. The magnitude of channel inhibition by O2 deprivation was closely dependent on O2 tension. The PO2 level for 50% channel inhibition was about 10 mmHg with little or no inhibition at PO2 > or = 20 mmHg. 4. Single-channel kinetic analysis showed that channel open times consisted of two components and closed times were composed of three. The hypoxia-induced inhibition of K+ channel activity was mediated by selective suppression of the longer time constant channel openings without significantly affecting closed time constants. This led to an increase in frequency of opening and closing and rapid channel flickerings. 5. Our data showed that O2 deprivation had no effect on another K+ current characterized by a much smaller conductance and Ca2+ independence. This provides evidence for the selective nature of the hypoxia-induced inhibition of some species of K+ channels. 6. These results therefore provide the first evidence for regulation of K+ channel activity by O2 deprivation in cell-free excised patches from central neurons.
Collapse
Affiliation(s)
- C Jiang
- Department of Pediatrics (Section of Respiratory Medicine), Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
36
|
Hayakawa T, Zyo K. Fine structure of the supramammillary nucleus of the rat: analysis of the ultrastructural character of dopaminergic neurons. J Comp Neurol 1994; 346:127-36. [PMID: 7962707 DOI: 10.1002/cne.903460109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The supramammillary nucleus projecting to widespread regions contains dopaminergic and non-dopaminergic neurons. The present study provided a comprehensive electron microscopic analysis of these dopaminergic and non-dopaminergic neurons in the supramammillary nucleus of the rat. The normal supramammillary nucleus was composed of round or spindle-shaped, small and medium-sized neurons (12.7 x 8.0 microns, 78.0 microns 2) containing a light oval nucleus with invaginated envelope, mitochondria, Golgi apparatus, lysosomes, less-developed rough endoplasmic reticulum, and no Nissl bodies. The majority of terminals (more than 70%) in the normal neuropil were small (diameter less than 1.0 microns) and contained round vesicles forming asymmetric synaptic contacts. The terminals often contained dense-cored vesicles. To determine the morphological features of dopaminergic neurons, we examined the ultrastructural localization of tyrosine hydroxylase (TH) immunoreactivity, which is the synthetic enzyme of dopamine, and compared TH-immunoreactive neurons to non-TH-immunoreactive neurons. Their shape and size were similar. The average number of axosomatic terminals in a sectional plane was 5.0 in TH-neurons and 2.4 in non-TH-neurons; the bouton covering ratio was 16.5% in the former and 8.6% in the latter. Both numbers were significantly larger in TH-neurons than in non-TH-neurons. Serial ultrathin sections of these neurons revealed that the average total number of axosomatic terminals was 55.7 in the TH-neuron and 28.4 in the non-TH-neuron. Characteristic lamellar bodies and sub-surface cisternae were often present in TH neurons. There were no TH-labeled terminals. These results indicate that dopaminergic neurons receive more inputs than neurons containing other neurotransmitters.
Collapse
Affiliation(s)
- T Hayakawa
- Department of Anatomy, Hyogo College of Medicine, Japan
| | | |
Collapse
|
37
|
Takeshima T, Shimoda K, Sauve Y, Commissiong JW. Astrocyte-dependent and -independent phases of the development and survival of rat embryonic day 14 mesencephalic, dopaminergic neurons in culture. Neuroscience 1994; 60:809-23. [PMID: 7936201 DOI: 10.1016/0306-4522(94)90506-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A primary neuronal culture was prepared from the ventral mesencephalon, centered on the A8, A9 and A10 dopaminergic nuclei of the embryonic day 14 rat, and studied from 12 h to 28 days. At 12 h after plating, and before cell death ensued, 95% of the cells stained positive for neuron specific enolase; 20% for tyrosine hydroxylase; 5% for vimentin and < 0.1% for glial fibrillary acidic protein. In the presence of the mitotic inhibitor cytosine arabinoside (2.0 microM), neuronal growth and survival were surprisingly normal up to the ninth day in culture, but deteriorated rapidly thereafter. In the absence of a mitotic inhibitor, and in the presence of proliferating but non-confluent glia, the tyrosine hydroxylase positive neurons that survived to the 10th day, had retracted neurites and a rounded soma, suggesting an inhibition of cell development. Those tyrosine hydroxylase positive neurons that survived this adverse phase of development tended to produce elaborate neuritic profiles after the 11th day, coincident with confluence of the astrocyte monolayer at the 12th day. By the 21st day in culture, and persisting up to the 28th day, 60% (61 +/- 10, n = 20) of the surviving neurons stained positive for tyrosine hydroxylase. When plated on an established, ventral mesencephalic monolayer of astrocytes, at the seventh day in culture, neuritic growth and branching of the tyrosine hydroxylase positive neurons were greater, compared with similar neurons grown on poly-D-lysine, and the signs of arrested development (retraction of neurites and rounded soma) seen at the 10th day after plating on poly-D-lysine, were not observed. We conclude that in the primary culture studied, and under the experimental conditions used, the survival of dopaminergic neurons was independent of glia during the first nine days, and critically dependent on glia thereafter. The resurgence of growth of dopaminergic neurons after 10 days in vitro, and their subsequent selective survival in culture, suggest that confluent type-1 astrocytes produce factors that act selectively on the dopaminergic neuronal phenotype. The successful identification of these dopaminergic-specific, neurotrophic factors could lead to an increased understanding of the etiology of Parkinson's disease, and suggest new directions for therapeutic intervention.
Collapse
|
38
|
Lança AJ. Reduction of voluntary alcohol intake in the rat by modulation of the dopaminergic mesolimbic system: transplantation of ventral mesencephalic cell suspensions. Neuroscience 1994; 58:359-69. [PMID: 8152544 DOI: 10.1016/0306-4522(94)90043-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The dopaminergic mesolimbic system plays a major role in the mechanisms of reward and positive reinforcement, and is also known to be a primary target for the action of substances that are self-administered and are considered drugs of abuse. Even though alcohol administration has been shown, by physiological and pharmacological manipulations, to cause changes in the mesolimbic dopaminergic system, it has not yet been determined whether, conversely, experimentally induced changes in this system are effective in regulating the voluntary intake of ethanol. In the present study we assessed the effects of the intrastriatal transplantation of fetal dopaminergic grafts on the regulation of voluntary alcohol intake in the rat. Fetal dopaminergic transplants from ventral mesencephalon--but not dopamine-poor transplants or sham-operated animals--reduced the voluntary intake of ethanol by about 40-50%. These results indicate that the effects obtained are due to the dopaminergic nature of the grafts, and not the consequence of a non-specific effect of the graft, or of the surgical procedure itself. These results support the hypothesis that the dopaminergic mesolimbic system plays an important role in the regulation of the voluntary intake of ethanol.
Collapse
Affiliation(s)
- A J Lança
- Department of Primary Mechanisms, Addiction Research Foundation, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Abstract
The effect of hypoxia on ionic currents was studied in acutely dissociated substantia nigra neurons. Using an external solution containing 0 mM Na+ and 0.5 mM Co2+, we found that overall whole-cell outward currents increased by 15-20% during 3-4 min of hypoxia. This current was voltage sensitive and could be completely blocked by TEA- and Cs+, suggesting that this is a K+ current. In cell-attached patches with 150 mM K+ in the external solution, we recorded a large-conductance outward current which was not observed during baseline and was reversibly activated by hypoxia. These results therefore provide the first direct evidence for the activation of K+ channels during O2 deprivation in central neurons.
Collapse
Affiliation(s)
- C Jiang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
40
|
Olds ME. Enhanced dopamine metabolism in accumbens leads to motor activity and concurrently to increased output from nondopamine neurons in ventral tegmental area and substantia nigra. Physiol Behav 1992; 51:39-50. [PMID: 1311110 DOI: 10.1016/0031-9384(92)90201-c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously have reported that nondopamine (non-DA) neurons in substantia nigra (SN) and ventral tegmental area (VTA) of the rat show increased discharge rates during amphetamine (AMPH) and apomorphine (APO)-induced motor activity. The present study represents an attempt to determine the contribution of nucleus accumbens (ACC) dopaminergic activity to these effects, and to ascertain whether the effects in VTA differ from those seen in SN when dopaminergic activity is enhanced locally in ACC. The experiments were carried out in male albino rats (300-400 g) chronically implanted with multiple fine wire electrodes (62 microns) aimed at the pars reticulata of SN (SNR) and VTA. Unit activity was recorded extracellularly in the behaving rat, from neurons identified on the basis of the properties of their action potentials as representing the output of the non-DA neurons in these two structures. In each drug session, unit activity was recorded in parallel from several probes, while motor activity was measured with the open-ended wire technique. But with the recording technique used, a unit represented in most instances the output of a small family of neurons (3-10). Each animal underwent a series of tests given on consecutive days. During these tests, motor and unit activity were measured for 90 min before the drug was administered, and for 135 min after. The first test was of the effects of AMPH, 5 mg/kg, given by the systemic route. The second was of the effects of saline containing 0.1% ascorbic acid (the vehicle) injected bilaterally in ACC, in a volume of 2 microliters per side. The third and all subsequent tests were of the effects of a mixture containing 40 micrograms AMPH, 20 micrograms DA, and 20 micrograms pargyline (P) dissolved in 2 microliters of the vehicle, injected bilaterally in ACC. The results showed that systemic AMPH made the animal hyperactive and at the same time, increased the discharge rate of the non-DA neurons. The bilateral injections of the vehicle in ACC, increased motor activity for about 7 min, an effect interpreted as a rebound from the restraint of the animal during the intracerebral injections, and then depressed motor throughout the 135 min of the postinjection recording period. The effect of the vehicle was to depress unit activity. The effects of injecting the mixture in ACC was to increase motor activity, but with the magnitude and duration of the increase depending on the number of treatments received.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M E Olds
- Division of Biology, California Institute of Technology, Pasadena 91125
| |
Collapse
|
41
|
Anderson KD, Karle EJ, Reiner A. Ultrastructural single- and double-label immunohistochemical studies of substance P-containing terminals and dopaminergic neurons in the substantia nigra in pigeons. J Comp Neurol 1991; 309:341-62. [PMID: 1717517 DOI: 10.1002/cne.903090305] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The vast majority of striatonigral projection neurons in pigeons contain substance P (SP), and the vast majority of SP-containing fibers terminating in the substantia nigra arise from neurons in the striatum. To help clarify the role of striatonigral projection neurons, we conducted electron microscopic single- and double-label immunohistochemical studies of SP+ terminals and/or dopaminergic neurons (labeled with either anti-dopamine, DA, or anti-tyrosine hydroxylase, TH) in pigeons to determine: (1) the synaptic organization of SP+ terminals, (2) the synaptic organization of TH+ perikarya and/or dendrites, and (3) the synaptic relationship between SP+ terminals and TH+ neurons in the substantia nigra. Tissue single-labeled for SP revealed numerous SP+ terminals contacting thin unlabeled dendrites in the substantia nigra, but few SP+ terminals were observed contacting perikarya or large-diameter dendrites. SP+ terminals contained round, densely packed, clear vesicles, and often contained one or more dense-core vesicles. Synaptic junctions between SP+ terminals and their targets were more often symmetric (86%) than asymmetric. In tissue single-labeled for DA, we observed few terminals contacting DA+ perikarya, whereas terminals contacting DA+ dendrites were more abundant. Terminals contacting DA+ structures comprised at least four different morphologically distinct types based on the morphology of the clear synaptic vesicles and the type of synaptic junction. One type of terminal contained round clear vesicles and made symmetric synapses, and thus resembled the predominant type of SP+ terminal. The second type contained round clear vesicles and made asymmetric synapses, the third type contained medium-size pleomorphic clear vesicles and made symmetric synapses, and the fourth type contained small pleomorphic clear vesicles and made symmetric synapses. The presence of contacts between SP+ terminals and dopaminergic dendrites in the substantia nigra was directly demonstrated in tissue double-labeled for SP (by the peroxidase-antiperoxidase procedure, or PAP, with diaminobenzidine) and TH (by either the silver-intensified immunogold procedure or the PAP procedure with benzidine dihydrochloride). SP+ terminals commonly contacted thin TH+ dendrites in the substantia nigra, but few SP+ terminals contacted large-diameter TH+ dendrites or perikarya. Synapses between SP+ terminals and TH+ neurons were always symmetric. TH+ dendrites also were contacted by terminals not labeled for SP, which were more abundant than were SP+ terminals. Non-TH+ neurons were also contacted by both SP+ terminals and non-SP+ terminals.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K D Anderson
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
42
|
Greenfield SA. A noncholinergic action of acetylcholinesterase (AChE) in the brain: from neuronal secretion to the generation of movement. Cell Mol Neurobiol 1991; 11:55-77. [PMID: 2013059 PMCID: PMC11567365 DOI: 10.1007/bf00712800] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/1989] [Accepted: 03/21/1990] [Indexed: 12/29/2022]
Abstract
1. In various brain regions, there is a puzzling disparity between large amounts of acetylcholinesterase and low levels of acetylcholine. One such area is the substantia nigra. Furthermore, within the substantia nigra, a soluble form of acetylcholinesterase is released from the dendrites of dopamine-containing nigrostriatal neurons, independent of cholinergic transmission. These two issues have prompted the hypothesis that acetylcholinesterase released in the substantia nigra has an unexpected noncholinergic function. 2. Electrophysiological studies demonstrate that this dendritic release is a function, not of the excitability of the cell from which the acetylcholinesterase is released, but of the inputs to it. In order to explore this phenomenon at the behavioral level, a novel system has been developed for detecting release of acetylcholinesterase "on-line." It can be seen that release of this protein within the substantia nigra can reflect, but is not causal to, movement. 3. Once released, the possible actions of acetylcholinesterase can be studied at both the cellular and the behavioral level. Independent of its catalytic site, acetylcholinesterase has a "modulatory" action on nigrostriatal neurons. The functional consequences of this modulation would be to enhance the sensitivity of the cells to synaptic inputs. 4. Many basic questions remain regarding the release and action of acetylcholinesterase within the substantia nigra and, indeed, within other areas of the brain. Nonetheless, tentative conclusions can be formulated that begin, in a new way, to provide a link between cellular mechanisms and the control of movement.
Collapse
|
43
|
Shetty AK, Banerjee R, Gopinath G, Tandon PN. Fetal nigral grafts in the anterior eye chamber of adult rats: a long-term morphological study. Exp Neurol 1991; 111:106-14. [PMID: 1984425 DOI: 10.1016/0014-4886(91)90056-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Substantia nigral grafts of 16 and 17 gestation days showed phenotypic characteristics in the anterior eye chamber of adult rats until the third month after transplantation. Thereafter by the sixth month a number of neurons showed somal and dendritic thickening, reduced population of endoplasmic reticulum, increase in lysosomes, and clear areas devoid of organelles, indicating age changes. These changes were progressive and affected more neurons by the end of 1 year, the longest period studied. The observations suggest that the maturation of nigral neurons is independent of specific afferent input, whereas target influence is necessary for the continued maintenance of the mature neurons. All the synapses observed in the transplant were of the asymmetric variety, reminiscent of the few intrinsic synapses of the intact nigra. This suggested establishment of mutual connectivity among the transplanted neurons in the absence of a target and the type of synapse formed may have been influenced by the local environment. Large glial processes, very prominant during the 4- to 6-month period became less significant afterward but continued to be present until the end of the period studied. Though there was no morphological evidence of lymphocytic infiltration, this might suggest an immunologic reaction.
Collapse
Affiliation(s)
- A K Shetty
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi
| | | | | | | |
Collapse
|
44
|
Geeraedts LM, Nieuwenhuys R, Veening JG. Medial forebrain bundle of the rat: IV. Cytoarchitecture of the caudal (lateral hypothalamic) part of the medial forebrain bundle bed nucleus. J Comp Neurol 1990; 294:537-68. [PMID: 2341625 DOI: 10.1002/cne.902940404] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the preceding study (Geeraedts et al.: J. Comp. Neurol. 294:507-536, '90), the rostral or telencephalic portion of the rat's bed nucleus of the medial forebrain bundle (MFB) has been parcellated into several cytoarchitectonically distinct cellular groups and subgroups. The purpose of the present investigation is to subject the caudal or lateral hypothalamic (LH) portion of the MFB bed nucleus to a detailed cytoarchitectonic analysis. This analysis is based on the same materials, methods, and cytoarchitectonic criteria that were also employed in the preceding study. In contrast to descriptions in the literature, it was found that the LH-region constitutes a very heterogeneous population of neurons with an evident arrangement into groups, several of which have not been identified previously. Many of these cellular groups are partly or entirely located within the boundary of the LH-trajectory of the MFB as previously established by Nieuwenhuys et al. (J. Comp. Neurol. 206:49-81, '82). These groups are designated here as the MFB-related cellular groups. They appear to be arranged into two longitudinal zones. Both zones are caudally replaced by the ventral tegmental area (VTA) and a part of the mesencephalic tegmentum (TEGM1). The lateral zone lies in close proximity to the internal capsule/cerebral peduncle and comprises the following cellular groups: the ventrolateral subarea of the lateral hypothalamic area (LHVL), the anterolateral subarea of the lateral hypothalamic area (LHAL), the lateral tuberal nucleus (TUL), the pre-subthalamic nucleus (PSUT), the retro-subthalamic nucleus (RSUT), the anterodorsal subarea of the lateral hypothalamic area (LHAD), and the lateral hypothalamic nucleus (LHN). The medial zone consists of the following cellular groups: the intermediate hypothalamic area (IHA), the medial tuberal nucleus (TUM), the perifornical nucleus (PFX), the lateral supramammillary nucleus (SUL), the submammillothalamic nucleus (SMT), and the nucleus geminus posterior (GEP). The cellular groups of the medial zone together with the tuberomammillary nucleus groups of the medial zone together with the tuberomammillary nucleus (TUMM) are positioned at the interface between the lateral and the medial hypothalamus, and form an array of cellular groups indicated in our study as the intermediate division of the hypothalamus. The MFB-related cellular groups are dorsally, medially, ventrally, and laterally surrounded by rather well-known brain structures. Both the MFB-related cellular groups and the surrounding structures have been identified and delimited. This resulted in a new, elaborate cytoarchitectonic atlas of the rat's lateral hypothalamic region.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L M Geeraedts
- Department of Anatomy and Embryology, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
45
|
Affiliation(s)
- V B Domesick
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts 02178
| |
Collapse
|
46
|
Arsenault MY, Parent A, Séguéla P, Descarries L. Distribution and morphological characteristics of dopamine-immunoreactive neurons in the midbrain of the squirrel monkey (Saimiri sciureus). J Comp Neurol 1988; 267:489-506. [PMID: 3346372 DOI: 10.1002/cne.902670404] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The distribution and morphological characteristics of dopamine (DA) neurons in the midbrain of the squirrel monkey (Saimiri sciureus) were investigated by peroxidase-antiperoxidase (PAP) immunohistochemistry with a highly specific antiserum raised against DA-glutaraldehyde-lysyl-protein conjugate (donated by M. Geffard). Four contiguous areas contained DA-immunostained nerve cell bodies: (1) the substantia nigra, pars compacta (SNc), (2) the ventral tegmental area (VTA), (3) the retrorubral area (RRA), and (4) the periaqueductal gray (PAG). The SNc composed the vast majority of DA-immunostained neurons. Most of these neurons were relatively large (mean diameters: 35 x 15 micron) and varied in shape from fusiform to polygonal, but a few smaller (16 x 10.5 micron) globular cells were dispersed among them. The caudal two-thirds of the SNc was particularly rich in DA somata. Rostrally, these DA cells formed several distinct columns impinging deeply upon the underlying pars reticulata. Large oval sectors mostly devoid of immunoreactivity were delineated by these trabeculae. The long dendritic processes of DA neurons in the SNc were generally oriented in prominent dorsoventral bundles the ventralmost portion of which arborized diffusely along the dorsal surface of the cerebral peduncle. In the VTA, the DA neurons were regrouped in a triangular zone located dorsal to the interpeduncular nucleus, medial to the substantia nigra and ventral to the oculomotor nucleus. These DA cells were of medium size (19 x 10.5 micron), globular or fusiform, and usually showed one or two thick primary dendrites oriented dorsoventrally. The DA cells in the RRA lay in continuity with the most caudal DA-containing elements of the substantia nigra but could be distinguished by their smaller size (26 x 12 micron), shorter and more profusely branched dendrites, and darker immunostaining. These DA neurons were characteristically scattered among and medial to the fibers of the medial lemniscus, and a few could be observed as far caudally as the pedunculopontine nucleus. In the PAG, DA-immunostained neurons were seen in the rostral half of the mesencephalic central gray and predominated in its ventral half. These cells were of medium size (22.5 x 10 micron) and some of them were found in proximity to the ventricular lining. At caudal levels, the DA-positive cells in the PAG did not intermingle with dorsal raphe neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Y Arsenault
- Centre de Recherche en neurobiologie, Faculté de médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
47
|
Clarke PB, Hommer DW, Pert A, Skirboll LR. Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence. Neuroscience 1987; 23:1011-9. [PMID: 3437988 DOI: 10.1016/0306-4522(87)90176-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dopaminergic neurons of the substantia nigra pars compacta are excited by nicotine and acetylcholine, and possess both high-affinity nicotine binding sites and intense acetylcholinesterase activity, consistent with a cholinoceptive role. A probable source of cholinergic afferents is the pedunculopontine nucleus, which forms part of a prominent group of cholinergic perikarya located caudal to the substantia nigra in the tegmentum. Although pedunculopontine efferents, many of them cholinergic, project to the substantia nigra pars compacta, it has not been established whether they terminate in this structure. In the first experiment, which combined retrograde tracing with immunohistochemical visualization of cholinergic neurons, cholinergic cells in and around the pedunculopontine nucleus were found to send projections to the substantia nigra. This projection was almost completely ipsilateral. Subsequent experiments employed anaesthetized rats; kainate was microinfused into tegmental sites in order to stimulate local cholinergic perikarya, and concurrently, extracellular recordings were made of single dopaminergic neurons in the substantia nigra. Consistent with our anatomical findings, unilateral microinfusion of kainic acid in or near the pedunculopontine nucleus increased the firing rate of dopaminergic neurons situated remotely in the ipsilateral substantia nigra. The kainate-induced excitation of nigral dopaminergic neurons was dose-related and was prevented by intravenous administration of the centrally-acting nicotinic cholinergic antagonist mecamylamine. These results suggest that cholinergic perikarya in the vicinity of the pedunculopontine tegmental nucleus innervate dopaminergic neurons in the substantia nigra pars compacta via nicotinic receptors.
Collapse
Affiliation(s)
- P B Clarke
- Biological Psychiatry Branch, NIMH, Bethesda, MD 20892
| | | | | | | |
Collapse
|
48
|
Hervé D, Pickel VM, Joh TH, Beaudet A. Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res 1987; 435:71-83. [PMID: 2892580 DOI: 10.1016/0006-8993(87)91588-5] [Citation(s) in RCA: 264] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The serotoninergic (5-hydroxytryptamine, 5-HT) innervation of the rat ventral tegmental area (VTA) was examined by light and electron microscopic radioautography following intraventricular infusion of [3H]5-HT. The [3H]5-HT labeled processes were characterized with respect to their regional distribution, ultrastructure and relationships with all neurons, including dopaminergic neurons, identified in the same sections using immunocytochemistry for the localization of the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH). By light microscopy, [3H]5-HT labeled axons and axonal varicosities were detected throughout the interfascicular nucleus and ventral portion of the VTA. By electron microscopy, [3H]5-HT-labeled axons were found to be mainly small and unmyelinated, although a few showed several lamellae of myelin. The labeled varicosities measured 0.6 micron in mean diameter and contained many small, round or flattened agranular vesicles and a few large granular vesicles. More than 18% showed synaptic specializations in single thin sections. Most of these synapses were asymmetric and established on dendritic shafts. Based on the probability of seeing such synaptic specializations in single thin sections, it was estimated that as many as 50% of the labeled 5-HT terminals formed synaptic contacts in the VTA. In dually labeled light microscopic sections, [3H]5-HT-accumulating processes often appeared adjacent to TH-immunoreactive perikarya and proximal dendrites. Electron microscopy demonstrated that terminals with radioautographic labeling for 5-HT formed conventional synapses both with TH-labeled and unlabeled dendrites in the VTA. Many additional 5-HT terminals lacking recognizable synaptic densities were directly apposed to TH-labeled dendrites and were isolated from the rest of the neuropil by thin glial leaflets. These results suggest that 5-HT neurons innervate both dopaminergic and non-dopaminergic neurons in the VTA and may influence mesocortical and mesolimbic efferent systems through synaptic as well as non-synaptic mechanisms.
Collapse
Affiliation(s)
- D Hervé
- Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
49
|
Chesselet MF, Weiss L, Wuenschell C, Tobin AJ, Affolter HU. Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase, and tachykinins in the basal ganglia: an in situ hybridization study in the rodent brain. J Comp Neurol 1987; 262:125-40. [PMID: 2887596 DOI: 10.1002/cne.902620110] [Citation(s) in RCA: 205] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurotransmitter-related messenger RNAs were detected by in situ hybridization in sections of rat and mouse brains by using 35S-radiolabelled RNA probes transcribed from cDNAs cloned in SP6 promoter-containing vectors. The distribution of messenger RNAs for glutamic acid decarboxylase, tachykinins (substance P and K), and tyrosine hydroxylase was examined in the striatum, pallidum, and substantia nigra. Dense clusters of silver grains were observed with the RNA probe complementary of the cellular messenger RNA for glutamic acid decarboxylase (antisense RNA) over most large neurons in the substantia nigra pars reticulata and medium-sized to large neurons in all pallidal subdivisions. A few very densely and numerous lightly labelled medium-sized neurons were present in the striatum. Among the areas examined, only the striatum contained neurons labelled with the antisense tachykinin RNA. Most of these neurons were of medium size, and a few were large. With the antisense tyrosine hydroxylase RNA, silver grains were found over neurons of the substantia nigra pars compacta and adjacent A10 and A8 dopaminergic cell groups. No signal was observed with RNAs identical to the cellular messenger RNA for glutamic acid decarboxylase or tachykinin (sense RNA). These results show a good correlation with immunohistochemical studies, suggesting that documented differences in the distribution and the level of glutamic acid decarboxylase, tyrosine hydroxylase, and substance P immunoreactivities in neurons of the basal ganglia are related to differences in the level of expression of the corresponding genes rather than to translation accessibility, stability, or transport of the gene products.
Collapse
|
50
|
Last AT, Greenfield SA. Acetylcholinesterase has a non-cholinergic neuromodulatory action in the guinea-pig substantia nigra. Exp Brain Res 1987; 67:445-8. [PMID: 3040458 DOI: 10.1007/bf00248567] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Acetylcholinesterase is released within the substantia nigra from the soma/dendrites of nigrostriatal neurons. Previous work suggests that this phenomenon is independent of cholinergic systems, but rather serves to modulate the sensitivity of dopamine-containing nigrostriatal cells to synaptic events. This hypothesis was tested directly in the anaesthetized guinea-pig. Micro-infusion of acetylcholinesterase into the substantia nigra led to an increase in spontaneous firing of nigrostriatal neurons. Furthermore, the pattern of firing evoked by stimulation of the striatum was markedly enhanced. By contrast, administration of butyrylcholinesterase had no effect. It thus appears that acetylcholinesterase has a modulatory action on the firing of nigrostriatal cells, independent of hydrolysis of acetylcholine.
Collapse
|