1
|
Ogata S, Miyamoto Y, Shigematsu N, Esumi S, Fukuda T. The Tail of the Mouse Striatum Contains a Novel Large Type of GABAergic Neuron Incorporated in a Unique Disinhibitory Pathway That Relays Auditory Signals to Subcortical Nuclei. J Neurosci 2022; 42:8078-8094. [PMID: 36104279 PMCID: PMC9637004 DOI: 10.1523/jneurosci.2236-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The most caudal part of the striatum in rodents, the tail of the striatum (TS), has many features that distinguish it from the rostral striatum, such as its biased distributions of dopamine receptor subtypes, lack of striosomes and matrix compartmentalization, and involvement in sound-driven behaviors. However, information regarding the TS is still limited. We demonstrate in this article that the TS of the male mouse contains GABAergic neurons of a novel type that were detected immunohistochemically with the neurofilament marker SMI-32. Their somata were larger than cholinergic giant aspiny neurons, were located in a narrow space adjacent to the globus pallidus (GP), and extended long dendrites laterally toward the intermediate division (ID) of the trilaminar part of the TS, the region targeted by axons from the primary auditory cortex (A1). Although vesicular glutamate transporter 1-positive cortical axon terminals rarely contacted these TS large (TSL) neurons, glutamic acid decarboxylase-immunoreactive and enkephalin-immunoreactive boutons densely covered somata and dendrites of TSL neurons, forming symmetrical synapses. Analyses of GAD67-CrePR knock-in mice revealed that these axonal boutons originated from nearby medium spiny neurons (MSNs) in the ID. All MSNs examined in the ID in turn received inputs from the A1. Retrograde tracers injected into the rostral zona incerta and ventral medial nucleus of the thalamus labeled somata of TSL neurons. TSL neurons share many morphological features with GP neurons, but their strategically located dendrites receive inputs from closely located MSNs in the ID, suggesting faster responses than distant GP neurons to facilitate auditory-evoked, prompt disinhibition in their targets.SIGNIFICANCE STATEMENT This study describes a newly found population of neurons in the mouse striatum, the brain region responsible for appropriate behaviors. They are large GABAergic neurons located in the most caudal part of the striatum [tail of the striatum (TS)]. These TS large (TSL) neurons extended dendrites toward a particular region of the TS where axons from the primary auditory cortex (A1) terminated. These dendrites received direct synaptic inputs heavily from nearby GABAergic neurons of the striatum that in turn received inputs from the A1. TSL neurons sent axons to two subcortical regions outside basal ganglia, one of which is related to arousal. Specialized connectivity of TSL neurons suggests prompt disinhibitory actions on their targets to facilitate sound-evoked characteristic behaviors.
Collapse
Affiliation(s)
- Shigeru Ogata
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
2
|
Tubert C, Murer MG. What’s wrong with the striatal cholinergic interneurons in Parkinson’s disease? Focus on intrinsic excitability. Eur J Neurosci 2020; 53:2100-2116. [DOI: 10.1111/ejn.14742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Cecilia Tubert
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Mario Gustavo Murer
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| |
Collapse
|
3
|
Effect of rutin on anxiety-like behavior and activity of acetylcholinesterase isoforms in specific brain regions of pentylenetetrazol-treated mice. Epilepsy Behav 2020; 102:106632. [PMID: 31747631 DOI: 10.1016/j.yebeh.2019.106632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to investigate the effect of rutin administration (100 mg/kg/day) to pentylenetetrazol (PTZ)-treated Balb-c mice (60 mg/kg/day), with respect to anxiety-like behavior using both open-field and elevated plus-maze (EPM) tests, and acetylcholinesterase (AChE) activity in salt-soluble (SS) fraction and detergent-soluble (DS) fraction of the cerebral cortex, hippocampus, striatum, midbrain, and diencephalon. Our results demonstrated that the administration of PTZ in 3 doses and the induction of seizures increased significantly anxiety behavior of mice and reduced significantly DS-AChE activity in all brain regions examined, while the reduction in the SS fraction was brain region-specific. Rutin administration to normal mice did not affect their behavior, while it induced a brain region-specific reduction in SS-AChE and a significant decrease in DS-AChE in all brain regions. We demonstrated for the first time that pretreatment of PTZ-mice with rutin (PTZ + Rutin group) prevented the manifestation of anxiety and induced interestingly a further significant reduction on the SS- and DS-AChE activities only in the cerebral cortex and striatum, in comparison with PTZ group. Our results show that rutin exhibits an important anxiolytic effect and an anticholinesterase activity in specific brain areas in the seizure model of PTZ.
Collapse
|
4
|
Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem Int 2019; 126:1-10. [PMID: 30825602 DOI: 10.1016/j.neuint.2019.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of nigral dopaminergic neurons innervating the striatum, the main input structure of the basal ganglia. This creates an imbalance between dopaminergic inputs and cholinergic interneurons (ChIs) within the striatum. The efficacy of anticholinergic drugs, one of the earliest therapy for PD before the discovery of L-3,4-dihydroxyphenylalanine (L-DOPA) suggests an increased cholinergic tone in this disease. The dopamine (DA)-acetylcholine (ACh) balance hypothesis is now revisited with the use of novel cutting-edge techniques (optogenetics, pharmacogenetics, new electrophysiological recordings). This review will provide the background of the specific contribution of ChIs to striatal microcircuit organization in physiological and pathological conditions. The second goal of this review is to delve into the respective contributions of nicotinic and muscarinic receptor cholinergic subunits to the control of striatal afferent and efferent neuronal systems. Special attention will be given to the role played by muscarinic acetylcholine receptors (mAChRs) in the regulation of striatal network which may have important implications in the development of novel therapeutic strategies for motor and cognitive impairment in PD.
Collapse
Affiliation(s)
- Samira Ztaou
- Aix Marseille Univ, CNRS, LNC, FR3C, Marseille, France; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
5
|
Vasilopoulou CG, Constantinou C, Giannakopoulou D, Giompres P, Margarity M. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice. Physiol Behav 2016; 164:284-91. [DOI: 10.1016/j.physbeh.2016.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
6
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Modla S, Czymmek KJ. Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 2011; 42:773-92. [PMID: 21782457 DOI: 10.1016/j.micron.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022]
Abstract
Imaging tools for exploring the neurological samples have seen a rapid transformation over the last decade. Approaches that allow clear and specific delineation of targeted tissues, individual neurons, and their cell-cell connections as well as subcellular constituents have been especially valuable. Considering the significant complexity and extent to which the nervous system interacts with every organ system in the body, one non-trivial challenge has been how to identify and target specific structures and pathologies by microscopy. To this end, correlative methods enable one to view the same exact structure of interest utilizing the capabilities of typically separate, but powerful, microscopy platforms. As such, correlative microscopy is well-positioned to address the three critical problems of identification, scale, and resolution inherent to neurological systems. Furthermore, the application of multiple imaging platforms to the study of singular biological events enables more detailed investigations of structure-function relationships to be conducted, greatly facilitating our understanding of relevant phenomenon. This comprehensive review provides an overview of methods for correlative microscopy, including histochemistry, transgenic markers, immunocytochemistry, photo-oxidation as well as various probes and tracers. An emphasis is placed on correlative light and electron microscopic strategies used to facilitate relocation of neurological structures. Correlative microscopy is an invaluable tool for neurological research, and we fully anticipate developments in automation of the process, and the increasing availability of genomic and transgenic tools will facilitate the adoption of correlative microscopy as the method of choice for many imaging experiments.
Collapse
Affiliation(s)
- Shannon Modla
- Delaware Biotechnology Institute, Bio-Imaging Center, 15 Innovation Way, Suite 117, Newark, DE 19711, USA.
| | | |
Collapse
|
8
|
Havekes R, Abel T, Van der Zee EA. The cholinergic system and neostriatal memory functions. Behav Brain Res 2010; 221:412-23. [PMID: 21129408 DOI: 10.1016/j.bbr.2010.11.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/25/2022]
Abstract
The striatum is one of the major forebrain regions that strongly expresses muscarinic and nicotinic cholinergic receptors. This article reviews the current knowledge and our new findings about the striatal cholinoceptive organization and its role in a variety of cognitive functions. Pharmacological and genetic manipulations have indicated that the cholinergic and dopaminergic system in the striatum modulate each other's function. In addition to modulating the dopaminergic system, nicotinic cholinergic receptors facilitate GABA release, whereas muscarinic receptors attenuate GABA release. The striatal cholinergic system has also been implicated in various cognitive functions including procedural learning and intradimensional set shifting. Together, these data indicate that the cholinergic system in the striatum is involved in a diverse set of cognitive functions through interactions with other neurotransmitter systems including the dopaminergic and GABAergic systems.
Collapse
Affiliation(s)
- Robbert Havekes
- Department of Biology, University of Pennsylvania, 433 S University Avenue, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
9
|
Solbu TT, Bjørkmo M, Berghuis P, Harkany T, Chaudhry FA. SAT1, A Glutamine Transporter, is Preferentially Expressed in GABAergic Neurons. Front Neuroanat 2010; 4:1. [PMID: 20161990 PMCID: PMC2820376 DOI: 10.3389/neuro.05.001.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/30/2009] [Indexed: 11/13/2022] Open
Abstract
Subsets of GABAergic neurons are able to maintain high frequency discharge patterns, which requires efficient replenishment of the releasable pool of GABA. Although glutamine is considered a preferred precursor of GABA, the identity of transporters involved in glutamine uptake by GABAergic neurons remains elusive. Molecular analyses revealed that SAT1 (Slc38a1) features system A characteristics with a preferential affinity for glutamine, and that SAT1 mRNA expression is associated with GABAergic neurons. By generating specific antibodies against SAT1 we show that this glutamine carrier is particularly enriched in GABAergic neurons. Cellular SAT1 distribution resembles that of GAD67, an essential GABA synthesis enzyme, suggesting that SAT1 can be involved in translocating glutamine into GABAergic neurons to facilitate inhibitory neurotransmitter generation.
Collapse
Affiliation(s)
- Tom Tallak Solbu
- The Biotechnology Centre of Oslo, University of Oslo Oslo, Norway
| | | | | | | | | |
Collapse
|
10
|
Marinou K, Tsakiris S, Tsopanakis C, Schulpis KH, Behrakis P. Suckling rat brain regional distribution of acetylcholinesterase activity in galactosaemia in vitro. Metab Brain Dis 2005; 20:227-36. [PMID: 16167200 DOI: 10.1007/s11011-005-7210-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 06/17/2005] [Indexed: 11/29/2022]
Abstract
We aimed to evaluate the effect of in vitro galactosaemia on acetylcholinesterase (AChE) activity in different suckling rat brain regions. Various concentrations of galactose (Gal), galactose-1-phosphate (Gal-1-P) and/or galactitol (Galtol) were preincubated for 1 h with homogenates from frontal cortex, hippocampus and for 1-3 h with hypothalamus homogenates at 37( composite function)C. AChE activity was determined spectrophotometrically. Mixture A (Gal-1-P (2 mM), Galtol (2 mM), and Gal (4 mM) (=brain concentrations in classical galactosaemia)) or mixture B (Galtol (2 mM) and Gal (1 mM) (=brain concentrations in galactokinase deficiency galactosaemia)) inhibited by 18-20% (P < 0.01) AChE activity in frontal cortex or hippocampus homogenates. Gal-1-P (2-8 mM) reduced AChE activity by 20% (P < 0.01) on frontal cortex and hippocampus homogenates. Galtol (2-8 mM) resulted in an AChE inhibition (20-22% (P < 0.01)) in hippocampus, 2 mM of the substance had the same effect (20%, P < 0.01) on frontal cortex, whereas higher concentrations (4-8 mM) failed to decrease the enzyme activity anymore. Gal (1-8 mM) did not change AChE activity in the studied areas. Additionally, the hypothalamus enzyme activity was measured considerably high and remained unaltered in the presence of the above compounds. In conclusion, AChE activity was significantly higher in hypothalamus compared with those in frontal cortex and hippocampus. Frontal cortex and hippocampus AChE was significantly inhibited by Gal derivatives, whereas hypothalamus AChE activity remained unaltered possibly due to the histologically different innervation of this area.
Collapse
Affiliation(s)
- Kyriakoula Marinou
- Department of Experimental Physiology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
11
|
Kuroda T, Nakamura H, Itoh K, Le WR, Yoshimura SI, Takenaka K, Sakai N. Nestin immunoreactivity in local neurons of the adult rat striatum after remote cortical injury. J Chem Neuroanat 2002; 24:137-46. [PMID: 12191730 DOI: 10.1016/s0891-0618(02)00042-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nestin is a marker for the neuronal and glial precursor cells and is expressed in reactive astrocytes after brain injury. Following restricted neocortical injury, we found that cells with neuronal morphology in the adult rat striatum became immunoreactive for both nestin and the neuronal marker, microtubule-associated protein 2 (MAP-2), but not for the astroglial marker, glial fibrillary acidic protein (GFAP). The number of nestin-positive cells transiently increased in the striatum. Continuous administration of 5-bromo-2'-deoxyuridine (BrdU) after cortical injury did not reveal any newly generated neurons in the striatum. Double-labeling fluorescent immunocytochemistry revealed that the nestin-positive striatal cells were also substance-P-positive. These findings suggest that some factors released from the injured cortex may induce nestin immunoreactivity in striatal neurons.
Collapse
Affiliation(s)
- Tatsuya Kuroda
- Department of Neurosurgery, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Gonzalo N, Moreno A, Erdozain MA, García P, Vázquez A, Castle M, Lanciego JL. A sequential protocol combining dual neuroanatomical tract-tracing with the visualization of local circuit neurons within the striatum. J Neurosci Methods 2001; 111:59-66. [PMID: 11574120 DOI: 10.1016/s0165-0270(01)00440-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe here an experimental approach designed to aid in the identification of complex brain circuits within the rat corpus striatum. Our aim was to characterize in a single section (i) striatal thalamic afferents, (ii) striatopallidal projection neurons and (iii) striatal local circuit interneurons. To this end, we have combined anterograde tracing using biotinylated dextran amine and retrograde neuroanatomical tracing with Fluoro-Gold. This dual tracing protocol was further implemented with the visualization of different subpopulations of striatal interneurons. The subsequent use of three different peroxidase substrates enabled us to unequivocally detect structures that were labeled within a three-color paradigm.
Collapse
Affiliation(s)
- N Gonzalo
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Alcantara AA, Mrzljak L, Jakab RL, Levey AI, Hersch SM, Goldman-Rakic PS. Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: anatomical evidence for cholinergic modulation of glutamatergic prefronto-striatal pathways. J Comp Neurol 2001; 434:445-60. [PMID: 11343292 DOI: 10.1002/cne.1186] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cellular and subcellular localization of muscarinic receptor proteins m1 and m2 was examined in the neostriatum of macaque monkeys by using light and electron microscopic immunocytochemical techniques. Double-labeling immunocytochemistry revealed m1 receptors in calbindin-D28k--positive medium spiny projection neurons. Muscarinic m1 labeling was dramatically more intense in the striatal matrix compartment in juvenile monkeys but more intense in striosomes in the adult caudate, suggesting that m1 expression undergoes a developmental age-dependent change. Ultrastructurally, m1 receptors were predominantly localized in asymmetric synapse-forming spines, indicating that these spines receive extrastriatal excitatory afferents. The association of m1-positive spines with lesion-induced degenerating prefronto-striatal axon terminals demonstrated that these afferents originate in part from the prefrontal cortex. The synaptic localization of m1 in these spines indicates a role of m1 in the modulation of excitatory neurotransmission. To a lesser extent, m1 was present in symmetric synapses, where it may also modulate inhibitory neurotransmission originating from local striatal neurons or the substantia nigra. Conversely, m2/choline acetyltransferase (ChAT) double labeling revealed that m2-positive neurons corresponded to large aspiny cholinergic interneurons and ultrastructurally, that the majority of m2 labeled axons formed symmetric synapses. The remarkable segregation of the m1 and m2 receptor proteins to projection and local circuit neurons suggests a functional segregation of m1 and m2 mediated cholinergic actions in the striatum: m1 receptors modulate extrinsic glutamatergic and monoaminergic afferents and intrinsic GABAergic afferents onto projection neurons, whereas m2 receptors regulate acetylcholine release from axons of cholinergic interneurons.
Collapse
Affiliation(s)
- A A Alcantara
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Hamamura T, Lee Y, Ohashi K, Fujiwara Y, Miki M, Suzuki H, Kuroda S. A low dose of lithium chloride selectively induces Fos protein in the central nucleus of the amygdala of rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24:285-94. [PMID: 10800751 DOI: 10.1016/s0278-5846(99)00092-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1. Lithium is a very effective treatment for mood disorders. To elucidate the neural substrates of the mood stabilizing actions of lithium, in the present study the authors investigated the effects of a low dose of lithium on regional expression of Fos protein. 2. The administrations of a high dose of lithium chloride (100 mg/kg) induced Fos in widespread areas of the rat brain. In contrast, administration of a low dose of lithium chloride, equivalent to a therapeutic dose in humans, induced Fos only in the central nucleus of the amygdala. 3. These results demonstrate that the central nucleus of the amygdala plays important role in the neural framework that is responsible for the mood-stabilizing effect of lithium.
Collapse
Affiliation(s)
- T Hamamura
- Department of Neuropsychiatry, Okayama University Medical School, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Pickel VM, Douglas J, Chan J, Gamp PD, Bunnett NW. Neurokinin 1 receptor distribution in cholinergic neurons and targets of substance P terminals in the rat nucleus accumbens. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000731)423:3<500::aid-cne12>3.0.co;2-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Rodrigo J, Fernández P, Bentura ML, de Velasco JM, Serrano J, Uttenthal O, Martínez-Murillo R. Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. J Chem Neuroanat 1998; 15:1-20. [PMID: 9710145 DOI: 10.1016/s0891-0618(98)00016-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The topographical distribution of catecholaminergic nerve fibres and their anatomical relationship to cholinergic elements in the rat globus pallidus were studied. Peroxidase-antiperoxidase and two-colour immunoperoxidase staining procedures were used to demonstrate tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT) and choline acetyltransferase (ChAT) immunoreactivities, combined with acetylcholinesterase (AChE) pharmacohistochemistry. TH immunoreactive nerve fibres were seen to enter the globus pallidus from the medial forebrain bundle. The greatest density of such fibres was found in the ventral region of the globus pallidus, which was also characterized by the greatest density of ChAT immunoreactive neurons. TH immunoreactive nerve fibres showed varicose arborizations and sparse boutons, which were occasionally seen in close opposition to cholinergic structures. In all regions of the globus pallidus, there were also larger, smooth TH immunoreactive nerve fibres of passage to the caudate putamen. A smaller number of DBH immunoreactive nerve fibres and terminal arborizations were found in the substantia innominata, internal capsule and in the globus pallidus bordering these structures. A few PNMT immunoreactive nerve fibres in the substantia innominata and internal capsule did not enter the globus pallidus. Electron microscopy revealed TH immunoreactive synaptic profiles in the ventromedial area of the globus pallidus corresponding to the nucleus basalis magnocellularis of Meynert (nBM). These made mainly symmetrical and only a few asymmetrical synaptic contacts with dendrites containing AChE reaction product. The results indicate that cholinergic structures in the nBM are innervated by dopaminergic fibres and terminals, with only a very small input from noradrenergic fibres.
Collapse
Affiliation(s)
- J Rodrigo
- Department of Comparative Neuroanatomy, Instituto Cajal, C.S.I.C., Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Dubrovskaya NM, Zhuravin IA. Role of the striatal cholinergic system in the regulation of learned manipulation in rats. INTEGRATIVE PHYSIOLOGICAL AND BEHAVIORAL SCIENCE : THE OFFICIAL JOURNAL OF THE PAVLOVIAN SOCIETY 1995; 30:127-37. [PMID: 7669699 DOI: 10.1007/bf02691681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The experiments were performed on adult Wistar male rats trained to push with the forepaw on a fixed piston inside a narrow tube. It was found that after localized intracerebral injection of a cholinergic antagonist into the dorso-lateral (but not medial) neostriatum (i.e., the caudato-putamen) the behavioral performance requiring brief innate movements remained unchanged, but the performance requiring a prolonged pushing movement (> 50 msec) became disrupted. Micoinjection of carbacholine (0.03-3 mu g/l microliters) did not affect the performance of the acquired movements, whereas scopolamine (3 mu g/l microliters) led to the significant decrease in pushing time. We conclude that changes in the state of the dorso-lateral neostriatal cholinergic system result only in disturbances of the sensory-controlled component of a complex instrumental movement.
Collapse
Affiliation(s)
- N M Dubrovskaya
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
| | | |
Collapse
|
18
|
Studer L, Spenger C, Luthman J, Seiler RW. NGF increases neuritic complexity of cholinergic interneurons in organotypic cultures of neonatal rat striatum. J Comp Neurol 1994; 340:281-96. [PMID: 7515400 DOI: 10.1002/cne.903400212] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of NGF on cholinergic interneurons in organotypic roller tube cultures of 4 day postnatal rat striatum was examined after 13 to 16 days in vitro. Cultures were divided into four groups. The medium of the NGF treated group was supplemented with 5 ng/ml NGF, whereas control groups were cultured either without NGF, by adding 20 ng/ml neutralising anti-NGF antibody, or by adding both NGF and anti-NGF antibody to the medium. Two different cell populations were identified by an image analysis system which measured acetylcholinesterase staining intensity. It was demonstrated that NGF promotes survival of the large, intensely stained population. Eighty computer-assisted reconstructions of intensely stained cells, 20 for each treatment group, were performed in a random order by means of a neuron tracing system. Axons and dendrites were analysed separately. NGF enhanced complexity of neuritic, predominantly axonal trees by increasing the number of axonal segments by 91% to 100% (P < 0.01), the number of dendritic segments by 33% to 63% (P = 0.09 to P < 0.01), maximal axonal branch order by 37% to 50% (P < 0.05), and maximal dendritic branch order by 22% to 37% (P < 0.05). Further evidence of more complex neuritic trees was given by Sholl concentric sphere analysis. Anti-NGF antibody could block all these effects. General rules of branching architecture were not affected by NGF treatment as shown by analysing mean segment length in relation to the branch order, branch point exit angles, total tortuosity, Rall's ratio, and tapering of neuritic trees.
Collapse
Affiliation(s)
- L Studer
- Department of Neurosurgery, University of Bern, Inselspital, Switzerland
| | | | | | | |
Collapse
|
19
|
Clarençon D, Testylier G, Estrade M, Galonnier M, Viret J, Gourmelon P, Fatome M. Stimulated release of acetylcholinesterase in rat striatum revealed by in vivo microspectrophotometry. Neuroscience 1993; 55:457-62. [PMID: 8377937 DOI: 10.1016/0306-4522(93)90515-h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The microspectrophotometric technique allows a direct in vivo measurement of brain extracellular acetylcholinesterase. An optical probe associated with electrodes for stimulation was implanted in striatum of anaesthetized rats to determine the effects of neuronal excitation on the acetylcholinesterase activity. Electrical stimulations induced a reversible increase in acetylcholinesterase activity of about 30 to 50%, with a recovery to baseline occurring after 1 or 2 h. Furthermore, iterative electrical stimulation induced a progressive fading of this phenomenon. An enhancement of acetylcholinesterase activity was also observed by stimulations with potassium injections through a canal of the probe. These results suggest mainly an intracellular origin of the released enzyme and estimate its contribution at about 40% of the whole extracellular enzyme activity.
Collapse
Affiliation(s)
- D Clarençon
- Centre de Recherches du Service de Santé des Armées, La Tronche, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Yelnik J, Percheron G, François C, Garnier A. Cholinergic neurons of the rat and primate striatum are morphologically different. PROGRESS IN BRAIN RESEARCH 1993; 99:25-34. [PMID: 8108552 DOI: 10.1016/s0079-6123(08)61336-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J Yelnik
- Laboratoire de Neuromorphologie informationnelle et de Neurologie expérimentale du mouvement, INSERM U106, Hôpital de la Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
21
|
Martone ME, Armstrong DM, Young SJ, Groves PM. Ultrastructural examination of enkephalin and substance P input to cholinergic neurons within the rat neostriatum. Brain Res 1992; 594:253-62. [PMID: 1280527 DOI: 10.1016/0006-8993(92)91132-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enkephalin and substance P-containing inputs to cholinergic perikarya were examined in the rat neostriatum using an ultrastructural immunocytochemical double-labeling protocol. Sections of rat neostriatum were double-labeled for either choline acetyltransferase (ChAT) and substance P or ChAT and enkephalin using silver intensified colloidal gold and peroxidase as labels. Regions containing both ChAT-positive neurons and peroxidase reaction product were identified in the light microscope prior to sectioning for electron microscopy. Substance P-containing terminals which contained round synaptic vesicles and made symmetrical synaptic contacts were commonly observed in the neostriatum. Substance P synapses onto ChAT-positive perikarya and dendrites were frequently observed: up to 5 synaptic contacts were observed onto a ChAT-positive dendrite. Enkephalin labeling was also seen in a population of axon terminals containing round synaptic vesicles and exhibiting symmetrical synaptic specializations. In contrast to substance P-containing terminals, relatively few synaptic contacts were observed onto ChAT-positive labeled perikarya and dendrites although enkephalin-labeled terminals were seen in frequent contact with perikarya and dendrites of unlabeled spiny neurons. Since enkephalin and substance P are contained within different populations of striatal spiny neurons, the results of the present study suggest that these two types of neurons differ in their intrinsic striatal connections.
Collapse
Affiliation(s)
- M E Martone
- Department of Psychiatry, University of California, San Diego 92093
| | | | | | | |
Collapse
|
22
|
Alvaro I, Arilla E. Somatostatin receptor elevation in rat striatum after diisopropylfluorophosphate administration. Brain Res Bull 1992; 28:513-8. [PMID: 1352176 DOI: 10.1016/0361-9230(92)90097-h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The acute and chronic administration of diisopropylfluorophosphate (DFP), an inhibitor of acetylcholinesterase or of atropine, a blocker of muscarinic cholinergic receptors, did not affect somatostatin-like immunoreactivity (SLI) content in the striatum of rats. Acute and chronic DFP administration increased the number of specific 125I-Tyr11-somatostatin (125I-Tyr11-SS) receptors in cells dissociated from the striatum without changing the affinity constant. Although the increase could be blocked by pretreatment with atropine, it was not due to a direct effect by DFP on somatostatin (SS) receptors, because no rise in 125I-Tyr11-SS binding was produced by high concentrations of DFP (10(-5) M) when added in vitro. The acute administration of atropine alone had no observable effect on the number of SS receptors. However, repeated atropine administration produced a significant decrease in the 125I-Tyr11-SS binding in cells dissociated from the striatum, although the affinity constant was unchanged. The results suggest that interactions between somatostatinergic and cholinergic receptors may be of importance in the rat striatum.
Collapse
Affiliation(s)
- I Alvaro
- Department of Biochemistry and Molecular Biology, Medical School, University of Alcala, Madrid, Spain
| | | |
Collapse
|
23
|
Savasta M, Mennicken F, Chritin M, Abrous DN, Feuerstein C, Le Moal M, Herman JP. Intrastriatal dopamine-rich implants reverse the changes in dopamine D2 receptor densities caused by 6-hydroxydopamine lesion of the nigrostriatal pathway in rats: an autoradiographic study. Neuroscience 1992; 46:729-38. [PMID: 1532053 DOI: 10.1016/0306-4522(92)90159-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to test whether intrastriatal implants of embryonic dopaminergic neurons are able to normalize the lesion-induced hypersensitivity of striatal dopaminergic receptors. The ascending dopaminergic pathway of adult rats was unilaterally lesioned using 6-hydroxydopamine. Three weeks later a cell suspension obtained from the mesencephali of ED 14 rat embryos was implanted into the denervated striatum. Rotational responses to dopaminergic agonists were tested five months after implantation. One month later animals were killed and striatal dopaminergic receptor densities were quantified using autoradiography, the dopaminergic reinnervation of the host striatum being visualized with [3H]GBR 12935, a ligand labelling dopamine uptake sites. The lesion induced a behavioural hypersensitivity to dopaminergic agonists and lesioned animals displayed a strong rotation contralateral to the lesion in response to a test dose of the D1 agonist compound SKF 38393 (2.5 mg/kg) or of the D2 agonist LY 171555 (0.15 mg/kg). These responses were completely abolished by the graft. The normal distribution of D1 and D2 dopaminergic receptors in the rat striatum was similar to that described previously. Seven months after the lesion of the nigrostriatal dopaminergic pathway, the density of D1 receptors was not significantly affected while the density of D2 receptors was increased by about 25-50%. The implantation of embryonic dopaminergic neurons into the denervated striatum led to a slight decrease of D1 receptor densities and to a reversal of the lesion-induced increase of striatal dopaminergic D2 receptors six months later. Moreover, this reversal concerned not only the reinnervated striatal region but also extended into non-reinnervated areas of the striatum. It is concluded that grafts of embryonic dopaminergic neurons can normalize the density of dopaminergic D2 receptors.
Collapse
Affiliation(s)
- M Savasta
- INSERM U.318, LAPSEN, CHU de Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Herrera-Marschitz M, Meana JJ, O'Connor WT, Goiny M, Reid MS, Ungerstedt U. Neuronal dependence of extracellular dopamine, acetylcholine, glutamate, aspartate and gamma-aminobutyric acid (GABA) measured simultaneously from rat neostriatum using in vivo microdialysis: reciprocal interactions. Amino Acids 1992; 2:157-79. [DOI: 10.1007/bf00806086] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Yelnik J, François C, Percheron G, Tandé D. Morphological taxonomy of the neurons of the primate striatum. J Comp Neurol 1991; 313:273-94. [PMID: 1722488 DOI: 10.1002/cne.903130207] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A quantitative taxonomy of primate striatal neurons was elaborated on the basis of the morphology of Golgi-impregnated neurons. Dendritic arborizations were reconstructed from serial sections and digitized in three dimensions by means of a video computer system. Topological, metrical, and geometrical parameters were measured for each neuron. Groups of neurons were isolated by using uni- and multidimensional statistical tests. A neuronal species was defined as a group of neurons characterized quantitatively by a series of nonredundant parameters, differing statistically from other groups, and appearing as a separate cluster in principal component analysis. Four neuronal species were isolated: (1) the spiny neuronal species (96% of striatal neurons) characterized by spine-free proximal dendrites (up to 31 microns) and spine-laden distal dendrites, which are more numerous, shorter, and less spiny in the human than in the monkey, (2) the leptodendritic neuronal species (2%) characterized by a small number of long, thick, smooth, and sparsely ramified dendrites, (3) the spidery neuronal species (1%) characterized by very thick dendritic stems and a large number of varicose recurrent distal processes, and (4) the microneuronal species (1%) characterized by numerous short, thin, and beaded axonlike processes. All striatal neurons give off a local axonal arborization. The size and shape of cell bodies were analyzed quantitatively in Golgi material and in materials treated for Nissl-staining, immunohistochemical demonstration of parvalbumin and histochemical demonstration of acetylcholinesterase. Only three types were distinguishable: small, round cell bodies corresponding to either spiny neurons or microneurons, medium-size elongated cell bodies, which were parvalbumin-immunoreactive and corresponded to leptodendritic neurons, and large round cell bodies, which were acetylcholinesterase-positive and corresponded to spidery neurons. Thorough analysis of previously elaborated classifications revealed that spidery neurons do not exist in rats and cats and that large cholinergic neurons in these species correspond to leptodendritic neurons. From this, it can be assumed that the dendritic domain of striatal cholinergic neurons is considerably smaller in primates than in other species. Computer simulations based on both the frequency of each neuronal species and their three-dimensional dendritic morphology revealed that the striatum consists of two intertwined dendritic lattices: a fine-grain lattice (300-600 microns) formed by the dendritic arborizations of spiny, spidery, and microneurons, and a large-grain lattice (1,200 microns) formed by the dendritic arborizations of leptodendritic neurons. This suggests that cortical information can be processed in the striatum through two different systems: a fine-grain system that would conserve the precision of the cortical input, and a large-grain system that would blur it.
Collapse
Affiliation(s)
- J Yelnik
- Laboratoire de Neuromorphologie informationnelle, INSERM U106, Hôpital de la Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
26
|
Dymshitz J, Malach R, Amir S, Simantov R. Factors regulating the expression of acetylcholinesterase-containing neurons in striatal cultures: effects of chemical depolarization. Brain Res 1990; 532:131-9. [PMID: 2178031 DOI: 10.1016/0006-8993(90)91752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The influence of chemical depolarization on the survival and differentiation of acetylcholinesterase (AChE)-containing neurons was examined in primary rat striatal cultures, maintained in different types of media (serum-free and serum-supplemented) and substrate (poly-ornithine and astrocyte monolayer). Chronic application of 5 microM veratridine resulted in a significant loss of neurites by AChE-positive cells, while a higher concentration (20 microM) reduced the number of stained cell bodies. These effects appeared to be selective with regard to AChE-positive cells, as indicated by morphological observations of the cells in the treated cultures and receptor binding measurements. Similarly, elevation of extracellular KCl levels (20-60 mM) produced a dose-dependent neurite loss by AChE-containing cells. Blockers of voltage-sensitive Ca2+ channels--verapamil (1 microM) and nifedipine (1 microM)--did not affect the veratridine-induced neurite loss, while tetrodotoxin (0.1 microM) had a partial effect. When cultures treated with 5 microM veratridine were allowed to recuperate for several days, the number of AChE-positive cells possessing neurites returned close to control values, thus indicating the reversibility of the effect of chemical depolarization. The possibility that chronic neuronal depolarization in the striatum might play a role in regulation of the neuronal processes outgrowth by AChE-containing cells is discussed.
Collapse
Affiliation(s)
- J Dymshitz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
27
|
Herrera-Marschitz M, Goiny M, Utsumi H, Ferre S, Håkansson L, Nordberg A, Ungerstedt U. Effect of unilateral nucleus basalis lesion on cortical and striatal acetylcholine and dopamine release monitored in vivo with microdialysis. Neurosci Lett 1990; 110:172-9. [PMID: 2325883 DOI: 10.1016/0304-3940(90)90807-l] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cortical and striatal extracellular acetylcholine (ACh), choline (Ch), dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) levels were estimated in samples collected with microdialysis in halothane-anaesthetized rats which had received 0.6 microliter of ibotenic acid (5 micrograms/microliters) into the left nucleus basalis magnocellularis (microdialysis experiments were performed 3-4 weeks after the lesion). Samples were collected under basal (Ringer or Ringer including 10 microM neostigmine) and KCl (100 mM)-stimulated conditions. In the intact frontoparietal cortex and striatum, basal ACh (only detected under neostigmine perfusion) was in the 30 and 300 nM range, respectively. In the same conditions, Ch was in the 0.7 microM range in the cortex and in the 0.2 microM range in the striatum. The inclusion of KCl in the perfusion medium strongly enhanced cortical (greater than 7-fold) and striatal (greater than 10-fold) ACh. KCl only moderately increased striatal (65%) but not cortical Ch. In the lesion side, both basal and stimulated ACh were significantly reduced in the cortex (greater than 60%), but not in the striatum. Ch was not significantly changed in the cortex and striatum. The nucleus basalis lesion also produced a drop in extracellular levels of cortical and striatal DA (40% and 55%, respectively). Neither cortical nor striatal ACh levels were modified by a unilateral DA deafferentation (6-hydroxydopamine lesion into the medial forebrain bundle). However, the destruction of the intrinsic cortical ACh by injection of kainic acid into the frontoparietal cortex produced a 30% decrease in ACh.
Collapse
|
28
|
Ouimet CC, Greengard P. Distribution of DARPP-32 in the basal ganglia: an electron microscopic study. JOURNAL OF NEUROCYTOLOGY 1990; 19:39-52. [PMID: 2191086 DOI: 10.1007/bf01188438] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DARPP-32, a dopamine and cyclic AMP-regulated phosphoprotein, has been studied by light and electron microscopical immunocytochemistry in the rat caudatoputamen, globus pallidus and substantia nigra. In the caudatoputamen, DARPP-32 was present in neurons of the medium-sized spiny type. Immunoreactivity for DARPP-32 was present in dendritic spines, dendrites, perikaryal cytoplasm, most but not all nuclei, axons and a small number of axon terminals. Immunoreactive axon terminals in the caudatoputamen formed symmetrical synapses with immunolabeled dendritic shafts or somata. Neurons having indented nuclei were never immunoreactive. In the globus pallidus and substantia nigra pars reticulata, DARPP-32 was present in myelinated and unmyelinated axons and in axon terminals. The labelled axon terminals in these regions formed symmetrical synaptic contacts on unlabelled dendritic shafts or on unlabelled somata. These data suggest that DARPP-32 is present in striatal neurons of the medium-sized spiny type and that these DARPP-32-immunoreactive neurons form symmetrical synapses on target neurons in the globus pallidus and substantia nigra. The presence of DARPP-32 in these striatal neurons and in their axon terminals suggests that DARPP-32 mediates part of the response of medium-size spiny neurons in the striatum to dopamine D-1 receptor activation.
Collapse
Affiliation(s)
- C C Ouimet
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021
| | | |
Collapse
|
29
|
Szigethy E, Leonard K, Beaudet A. Ultrastructural localization of [125I]neurotensin binding sites to cholinergic neurons of the rat nucleus basalis magnocellularis. Neuroscience 1990; 36:377-91. [PMID: 1699163 DOI: 10.1016/0306-4522(90)90433-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of specifically-labeled neurotensin binding sites was examined in relation to that of cholinergic neurons in the rat nucleus basalis magnocellularis at both light and electron microscopic levels. Lightly prefixed forebrain slices were either labeled with [125I](Tyr3) neurotensin alone or processed for combined [125I]neurotensin radioautography and acetylcholinesterase histochemistry. In light microscopic radioautographs from 1-microns-thick sections taken from the surface of single-labeled slices, silver grains were found to be preferentially localized over perikarya and proximal processes of nucleus basalis cells. The label was distributed both throughout the cytoplasm and along the plasma membrane of magnocellular neurons all of which were found to be cholinesterase-positive in a double-labeled material. Probability circle analysis of silver grain distribution in electron microscopic radioautographs confirmed that the major fraction (80-89%) of specifically-labeled binding sites associated with cholinesterase-reactive cell bodies and dendrites was intraneuronal. These intraneuronal sites were mainly dispersed throughout the cytoplasm and are thus likely to represent receptors undergoing synthesis, transport and/or recycling. A proportion of the specific label was also localized over the nucleus, suggesting that neurotensin could modulate the expression of acetylcholine-related enzymes in the nucleus basalis. The remainder of the grains (11-20%) were classified as shared, i.e. overlied the plasma membrane of acetylcholinesterase-positive neuronal perikarya and dendrites. Extrapolation from light microscopic data, combined with the observation that shared grains were detected at several contact points along the plasma membrane of cells which also exhibited exclusive grains, made it possible to ascribe these membrane-associated receptors to the cholinergic neurons themselves rather than to abutting cellular profiles. Comparison of grain distribution with the frequency of occurrence of elements directly abutting the plasma membrane of neurotensin-labeled/cholinesterase-positive perikarya indicated that labeled cell surface receptors were more or less evenly distributed along the membrane as opposed to being concentrated opposite abutting axon terminals endowed or not with a visible junctional specialization. The low incidence of labeled binding sites found in close association with abutting axons makes it unlikely that only this sub-population of sites corresponds to functional receptors. On the contrary, the dispersion of labeled receptors seen here along the plasma membrane of cholinergic neurons suggests that neurotensin acts primarily in a paracrine mode to influence the magnocellular cholinergic system in the nucleus basalis.
Collapse
Affiliation(s)
- E Szigethy
- Laboratory of Neuroanatomy, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | | | |
Collapse
|
30
|
Ray A, Sen P, Alkondon M. Biochemical and pharmacological evidence for central cholinergic regulation of shock-induced aggression in rats. Pharmacol Biochem Behav 1989; 32:867-71. [PMID: 2798535 DOI: 10.1016/0091-3057(89)90050-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acetylcholinesterase (AChE) activity was estimated in brain and heart homogenates and plasma of 'aggressive' and 'nonaggressive' rats. Brain homogenates of 'nonaggressive' rats hydrolyzed significantly more substrate when compared to the 'aggressive' rats. Such differences were not seen in the heart homogenates or plasma of these two groups of rats. Acute DFP (0.1, 0.3 and 1.0 mg/kg) attenuated shock-induced aggression (SIA) 2 hr after treatment but facilitated SIA 24 hr and 48 hr after drug administration. Long-term DFP (0.3 mg/kg x 10 days), on the other hand, induced a significant enhancement in the SIA score, whereas atropine (1.0 and 5.0 mg/kg) produced a dose-related attenuation of the same. Pretreatment of rats with atropine (5 mg/kg) antagonized the long-term DFP-induced facilitation of SIA. These results are discussed in the light of an inhibitory central cholinergic mechanism in the regulation of SIA.
Collapse
Affiliation(s)
- A Ray
- Department of Pharmacology, University College of Medical Sciences, Delhi, India
| | | | | |
Collapse
|
31
|
Dimova RN, Usunoff KG. Cortical projection of giant neostriatal neurons in the cat. Light and electron microscopic horseradish peroxidase study. Brain Res Bull 1989; 22:489-99. [PMID: 2713722 DOI: 10.1016/0361-9230(89)90101-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Following voluminous injections of horseradish peroxidase (HRP) in various neocortical fields, a small number of labeled large neurons are observed ipsilaterally in the putamen, striatal ponticuli, caudate nucleus, and nucleus accumbens septi. The bulk of the corticopetal cells are found in the putamen and in the striatal ponticuli. A more significant number of labeled neurons is encountered following injections in auditory and sensorimotor cortex, followed by the prefrontal and premotor cortex; very few cells project to the visual cortex. Ultrastructurally, the large HRP-labeled neurons display an eccentrically located, indented nucleus, abundant granular endoplasmic reticulum forming Nissl bodies, well developed Golgi zones, and numerous dense bodies. The simultaneous demonstration of retrogradely transported HRP and acetylcholinesterase (AChE) suggest that the large neurons are presumably cholinergic. These results provide evidence that at least some of the giant striatal neurons are efferent cells. The coincidence of cytological, histochemical, and hodological criteria invite the speculation that the giant corticopetal neostriatal neurons might be related to the magnocellular cholinergic groups of the basal forebrain (especially the Ch4 group).
Collapse
Affiliation(s)
- R N Dimova
- Regeneration Research Laboratory, Bulgarian Academy of Sciences, Sofia
| | | |
Collapse
|
32
|
Roberts RC, DiFiglia M. Short- and long-term survival of large neurons in the excitotoxic lesioned rat caudate nucleus: a light and electron microscopic study. Synapse 1989; 3:363-71. [PMID: 2525824 DOI: 10.1002/syn.890030410] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large striatal neurons are spared in caudate tissue from postmortem brain of patients with Huntington's disease (HD) and in the rat caudate lesioned with excitotoxins at short postlesion intervals. In order to determine the survival of large neurons and other effects of excitotoxicity at longer postlesion intervals the rat caudate nucleus was examined 2, 7, and 30 weeks after intrastriatal injections of the excitotoxin, quinolinic acid. The caudate nucleus diminished in size progressively up to 30 weeks postlesion due to 1) shrinkage and compacting of the lesion zone and 2) reduction in area of intact caudate, apparently due to gradual loss of the remaining caudate neurons. In Nissl-stained sections of the lesion zone where total neuronal density was less than 5% of contralateral control, large neurons were present at all postlesion intervals, forming 38-58% of the remaining neurons. Unexpectedly, a fivefold reduction in the number of large neurons was observed between 2 and 30 weeks postlesion. Also, at 7 and 30 weeks postlesion most of the large neurons were confined to the peripheral region of the lesion. At all postlesion intervals, large neurons retained ultrastructural integrity and some synaptic inputs despite the severe disruption of the surrounding neuropil. Surrounding the lesion zone was a transition zone which exhibited a decrease in total neuronal density to 53-74% of control. In this region the density of large neurons was not diminished, and the proportion of large neurons was elevated in comparison to that of controls at all postlesion intervals. Findings suggest that following excitotoxic lesion of the caudate nucleus there are marked differences between short- and long-term postlesion intervals in the survival and distribution of large neurons. We speculate that an imbalance in the synaptic connections with other caudate neurons leads to the persistent loss of large neurons in the lesion zone at long postlesion intervals. A transition zone surrounding the lesion, where cell loss is less severe than in the lesion zone, exhibits features more characteristic of the neuropathology of HD.
Collapse
Affiliation(s)
- R C Roberts
- Department of Neurology, Massachusetts General Hospital, Boston
| | | |
Collapse
|
33
|
|
34
|
Góngora JL, Sierra A, Mariscal S, Aceves J. Physostigmine stimulates phosphoinositide breakdown in the rat neostriatum. Eur J Pharmacol 1988; 155:49-55. [PMID: 2854073 DOI: 10.1016/0014-2999(88)90401-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reversible acetylcholinesterase inhibitor, physostigmine, stimulated in a dose-dependent manner the accumulation of [3H]inositol monophosphate ([3H]IP1) in lithium-treated neostriatal slices. The muscarinic agonists, carbachol and oxotremorine, also stimulated [3H]IP1 accumulation. Atropine completely blocked the physostigmine-induced accumulation but had no effect on the basal accumulation. Tetrodotoxin partially inhibited the physostigmine-induced [3H]IP1 accumulation but had no effect on the carbachol-induced accumulation. 4-Aminopyridine stimulated the basal [3H]IP1 accumulation and potentiated the physostigmine-induced accumulation. This potentiation was blocked by tetrodotoxin. The physostigmine dose-response curve for the stimulation of [3H]IP1 accumulation was similar to its dose-response curve to inhibit acetylcholinesterase activity in the neostriatum. The results suggest that, under our experimental conditions, the acetylcholine released spontaneously from intrinsic cholinergic neurons does not activate the striatal muscarinic receptors coupled to phosphoinositide breakdown unless the intrinsic acetylcholinesterases are inhibited.
Collapse
Affiliation(s)
- J L Góngora
- Department of Physiology, Biophysics and Neurosciences, Instituto Politécnico Nacional de México, D.F. México
| | | | | | | |
Collapse
|
35
|
Martínez-Murillo R, Blasco I, Alvarez FJ, Villalba R, Solano ML, Montero-Caballero MI, Rodrigo J. Distribution of enkephalin-immunoreactive nerve fibres and terminals in the region of the nucleus basalis magnocellularis of the rat: a light and electron microscopic study. JOURNAL OF NEUROCYTOLOGY 1988; 17:361-76. [PMID: 3049947 DOI: 10.1007/bf01187858] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This investigation was carried out on the distribution of enkephalin-containing nerve fibres and terminals in the region of the nucleus basalis magnocellularis (NBM) of the rat. At the light microscope (LM) level, enkephalin-immunoreactive sites and endogenous choline acetyltransferase (ChAT) were demonstrated by employing the two-colour immunoperoxidase staining technique, using highly specific monoclonal antibodies against enkephalin and ChAT. A pharmacohistochemical procedure to reveal acetylcholinesterase (AChE)-synthesizing neurons combined with the peroxidase-antiperoxidase (PAP) immunocytochemical technique to detect endogenous enkephalins, provided ultrastructural data on the relationships of neuronal elements containing AChE and enkephalins in the region of the NBM. At the LM level, cholinergic neurons of the NBM were surrounded by a dense network of enkephalin-immunoreactive nerve fibres. Electron microscopic (EM) observations of histochemically characterized structures, that were first identified in the LM, revealed that intensely AChE-stained structures in the region of the NBM received sparse synaptic inputs from enkephalin immunoreactive terminals. Synaptic inputs of immunoreactive terminals onto intensely AChE-stained neuron cell bodies were not detected. Synaptic contacts onto proximal AChE-positive dendrites were sparse, but the density increased on more distal regions of the dendrites. All immunoreactive boutons studied established symmetrical synaptic contacts with AChE-positive post-synaptic structures. The pattern of the synaptic input to these cells differs strikingly from that onto typical globus pallidus neurons. The perikarya and dendrites of the latter neurons were characteristically ensheathed in immunoreactive synaptic boutons. Results are consistent with the view that enkephalin-like substances in the rat might be synaptic transmitters or neuromodulators in the area of the NBM and that cholinergic neurons of the NBM (Ch4) are integrated into the circuitry of the basal ganglia. Enkephalins may play an important role regulating the extrinsic cholinergic innervation of the neocortex.
Collapse
|
36
|
Izzo PN, Bolam JP. Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J Comp Neurol 1988; 269:219-34. [PMID: 3281983 DOI: 10.1002/cne.902690207] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The postsynaptic targets of cholinergic boutons in the rat neostriatum were assessed by examination in the electron microscope of boutons that were immunoreactive for choline acetyltransferase, the synthetic enzyme for acetylcholine. These boutons formed symmetrical synaptic specializations with neostriatal neurons. Of 209 immunoreactive synaptic boutons observed in random searches of the neostriatum, 45% made contact with dendritic shafts, 34% with dendritic spines, and 20% with neuronal perikarya. Many of the postsynaptic structures had ultrastructural characteristics of the most common type of striatal neuron, the medium-size densely spiny neuron. This was confirmed by the examination in the electron microscope of Golgi-impregnated medium-size spiny neurons from sections that had also been immunostained for choline acetyltransferase. Immunoreactive boutons formed symmetrical synaptic specializations with all parts of the neurons examined, i.e., perikarya, proximal and distal dendritic shafts, and dendritic spines. Two of the Golgi-impregnated medium-size spiny neurons that received input from the cholinergic boutons were also retrogradely labelled with horseradish peroxidase that had been injected into the substantia nigra, they were thus further characterized as striatonigral neurons. Similarly, seven retrogradely labelled perikarya of striatonigral neurons were found to receive input from the cholinergic boutons. It is concluded that cholinergic boutons in the neostriatum form synaptic specializations and that one of their major targets is the medium-size densely spiny neuron that projects to the substantia nigra. The topography of the cholinergic afferents of these cells is distinctly different from that of other boutons derived from local neurons and from boutons that form asymmetrical synaptic specializations, but it is similar to that of the dopaminergic boutons originating from neurons in the substantia nigra.
Collapse
Affiliation(s)
- P N Izzo
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, England
| | | |
Collapse
|
37
|
Semba K, Fibiger HC, Vincent SR. Neurotransmitters in the mammalian striatum: neuronal circuits and heterogeneity. Can J Neurol Sci 1987; 14:386-94. [PMID: 2445456 DOI: 10.1017/s0317167100037781] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major input and output pathways of the mammalian striatum have been well established. Recent studies have identified a number of neurotransmitters used by these pathways as well as by striatal interneurons, and have begun to unravel their synaptic connections. The major output neurons have been identified as medium spiny neurons which contain gamma-aminobutyric acid (GABA), endogeneous opioids, and substance P. These neurons project to the pallidum and substantia nigra in a topographic and probably chemically organized manner. The major striatal afferents from the cerebral cortex, thalamus, and substantia nigra terminate, at least in part, on these striatal projection neurons. Striatal interneurons contain acetylcholine, GABA, and somatostatin plus neuropeptide Y, and appear to synapse on striatal projection neurons. In recent years, much activity has been directed to the neurochemical and hodological heterogeneities which occur at a macroscopic level in the striatum. This has led to the concept of a patch-matrix organization in the striatum.
Collapse
Affiliation(s)
- K Semba
- Department of Psychiatry, University of British Columbia, Vancouver
| | | | | |
Collapse
|
38
|
Luiten PG, Gaykema RP, Traber J, Spencer DG. Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin. Brain Res 1987; 413:229-50. [PMID: 3300852 DOI: 10.1016/0006-8993(87)91014-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present paper deals with a detailed analysis of cortical projections from the magnocellular basal nucleus (MBN) and horizontal limb of the diagonal band of Broca (HDB) in the rat. The MBN and HDB were injected iontophoretically with the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L). After immunocytochemical visualization of labeled efferents, the distribution of projections over the cortical mantle, olfactory regions and amygdala were studied by light microscopy. Based on differences in cortical projection patterns, the MBN was subdivided in anterior, intermediate and posterior portions (MBNa, MBNi and MBNp). All subdivisions maintain neocortical projections and are subject to an anterior to posterior topographic arrangement. In the overall pattern, however, the frontal cortex is the chief target. Furthermore, all MBN parts project to various regions of meso- and allocortex, which are progressively more dense when the tracer injection is more anteriorly placed. The most conspicuous finding, however, was a ventrolateral to dorsomedial cortical projection pattern as the PHA-L injection site moved from posterior to anterior. Thus, the posterior MBN projects predominantly to lateral neo- and mesocortex while the anterior MBN sends more fibers to the medial cortical regions. Furthermore, the MBNa is a source of considerable afferent input to the olfactory nuclei and as such should be regarded as a transition to the HDB. The HDB, apart from projecting densely to olfactory bulb and related nuclei, maintains a substantial output to the medial prefrontal cortical regions and entorhinal cortex, as well. Comparison of young vs aged cases indicate that aging does not appear to have a profound influence on cortical innervation patterns, at least as studied with the PHA-L method.
Collapse
|
39
|
Kubota Y, Inagaki S, Shimada S, Kito S, Eckenstein F, Tohyama M. Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons. Brain Res 1987; 413:179-84. [PMID: 2885073 DOI: 10.1016/0006-8993(87)90167-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We used an electron microscopic 'mirror technique' to determine whether cholinergic neurons are in direct synaptic contact with dopaminergic axons in the rat neostriatum. Tyrosine hydroxylase-immunoreactive axons make synaptic contacts with the somata and proximal dendrites of large choline acetyltransferase-immunoreactive striatal neurons which are thought to be interneurons. This provides morphological evidence that nigrostriatal dopaminergic neurons can influence monosynaptically the striatal cholinergic neurons.
Collapse
|
40
|
Walker PD, Chovanes GI, McAllister JP. Identification of acetylcholinesterase-reactive neurons and neuropil in neostriatal transplants. J Comp Neurol 1987; 259:1-12. [PMID: 3584552 DOI: 10.1002/cne.902590102] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To identify and describe neurons in neostriatal transplants that synthesize acetylcholinesterase (AChE), the present study has utilized the irreversible AChE inhibitor diisopropylfluorophosphate (DFP) combined with AChE histochemistry. Dissociated suspensions of tissue taken from the striatal ridge of embryos at 14 days of gestation were transplanted into the neostriatum of adult rats 5 days after intrastriatal kainic acid lesions. Two types of AChE neurons have been identified in transplants treated with DFP. One type resembled the large intensely reactive AChE neuron that is thought to be a cholinergic interneuron of the normal neostriatum. The other type resembled smaller, less reactive AChE neurons of the neostriatum, as well as medium-sized, lightly reactive AChE neurons of the globus pallidus. Qualitative observations suggest that these less reactive AChE neurons were more numerous in transplants compared to the normal neostriatum. Both AChE neuronal types were found in segregated clusters throughout the grafts. Transplants processed for AChE histochemistry without DFP treatment contained two types of AChE neuropil. Dark areas of AChE neuropil similar in intensity to the normal neostriatum were found between larger areas of lighter AChE neuropil. These results demonstrate that neostriatal transplants contain AChE neurons and suggest that these neurons contribute to the AChE reactivity within the graft.
Collapse
|
41
|
Vincent SR, Reiner PB. The immunohistochemical localization of choline acetyltransferase in the cat brain. Brain Res Bull 1987; 18:371-415. [PMID: 3555712 DOI: 10.1016/0361-9230(87)90015-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The distribution of neurons displaying choline acetyltransferase (ChAT) immunoreactivity was examined in the feline brain using a monoclonal antibody. Groups of ChAT-immunoreactive neurons were detected that have not been identified previously in the cat or in any other species. These included small, weakly stained cells found in the lateral hypothalamus, distinct from the magnocellular rostral column cholinergic neurons. Other small, lightly stained cells were also detected in the parabrachial nuclei, distinct from the caudal cholinergic column. Many small ChAT-positive cells were also found in the superficial layers of the superior colliculus. Other ChAT-immunoreactive neurons previously detected in rodent and primate, but not in cat, were observed in the present study. These included a dense cluster of cells in the medial habenula, together with outlying cells in the lateral habenula. Essentially all of the cells in the parabigeminal nucleus were found to be ChAT-positive. Additional ChAT-positive neurons were detected in the periolivary portion of the superior olivary complex, and scattered in the medullary reticular formation. In addition to these new observations, many of the cholinergic cell groups that have been previously identified in the cat as well as in rodent and primate brain such as motoneurons, striatal interneurons, the magnocellular rostral cholinergic column in the basal forebrain and the caudal cholinergic column in the midbrain and pontine tegmentum were confirmed. Together, these observations suggest that the feline central cholinergic system may be much more extensive than previous studies have indicated.
Collapse
|
42
|
Abstract
Cholinergic neurons in the monkey neostriatum were examined at the light and electron microscopic level by immunohistochemical methods in order to localize choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. At the light microscopic level a sparse distribution of cholinergic neurons was identified throughout the caudate nucleus. Neurons had large (25-30 microns) somata, eccentric invaginated nuclei, primary dendrites of unequal diameters, and varicosities on distal dendritic branches. Ultrastructural study showed that the cholinergic cells had a cytoplasm abundant in organelles. Within dendritic branches, mitochondria and cisternae were localized primarily to varicosities. Synaptic inputs were distributed mostly to the dendrites and at least four types that formed symmetric or asymmetric synapses were observed. Immunoreactive fibers were relatively numerous within the neuropil and exhibited small diameters (0.1-0.15) micron) and swellings at frequent intervals. Cholinergic boutons that formed synapses were compared to unlabeled terminals making asymmetric synapses with dendritic spines. Results showed that ChAT-positive axons had significantly smaller cross-sectional areas, shorter synaptic junctions, and a higher density and surface area of mitochondria than the unlabeled boutons. Cholinergic axons formed symmetric synapses mostly with dendritic spines (53%) and the shafts of unlabeled primary and distal dendrites (37%). A relatively small proportion of the boutons contacted axon initial segments (1%) and cell bodies (9%) that included medium-sized neurons with unindented (spiny) and indented (aspiny) nuclei. The majority of dendritic spines contacted by cholinergic axons were also postsynaptic to unlabeled boutons forming asymmetric synapses. The results suggest that cholinergic neurons in the primary neostriatum belong to a single morphological class corresponding to the large aspiny (type II) interneuron identified in previous Golgi studies. Present results along with earlier Golgi-electron microscopic observations from this laboratory suggest that neostriatal cholinergic cells integrate many sources of intrinsic and extrinsic inputs. The observed convergence of ChAT-immunoreactive boutons and unlabeled axons onto the same dendritic spines suggests that intrinsic cholinergic axons modulate extrinsic inputs onto neostriatal spiny neurons at postsynaptic sites close to the site of afferent input.
Collapse
|
43
|
|
44
|
Mailly P, Bouchaud C. Localization of acetylcholinesterase activity at synapses of the rat striatum during the stages of recovery after inhibition in vivo. Neurosci Lett 1986; 68:272-6. [PMID: 3748454 DOI: 10.1016/0304-3940(86)90501-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A pharmacohistological method was used to study the ultrastructural localization of acetylcholinesterase in the rat striatum. Five hours after administration of an organophosphorous inhibitor (paraoxon), high activities of this enzyme were selectively found in some neurons and at numerous axo-spinous synapses of the asymmetrical type. The cholinergic nature of these synapses appeared unlikely.
Collapse
|
45
|
Rosenheck K, Plattner H. Ultrastructural and cytochemical characterization of adrenal medullary plasma membrane vesicles and their interaction with chromaffin granules. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 856:373-82. [PMID: 3955049 DOI: 10.1016/0005-2736(86)90048-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plasma membrane vesicles obtained by density gradient centrifugation of bovine adrenal medullary homogenates were analyzed by electron microscopic methods, including negative staining, ultrathin sections and freeze-fracture replicas. Rapid freezing showed the intramembrane structure of plasma membrane vesicles to be distinct from that of other organelle membranes, such as chromaffin granules. Cytochemical demonstration of acetylcholinesterase (EC 3.1.1.7) activity on most membrane profiles confirmed that plasma membrane vesicles are derived predominantly from plasma membranes. About half of the plasma membrane vesicles were smaller than 0.15 micron and almost none larger than 0.55 micron. Practically all were composed of single shells. Most vesicles were impermeable to cytochemical markers of the size of Ruthenium red (Mr 800) and none were permeable to markers larger than 40 kDa. Surface charge probes, concanavalin A binding and endogenous actin decoration with heavy meromyosin indicated that the major fraction of plasma membrane vesicles is oriented right-side-out. A minor population with opposite orientation could also be detected. Isotonic ionic media caused vesicle aggregation in suspensions of plasma membrane vesicles and chromaffin granules. Freeze-fracturing always revealed clusters of membrane-intercalated particles at the sites of contact between aggregated membranes.
Collapse
|
46
|
DiFiglia M, Carey J. Large neurons in the primate neostriatum examined with the combined Golgi-electron microscopic method. J Comp Neurol 1986; 244:36-52. [PMID: 3950089 DOI: 10.1002/cne.902440104] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Large neurons in the monkey neostriatum were examined in the electron microscope in tissue treated with the rapid-Golgi impregnation method followed by the gold-toning procedure. Two types of large neurons were investigated: an aspiny neuron (aspiny type II; N = 5) with numerous varicose dendrites and a spiny cell (spiny type II; N = 1) with few sparsely spined dendrites. The large aspiny neurons had variably shaped somata, an eccentric highly invaginated nucleus, and a cytoplasm rich in organelles. Mitochondria were distributed unevenly in dendrites and were localized primarily in varicosities. Some mitochondria exhibited dense bodies 80-300 nm in size. Most synapses (84%) onto large aspiny neurons occurred 20 micron or more from the cell body and contacted dendritic varicosities (63%). A smaller proportion of boutons (21%) contacted constricted portions of varicose segments. A low incidence of synaptic boutons was observed on smooth primary and secondary dendrites (11%), cell bodies (3%), and branch points (2%). Seven percent of the axons that synapsed with large aspiny neurons also contacted nearby dendrites or spines of medium-sized spiny neurons. At least eight morphologically distinct types of axons making synapses with large aspiny neurons were identified and included both symmetric and asymmetric types. The large spiny neuron was different from the large aspiny neuron in its subcellular characteristics. Synapses were found on all portions of the cell, including the axon initial segment, but fewer types of axonal inputs were identified. These findings confirm that the two types of large neurons identified in Golgi impregnations of the primate neostriatum are also different at the ultrastructural level, both in their cytological features and in their synaptic organization. The large aspiny neuron integrates synaptic inputs that innervate a relatively large area of caudate neuropil and appear to arise from a variety of extrinsic and intrinsic sources. The high density of synaptic inputs to dendritic varicosities suggests that they have an important functional role.
Collapse
|
47
|
Davidoff MS, Irintchev AP. Acetylcholinesterase activity and type C synapses in the hypoglossal, facial and spinal-cord motor nuclei of rats. An electron-microscope study. HISTOCHEMISTRY 1986; 84:515-24. [PMID: 3721918 DOI: 10.1007/bf00482985] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptic cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple 'active zones'. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.
Collapse
|
48
|
|
49
|
Abstract
Over the past decade our understanding of the localization of central cholinergic neurons has greatly increased. Interest in these systems has also intensified due to the involvement of cholinergic mechanisms in Alzheimer's disease. The distribution of central cholinergic neurons is reviewed, focusing on recent work in experimental animals. The pharmacohistochemical procedure for acetylcholinesterase and the development of antibodies to choline acetyltransferase are two of the major technical advances that have shaped our knowledge of the distribution of central cholinergic neurons. The results, advantages and limitations of both techniques are discussed. A discussion of the phenomenon of coexistence of acetylcholine with neuroactive peptides in central neurons is also included.
Collapse
|
50
|
Bolam JP, Powell JF, Wu JY, Smith AD. Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: a correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry. J Comp Neurol 1985; 237:1-20. [PMID: 4044888 DOI: 10.1002/cne.902370102] [Citation(s) in RCA: 177] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An antibody to glutamate decarboxylase has been used in a light and electron microscopic study of the neostriatum of rats that had received intracerebral injections of colchicine. In the light microscope, neuronal perikarya and small punctate structures that displayed immunoreactivity were found. The perikarya could be divided into two classes based on their sizes: small-to-medium-sized and large. Proximal dendrites, axon initial segments, and axon collaterals were occasionally stained. When the nuclei of the neurons were visible, they possessed indentations. The immunoreactive punctate structures were spread evenly throughout the neostriatum but occasionally were associated with immunoreactive and nonimmunoreactive perikarya. When the same sections were examined in the electron microscope, the small-to-medium-sized immunoreactive perikarya were found to be similar in morphology and synaptic input to a class of Golgi-impregnated neuron that has been previously shown to accumulate locally administered, radiolabelled gamma-aminobutyric acid. Neurons with the ultrastructural characteristics of typical striatonigral neurons did not display immunoreactivity. As neurons in this pathway probably contain gamma-aminobutyric acid, it is possible that our procedure or our antibody does not stain all gamma-aminobutyric-acid-containing structures in the neostriatum. A total of 404 immunoreactive punctate structures were examined by correlated light and electron microscopy or by electron microscopy alone. They were identified as immunoreactive axonal boutons and each of them, when examined in serial sections, displayed typical synaptic specialisations. Membrane specialisations were always of the symmetrical type. At least five distinct targets of the immunoreactive terminals were identified: neurons that were themselves immunoreactive for glutamate decarboxylase; the immunoreactive terminals made synaptic contact with all parts of the neurons examined, i.e., perikarya, proximal dendrites, and axon initial segments. Neurons identified by Golgi impregnation of the same sections as medium-sized and densely spiny; the immunoreactive terminals made contact predominantly with the perikarya and dendritic shafts. Large neurons found only in the ventral caudate-putamen, whose somata and dendrites were ensheathed in immunoreactive terminals. Medium-sized nonimmunoreactive perikarya that possessed nuclear indentations. Large nonimmunoreactive perikarya that had the typical structural features of striatal cholinergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|