1
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
2
|
Grasso C, Barresi M, Tramonti Fantozzi MP, Lazzerini F, Bruschini L, Berrettini S, Andre P, Dolciotti C, De Cicco V, De Cicco D, d'Ascanio P, Orsini P, Montanari F, Faraguna U, Manzoni D. Effects of a short period of postural training on postural stability and vestibulospinal reflexes. PLoS One 2023; 18:e0287123. [PMID: 37307276 DOI: 10.1371/journal.pone.0287123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
The effects of postural training on postural stability and vestibulospinal reflexes (VSRs) were investigated in normal subjects. A period (23 minutes) of repeated episodes (n = 10, 50 seconds) of unipedal stance elicited a progressive reduction of the area covered by centre of pressure (CoP) displacement, of average CoP displacement along the X and Y axes and of CoP velocity observed in this challenging postural task. All these changes were correlated to each other with the only exception of those in X and Y CoP displacement. Moreover, they were larger in the subjects showing higher initial instability in unipedal stance, suggesting that they were triggered by the modulation of sensory afferents signalling body sway. No changes in bipedal stance occurred soon and 1 hour after this period of postural training, while a reduction of CoP displacement was apparent after 24 hours, possibly due to a beneficial effect of overnight sleep on postural learning. The same period of postural training also reduced the CoP displacement elicited by electrical vestibular stimulation (EVS) along the X axis up to 24 hours following the training end. No significant changes in postural parameters of bipedal stance and VSRs could be observed in control experiments where subjects were tested at identical time points without performing the postural training. Therefore, postural training led to a stricter control of CoP displacement, possibly acting through the cerebellum by enhancing feedforward mechanisms of postural stability and by depressing the VSR, the most important reflex mechanism involved in balance maintenance under challenging conditions.
Collapse
Affiliation(s)
- Claudia Grasso
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Massimo Barresi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Lazzerini
- Department of Surgical, Medical, Molecular Pathology and Critical Cares, University of Pisa, Pisa, Italy
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Critical Cares, University of Pisa, Pisa, Italy
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Critical Cares, University of Pisa, Pisa, Italy
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Andre
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Cristina Dolciotti
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Davide De Cicco
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Paola d'Ascanio
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Paolo Orsini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Francesco Montanari
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Desmons M, Theberge M, Mercier C, Massé-Alarie H. Contribution of neural circuits tested by transcranial magnetic stimulation in corticomotor control of low back muscle: a systematic review. Front Neurosci 2023; 17:1180816. [PMID: 37304019 PMCID: PMC10247989 DOI: 10.3389/fnins.2023.1180816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is widely used to investigate central nervous system mechanisms underlying motor control. Despite thousands of TMS studies on neurophysiological underpinnings of corticomotor control, a large majority of studies have focused on distal muscles, and little is known about axial muscles (e.g., low back muscles). Yet, differences between corticomotor control of low back and distal muscles (e.g., gross vs. fine motor control) suggest differences in the neural circuits involved. This systematic review of the literature aims at detailing the organisation and neural circuitry underlying corticomotor control of low back muscles tested with TMS in healthy humans. Methods The literature search was performed in four databases (CINAHL, Embase, Medline (Ovid) and Web of science) up to May 2022. Included studies had to use TMS in combination with EMG recording of paraspinal muscles (between T12 and L5) in healthy participants. Weighted average was used to synthesise quantitative study results. Results Forty-four articles met the selection criteria. TMS studies of low back muscles provided consistent evidence of contralateral and ipsilateral motor evoked potentials (with longer ipsilateral latencies) as well as of short intracortical inhibition/facilitation. However, few or no studies using other paired pulse protocols were found (e.g., long intracortical inhibition, interhemispheric inhibition). In addition, no study explored the interaction between different cortical areas using dual TMS coil protocol (e.g., between primary motor cortex and supplementary motor area). Discussion Corticomotor control of low back muscles are distinct from hand muscles. Our main findings suggest: (i) bilateral projections from each single primary motor cortex, for which contralateral and ipsilateral tracts are probably of different nature (contra: monosynaptic; ipsi: oligo/polysynaptic) and (ii) the presence of intracortical inhibitory and excitatory circuits in M1 influencing the excitability of the contralateral corticospinal cells projecting to low back muscles. Understanding of these mechanisms are important for improving the understanding of neuromuscular function of low back muscles and to improve the management of clinical populations (e.g., low back pain, stroke).
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Michael Theberge
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| |
Collapse
|
4
|
Kearney BE, Lanius RA. The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Front Neurosci 2022; 16:1015749. [PMID: 36478879 PMCID: PMC9720153 DOI: 10.3389/fnins.2022.1015749] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023] Open
Abstract
Although the manifestation of trauma in the body is a phenomenon well-endorsed by clinicians and traumatized individuals, the neurobiological underpinnings of this manifestation remain unclear. The notion of somatic sensory processing, which encompasses vestibular and somatosensory processing and relates to the sensory systems concerned with how the physical body exists in and relates to physical space, is introduced as a major contributor to overall regulatory, social-emotional, and self-referential functioning. From a phylogenetically and ontogenetically informed perspective, trauma-related symptomology is conceptualized to be grounded in brainstem-level somatic sensory processing dysfunction and its cascading influences on physiological arousal modulation, affect regulation, and higher-order capacities. Lastly, we introduce a novel hierarchical model bridging somatic sensory processes with limbic and neocortical mechanisms regulating an individual's emotional experience and sense of a relational, agentive self. This model provides a working framework for the neurobiologically informed assessment and treatment of trauma-related conditions from a somatic sensory processing perspective.
Collapse
Affiliation(s)
- Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
5
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
6
|
Taga M, Charalambous CC, Raju S, Lin J, Zhang Y, Stern E, Schambra HM. Corticoreticulospinal tract neurophysiology in an arm and hand muscle in healthy and stroke subjects. J Physiol 2021; 599:3955-3971. [PMID: 34229359 DOI: 10.1113/jp281681] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The corticoreticulospinal tract (CReST) is a descending motor pathway that reorganizes after corticospinal tract (CST) injury in animals. In humans, the pattern of CReST innervation to upper limb muscles has not been carefully examined in healthy individuals or individuals with CST injury. In the present study, we assessed CReST projections to an arm and hand muscle on the same side of the body in healthy and chronic stoke subjects using transcranial magnetic stimulation. We show that CReST connection strength to the muscles differs between healthy and stroke subjects, with stronger connections to the hand than arm in healthy subjects, and stronger connections to the arm than hand in stroke subjects. These results help us better understand CReST innervation patterns in the upper limb, and may point to its role in normal motor function and motor recovery in humans. ABSTRACT The corticoreticulospinal tract (CReST) is a major descending motor pathway in many animals, but little is known about its innervation patterns in proximal and distal upper extremity muscles in humans. The contralesional CReST furthermore reorganizes after corticospinal tract (CST) injury in animals, but it is less clear whether CReST innervation changes after stroke in humans. We thus examined CReST functional connectivity, connection strength, and modulation in an arm and hand muscle of healthy (n = 15) and chronic stroke (n = 16) subjects. We delivered transcranial magnetic stimulation to the contralesional hemisphere (assigned in healthy subjects) to elicit ipsilateral motor evoked potentials (iMEPs) from the paretic biceps (BIC) and first dorsal interosseous (FDI) muscle. We operationalized CReST functional connectivity as iMEP presence/absence, CReST projection strength as iMEP size and CReST modulation as change in iMEP size by head rotation. We found comparable CReST functional connectivity to the BICs and FDIs in both subject groups. However, the pattern of CReST connection strength to the muscles diverged between groups, with stronger connections to FDIs than BICs in healthy subjects and stronger connections to BICs than FDIs in stroke subjects. Head rotation modulated only FDI iMEPs of healthy subjects. Our findings indicate that the healthy CReST does not have a proximal innervation bias, and its strong FDI connections may have functional relevance to finger individuation. The reversed CReST innervation pattern in stroke subjects confirms its reorganization after CST injury, and its strong BIC connections may indicate upregulation for particular upper extremity muscles or their functional actions.
Collapse
Affiliation(s)
- Myriam Taga
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Charalambos C Charalambous
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA.,Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.,Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus
| | - Sharmila Raju
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Jing Lin
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Yian Zhang
- Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY, USA
| | - Elisa Stern
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Heidi M Schambra
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| |
Collapse
|
7
|
Maitland S, Baker SN. Ipsilateral Motor Evoked Potentials as a Measure of the Reticulospinal Tract in Age-Related Strength Changes. Front Aging Neurosci 2021; 13:612352. [PMID: 33746734 PMCID: PMC7966512 DOI: 10.3389/fnagi.2021.612352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The reticulospinal tract (RST) is essential for balance, posture, and strength, all functions which falter with age. We hypothesized that age-related strength reductions might relate to differential changes in corticospinal and reticulospinal connectivity. Methods: We divided 83 participants (age 20-84) into age groups <50 (n = 29) and ≥50 (n = 54) years; five of which had probable sarcopenia. Transcranial Magnetic Stimulation (TMS) was applied to the left cortex, inducing motor evoked potentials (MEPs) in the biceps muscles bilaterally. Contralateral (right, cMEPs) and ipsilateral (left, iMEPs) MEPs are carried by mainly corticospinal and reticulospinal pathways respectively; the iMEP/cMEP amplitude ratio (ICAR) therefore measured the relative importance of the two descending tracts. Grip strength was measured with a dynamometer and normalized for age and sex. Results: We found valid iMEPs in 74 individuals (n = 44 aged ≥50, n = 29 < 50). Younger adults had a significant negative correlation between normalized grip strength and ICAR (r = -0.37, p = 0.045); surprisingly, in older adults, the correlation was also significant, but positive (r = 0.43, p = 0.0037). Discussion: Older individuals who maintain or strengthen their RST are stronger than their peers. We speculate that reduced RST connectivity could predict those at risk of age-related muscle weakness; interventions that reinforce the RST could be a candidate for treatment or prevention of sarcopenia.
Collapse
Affiliation(s)
- Stuart Maitland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
De Cicco V, Tramonti Fantozzi MP, Cataldo E, Barresi M, Bruschini L, Faraguna U, Manzoni D. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis. Front Neuroanat 2018; 11:130. [PMID: 29358907 PMCID: PMC5766640 DOI: 10.3389/fnana.2017.00130] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo De Cicco
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Maria P Tramonti Fantozzi
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Massimo Barresi
- Institut des Maladie Neurodégénératives, University of Bordeaux, Bordeaux, France
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ugo Faraguna
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Diego Manzoni
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Neurons in the pontomedullary reticular formation receive converging inputs from the hindlimb and labyrinth. Exp Brain Res 2017; 235:1195-1207. [PMID: 28188328 DOI: 10.1007/s00221-017-4875-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
The integration of inputs from vestibular and proprioceptive sensors within the central nervous system is critical to postural regulation. We recently demonstrated in both decerebrate and conscious cats that labyrinthine and hindlimb inputs converge onto vestibular nucleus neurons. The pontomedullary reticular formation (pmRF) also plays a key role in postural control, and additionally participates in regulating locomotion. Thus, we hypothesized that like vestibular nucleus neurons, pmRF neurons integrate inputs from the limb and labyrinth. To test this hypothesis, we recorded the responses of pmRF neurons to passive ramp-and-hold movements of the hindlimb and to whole-body tilts, in both decerebrate and conscious felines. We found that pmRF neuronal activity was modulated by hindlimb movement in the rostral-caudal plane. Most neurons in both decerebrate (83% of units) and conscious (61% of units) animals encoded both flexion and extension movements of the hindlimb. In addition, hindlimb somatosensory inputs converged with vestibular inputs onto pmRF neurons in both preparations. Pontomedullary reticular formation neurons receiving convergent vestibular and limb inputs likely participate in balance control by governing reticulospinal outflow.
Collapse
|
10
|
Cantello R, Magistrelli L, Terazzi E, Grossini E. Abnormal postural reflexes in a patient with pontine ischaemia. BMJ Case Rep 2015; 2015:bcr-2015-210616. [PMID: 26561222 DOI: 10.1136/bcr-2015-210616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The control of body posture is a complex activity that needs a very close relationship between different structures, such as the vestibular system, and the muscle and joint receptors of the neck. Damage of even one of these structures can lead to abnormal postural reflexes. We describe a case of a woman with a left pontine ischaemia who developed a 'dystonic' extensor posture of the left limbs while turned on the right side. This clinical picture differs from previous reports on the subject, and may relate to ischaemic damage of a pontine structure involved in posture control, or of adjacent neural connections to be yet identified. To the best of our knowledge, this is the first case reported in the literature. Clinical examples of an altered interplay between vestibular and neck receptors are rare.
Collapse
Affiliation(s)
- Roberto Cantello
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Luca Magistrelli
- Section of Neurology, Department of Translational Medicine, University of Eastern Piedmont "Amedeo Avogadro", Novara, Italy
| | - Emanuela Terazzi
- Section of Neurology, Department of Translational Medicine, University of Eastern Piedmont "Amedeo Avogadro", Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, Laboratory of Physiology and Experimental Surgery, University of Eastern Piedmont "Amedeo Avogadro", Novara, Italy
| |
Collapse
|
11
|
Effects of body to head rotation on the labyrinthine responses of rat vestibular neurons. Neuroscience 2013; 244:134-46. [PMID: 23587843 DOI: 10.1016/j.neuroscience.2013.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 11/23/2022]
Abstract
Vestibulospinal reflexes elicited by head displacement in space depend on the direction of body displacement, because the neuronal responses to labyrinthine stimulation are tuned by neck displacement: a directional tuning takes place in the medial cerebellum and in spinal motoneurons, while a gain and a basal activity tuning can be observed in the reticular formation, a target structure of the medial cerebellum. In the present study, we investigated whether also the response of vestibular nuclear neurons (another target of the medial cerebellum) to labyrinthine stimulation is tuned by neck displacement and which parameters of the response are modulated by it. In urethane-anaesthetized Wistar rats, single-unit activity was recorded from the vestibular nuclei at rest and during wobble of the whole animal at 0.156 Hz. This stimulus tilted the animal's head by a constant amplitude (5°), in a direction rotating at a constant velocity over the horizontal plane, either in clockwise or counter clockwise direction. The gain and the direction of neuronal responses to wobble were evaluated through Fourier analysis, in the control position (with coincident head and body axes) and following a body-to-head rotation of 5-30° over the horizontal plane, in both directions. Most of the vestibular neurons modified their response gain and/or their basal activity following body-to-head rotation, as it occurs in the reticular formation. Only few neurons modified their response direction, as occurs in the cerebellum and in spinal motoneurons. The different behaviour of cerebellar neurons and of their vestibular and reticular target cells, suggests that the role played by the cerebellum in the neck tuning of vestibulospinal reflexes has to be reconsidered.
Collapse
|
12
|
Barresi M, Bruschini L, Li Volsi G, Manzoni D. Effects of leg-to-body position on the responses of rat cerebellar and vestibular nuclear neurons to labyrinthine stimulation. THE CEREBELLUM 2012; 11:212-22. [PMID: 21739187 DOI: 10.1007/s12311-011-0298-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spatial organization of vestibulospinal (VS) reflexes, elicited by labyrinthine signals and related to head motion, depends on the direction of body tilt, due to proprioceptive neck afferents acting through the cerebellar anterior vermis. The responses of Purkinje cells located within this region to labyrinthine stimulation are modulated by the head-to-body position. We investigated, in urethane-anesthetized rats, whether a 90° leg-to-trunk displacement modifies the responses of corticocerebellar and vestibular nuclear neurons to the labyrinthine input, which would indicate that VS reflexes are tuned by the leg-to-trunk position. With this aim, unit activity was recorded during "wobble" stimuli that allow evaluating the gain and spatiotemporal properties of neuronal responses. The response gain of corticocerebellar units showed a significant drop in the leg-rotated position with respect to the control one. Following a change in leg position, a proportion of the recorded neurons showed significant changes in the direction and phase of the response vector. In contrast, vestibular nuclear neurons did not show significant modifications in their response gain and direction. Thus, proprioceptive afferents signaling leg-to-trunk position seem to affect the processing of directional labyrinthine signals within the cerebellar cortex.
Collapse
Affiliation(s)
- Massimo Barresi
- Department of Physiological Sciences, Pisa University, Via S. Zeno 31, 56127 Pisa, Italy
| | | | | | | |
Collapse
|
13
|
Abstract
Abstract The primate reticulospinal tract is usually considered to control proximal and axial muscles, and to be involved mainly in gross movements such as locomotion, reaching and posture. This contrasts with the corticospinal tract, which is thought to be involved in fine control, particularly of independent finger movements. Recent data provide evidence that the reticulospinal tract can exert some influence over hand movements. Although clearly secondary to the corticospinal tract in healthy function, this could assume considerable importance after corticospinal lesion (such as following stroke), when reticulospinal systems could provide a substrate for some recovery of function. We need to understand more about the abilities of the reticular formation to process sensory input and guide motor output, so that rehabilitation strategies can be optimised to work with the innate capabilities of reticular motor control.
Collapse
Affiliation(s)
- Stuart N Baker
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
14
|
Wilkinson KA, Maurer AP, Sadacca BF, Yates BJ. Responses of feline medial medullary reticular formation neurons with projections to the C5–C6 ventral horn to vestibular stimulation. Brain Res 2004; 1018:247-56. [PMID: 15276885 DOI: 10.1016/j.brainres.2004.05.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2004] [Indexed: 10/26/2022]
Abstract
Prior studies have shown that the vestibular system contributes to adjusting respiratory muscle activity during changes in posture, and have suggested that portions of the medial medullary reticular formation (MRF) participate in generating vestibulo-respiratory responses. However, there was previously no direct evidence to demonstrate that cells in the MRF relay vestibular signals monosynaptically to respiratory motoneurons. The present study tested the hypothesis that the firing of MRF neurons whose axons could be antidromically activated from the vicinity of diaphragm motoneurons was modulated by whole-body rotations in vertical planes that stimulated vestibular receptors, as well as by electrical current pulses delivered to the vestibular nerve. In total, 171 MRF neurons that projected to the C5-C6 ventral horn were studied; they had a conduction velocity of 34+/-15 (standard deviation) m/sec. Most (135/171 or 79%) of these MRF neurons lacked spontaneous firing. Of the subpopulation of units with spontaneous discharges, only 3 of 20 cells responded to vertical rotations up to 10 degrees in amplitude, whereas the activity of 8 of 14 neurons was affected by electrical stimulation of the vestibular nerve. These data support the hypothesis that the MRF participates in generating vestibulo-respiratory responses, but also suggest that some neurons in this region have other functions.
Collapse
Affiliation(s)
- K A Wilkinson
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
15
|
Kleine JF, Guan Y, Kipiani E, Glonti L, Hoshi M, Büttner U. Trunk position influences vestibular responses of fastigial nucleus neurons in the alert monkey. J Neurophysiol 2004; 91:2090-100. [PMID: 15069099 DOI: 10.1152/jn.00849.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vestibulospinal reflexes play an important role for body stabilization during locomotion and for postural control. For an appropriate distribution of vestibular signals to spinal motoneurons, the orientation of the body relative to the head needs to be taken into account. For different trunk positions, identical vestibular stimuli must activate different sets of muscles to ensure body stabilization. Because the cerebellar vermis and the underlying fastigial nucleus (FN) might be involved in this task, vestibular neurons in the rostral FN of alert rhesus monkeys were recorded during sinusoidal vestibular stimulation (0.1-1.0 Hz) in the roll and pitch planes at different trunk-re-head positions (center and +/-45 degrees ). From the sensitivity and phase values measured in these planes, the response properties in the intermediate planes and the stimulus orientation eliciting the optimal response [response vector orientation (RVO)] were calculated. In most neurons, the RVOs rotated systematically with respect to the head, when trunk-re-head position was altered, so that they tended to maintain their orientation with respect to the trunk. Sensitivity and phase at the RVO were not affected. This pattern was the same for neurons in the right and left FN and independent of stimulus frequency. The average sensitivity of this partially compensatory RVO shift in response to trunk-re-head displacements, evaluated by linear regression analyses, was 0.59 degrees / degrees (n = 73 neurons). These data show that FN neurons may encode vestibular information in a coordinate system that is closer to a trunk-centered than to a head-centered reference frame. They indicate an important role of this nucleus in motor programs related to posture and gait control.
Collapse
Affiliation(s)
- J F Kleine
- Department of Neurology, Ludwig Maximilian University, D 81377 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Pflieger JF, Dubuc R. Vestibulo-reticular projections in adult lamprey: Their role in locomotion. Neuroscience 2004; 129:817-29. [PMID: 15541903 DOI: 10.1016/j.neuroscience.2004.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 11/21/2022]
Abstract
This study describes the anatomical projections from vestibular secondary neurons to reticulospinal neurons in the adult lamprey and the modulation of vestibular inputs during fictive locomotion. Anatomical tracers were applied in the posterior (PRRN) and middle rhombencephalic reticular nuclei as well as to the proximal stumps of cut vestibular nerve branches to identify the neurons projecting to the reticular nuclei that were in close proximity with vestibular primary afferents. Labeled neurons were found in the intermediate (ION) and posterior (PON) octavomotor nuclei, and were more numerous on the side of the injection (around 56-87 and 101-107 for the ION and the PON, respectively). Morphologies varied but cells were mostly round or oval. Axonal projections from the PON formed a dense bundle, whereas those from the ION were less densely packed. Based on their morphology and the distribution of their projections, most vestibulo-reticular neurons were presumed to be vestibulospinal cells. Reticulospinal cells from the PRRN were recorded intracellularly in the in vitro brainstem-spinal cord preparation and large excitatory post-synaptic potentials (EPSPs) were evoked following stimulation of the ipsilateral anterior and the contralateral posterior branches of the vestibular nerves, whereas inhibitory post-synaptic potentials (IPSPs) or smaller EPSPs were elicited by stimulation of the ipsilateral posterior or of the contralateral anterior branches. During fictive locomotion, both the excitatory and the inhibitory responses displayed phasic changes in amplitude such that the amplitude of the EPSPs was minimal when the spinal cord activity switched from the ipsilateral to the contralateral side of the recorded reticulospinal cell. The IPSPs were then of maximal amplitude. We propose that this modulation could serve to reduce the influence of vestibular inputs in response to head movements during locomotion.
Collapse
Affiliation(s)
- J-F Pflieger
- Centre de Recherche en Sciences Neurologiques, Université de Montréal, CP 6128 succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
17
|
Pompeiano O, d'Ascanio P, Centini C, Pompeiano M, Balaban E. Gene expression in rat vestibular and reticular structures during and after space flight. Neuroscience 2002; 114:135-55. [PMID: 12207961 DOI: 10.1016/s0306-4522(02)00202-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Space flight produces profound changes of neuronal activity in the mammalian vestibular and reticular systems, affecting postural and motor functions. These changes are compensated over time by plastic alterations in the brain. Immediate early genes (IEGs) are useful indicators of both activity changes and neuronal plasticity. We studied the expression of two IEG protein products [Fos and Fos-related antigens (FRAs)] with different cell persistence times (hours and days, respectively) to identify brainstem vestibular and reticular structures involved in adaptation to microgravity and readaptation to 1 G (gravity) during the NASA Neurolab Mission (STS-90). IEG protein expression in flight animals was compared to that of ground controls using Fisher 344 rats killed 1 and 12 days after launch and 1 and 14 days after landing. An increase in the number of Fos-protein-positive cells in vestibular (especially medial and spinal) regions was observed 1 day after launch and 1 day after landing. Fos-positive cell numbers were no different from controls 12 days after launch or 14 days after landing. No G-related changes in IEG expression were observed in the lateral vestibular nucleus. The pattern of FRA protein expression was generally similar to that of Fos, except at 1 day after landing, when FRA-expressing cells were observed throughout the whole spinal vestibular nucleus, but only in the caudal part of the medial vestibular nucleus. Fos expression was found throughout the entire medial vestibular nucleus at this time. While both Fos and FRA expression patterns may reflect the increased G force experienced during take-off and landing, the Fos pattern may additionally reflect recent rebound episodes of rapid eye movement (REM) sleep following forced wakefulness, especially after landing. Pontine activity sources producing rhythmic discharges of vestibulo-oculomotor neurons during REM sleep could substitute for labyrinthine signals after exposure to microgravity, contributing to activity-related plastic changes leading to G readaptation. Reticular structures exhibited a contrasting pattern of changes in the numbers of Fos- and FRA-positive cells suggestive of a major influence from proprioceptive inputs, and plastic re-weighting of inputs after landing. Asymmetric induction of Fos and FRAs observed in some vestibular nuclei 1 day after landing suggests that activity asymmetries between bilateral otolith organs, their primary labyrinthine afferents, and vestibular nuclei may become unmasked during flight.
Collapse
Affiliation(s)
- O Pompeiano
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Via S. Zeno 31, I-56127 Pisa, Italy.
| | | | | | | | | |
Collapse
|
18
|
Sartucci F, Logi F. Vestibular-evoked myogenic potentials: a method to assess vestibulo-spinal conduction in multiple sclerosis patients. Brain Res Bull 2002; 59:59-63. [PMID: 12372550 DOI: 10.1016/s0361-9230(02)00842-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vestibular-evoked myogenic potentials (VEMPs), elicited by acoustic stimulation, have been proposed in the assessment of the vestibulo-cervical reflex pathways. The procedure has been previously validated in several otovestibular disorders. The aim of this study was to investigate patients affected by multiple sclerosis (MS) in the attempt to clarify the underlying physiopathogenetic mechanisms and the clinical utility of VEMPs in detecting vestibulospinal involvement in this disease. VEMPs were obtained according to the technique described by Colebatch and Halmagyi [Neurology 42 (1992) 1635]. We averaged the surface tonic electromyogram from right and left sternocleidomastoid muscle, after bilateral click stimulation (click duration 0.1 ms, repetition rate 3 Hz, intensity 140 dBSPL, 256 stimuli, repeated at least twice). In all cases, we obtained the biphasic, initially positive, p13-n23 wave pattern. P13 peak latency was bilaterally or unilaterally delayed in 8 out of 15 patients (mean delay: 2.2 ms; p < 0.01 on right and <0.05 on left side) and peak-to-peak amplitude significantly reduced (mean amplitude loss: 130 microV; p < 0.01 on right and <0.05 on left side). Their overall diagnostic yield resulted in 60%. In conclusion, the present findings prove that VEMPs are delayed in p13 component and altered in amplitude in MS patients. We hypothesise that these changes might be the result of a conduction impairment in vestibulo-spinal fibres, producing a morphologic alteration of the myogenic responses.
Collapse
Affiliation(s)
- F Sartucci
- Department of Neuroscience, Institute of Neurology, Pisa University Medical School, Pisa, Italy.
| | | |
Collapse
|
19
|
Yates BJ, Billig I, Cotter LA, Mori RL, Card JP. Role of the vestibular system in regulating respiratory muscle activity during movement. Clin Exp Pharmacol Physiol 2002; 29:112-7. [PMID: 11906468 DOI: 10.1046/j.1440-1681.2002.03612.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Changes in posture can affect the resting length of the diaphragm, which is corrected through increases in both diaphragm and abdominal muscle activity. Furthermore, postural alterations can diminish airway patency, which must be compensated for through increases in firing of particular upper airway muscles. 2. Recent evidence has shown that the vestibular system participates in adjusting the activity of both upper airway muscles and respiratory pump muscles during movement and changes in body position. 3. Vestibulo-respiratory responses do not appear to be mediated through the brainstem respiratory groups; labyrinthine influences on respiratory pump muscles may be relayed through neurons in the medial medullary reticular formation, which have recently been demonstrated to provide inputs to both abdominal and diaphragm motoneurons. 4. Three regions of the cerebellum that receive vestibular inputs, the fastigial nucleus, the nodulus/uvula and the anterior lobe, also influence respiratory muscle activity, although the physiological role of cerebellar regulation of respiratory activity is yet to be determined. 5. It is practical for the vestibular system to participate in the control of respiration, to provide for rapid adjustments in ventilation such that the oxygen demands of the body are continually matched during movement and exercise.
Collapse
Affiliation(s)
- B J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|
20
|
Mori RL, Bergsman AE, Holmes MJ, Yates BJ. Role of the medial medullary reticular formation in relaying vestibular signals to the diaphragm and abdominal muscles. Brain Res 2001; 902:82-91. [PMID: 11376597 DOI: 10.1016/s0006-8993(01)02370-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in posture can affect the resting length of respiratory muscles, requiring alterations in the activity of these muscles if ventilation is to be unaffected. Recent studies have shown that the vestibular system contributes to altering respiratory muscle activity during movement and changes in posture. Furthermore, anatomical studies have demonstrated that many bulbospinal neurons in the medial medullary reticular formation (MRF) provide inputs to phrenic and abdominal motoneurons; because this region of the reticular formation receives substantial vestibular and other movement-related input, it seems likely that medial medullary reticulospinal neurons could adjust the activity of respiratory motoneurons during postural alterations. The objective of the present study was to determine whether functional lesions of the MRF affect inspiratory and expiratory muscle responses to activation of the vestibular system. Lidocaine or muscimol injections into the MRF produced a large increase in diaphragm and abdominal muscle responses to vestibular stimulation. These vestibulo-respiratory responses were eliminated following subsequent chemical blockade of descending pathways in the lateral medulla. However, inactivation of pathways coursing through the lateral medulla eliminated excitatory, but not inhibitory, components of vestibulo-respiratory responses. The simplest explanation for these data is that MRF neurons that receive input from the vestibular nuclei make inhibitory connections with diaphragm and abdominal motoneurons, whereas a pathway that courses laterally in the caudal medulla provides excitatory vestibular inputs to these motoneurons.
Collapse
Affiliation(s)
- R L Mori
- Departments of Otolaryngology and Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
21
|
Chan YS, Chen CW, Lai CH. Response of medial medullary reticular neurons to otolith stimulation during bidirectional off-vertical axis rotation of the cat. Brain Res 1996; 732:159-68. [PMID: 8891280 DOI: 10.1016/0006-8993(96)00516-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In decerebrate cats, the extracellular activities of neurons in the medial medullary reticular formation were studied during constant velocity off-vertical axis rotations (OVAR) in the clockwise (CW) and counterclockwise (CCW) directions (at 10 degrees tilt). Spontaneously active neurons demonstrated sinusoidal position-dependent discharge modulations to OVAR which selectively stimulates the otoliths. Two features of neuronal responses to bidirectional OVAR were identified. Within the velocity spectrum tested (1.75-15 degrees/s), some neurons showed symmetric bidirectional response sensitivity (delta value) to CW and CCW rotations. The spread of the delta values of each of these neurons with velocity was small. This group of reticular neurons were described as exhibiting symmetric and velocity-stable bidirectional response sensitivity. The mathematically derived gain tuning ratios of these neurons were within the range of narrowly spatiotemporal-tuned neurons. Another group of reticular neurons, however, showed asymmetric bidirectional response sensitivity to CW and CCW rotations; a few of these neurons were responsive only to OVAR of one direction but not to both. For each of this second group of neurons, the spread of the delta values with velocity was large. These reticular neurons were described as exhibiting asymmetric and velocity-variable bidirectional response sensitivity. The gain tuning ratios of these latter neurons were found to be within the range of broadly spatiotemporal-tuned neurons. Single neurons of both groups displayed orientational tuning. Both the best response orientations of neurons that showed symmetric and velocity-stable bidirectional response sensitivity and the preferred orientations of neurons that showed asymmetric and velocity-variable bidirectional response sensitivity were found to point in all directions on the rotary plane. The response dynamics of the former group of neurons was also examined. All showed flat response gain across the entire velocity range. Some showed a flat response lead while others showed a progressive shift from small response lead at low velocity to phase close to zero at higher velocities. The functional significance of these medial medullary reticular neurons to the direction and orientation of head tilt is discussed.
Collapse
Affiliation(s)
- Y S Chan
- Department of Physiology, Faculty of Medicine, University of Hong Kong, Hong Kong.
| | | | | |
Collapse
|
22
|
Serafin M, Vidal PP, Mühlethaler M. Electrophysiological study of nucleus gigantocellularis neurons in guinea-pig brainstem slices. Neuroscience 1996; 73:797-805. [PMID: 8809799 DOI: 10.1016/0306-4522(96)00054-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gigantocellular neurons of the medullary nucleus gigantocellularis represent a major source of reticulospinal pathways. Among other roles, they have been involved in the processing of vestibular information. The aim of the present study was to describe the major intrinsic membrane properties of these cells in guinea-pig brainstem slices. We found nucleus gigantocellularis neurons to be segregated in two cell types. Type A nucleus gigantocellularis neurons were characterized by the presence of a single large afterhyperpolarization and a potent transient 4-aminopyridine-sensitive rectification likely due to the presence of a transient outward potassium current. In contrast, type B nucleus gigantocellularis neurons had a narrower and faster rising action potential followed by an early fast and a delayed slower after-hyperpolarization. In contrast to type A neurons, type B neurons were, in addition, endowed with subthreshold tetrodotoxin-sensitive sodium-dependent plateau potentials. Whereas both cell types were endowed with high-threshold calcium-dependent action potentials, only type B nucleus gigantocellularis neurons also displayed long-lasting calcium-dependent plateau potentials. These results show that nucleus gigantocellularis neurons can be segregated by their intrinsic membrane properties it two cell types which are very similar to those that we have previously described in the medial vestibular nucleus. The possibility that these differences between type A and B neurons might play a role in the segregation between tonic and kinetic cells is discussed.
Collapse
Affiliation(s)
- M Serafin
- Département de Physiologie, CMU, Genève, Switzerland
| | | | | |
Collapse
|
23
|
Imanaka K, Funase K, Nishihira Y. Reconsidering the 90 degrees head-rotation paradigm used in neuropsychological research: are there reflexive rather than hemispatial effects? Neuropsychologia 1994; 32:569-78. [PMID: 8084415 DOI: 10.1016/0028-3932(94)90145-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 90 degrees head-rotation paradigm has often been used in neuropsychological studies to manipulate external hemispace (circumcorporeal space) relative to the head. Under the 90 degrees head-rotation paradigm, the performance of limb and hand movements carried out within the left or right hemispace as defined by head positions relative to the body is likely to be affected by the reflexive effect due to the neck and vestibular afferent inputs elicited by the head rotations, as well as by the hemispatial effect. Using the H-reflex technique, the present study examined whether the reflexive effect on the spinal motoneuron excitability occurred with head rotations under the 90 degrees head-rotation paradigm. The results showed that the amplitudes of H-reflexes evoked on both the thumb flexor and soleus muscles were not affected by head rotations, indicating no reflexive change in the spinal motoneuron excitability for both the thumb and soleus muscles. This finding suggests that the reflexive effect due to neck and vestibular afferent inputs can be ruled out from possible causal factors influencing the motor performance of limb and hand movements performed within the left or right hemispace as manipulated by the 90 degrees head-rotation paradigm.
Collapse
Affiliation(s)
- K Imanaka
- Department of Health and Physical Education, Faculty of Liberal Arts, Nagasaki University, Japan
| | | | | |
Collapse
|
24
|
Abstract
While both vestibulospinal and reticulospinal tracts contribute to vestibulospinal reflexes, their respective roles are not fully understood. Previous evidence suggests that reticulospinal fibers make an important contribution to the horizontal vestibulocollic reflex (VCR) of the decerebrate cat. Recent work addresses their contribution to the vertical VCR. On the basis of study of reflex and vestibulocollic neuron dynamics, it appears that processing which is necessary to produce some of the spatial properties of the vertical VCR takes place outside the vestibular nuclei. Recording from pontomedullary reticulospinal neurons receiving vestibular input and projecting to different levels of the spinal cord reveals that almost no cells receive only vertical canal input, while approximately half receive otolith input. As is the case for vestibulocollic neurons, these reticulospinal neurons also lack the properties required to produce all of the VCR's spatial properties. Two conclusions are that in response to stimuli in vertical planes pontomedullary reticulospinal fibers are best suited to contribute to otolith reflexes, and that spatial properties of the VCR depend in part on convergence of inputs within the neck itself.
Collapse
Affiliation(s)
- V J Wilson
- Rockefeller University, New York, NY 10021
| |
Collapse
|
25
|
Newman A, Suárez C, Lee WS, Honrubia V. Afferent innervation of the vestibular nuclei in the chinchilla. II. Description of the vestibular nerve and nuclei. Brain Res 1992; 597:278-97. [PMID: 1472999 DOI: 10.1016/0006-8993(92)91485-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The morphological characteristics of the vestibular nuclei of the chinchilla were studied in horizontally cut serial sections of the brain stem. Horseradish peroxidase labeling allowed unambiguous delineation of the vestibular nuclei and areas of innervation by the vestibular afferent fibers. The cytoarchitecture of the vestibular nuclei was documented with the aid of camera lucida drawings and quantitatively evaluated with computerized methodology. The cellular groups identified in other species were found in the chinchilla. The superior vestibular nucleus (SN) originated ventromedial to the mesencephalic tract and nuclei of the trigeminal nerve. This nucleus contained medium-sized cells with a central group of larger cells (20-34 microns in diameter). It received its maximum vestibular innervation caudally in the ventrolateral and dorsal aspects of the nucleus. Fibers projected to the SN in bundles with thick fibers surrounded by thin ones. The lateral vestibular nucleus (LN) originated 0.9-1.2 mm below the rostral aspect of the vestibular area. It was ventrocaudal to the SN and contained many large cells with diameters of 45-60 microns. The LN was innervated mainly in the ventrocaudal aspect by oblique and transverse fibers that formed a dense mesh. The medial vestibular nucleus (MN) originated 0.3-0.6 mm caudal to the beginning of the SN, adjacent to the floor of the IVth ventricle. It extended for 3-4 mm along the SN, LN and descending vestibular nucleus (DN). The MN contained the densest and most homogeneous cells, which had diameters of 10-20 microns. This nucleus received its greatest innervation at the level of the vestibular root. Thin fibers traveled to the MN through the SN and LN. The caudal pole of the nucleus did not receive fibers. The DN originated 1.8-2.5 mm caudal to the origination of the SN, between the caudal LN and the MN. Caudally it replaced the LN. Most of the cells of the DVN were medium-sized, with diameters of 10-20 microns. The main vestibular innervation of the DN was in the lateral aspect of the nucleus. Tertiary fibers projected in small, separate bundles of uniform-sized thick fibers. The interstitial nucleus originated 1.1-1.4 mm from the beginning of the SN. It occupied the center of the vestibular root, 0.8-0.9 mm medial to the root entry zone. It contained a few large cells (greater than 20 microns in diameter), many medium-sized cells, and some small cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Newman
- Division of Head and Neck Surgery, UCLA School of Medicine 90024-1624
| | | | | | | |
Collapse
|
26
|
Wilson VJ, Bolton PS, Goto T, Schor RH, Yamagata Y, Yates BJ. Spatial transformation in the vertical vestibulocollic reflex. Ann N Y Acad Sci 1992; 656:500-6. [PMID: 1599166 DOI: 10.1111/j.1749-6632.1992.tb25231.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- V J Wilson
- Rockefeller University, New York, New York 10021
| | | | | | | | | | | |
Collapse
|
27
|
Pompeiano O, Manzoni D, Barnes CD. Responses of locus coeruleus neurons to labyrinth and neck stimulation. PROGRESS IN BRAIN RESEARCH 1991; 88:411-34. [PMID: 1813928 DOI: 10.1016/s0079-6123(08)63826-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The electrical activity of a large population of locus coeruleus (LC)-complex neurons, some of which were antidromically activated by stimulation of the spinal cord at T12-L1, was recorded in precollicular decerebrate cats during labyrinth and neck stimulation. Some of these neurons showed physiological characteristics attributed to norepinephrine (NE)-containing LC neurons, i.e., (i) a slow and regular resting discharge; (ii) a typical biphasic response to compression of the paws consisting of short impulse bursts followed by a silent period, which was attributed to recurrent and/or lateral inhibition of the corresponding neurons; and (iii) a suppression of the resting discharge during episodes of postural atonia, associated with rapid eye movements (REM), induced by systemic injection of an anticholinesterase, a finding which closely resembled that occurring in intact animals during desynchronized sleep. Among the neurons tested, 80 of 141 (i.e., 56.7%) responded to the labyrinth input elicited by sinusoidal tilt about the longitudinal axis of the whole animal at the standard parameters of 0.15 Hz, +/- 10 degrees, and 73 of 99 (i.e., 73.7%) responded to the neck input elicited by rotation of the body about the longitudinal axis at the same parameters, while maintaining the head stationary. A periodic modulation of firing rate of the units was observed during the sinusoidal stimuli. In particular, most of the LC-complex units were maximally excited during side-up tilt of the animal and side-down neck rotation, the response peak occurring with an average phase lead of about +17.9 degrees and +34.2 degrees with respect to the extreme animal and neck displacements, respectively. Similar results were also obtained from the antidromically identified coeruleospinal (CS) neurons. The degree of convergence and the modalities of interaction of vestibular and neck inputs on LC-complex neurons were also investigated. In addition to the results described above, the LC-complex neurons were also tested to changing parameters of stimulation. In particular, both static and dynamic components of single unit responses were elicited by increasing frequencies of animal tilt and neck rotation. Moreover, the relative stability of the phase angle of the responses evaluated with respect to the animal position in most of the units tested at increasing frequencies of tilt allowed the conclusion to attribute these responses to the properties of macular ultricular receptors. This conclusion is supported by the results of experiments showing that LC-complex neurons displayed steady changes in their discharge rate during static tilt of the animal.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- O Pompeiano
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | |
Collapse
|
28
|
Manzoni D, Pompeiano O, Barnes CD, Stampacchia G, d'Ascanio P. Convergence and interaction of neck and macular vestibular inputs on locus coeruleus and subcoeruleus neurons. Pflugers Arch 1989; 413:580-98. [PMID: 2657645 DOI: 10.1007/bf00581807] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Extracellular recordings were obtained in precollicular decerebrate cats from 90 neurons located in the noradrenergic area of the dorsal pontine tegmentum, namely in the dorsal (LCd, n = 24) and the ventral part (LC alpha, n = 40) of the locus coeruleus (LC) as well as in the locus subcoeruleus (SC, n = 26). Among these units of the LC complex, 13 were coerulospinal (CS) neurons antidromically identified following stimulation of the spinal cord at T12-L1. Some of these neurons showed the main physiological characteristics of the norepinephrine (NE)-containing LC neurons, i.e., a slow and regular resting discharge and a typical biphasic response to fore- and hindpaw compression consisting of a short burst of excitation followed by a period of quiescence, due, in part at least, to recurrent and/or lateral inhibition. Unit firing rate was analyzed under separate stimulation of macular vestibular, neck, or combined receptors by using sinusoidal rotation about the longitudinal axis at 0.15 Hz, +/- 10 degrees peak amplitude. Among the 90 LC-complex neurons, 60 (66.7%) responded with a periodic modulation of their firing rate to roll tilt of the animal and 67 (74.4%) responded to neck rotation. Convergence of macular and neck inputs was found in 52/90 (57.8%) LC-complex neurons; in these units, the gain and the sensitivity of the first harmonic of the response corresponded on the average to 0.34 +/- 0.45, SD, impulses.s-1.deg-1 and 3.55 +/- 2.82, SD, %/deg for the neck responses and to 0.23 +/- 0.29, SD, impulses.s-1.deg-1 and 3.13 +/- 3.04, SD, %/deg for the macular responses. In addition to these convergent units, 8/90 (8.9%) and 15/90 (16.7%) LC-complex units responded to selective stimulation either of macular or of neck receptors only. These units displayed a significantly lower response gain and sensitivity to animal tilt and neck rotation with respect to those obtained from convergent units. Most of the convergent LC-complex units were maximally excited by the direction of stimulus orientation, the first harmonic of responses showing an average phase lead of about +31.0 degrees with respect to neck position and +17.6 degrees with respect to animal position. Two populations of convergent neurons were observed. The first group of units (43/52, i.e., 82.7%) showed reciprocal ("out of phase") responses to the two inputs; moreover, most of these units were excited during side-down neck rotation, but inhibited during side-down animal tilt.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Manzoni
- Dipartimento di Fisiologia e Biochimica, Universita di Pisa, Italy
| | | | | | | | | |
Collapse
|
29
|
Ott D, Eckmiller R. Dynamic adaptation of the blind pointing characteristic to stepwise lateral tilts of body, head, and trunk. Behav Brain Res 1988; 30:99-110. [PMID: 3166720 DOI: 10.1016/0166-4328(88)90140-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blind pointing (i.e. pointing to visual targets without seeing the pointing arm) was investigated in normal subjects in response to stepwise lateral tilts (20 degrees) of the body, head, and trunk. Blind pointing positions of the right index finger on the outer surface of a hemispherical screen were measured relative to the positions of visual targets that were presented along a horizontal line (+/- 30 degrees in head coordinates) on the inner screen surface, thus yielding a blind pointing characteristic (BPC). (1) BPC is highly reproducible and can be subdivided into separate branches for the ipsi- and contralateral hemifields. These branches are rotated relative to the target line by individually different BPC angles pi i and pi c. (2) pi i exhibits characteristic time courses (measured within 10 min following a stepwise tilt) for each paradigm. (3) Body tilt (left ear down) causes a step-like increase in pi i of up to 14 degrees; body tilt (right ear down) causes a step-like decrease in pi i to about zero. (4) Trunk tilt (right shoulder down) produces a gradual decrease in pi i of up to 6 degrees (average time constant tau T = 5 min); trunk tilt (left shoulder down) produces a gradual increase in pi i of up to 4 degrees. (5) Head tilt (left ear down) causes an increase in pi i of up to 9 degrees followed by a gradual decrease (average time constant tau H = 6 min); head tilt (right ear down) causes a step-like decrease in pi i with unsignificant further changes. These findings are discussed in terms of a neural sensorimotor coordinate transformation process receiving separate, dynamic otolith and neck afferent influences.
Collapse
Affiliation(s)
- D Ott
- Department of Biophysics, University of Düsseldorf, F.R.G
| | | |
Collapse
|
30
|
Wilson VJ. Convergence of neck and vestibular signals on spinal interneurons. PROGRESS IN BRAIN RESEARCH 1988; 76:137-43. [PMID: 3064139 DOI: 10.1016/s0079-6123(08)64499-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Manzoni D. Convergence of macular vestibular and neck inputs on vestibulospinal and reticulospinal neurons projecting to the lumbosacral cord. PROGRESS IN BRAIN RESEARCH 1988; 76:145-54. [PMID: 3064140 DOI: 10.1016/s0079-6123(08)64500-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
D'Ascanio P, Pompeiano O, Stampacchia G. Noradrenergic and cholinergic mechanisms responsible for the gain regulation of vestibulospinal reflexes. PROGRESS IN BRAIN RESEARCH 1988; 76:361-74. [PMID: 3064156 DOI: 10.1016/s0079-6123(08)64523-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Pompeiano O. The role of Renshaw cells in the dynamic control of posture during vestibulospinal reflexes. PROGRESS IN BRAIN RESEARCH 1988; 76:83-95. [PMID: 3064161 DOI: 10.1016/s0079-6123(08)64494-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Thoden U, Mergner T. Effects of proprioceptive inputs on vestibulo-ocular and vestibulospinal mechanisms. PROGRESS IN BRAIN RESEARCH 1988; 76:109-20. [PMID: 3064137 DOI: 10.1016/s0079-6123(08)64496-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Thibos LN, Cheney FE, Walsh DJ. Retinal limits to the detection and resolution of gratings. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS AND IMAGE SCIENCE 1987; 4:1524-9. [PMID: 3625332 DOI: 10.1364/josaa.4.001524] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The maximum spatial frequency for the detection and resolution of sinusoidal gratings was determined as a function of stimulus location across the visual field. Stimuli were produced directly on the retina as interference fringes, thus avoiding possible loss of image quality, which may occur when the optical system of the eye is used to form the retinal image. Contrary to earlier reports, we found that subjects could detect gratings with spatial frequencies much higher than the resolution limit. At 5 degrees of eccentricity from the fovea, the detection limit was about three times the resolution limit, and this factor increased to about 10 as the test stimulus was moved 35 degrees into the periphery. Quantitative comparison of the data with retinal anatomy and physiology suggests that pattern resolution is limited by the spacing of primate beta (midget) retinal ganglion cells, whereas pattern detection is limited by the size of individual cones.
Collapse
|
36
|
Suzuki I, Park BR, Wilson VJ. Directional sensitivity of, and neck afferent input to, cervical and lumbar interneurons modulated by neck rotation. Brain Res 1986; 367:356-9. [PMID: 3697711 DOI: 10.1016/0006-8993(86)91618-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In response to neck rotation of decerebrate, acutely labyrinthectomized cats, interneurons in C4 respond far more frequently to nose-up than to nose down pitch, whereas the reverse is true for interneurons in L3-L4. These directional sensitivities resemble the pattern of extensor excitation in the tonic neck reflex. C4 neurons receiving short latency excitation from the C2 dorsal root ganglion due to intraspinal pathways have a distribution of directional sensitivities to pitch stimuli that is similar to that of the whole population. The directional sensitivities of C4 neurons with late excitation, which may be due to supraspinal loops, are more broadly distributed.
Collapse
|
37
|
Pompeiano O, Wand P, Srivastava UC. Influence of Renshaw cells on the response gain of hindlimb extensor muscles to sinusoidal labyrinth stimulation. Pflugers Arch 1985; 404:107-18. [PMID: 4011404 DOI: 10.1007/bf00585405] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The contraction of limb extensor muscles during side-down roll tilt of the animal depends upon an increased discharge of excitatory vestibulospinal (VS) neurons (alpha-response) and a reduced discharge of inhibitory reticulospinal (RS) neurons of the medulla (beta-response), both acting on ipsilateral limb extensor motoneurons. In the decerebrate cat, a modulation of the multiunit EMG activity was clearly present in forelimb extensors, but was extremely weak or absent in hindlimb extensors. Experiments performed in decerebrate cats with the deefferented GS muscle fixed at a constant length have shown that Renshaw (R)-cells, monosynaptically coupled with gastrocnemius-soleus (GS) motoneurons, were either unresponsive or displayed only very weak, small amplitude alpha-responses to sinusoidal stimulation of labyrinth receptors elicited during slow head rotation after bilateral neck deafferentation. This effect was attributed to excitatory VS volleys acting on GS motoneurons and, through their recurrent collaterals, on the related R-cells. In these instances the recurrent inhibition of the GS motoneurons contributed to the very low gain of the EMG response of the corresponding muscles to labyrinth stimulation. Intravenous injection of an anticholinesterase (eserine sulphate, 0.05-0.1 mg/kg) at a dose that in previous experiments increased the firing rate of medullary RS neurons, while decreasing the decerebrate rigidity, slightly increased the discharge rate of R-cells linked with the GS motoneurons in the animal at rest; these findings suggest that the RS system inhibits the extensor motoneurons by exciting the related R-cells. All the R-cells, which prior to the injection were either unresponsive or showed an alpha-response to head rotation (at 0.026-0.15 Hz, +/- 10 degrees), after eserine sulphate showed a beta-response for the same parameters of labyrinth stimulation. In particular, a reduced discharge of the R-cells linked with the GS motoneurons occurred during side-down head rotation as shown for the majority of the RS neurons. It appears therefore that the same R-cells, which in the normal decerebrate cat responded to the excitatory VS volleys acting through the GS motoneurons, were now decoupled from their input motoneurons during head rotation, thus behaving as if they underwent the most efficient direct excitatory control of the RS system. The reduced discharge of the R-cells linked with the GS motoneurons during side-down head rotation would lead to disinhibition of these motoneurons, thus enhancing the response gain of the corresponding muscle to labyrinth stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
38
|
Pompeiano O, Manzoni D, Srivastava UC, Stampacchia G. Relation between cell size and response characteristics of medullary reticulospinal neurons to labyrinth and neck inputs. Pflugers Arch 1983; 398:298-309. [PMID: 6634386 DOI: 10.1007/bf00657239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The activity of presumably inhibitory reticulospinal neurons with cell bodies located in the medial aspects of the medullary reticular formation and axons projecting to lumbosacral cord has been recorded in decerebrate cats and their response characteristics to sinusoidal stimulation of labyrinth receptors (134 neurons) and neck receptors (110 neurons) have been related to cell size inferred from the conduction velocity of the corresponding axons. No significant correlation was found between resting discharge and conduction velocity of the axons. Among the recorded reticulospinal neurons, 64/134 (i.e. 47.8%) units responded to roll tilt, while 66/110 (i.e. 60.0%) units responded to neck rotation (0.026 Hz, +/- 10 degrees). A positive correlation was found between gain (imp./s/deg) of the labyrinth and neck responses and conduction velocity of the axons. Thus, due to absence of correlation between resting discharge and conduction velocity of the axons, larger neurons exhibited a greater percentage modulation (sensitivity) to the labyrinth and the neck input than smaller neurons. These findings are attributed to an overall increase in density or efficacy of the synaptic contacts made by the vestibular and neck afferent pathways on reticulospinal neurons of increasing size. Units receiving neck-macular vestibular convergence showed on the average an higher gain of the neck (GN) response with respect to the labyrinth (GL) response (GN/GL: 1.95 +/- 1.49, S.D.; n = 43); however, due to a parallel increase in gain of the reticulospinal neurons to both neck and labyrinth inputs, the relative effectiveness of the two inputs did not vary in different units as a function of cell size. The reticulospinal neurons were mainly excited by the direction of animal orientation and/or neck displacement. In particular, most of these positional sensitive units were excited by side-up animal tilt (37/58, i.e. 63.8%) and by side-down neck rotation (47/60, i.e. 78.3%). These predominant response patterns were particularly found between large size neurons, whereas small size neurons tended to show also other response patterns. The evidence indicates that in addition to intrinsic neuronal properties related to cell size, the quantitative and qualitative organization of synaptic inputs represents the critical factor controlling the responsiveness of reticulospinal neurons to vestibular and neck stimulation.
Collapse
|