1
|
Saleem KS, Avram AV, Yen CCC, Magdoom KN, Schram V, Basser PJ. Multimodal anatomical mapping of subcortical regions in marmoset monkeys using high-resolution MRI and matched histology with multiple stains. Neuroimage 2023; 281:120311. [PMID: 37634884 DOI: 10.1016/j.neuroimage.2023.120311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States.
| | - Alexandru V Avram
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Cecil Chern-Chyi Yen
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Kulam Najmudeen Magdoom
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Vincent Schram
- Microscopy and Imaging Core (MIC), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Maher EE, Strzelecki AM, Weafer JJ, Gipson CD. The importance of translationally evaluating steroid hormone contributions to substance use. Front Neuroendocrinol 2023; 69:101059. [PMID: 36758769 PMCID: PMC10182261 DOI: 10.1016/j.yfrne.2023.101059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Clinically, women appear to be more susceptible to certain aspects of substance use disorders (SUDs). The steroid hormones 17β-estradiol (E2) and progesterone (Pg) have been linked to women-specific drug behaviors. Here, we review clinical and preclinical studies investigating how cycling ovarian hormones affect nicotine-, cocaine-, and opioid-related behaviors. We also highlight gaps in the literature regarding how synthetic steroid hormone use may influence drug-related behaviors. In addition, we explore how E2 and Pg are known to interact in brain reward pathways and provide evidence of how these interactions may influence drug-related behaviors. The synthesis of this review demonstrates the critical need to study women-specific factors that may influence aspects of SUDs, which may play important roles in addiction processes in a sex-specific fashion. It is important to understand factors that impact women's health and may be key to moving the field forward toward more efficacious and individualized treatment strategies.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Ashley M Strzelecki
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Jessica J Weafer
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
3
|
Wang W, Xie X, Zhuang X, Huang Y, Tan T, Gangal H, Huang Z, Purvines W, Wang X, Stefanov A, Chen R, Rodriggs L, Chaiprasert A, Yu E, Vierkant V, Hook M, Huang Y, Darcq E, Wang J. Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect. Cell Rep 2023; 42:112089. [PMID: 36796365 PMCID: PMC10404641 DOI: 10.1016/j.celrep.2023.112089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Withdrawal from chronic opioid use often causes hypodopaminergic states and negative affect, which may drive relapse. Direct-pathway medium spiny neurons (dMSNs) in the striatal patch compartment contain μ-opioid receptors (MORs). It remains unclear how chronic opioid exposure and withdrawal impact these MOR-expressing dMSNs and their outputs. Here, we report that MOR activation acutely suppressed GABAergic striatopallidal transmission in habenula-projecting globus pallidus neurons. Notably, withdrawal from repeated morphine or fentanyl administration potentiated this GABAergic transmission. Furthermore, intravenous fentanyl self-administration enhanced GABAergic striatonigral transmission and reduced midbrain dopaminergic activity. Fentanyl-activated striatal neurons mediated contextual memory retrieval required for conditioned place preference tests. Importantly, chemogenetic inhibition of striatal MOR+ neurons rescued fentanyl withdrawal-induced physical symptoms and anxiety-like behaviors. These data suggest that chronic opioid use triggers GABAergic striatopallidal and striatonigral plasticity to induce a hypodopaminergic state, which may promote negative emotions and relapse.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Tao Tan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - William Purvines
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucas Rodriggs
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Anita Chaiprasert
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Emily Yu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Valerie Vierkant
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Michelle Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Emmanuel Darcq
- Department of Psychiatry, University of Strasbourg, INSERM U1114, 67084 Strasbourg Cedex, France
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA; Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Jaquins-Gerstl A, Nesbitt KM, Michael AC. In vivo evidence for the unique kinetics of evoked dopamine release in the patch and matrix compartments of the striatum. Anal Bioanal Chem 2021; 413:6703-6713. [PMID: 33843017 PMCID: PMC8551084 DOI: 10.1007/s00216-021-03300-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
The neurochemical transmitter dopamine (DA) is implicated in a number of diseases states, including Parkinson's disease, schizophrenia, and drug abuse. DA terminal fields in the dorsal striatum and core region of the nucleus accumbens in the rat brain are organized as heterogeneous domains exhibiting fast and slow kinetic of DA release. The rates of dopamine release are significantly and substantially faster in the fast domains relative to the slow domains. The striatum is composed of a mosaic of spatial compartments known as the striosomes (patches) and the matrix. Extensive literature exists on the spatial organization of the patch and matrix compartments and their functions. However, little is known about these compartments as they relate to fast and slow kinetic DA domains observed by fast scan cyclic voltammetry (FSCV). Thus, we combined high spatial resolution of FSCV with detailed immunohistochemical analysis of these architectural compartments (patch and matrix) using fluorescence microscopy. Our findings demonstrated a direct correlation between patch compartments with fast domain DA kinetics and matrix compartments to slow domain DA kinetics. We also investigated the kinetic domains in two very distinct sub-regions in the striatum, the lateral dorsal striatum (LDS) and the medial dorsal striatum (MDS). The lateral dorsal striatum as opposed to the medial dorsal striatum is mainly governed by fast kinetic DA domains. These finding are highly relevant as they may hold key promise in unraveling the fast and slow kinetic DA domains and their physiological significance.
Collapse
Affiliation(s)
- Andrea Jaquins-Gerstl
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, 15213, USA.
| | - Kathryn M Nesbitt
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, 15213, USA
| | - Adrian C Michael
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Basile GA, Bertino S, Bramanti A, Ciurleo R, Anastasi GP, Milardi D, Cacciola A. Striatal topographical organization: Bridging the gap between molecules, connectivity and behavior. Eur J Histochem 2021; 65. [PMID: 34643358 PMCID: PMC8524362 DOI: 10.4081/ejh.2021.3284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
The striatum represents the major hub of the basal ganglia, receiving projections from the entire cerebral cortex and it is assumed to play a key role in a wide array of complex behavioral tasks. Despite being extensively investigated during the last decades, the topographical organization of the striatum is not well understood yet. Ongoing efforts in neuroscience are focused on analyzing striatal anatomy at different spatial scales, to understand how structure relates to function and how derangements of this organization are involved in various neuropsychiatric diseases. While being subdivided at the macroscale level into dorsal and ventral divisions, at a mesoscale level the striatum represents an anatomical continuum sharing the same cellular makeup. At the same time, it is now increasingly ascertained that different striatal compartments show subtle histochemical differences, and their neurons exhibit peculiar patterns of gene expression, supporting functional diversity across the whole basal ganglia circuitry. Such diversity is further supported by afferent connections which are heterogenous both anatomically, as they originate from distributed cortical areas and subcortical structures, and biochemically, as they involve a variety of neurotransmitters. Specifically, the cortico-striatal projection system is topographically organized delineating a functional organization which is maintained throughout the basal ganglia, subserving motor, cognitive and affective behavioral functions. While such functional heterogeneity has been firstly conceptualized as a tripartite organization, with sharply defined limbic, associative and sensorimotor territories within the striatum, it has been proposed that such territories are more likely to fade into one another, delineating a gradient-like organization along medio-lateral and ventro-dorsal axes. However, the molecular and cellular underpinnings of such organization are less understood, and their relations to behavior remains an open question, especially in humans. In this review we aimed at summarizing the available knowledge on striatal organization, especially focusing on how it links structure to function and its alterations in neuropsychiatric diseases. We examined studies conducted on different species, covering a wide array of different methodologies: from tract-tracing and immunohistochemistry to neuroimaging and transcriptomic experiments, aimed at bridging the gap between macroscopic and molecular levels.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno", University of Salerno.
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| |
Collapse
|
6
|
Amemori S, Graybiel AM, Amemori KI. Causal Evidence for Induction of Pessimistic Decision-Making in Primates by the Network of Frontal Cortex and Striosomes. Front Neurosci 2021; 15:649167. [PMID: 34276282 PMCID: PMC8277931 DOI: 10.3389/fnins.2021.649167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
Clinical studies have shown that patients with anxiety disorders exhibited coactivation of limbic cortices and basal ganglia, which together form a large-scale brain network. The mechanisms by which such a large-scale network could induce or modulate anxiety-like states are largely unknown. This article reviews our experimental program in macaques demonstrating a causal involvement of local striatal and frontal cortical sites in inducing pessimistic decision-making that underlies anxiety. Where relevant, we related these findings to the wider literature. To identify such sites, we have made a series of methodologic advances, including the combination of causal evidence for behavioral modification of pessimistic decisions with viral tracing methods. Critically, we introduced a version of the classic approach-avoidance (Ap-Av) conflict task, modified for use in non-human primates. We performed microstimulation of limbic-related cortical regions and the striatum, focusing on the pregenual anterior cingulate cortex (pACC), the caudal orbitofrontal cortex (cOFC), and the caudate nucleus (CN). Microstimulation of localized sites within these regions induced pessimistic decision-making by the monkeys, supporting the idea that the focal activation of these regions could induce an anxiety-like state, which subsequently influences decision-making. We further performed combined microstimulation and tract-tracing experiments by injecting anterograde viral tracers into focal regions, at which microstimulation induced increased avoidance. We found that effective stimulation sites in both pACC and cOFC zones projected preferentially to striosomes in the anterior striatum. Experiments in rodents have shown that the striosomes in the anterior striatum project directly to the dopamine-containing cells in the substantia nigra, and we have found evidence for a functional connection between striosomes and the lateral habenular region in which responses to reward are inhibitory. We present here further evidence for network interactions: we show that the pACC and cOFC project to common structures, including not only the anterior parts of the striosome compartment but also the tail of the CN, the subgenual ACC, the amygdala, and the thalamus. Together, our findings suggest that networks having pACC and cOFC as nodes share similar features in their connectivity patterns. We here hypothesize, based on these results, that the brain sites related to pessimistic judgment are mediated by a large-scale brain network that regulates dopaminergic functions and includes striosomes and striosome-projecting cortical regions.
Collapse
Affiliation(s)
- Satoko Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Salin P, Blondel D, Kerkerian-Le Goff L, Coulon P. Golgi staining-like retrograde labeling of brain circuits using rabies virus: Focus onto the striatonigral neurons. J Neurosci Methods 2020; 344:108872. [PMID: 32693000 DOI: 10.1016/j.jneumeth.2020.108872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The introduction of viral transneuronal tracers in the toolbox of neural tract-tracing methods has been an important addition in the field of connectomics for deciphering circuit-level architecture of the nervous system. One of the added values of viral compared to conventional retrograde tracers, in particular of rabies virus, is to provide a Golgi staining-like view of the infected neurons, revealing the thin dendritic arborizations and the spines that are major post-synaptic seats of neuronal connections. NEWMETHOD Here, we comparatively illustrate the characteristics of the labeling obtained in the same model system, the basal ganglia circuitry, by different retrograde viral tracing approaches, using the Bartha strain of pseudorabies virus, the SAD and CVS strains of rabies virus and by the conventional retrograde tracer cholera toxin B. To best contrast the differences in the capacity of these tracers to reveal the dendritic morphology in details, we focused on one population of first-order infected neurons in the striatum, which exhibit high spine density, after tracer injection in the substantia nigra. RESULTS AND CONCLUSION None of the viruses tested allowed to detect as many neurons as with cholera toxin B, but the SAD and CVS strains of rabies virus had the advantage of enabling detailed Golgi-like visualisation of the dendritic trees, the best numerical detection being offered by the transneuronal rCVS-N2c-P-mCherry while poor labeling was provided by rCVS-N2c-M-GFP. Results also suggest that, besides different viral properties, technical issues about constructs and detection methods contribute to apparently different efficiencies among the viral approaches.
Collapse
Affiliation(s)
- P Salin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - D Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | | | - P Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Université and CNRS, Marseille, France
| |
Collapse
|
8
|
Cell Type-Specific Transcriptomics Reveals that Mutant Huntingtin Leads to Mitochondrial RNA Release and Neuronal Innate Immune Activation. Neuron 2020; 107:891-908.e8. [PMID: 32681824 DOI: 10.1016/j.neuron.2020.06.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
The mechanisms by which mutant huntingtin (mHTT) leads to neuronal cell death in Huntington's disease (HD) are not fully understood. To gain new molecular insights, we used single nuclear RNA sequencing (snRNA-seq) and translating ribosome affinity purification (TRAP) to conduct transcriptomic analyses of caudate/putamen (striatal) cell type-specific gene expression changes in human HD and mouse models of HD. In striatal spiny projection neurons, the most vulnerable cell type in HD, we observe a release of mitochondrial RNA (mtRNA) (a potent mitochondrial-derived innate immunogen) and a concomitant upregulation of innate immune signaling in spiny projection neurons. Further, we observe that the released mtRNAs can directly bind to the innate immune sensor protein kinase R (PKR). We highlight the importance of studying cell type-specific gene expression dysregulation in HD pathogenesis and reveal that the activation of innate immune signaling in the most vulnerable HD neurons provides a novel framework to understand the basis of mHTT toxicity and raises new therapeutic opportunities.
Collapse
|
9
|
Matsushima A, Graybiel AM. Combinatorial Developmental Controls on Striatonigral Circuits. Cell Rep 2020; 31:107778. [PMID: 32553154 PMCID: PMC7433760 DOI: 10.1016/j.celrep.2020.107778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] Open
Abstract
Cortical pyramidal cells are generated locally, from pre-programmed progenitors, to form functionally distinct areas. By contrast, striatal projection neurons (SPNs) are generated remotely from a common source, undergo migration to form mosaics of striosomes and matrix, and become incorporated into functionally distinct sectors. Striatal circuits might thus have a unique logic of developmental organization, distinct from those of the neocortex. We explore this possibility in mice by mapping one set of SPNs, those in striosomes, with striatonigral projections to the dopamine-containing substantia nigra pars compacta (SNpc). Same-age SPNs exhibit topographic striatonigral projections, according to their resident sector. However, the different birth dates of resident SPNs within a given sector specify the destination of their axons within the SNpc. These findings highlight a logic intercalating birth date-dependent and birth date-independent factors in determining the trajectories of SPN axons and organizing specialized units of striatonigral circuitry that could influence behavioral expression and vulnerabilities to disease.
Collapse
Affiliation(s)
- Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 20139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| |
Collapse
|
10
|
Prager EM, Plotkin JL. Compartmental function and modulation of the striatum. J Neurosci Res 2019; 97:1503-1514. [PMID: 31489687 DOI: 10.1002/jnr.24522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
The striatum plays a central role in guiding numerous complex behaviors, ranging from motor control to action selection and reward learning. The diverse responsibilities of the striatum are reflected by the complexity of its organization. In this review, we will summarize what is currently known about the compartmental layout of the striatum, an organizational principle that is crucial for allowing the striatum to guide such a diverse array of behaviors. We will focus on the anatomical and functional properties of striosome (patch) and matrix compartments of the striatum, and how the engagement of these compartments is uniquely controlled by their afferents, intrinsic properties, and neuromodulation. We will give examples of how advances in technology have opened the door to functionally dissecting the striatum's compartmental design, and close by offering thoughts on the future and relevance for human disease.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
11
|
Lesions of the Patch Compartment of Dorsolateral Striatum Disrupt Stimulus-Response Learning. Neuroscience 2019; 415:161-172. [PMID: 31356898 DOI: 10.1016/j.neuroscience.2019.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023]
Abstract
The striatum mediates habit formation and reward association. The striatum can be divided into the patch and matrix compartment, which are two distinct regions that sub-serve different aspects of behavior. The patch compartment may mediate reward-related behaviors, while the matrix compartment may mediate adaptive motor functions. Previous studies indicate that enhanced relative activation of the patch versus matrix compartment is associated with inflexible behaviors, such as stereotypy. Habitual behaviors are also inflexible in nature, but whether enhanced activation of the patch compartment contributes to habitual behavior is not known. The goal of the current study was to examine the role of patch compartment in the development of habit formation. We used dermorphin-saporin to ablate neurons of the patch compartment in the dorsolateral striatum prior to training animals to self-administer sucrose on a random interval schedule of reinforcement. Our data showed that patch compartment lesions in the dorsolateral striatum reduced the reinstatement of sucrose self-administration after sucrose devaluation, indicating that destruction of this region prevented the development of habitual behavior. Additionally, in animals with patch compartment lesions in the DLS that did not develop habitual behavior, activation of the dorsolateral striatum and sensorimotor cortex was diminished, while activity in the dorsomedial striatum and prefrontal cortex was increased, suggesting less engagement of regions that mediate habitual behaviors and heightened engagement of regions that mediate goal-directed behaviors occurs with reduced habit formation. These data indicate that the dorsolateral patch compartment may mediate habit formation by altering information flow through basal ganglia circuits.
Collapse
|
12
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Bloem B, Huda R, Sur M, Graybiel AM. Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses. eLife 2017; 6:32353. [PMID: 29251596 PMCID: PMC5764569 DOI: 10.7554/elife.32353] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/16/2017] [Indexed: 12/14/2022] Open
Abstract
Striosomes were discovered several decades ago as neurochemically identified zones in the striatum, yet technical hurdles have hampered the study of the functions of these striatal compartments. Here we used 2-photon calcium imaging in neuronal birthdate-labeled Mash1-CreER;Ai14 mice to image simultaneously the activity of striosomal and matrix neurons as mice performed an auditory conditioning task. With this method, we identified circumscribed zones of tdTomato-labeled neuropil that correspond to striosomes as verified immunohistochemically. Neurons in both striosomes and matrix responded to reward-predicting cues and were active during or after consummatory licking. However, we found quantitative differences in response strength: striosomal neurons fired more to reward-predicting cues and encoded more information about expected outcome as mice learned the task, whereas matrix neurons were more strongly modulated by recent reward history. These findings open the possibility of harnessing in vivo imaging to determine the contributions of striosomes and matrix to striatal circuit function.
Collapse
Affiliation(s)
- Bernard Bloem
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Rafiq Huda
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States.,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States.,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
14
|
Crittenden JR, Lacey CJ, Weng FJ, Garrison CE, Gibson DJ, Lin Y, Graybiel AM. Striatal Cholinergic Interneurons Modulate Spike-Timing in Striosomes and Matrix by an Amphetamine-Sensitive Mechanism. Front Neuroanat 2017; 11:20. [PMID: 28377698 PMCID: PMC5359318 DOI: 10.3389/fnana.2017.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/06/2017] [Indexed: 11/24/2022] Open
Abstract
The striatum is key for action-selection and the motivation to move. Dopamine and acetylcholine release sites are enriched in the striatum and are cross-regulated, possibly to achieve optimal behavior. Drugs of abuse, which promote abnormally high dopamine release, disrupt normal action-selection and drive restricted, repetitive behaviors (stereotypies). Stereotypies occur in a variety of disorders including obsessive-compulsive disorder, autism, schizophrenia and Huntington's disease, as well as in addictive states. The severity of drug-induced stereotypy is correlated with induction of c-Fos expression in striosomes, a striatal compartment that is related to the limbic system and that directly projects to dopamine-producing neurons of the substantia nigra. These characteristics of striosomes contrast with the properties of the extra-striosomal matrix, which has strong sensorimotor and associative circuit inputs and outputs. Disruption of acetylcholine signaling in the striatum blocks the striosome-predominant c-Fos expression pattern induced by drugs of abuse and alters drug-induced stereotypy. The activity of striatal cholinergic interneurons is associated with behaviors related to sensory cues, and cortical inputs to striosomes can bias action-selection in the face of conflicting cues. The neurons and neuropil of striosomes and matrix neurons have observably separate distributions, both at the input level in the striatum and at the output level in the substantia nigra. Notably, cholinergic axons readily cross compartment borders, providing a potential route for local cross-compartment communication to maintain a balance between striosomal and matrix activity. We show here, by slice electrophysiology in transgenic mice, that repetitive evoked firing patterns in striosomal and matrix striatal projection neurons (SPNs) are interrupted by optogenetic activation of cholinergic interneurons either by the addition or the deletion of spikes. We demonstrate that this cholinergic modulation of projection neurons is blocked in brain slices taken from mice exposed to amphetamine and engaged in amphetamine-induced stereotypy, and lacking responsiveness to salient cues. Our findings support a model whereby activity in striosomes is normally under strong regulation by cholinergic interneurons, favoring behavioral flexibility, but that in animals with drug-induced stereotypy, this cholinergic signaling breaks down, resulting in differential modulation of striosomal activity and an inability to bias action-selection according to relevant sensory cues.
Collapse
Affiliation(s)
- Jill R Crittenden
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Carolyn J Lacey
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Feng-Ju Weng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Catherine E Garrison
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Daniel J Gibson
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Yingxi Lin
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ann M Graybiel
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
15
|
Brimblecombe KR, Cragg SJ. The Striosome and Matrix Compartments of the Striatum: A Path through the Labyrinth from Neurochemistry toward Function. ACS Chem Neurosci 2017; 8:235-242. [PMID: 27977131 DOI: 10.1021/acschemneuro.6b00333] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The striatum is a heterogeneous structure with a diverse range of neuron types and neuromodulators. Three decades of anatomical and biochemical studies have established that the neurochemical organization of striatum is not uniformly heterogeneous, but rather, can be differentiated into neurochemically discrete compartments known as striosomes (also known as patches) and matrix. These compartments are well understood to differ in their expression of neurochemical markers, with some differences in afferent and efferent connectivity and have also been suggested to have different involvement in a range of neurological diseases. However, the functional outcomes of striosome-matrix organization are poorly understood. Now, recent findings and new experimental tools are beginning to reveal that the distinctions between striosomes and matrix have distinct consequences for striatal synapse function. Here, we review recent findings that suggest there can be distinct regulation of neural function in striosome versus matrix compartments, particularly compartment-specific neurochemical interactions. We highlight that new transgenic and viral tools are becoming available that should now accelerate the pace of advances in understanding of these long-mysterious striatal compartments.
Collapse
Affiliation(s)
- Katherine R. Brimblecombe
- Department
of Physiology, Anatomy and Genetics, Sherrington Building, and ‡Oxford Parkinson’s
Disease Centre, University of Oxford, Oxford OX1 3PT, U.K
| | - Stephanie J. Cragg
- Department
of Physiology, Anatomy and Genetics, Sherrington Building, and ‡Oxford Parkinson’s
Disease Centre, University of Oxford, Oxford OX1 3PT, U.K
| |
Collapse
|
16
|
Morigaki R, Goto S. Putaminal Mosaic Visualized by Tyrosine Hydroxylase Immunohistochemistry in the Human Neostriatum. Front Neuroanat 2016; 10:34. [PMID: 27092059 PMCID: PMC4820446 DOI: 10.3389/fnana.2016.00034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022] Open
Abstract
Among the basal ganglia-thalamocortical circuits, the putamen plays a critical role in the “motor” circuits that control voluntary movements and motor learning. The human neostriatum comprises two functional subdivisions known as the striosome (patch) and matrix compartments. Accumulating evidence suggests that compartment-specific dysregulations of dopamine activity might be involved in the disease-specific pathology and symptoms of human striatal diseases including movement disorders. This study was undertaken to examine whether or how striatal dopaminergic innervations are organized into the compartmentalized architecture found in the putamen of adult human brains. For this purpose, we used a highly sensitive immunohistochemistry (IHC) technique to identify tyrosine hydroxylase (TH; EC 1.14.16.2), a marker for striatal dopaminergic axons and terminals, in formalin-fixed paraffin-embedded (FFPE) tissues obtained from autopsied human brains. Herein, we report that discrete compartmentalization of TH-labeled innervations occurs in the putamen, as in the caudate nucleus (CN), with a higher density of TH labeling in the matrix compared to the striosomes. Our results provide anatomical evidence to support the hypothesis that compartment-specific dysfunction of the striosome-matrix dopaminergic systems might contribute to the genesis of movement disorders.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima UniversityTokushima, Japan; Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima UniversityTokushima, Japan; Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima UniversityTokushima, Japan
| | - Satoshi Goto
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima UniversityTokushima, Japan; Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima UniversityTokushima, Japan
| |
Collapse
|
17
|
Gerfen C, Bolam J. The Neuroanatomical Organization of the Basal Ganglia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00001-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Substance P Weights Striatal Dopamine Transmission Differently within the Striosome-Matrix Axis. J Neurosci 2015; 35:9017-23. [PMID: 26085627 DOI: 10.1523/jneurosci.0870-15.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian striatum has a topographical organization of input-output connectivity, but a complex internal, nonlaminar neuronal architecture comprising projection neurons of two types interspersed among multiple interneuron types and potential local neuromodulators. From this cellular melange arises a biochemical compartmentalization of areas termed striosomes and extrastriosomal matrix. The functions of these compartments are poorly understood but might confer distinct features to striatal signal processing and be discretely governed. Dopamine transmission occurs throughout striosomes and matrix, and is reported to be modulated by the striosomally enriched neuromodulator substance P. However, reported effects are conflicting, ranging from facilitation to inhibition. We addressed whether dopamine transmission is modulated differently in striosome-matrix compartments by substance P.We paired detection of evoked dopamine release at carbon-fiber microelectrodes in mouse striatal slices with subsequent identification of the location of recording sites with respect to μ-opioid receptor-rich striosomes. Substance P had bidirectional effects on dopamine release that varied between recording sites and were prevented by inhibition of neurokinin-1 receptors. The direction of modulation was determined by location within the striosomal-matrix axis: dopamine release was boosted in striosome centers, diminished in striosomal-matrix border regions, and unaffected in the matrix. In turn, this different weighting of dopamine transmission by substance P modified the apparent center-surround contrast of striosomal dopamine signals. These data reveal that dopamine transmission can be differentially modulated within the striosomal-matrix axis, and furthermore, indicate a functionally distinct zone at the striosome-matrix interface, which may have key impacts on striatal integration.
Collapse
|
19
|
Murray RC, Logan MC, Horner KA. Striatal patch compartment lesions reduce stereotypy following repeated cocaine administration. Brain Res 2015; 1618:286-98. [PMID: 26100338 DOI: 10.1016/j.brainres.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/06/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022]
Abstract
Stereotypy can be characterized as inflexible, repetitive behaviors that occur following repeated exposure to psychostimulants, such as cocaine (COC). Stereotypy may be related to preferential activation of the patch (striosome) compartment of striatum, as enhanced relative activation of the patch compartment has been shown to positively correlate with the emergence of stereotypy following repeated psychostimulant treatment. However, the specific contribution of the patch compartment to COC-induced stereotypy following repeated exposure is unknown. To elucidate the involvement of the patch compartment to the development of stereotypy following repeated COC exposure, we determined if destruction of this sub-region altered COC-induced behaviors. The neurons of the patch compartment were ablated by bilateral infusion of the neurotoxin dermorphin-saporin (DERM-SAP; 17 ng/μl) into the striatum. Animals were allowed to recover for eight days following the infusion, and then were given daily injections of COC (25mg/kg) or saline for one week, followed by a weeklong drug-free period. Animals were then given a challenge dose of saline or COC, observed for 2h in activity chambers and sacrificed. The number of mu-labeled patches in the striatum were reduced by DERM-SAP pretreatment. In COC-treated animals DERM-SAP pretreatment significantly reduced the immobilization and intensity of stereotypy but increased locomotor activity. DERM-SAP pretreatment attenuated COC-induced c-Fos expression in the patch compartment, while enhancing COC-induced c-Fos expression in the matrix compartment. These data indicate that the patch compartment contributes to repetitive behavior and suggests that alterations in activity in the patch vs matrix compartments may underlie to this phenomenon.
Collapse
Affiliation(s)
- Ryan C Murray
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States
| | - Mary C Logan
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States
| | - Kristen A Horner
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States.
| |
Collapse
|
20
|
Reinius B, Blunder M, Brett FM, Eriksson A, Patra K, Jonsson J, Jazin E, Kullander K. Conditional targeting of medium spiny neurons in the striatal matrix. Front Behav Neurosci 2015; 9:71. [PMID: 25870547 PMCID: PMC4375991 DOI: 10.3389/fnbeh.2015.00071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/05/2015] [Indexed: 01/15/2023] Open
Abstract
The striatum serves as the main input to the basal ganglia, and is key for the regulation of motor behaviors, compulsion, addiction, and various cognitive and emotional states. Its deterioration is associated with degenerative disorders such as Huntington's disease. Despite its apparent anatomical uniformity, it consists of intermingled cell populations, which have precluded straightforward anatomical sub-classifications adhering to functional dissections. Approximately 95% of the striatal neurons are inhibitory projection neurons termed medium spiny neurons (MSNs). They are commonly classified according to their expression of either dopamine receptor D1 or D2, which also determines their axonal projection patterns constituting the direct and indirect pathway in the basal ganglia. Immunohistochemical patterns have further indicated compartmentalization of the striatum to the striosomes and the surrounding matrix, which integrate MSNs of both the D1 and D2 type. Here, we present a transgenic mouse line, Gpr101-Cre, with Cre recombinase activity localized to matrix D1 and D2 MSNs. Using two Gpr101-Cre founder lines with different degrees of expression in the striatum, we conditionally deleted the vesicular inhibitory amino acid transporter (VIAAT), responsible for storage of GABA and glycine in synaptic vesicles. Partial ablation of VIAAT (in ~36% of MSNs) resulted in elevated locomotor activity compared to control mice, when provoked with the monoamine reuptake inhibitor cocaine. Near complete targeting of matrix MSNs led to profoundly changed motor behaviors, which increased in severity as the mice aged. Moreover, these mice had exaggerated muscle rigidity, retarded growth, increased rate of spontaneous deaths, and defective memory. Therefore, our data provide a link between dysfunctional GABA signaling of matrix MSNs to specific behavioral alterations, which are similar to the symptoms of Huntington's disease.
Collapse
Affiliation(s)
- Björn Reinius
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden ; Department of Organismal Biology, EBC, Uppsala University Uppsala, Sweden
| | - Martina Blunder
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Frances M Brett
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Anders Eriksson
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Kalicharan Patra
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Jörgen Jonsson
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University Uppsala, Sweden
| | - Klas Kullander
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| |
Collapse
|
21
|
Biezonski DK, Trifilieff P, Meszaros J, Javitch JA, Kellendonk C. Evidence for limited D1 and D2 receptor coexpression and colocalization within the dorsal striatum of the neonatal mouse. J Comp Neurol 2015; 523:1175-89. [PMID: 25556545 DOI: 10.1002/cne.23730] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023]
Abstract
The striatum is the major input nucleus of the basal ganglia involved in reward processing, goal-directed behaviors, habit learning, and motor control. The striatum projects to the basal ganglia output nuclei via the "direct" and "indirect" pathways, which can be distinguished by their projection fields and their opposing effects on behavior. In adult animals, the functional opposition is modulated by the differential actions of D1 and D2 dopamine receptors (D1R, D2R), the expression of which is largely separated between these pathways. To determine whether a similar degree of separation exists earlier in development, we used dual-label immunohistochemistry to map dorsal-striatal D1R and D2R expression at the promoter level in postnatal day 0 (PD0) Drd1a-tdTomato/Drd2-GFP BAC transgenic mice, and at the receptor level by costaining for native D1R and D2R in wildtype (WT) PD0 animals. To assess for potential molecular interactions between D1R and D2R we also employed a recently developed proximity-ligation assay (PLA). Limited coexpression and colocalization of the D1R and D2R proteins was found in clusters of neurons endemic to the "patch" compartment as identified by costaining with tyrosine hydroxylase, but not outside these clusters. Moreover, in contrast to our recent findings where we failed to detect a D1R-D2R PLA signal in the adult striatum, in PD0 striatum we did identify a clear PLA signal for this pair of receptors. This colocalization at close proximity points to a possible role for D1R/D2R-mediated crosstalk in early striatal ontogeny.
Collapse
Affiliation(s)
- Dominik K Biezonski
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University, New York State Psychiatric Institute, New York, New York, 10032, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
The striosome (or patch) was first identified with anatomical techniques as neurons organized in a three-dimensional labyrinth inserted in and interdigitating the rest of neostriatum: the matrix. Striosome and matrix rapidly became known as two neuronal compartments expressing different biochemical markers, embryonic development and afferent and efferent connectivity. In spite of extensive intrinsic neuronal axonal and dendritic extensions supposed to exchange information between matrix and striosomes, evidence suggested the presence of independent areas. Here, we report that indeed these two areas do not exchange synaptic information. We used genetic expression of channel rhodopsin 2 carried by adeno-associated virus serotype 10 (AAVrh10) that only expresses in neurons of the matrix compartment. Whole-cell patch-clamp recordings of matrix neurons activated by light pulses consistently produced inhibitory postsynaptic currents (IPSCs), but the same manipulation did not evoke IPSCs in striosome neurons. The matrix contains both direct and indirect striatal output pathways. By targeting striatal matrix expression of designer receptors exclusively activated by a designer drug (DREADD) hM3di carried by AAVrh10, we were able to inhibit the matrix neuronal compartment of the dorsolateral striatum during performance of a learned single-pellet reach-to-grasp task. As expected, inhibition of matrix neurons by systemic administration of DREADD agonist clozapine-n-oxide interfered with performance of the learned task.
Collapse
|
23
|
Striatal patch compartment lesions alter methamphetamine-induced behavior and immediate early gene expression in the striatum, substantia nigra and frontal cortex. Brain Struct Funct 2013; 219:1213-29. [PMID: 23625147 DOI: 10.1007/s00429-013-0559-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
Methamphetamine (METH) induces stereotypy, which is characterized as inflexible, repetitive behavior. Enhanced activation of the patch compartment of the striatum has been correlated with stereotypy, suggesting that stereotypy may be related to preferential activation of this region. However, the specific contribution of the patch compartment to METH-induced stereotypy is not clear. To elucidate the involvement of the patch compartment to the development of METH-induced stereotypy, we determined if destruction of this sub-region altered METH-induced behaviors. Animals were bilaterally infused in the striatum with the neurotoxin dermorphin-saporin (DERM-SAP; 17 ng/μl) to specifically ablate the neurons of the patch compartment. Eight days later, animals were treated with METH (7.5 mg/kg), placed in activity chambers, observed for 2 h and killed. DERM-SAP pretreatment significantly reduced the number and total area of mu-labeled patches in the striatum. DERM-SAP pretreatment significantly reduced the intensity of METH-induced stereotypy and the spatial immobility typically observed with METH-induced stereotypy. In support of this observation, DERM-SAP pretreatment also significantly increased locomotor activity in METH-treated animals. In the striatum, DERM-SAP pretreatment attenuated METH-induced c-Fos expression in the patch compartment, while enhancing METH-induced c-Fos expression in the matrix compartment. DERM-SAP pretreatment followed by METH administration augmented c-Fos expression in the SNpc and reduced METH-induced c-Fos expression in the SNpr. In the medial prefrontal, but not sensorimotor cortex, c-Fos and zif/268 expression was increased following METH treatment in animals pre-treated with DERM-SAP. These data indicate that the patch compartment is necessary for the expression of repetitive behaviors and suggests that alterations in activity in the basal ganglia may contribute to this phenomenon.
Collapse
|
24
|
Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2012; 2:a009621. [PMID: 23071379 DOI: 10.1101/cshperspect.a009621] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field.
Collapse
Affiliation(s)
- José L Lanciego
- Department of Neuroscience, Center for Applied Medical Research (CIMA & CIBERNED), University of Navarra Medical College, Pamplona, Spain
| | | | | |
Collapse
|
25
|
Horner KA, Hebbard JC, Logan AS, Vanchipurakel GA, Gilbert YE. Activation of mu opioid receptors in the striatum differentially augments methamphetamine-induced gene expression and enhances stereotypic behavior. J Neurochem 2012; 120:779-94. [PMID: 22150526 DOI: 10.1111/j.1471-4159.2011.07620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mu opioid receptors are densely expressed in the patch compartment of striatum and contribute to methamphetamine-induced patch-enhanced gene expression and stereotypy. To further elucidate the role of mu opioid receptor activation in these phenomena, we examined whether activation of mu opioid receptors would enhance methamphetamine-induced stereotypy and prodynorphin, c-fos, arc and zif/268 expression in the patch and/or matrix compartments of striatum, as well as the impact of mu opioid receptor activation on the relationship between patch-enhanced gene expression and stereotypy. Male Sprague-Dawley rats were intrastriatally infused with d-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO; 1 μg/μL), treated with methamphetamine (0.5 mg/kg) and killed at 45 min or 2 h later. DAMGO augmented methamphetamine-induced zif/268 mRNA expression in the patch and matrix compartments, while prodynorphin expression was increased in the dorsolateral patch compartment. DAMGO pre-treatment did not affect methamphetamine-induced arc and c-fos expression. DAMGO enhanced methamphetamine-induced stereotypy and resulted in greater patch versus matrix expression of prodynorphin in the dorsolateral striatum, leading to a negative correlation between the two. These findings indicate that mu opioid receptors contribute to methamphetamine-induced stereotypy, but can differentially influence the genomic responses to methamphetamine. These data also suggest that prodynorphin may offset the overstimulation of striatal neurons by methamphetamine.
Collapse
Affiliation(s)
- Kristen A Horner
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.
| | | | | | | | | |
Collapse
|
26
|
Lee H, Sawatari A. Medium spiny neurons of the neostriatal matrix exhibit specific, stereotyped changes in dendritic arborization during a critical developmental period in mice. Eur J Neurosci 2011; 34:1345-54. [PMID: 21995728 DOI: 10.1111/j.1460-9568.2011.07852.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In mice, the matrix compartment of the striatum (caudate/putamen) undergoes major developmental changes during the second postnatal week, including the establishment of corticostriatal and nigrostriatal afferents, the maturation of parvalbumin-positive interneurons and the appearance of perineuronal nets. It is not known if any of these events influence the dendritic structure of medium spiny neurons, the principal output cells of the striatum. To determine whether any measurable changes in the dendrites of matrix medium spiny neurons occur during this important developmental period, we labeled individual cells at different time points flanking the second postnatal week. These cells exhibit distinct dendritic morphologies from the earliest postnatal time points examined. Furthermore, our data show that the dendritic arbors of these neurons change in length, branch points, diameter and tortuosity, regardless of morphological type. The increase in dendritic length is accompanied by a decrease in the number of branch points that occur in different, but consistent, parts of the dendritic arbor. All of these changes are most pronounced during the second postnatal week, coinciding with a number of developmental events considered important for consolidating circuitry within the striatal matrix. Our results further support the critical importance of this early postnatal period in striatal development.
Collapse
Affiliation(s)
- Hyunchul Lee
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
27
|
Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Neurochemical characterization of the tree shrew dorsal striatum. Front Neuroanat 2011; 5:53. [PMID: 21887131 PMCID: PMC3157016 DOI: 10.3389/fnana.2011.00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 08/01/2011] [Indexed: 11/29/2022] Open
Abstract
The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington’s, Tourette’s syndrome, obsessive–compulsive disorders, and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei), which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally) can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia) are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase, and acetylcholinesterase immunohistochemistry), and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.
Collapse
Affiliation(s)
- Matthew W Rice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
28
|
Unal B, Ibáñez-Sandoval O, Shah F, Abercrombie ED, Tepper JM. Distribution of tyrosine hydroxylase-expressing interneurons with respect to anatomical organization of the neostriatum. Front Syst Neurosci 2011; 5:41. [PMID: 21713112 PMCID: PMC3112318 DOI: 10.3389/fnsys.2011.00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/24/2011] [Indexed: 11/23/2022] Open
Abstract
We have recently shown in vitro that striatal tyrosine hydroxylase-expressing interneurons identified in transgenic mice by expression of enhanced green fluorescent protein (TH-eGFP) display electrophysiological profiles that are distinct from those of other striatal interneurons. Furthermore, striatal TH-eGFP interneurons show marked diversity in their electrophysiological properties and have been divided into four distinct subtypes. One question that arises from these observations is whether striatal TH-eGFP interneurons are distributed randomly, or obey some sort of organizational plan as has been shown to be the case with other striatal interneurons. An understanding of the striatal TH-eGFP interneuronal patterning is a vital step in understanding the role of these neurons in striatal functioning. Therefore, in the present set of studies the location of electrophysiologically identified striatal TH-eGFP interneurons was mapped. In addition, the distribution of TH-eGFP interneurons with respect to the striatal striosome–matrix compartmental organization was determined using μ-opioid receptor (MOR) immunofluorescence or intrinsic TH-eGFP fluorescence to delineate striosome and matrix compartments. Overall, the distribution of the different TH-eGFP interneuronal subtypes did not differ in dorsal versus ventral striatum. However, striatal TH-eGFP interneurons were found to be mostly in the matrix in the dorsal striatum whereas a significantly higher proportion of these neurons was located in MOR-enriched domains of the ventral striatum. Further, the majority of striatal TH-eGFP interneurons was found to be located within 100 μm of a striosome–matrix boundary. Taken together, the current results suggest that TH-eGFP interneurons obey different organizational principles in dorsal versus ventral striatum, and may play a role in communication between striatal striosome and matrix compartments.
Collapse
Affiliation(s)
- Bengi Unal
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey Newark, NJ, USA
| | | | | | | | | |
Collapse
|
29
|
Amemori KI, Gibb LG, Graybiel AM. Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments. Front Hum Neurosci 2011; 5:47. [PMID: 21660099 PMCID: PMC3105240 DOI: 10.3389/fnhum.2011.00047] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/06/2011] [Indexed: 11/28/2022] Open
Abstract
We propose here that the modular organization of the striatum reflects a context-sensitive modular learning architecture in which clustered striosome-matrisome domains participate in modular reinforcement learning (RL). Based on anatomical and physiological evidence, it has been suggested that the modular organization of the striatum could represent a learning architecture. There is not, however, a coherent view of how such a learning architecture could relate to the organization of striatal outputs into the direct and indirect pathways of the basal ganglia, nor a clear formulation of how such a modular architecture relates to the RL functions attributed to the striatum. Here, we hypothesize that striosome-matrisome modules not only learn to bias behavior toward specific actions, as in standard RL, but also learn to assess their own relevance to the environmental context and modulate their own learning and activity on this basis. We further hypothesize that the contextual relevance or "responsibility" of modules is determined by errors in predictions of environmental features and that such responsibility is assigned by striosomes and conveyed to matrisomes via local circuit interneurons. To examine these hypotheses and to identify the general requirements for realizing this architecture in the nervous system, we developed a simple modular RL model. We then constructed a network model of basal ganglia circuitry that includes these modules and the direct and indirect pathways. Based on simple assumptions, this model suggests that while the direct pathway may promote actions based on striatal action values, the indirect pathway may act as a gating network that facilitates or suppresses behavioral modules on the basis of striatal responsibility signals. Our modeling functionally unites the modular compartmental organization of the striatum with the direct-indirect pathway divisions of the basal ganglia, a step that we suggest will have important clinical implications.
Collapse
Affiliation(s)
- Ken-ichi Amemori
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Leif G. Gibb
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| |
Collapse
|
30
|
Horner KA, Noble ES, Gilbert YE. Methamphetamine-induced stereotypy correlates negatively with patch-enhanced prodynorphin and arc mRNA expression in the rat caudate putamen: the role of mu opioid receptor activation. Pharmacol Biochem Behav 2010; 95:410-21. [PMID: 20298714 DOI: 10.1016/j.pbb.2010.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/19/2010] [Accepted: 02/27/2010] [Indexed: 10/19/2022]
Abstract
Amphetamines induce stereotypy, which correlates with patch-enhanced c-Fos expression the patch compartment of caudate putamen (CPu). Methamphetamine (METH) treatment also induces patch-enhanced expression of prodynorphin (PD), arc and zif/268 in the CPu. Whether patch-enhanced activation of any of these genes correlates with METH-induced stereotypy is unknown, and the factors that contribute to this pattern of expression are poorly understood. Activation of mu opioid receptors, which are expressed by the neurons of the patch compartment, may underlie METH-induced patch-enhanced gene expression and stereotypy. The current study examined whether striatal mu opioid receptor blockade altered METH-induced stereotypy and patch-enhanced gene expression, and if there was a correlation between the two responses. Animals were intrastriatally infused with the mu antagonist CTAP (10 microg/microl), treated with METH (7.5 mg/kg, s.c.), placed in activity chambers for 3h, and then sacrificed. CTAP pretreatment attenuated METH-induced increases in PD, arc and zif/268 mRNA expression and significantly reduced METH-induced stereotypy. Patch-enhanced PD and arc mRNA expression in the dorsolateral CPu correlated negatively with METH-induced stereotypy. These data indicate that mu opioid receptor activation contributes to METH-induced gene expression in the CPu and stereotypy, and that patch-enhanced PD and arc expression may be a homeostatic response to METH treatment.
Collapse
Affiliation(s)
- Kristen A Horner
- Division of Basic Sciences, Mercer University School of Medicine, Macon, GA 31207, USA.
| | | | | |
Collapse
|
31
|
Gerfen CR, Bolam JP. The Neuroanatomical Organization of the Basal Ganglia. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374767-9.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
32
|
Zombeck JA, Lewicki AD, Patel K, Gupta T, Rhodes JS. Patterns of neural activity associated with differential acute locomotor stimulation to cocaine and methamphetamine in adolescent versus adult male C57BL/6J mice. Neuroscience 2009; 165:1087-99. [PMID: 19932887 DOI: 10.1016/j.neuroscience.2009.11.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/12/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
Adolescence is a time period when major changes occur in the brain with long-term consequences for behavior. One ramification is altered responses to drugs of abuse, but the specific brain mechanisms and implications for mental health are poorly understood. Here, we used a mouse model in which adolescents display dramatically reduced sensitivity to the acute locomotor stimulating effects of cocaine and methamphetamine. The goal was to identify key brain regions or circuits involved in the differential behavior. Male adolescent (postnatal day (PN), 30-35) and young adult (PN, 69-74) C57BL/6J mice were administered an i.p. injection of cocaine (0, 15, 30 mg/kg) or methamphetamine (0, 2, 4 mg/kg) and euthanized 90 min later. Locomotor activity was monitored continuously in the home cage by video tracking. Immunohistochemical detection of Fos protein was used to quantify neuronal activation in 16 different brain regions. As expected, adolescents were less sensitive to the locomotor stimulating effects of cocaine and methamphetamine as indicated by a rightward shift in the dose response relationship. After a saline injection, adolescents showed similar levels of Fos as adults in all regions except the dorsal caudate (CPuD) and lateral caudate (CPuL) where levels were lower in adolescents. Cocaine and methamphetamine dose dependently increased Fos in all brain regions sampled in both adolescents and adults, but Fos levels were similar in both age groups for a majority of regions and doses. Locomotor activity was correlated with Fos in several brain areas within adolescent and adult groups, and adolescents had a significantly greater induction of Fos for a given amount of locomotor activity in key brain regions including the caudate where they showed reduced Fos under baseline conditions. Future research will identify the molecular and cellular events that are responsible for the differential psychostimulant-induced patterns of brain activation and behavior observed in adolescent versus adult mice.
Collapse
Affiliation(s)
- J A Zombeck
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The basal ganglia occupy the core of the forebrain and consist of evolutionarily conserved motor nuclei that form recurrent circuits critical for motivation and motor planning. The striatum is the main input nucleus of the basal ganglia and a key neural substrate for procedural learning and memory. The vast majority of striatal neurons are spiny GABAergic projection neurons, which exhibit slow but temporally precise spiking in vivo. Contributing to this precision are several different types of interneurons that constitute only a small fraction of total neuron number but play a critical role in regulating striatal output. This review examines the cellular physiology and modulation of striatal neurons that give rise to their unique properties and function.
Collapse
Affiliation(s)
- Anatol C Kreitzer
- Gladstone Institute of Neurological Disease and Departments of Physiology and Neurology, University of California, San Francisco, California 94158, USA.
| |
Collapse
|
34
|
Horner KA, Noble ES, Lauterbach EC. Differential regulation of prodynophin,c-fos, and serotonin transporter mRNA following withdrawal from a chronic, escalating dose regimen of D-amphetamine. Synapse 2009; 63:257-68. [DOI: 10.1002/syn.20606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
White NM. Some highlights of research on the effects of caudate nucleus lesions over the past 200 years. Behav Brain Res 2008; 199:3-23. [PMID: 19111791 DOI: 10.1016/j.bbr.2008.12.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/12/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
This review describes experiments on the effects of caudate nucleus lesions on behavior in monkeys, cats and rats. Early work on monkeys and cats focused on the relationship of the caudate to the cortex in motor control, leading to the idea that the caudate serves to inhibit behaviors initiated by the cortex. However, investigation of this hypothesis with systematic behavioral testing in all three species did not support this idea; rather, these studies provided evidence that caudate lesions affect memory functions. Two main types of memory tasks were affected. One type involved reinforced stimulus-response (S-R) associations, the other involved spatial information, response-reinforcer contingencies, or working memory. Recent evidence, mainly from rats, suggests that the dorsolateral part of the caudoputamen is central to the processing and consolidation of memory for reinforced S-R associations, and that the more medial and anterior parts of the same structure are part of a neural circuit that (in some cases) also includes the hippocampus, and mediates relational information and certain forms of working memory. The possibility that the spatial distribution of the patch and matrix compartments within the caudoputamen underlies these regional differences is discussed.
Collapse
Affiliation(s)
- Norman M White
- Department of Psychology, McGill University, 1205 Dr Penfield Avenue, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
36
|
van Dongen YC, Mailly P, Thierry AM, Groenewegen HJ, Deniau JM. Three-dimensional organization of dendrites and local axon collaterals of shell and core medium-sized spiny projection neurons of the rat nucleus accumbens. Brain Struct Funct 2008; 213:129-47. [PMID: 18239939 PMCID: PMC2522331 DOI: 10.1007/s00429-008-0173-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/15/2008] [Indexed: 11/24/2022]
Abstract
Medium-sized spiny projection neurons (MSN) in the head of the primate caudate nucleus are thought to have preferred dendritic orientations that tend to parallel the orientations of the striosomes. Moreover, recurrent axon collaterals of MSN in the rat dorsal striatum have been categorized into two types, i.e., restricted and widespread. The nucleus accumbens (Acb) has a highly complex compartmental organization, and the spatial organization of dendritic and axonal arbors of MSN has not yet been systematically studied. In this study, using single-cell juxtacellular labeling with neurobiotin as well as anterograde neuroanatomical tracing with biotinylated dextran amine, we investigated the three-dimensional (3D) organization of dendrites and axons of MSN of the rat Acb in relation to subregional (shell-core) and compartmental (patch-matrix) boundaries. Our results show that dendritic arbors of MSN in both the Acb shell and core subregions are preferentially oriented, i.e., they are flattened in at least one of the 3D-planes. The preferred orientations are influenced by shell-core and patch-matrix boundaries, suggesting parallel and independent processing of information. Dendritic orientations of MSN of the Acb core are more heterogeneous than those of the shell and the dorsal striatum, suggesting a more complex distribution of striatal inputs within the core. Although dendrites respect the shell-core and patch-matrix boundaries, recurrent axon collaterals may cross these boundaries. Finally, different degrees of overlap between dendritic and axonal arborizations of individual MSN were identified, suggesting various possibilities of lateral inhibitory interactions within and between, functionally distinct territories of the Acb.
Collapse
Affiliation(s)
- Yvette C. van Dongen
- Department of Anatomy and Neurosciences, Amsterdam, Research Institute Neurosciences Vrije Universiteit, VU University Medical Center, P.O. Box 7057, MF-G102, 1007 MC Amsterdam, The Netherlands
| | - Philippe Mailly
- Institut National de la Santé et de la Recherche Médicale, Unité 114, Chaire de Neuropharmacologie, Collège de France, 75231 Paris, France
- Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France
| | - Anne-Marie Thierry
- Institut National de la Santé et de la Recherche Médicale, Unité 114, Chaire de Neuropharmacologie, Collège de France, 75231 Paris, France
| | - Henk J. Groenewegen
- Department of Anatomy and Neurosciences, Amsterdam, Research Institute Neurosciences Vrije Universiteit, VU University Medical Center, P.O. Box 7057, MF-G102, 1007 MC Amsterdam, The Netherlands
| | - Jean-Michel Deniau
- Institut National de la Santé et de la Recherche Médicale, Unité 114, Chaire de Neuropharmacologie, Collège de France, 75231 Paris, France
| |
Collapse
|
37
|
Hertel N, Krishna-K, Nuernberger M, Redies C. A cadherin-based code for the divisions of the mouse basal ganglia. J Comp Neurol 2008; 508:511-28. [DOI: 10.1002/cne.21696] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Horner KA, Keefe KA. Regulation of psychostimulant-induced preprodynorphin, c-fos and zif/268 messenger RNA expression in the rat dorsal striatum by mu opioid receptor blockade. Eur J Pharmacol 2006; 532:61-73. [PMID: 16443216 DOI: 10.1016/j.ejphar.2005.12.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/12/2005] [Accepted: 12/19/2005] [Indexed: 11/27/2022]
Abstract
Several studies have shown that psychostimulants can induce differential immediate early gene and neuropeptide expression in the patch versus matrix compartments of dorsal striatum. The patch compartment contains a high density of mu opioid receptors and activation of these receptors may contribute to psychostimulant-induced gene expression in the patch versus matrix compartments of dorsal striatum. However, the contribution of mu opioid receptor activation to psychostimulant-induced changes in gene expression in the patch compartment of dorsal striatum has not been examined. The current study examined the role of mu opioid receptors in psychostimulant induction of preprodynorphin, c-fos and zif/268 messenger RNA expression in the patch versus matrix compartments of dorsal striatum. Male Sprague-Dawley rats were treated with the mu opioid receptor antagonist, clocinnamox (1 mg/kg, s.c.), 24 h prior to treatment with cocaine (30 mg/kg, i.p.) or methamphetamine (15 mg/kg, s.c.) and sacrificed 45 min or 3 h later. Mu opioid receptor antagonism blocked psychostimulant-induced preprodynorphin messenger RNA expression only in the rostral patch compartment, whereas psychostimulant-induced zif/268 messenger RNA expression in the patch and matrix compartments was attenuated throughout the dorsal striatum. Clocinnamox pretreatment had no effect on stimulant-induced increases in c-fos expression. These data suggest that mu opioid receptor activation plays a specific role in psychostimulant-induced preprodynorphin messenger RNA expression in the rostral patch compartment and zif/268 messenger RNA expression throughout dorsal striatum.
Collapse
Affiliation(s)
- Kristen A Horner
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| | | |
Collapse
|
39
|
Martin C, Plat M, Nerriére-Daguin V, Coulon F, Uzbekova S, Venturi E, Condé F, Hermel JM, Hantraye P, Tesson L, Anegon I, Melchior B, Peschanski M, Le Mauff B, Boeffard F, Sergent-Tanguy S, Neveu I, Naveilhan P, Soulillou JP, Terqui M, Brachet P, Vanhove B. Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Res 2005; 14:373-84. [PMID: 16201404 DOI: 10.1007/s11248-004-7268-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transplantation of fetal porcine neurons is a potential therapeutic strategy for the treatment of human neurodegenerative disorders. A major obstacle to xenotransplantation, however, is the immune-mediated rejection that is resistant to conventional immunosuppression. To determine whether genetically modified donor pig neurons could be used to deliver immunosuppressive proteins locally in the brain, transgenic pigs were developed that express the human T cell inhibitory molecule hCTLA4-Ig under the control of the neuron-specific enolase promoter. Expression was found in various areas of the brain of transgenic pigs, including the mesencephalon, hippocampus and cortex. Neurons from 28-day old embryos secreted hCTLA4-Ig in vitro and this resulted in a 50% reduction of the proliferative response of human T lymphocytes in xenogenic proliferation assays. Transgenic embryonic neurons also secreted hCTLA4-Ig and had developed normally in vivo several weeks after transplantation into the striatum of immunosuppressed rats that were used here to study the engraftment in the absence of immunity. In conclusion, these data show that neurons from our transgenic pigs express hCTLA4-Ig in situ and support the use of this material in future pre-clinical trials in neuron xenotransplantation.
Collapse
Affiliation(s)
- Caroline Martin
- Institut de Transplantation et de Recherche en Transplantation, INSERM U643, CHU Hôtel Dieu, 30, Bld J Monnet, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rymar VV, Sasseville R, Luk KC, Sadikot AF. Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum. J Comp Neurol 2004; 469:325-39. [PMID: 14730585 DOI: 10.1002/cne.11008] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We determined the neurogenesis characteristics of a distinct subclass of rat striatum gamma-aminobutyric acidergic (GABAergic) interneurons expressing the calcium-binding protein calretinin (CR). Timed-pregnant rats were given an intraperitoneal injection of 5-bromo-2'-deoxyuridine (BrdU), a marker of cell proliferation, on designated days between embryonic day 12 (E12) and E21. CR-immunoreactive (-IR) neurons and BrdU-positive nuclei were labeled in the adult neostriatum by double immunohistochemistry, and the proportion of double-labeled cells was quantified. CR-IR interneurons of the neostriatum show maximum birth rates (>10% double labeling) between E14 and E17, with a peak at E15. CR-IR interneurons occupying the lateral half of the neostriatum become postmitotic prior to medial neurons. In the precomissural neostriatum, the earliest-born neurons occupy the lateral quadrants and the latest-born neurons occupy the dorsomedial sector. No significant rostrocaudal neurogenesis gradient is observed. CR-IR neurons make up 0.5% of the striatal population and are localized in both the patch and the matrix compartments. CR-IR neurons of the patch compartment are born early (E13-15), with later-born neurons (E16-18) populating mainly the matrix compartment. CR-IR cells of the neostriatum are a distinct subclass of interneurons that are born at an intermediate time during striatal development and share common neurogenesis characteristics with other interneurons and projection neurons produced in the ventral telencephalon.
Collapse
Affiliation(s)
- Vladimir V Rymar
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
41
|
Bushong EA, Martone ME, Ellisman MH. Examination of the relationship between astrocyte morphology and laminar boundaries in the molecular layer of adult dentate gyrus. J Comp Neurol 2003; 462:241-51. [PMID: 12794746 DOI: 10.1002/cne.10728] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes are known to play an integral role in the development of compartmental boundaries in the brain and in the creation of trauma-induced boundaries. However, the physical relationship between astrocytes and such boundaries in the adult brain is less clear. If astrocytes do respect or play an ongoing role in maintaining such boundaries, a correlation between the position of such a boundary and the morphology of neighboring astrocytes might be observable. In this study, we examined the distribution of astrocytes with respect to the laminar boundaries compartmentalizing afferents to the dentate gyrus molecular layer. In addition, we attempted to determine whether astrocyte morphology is influenced by these laminar boundaries. To this end, protoplasmic astrocytes in the adult rat dentate gyrus were revealed with fluorescent tracer dyes and subsequently analyzed with respect to laminar boundaries demarcated by means of immunolabeling for the lamina-specific molecules EphA4 and neural cell adhesion molecule (N-CAM). We find that astrocyte distribution is influenced by the boundary separating the associational/commissural and perforant path afferents. In addition, we show that astrocytes in this region are polarized in their morphology, unlike typically stellate astrocytes, but that the laminar boundaries themselves do not appear to confer this morphology. This polarized morphology, however acquired, may have import for the functioning of astrocytes within the highly organized composition of the dentate gyrus molecular layer and for the overall microphysiology of this and other brain regions.
Collapse
Affiliation(s)
- Eric A Bushong
- National Center for Microscopy and Imaging Research, University of California- San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
42
|
Usunoff KG, Itzev DE, Ovtscharoff WA, Marani E. Neuromelanin in the human brain: a review and atlas of pigmented cells in the substantia nigra. Arch Physiol Biochem 2002; 110:257-369. [PMID: 12516659 DOI: 10.1076/apab.110.4.257.11827] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- K G Usunoff
- Department of Anatomy and Histology, Medical University, Sofia, Bulgaria
| | | | | | | |
Collapse
|
43
|
Arts MPM, Groenewegen HJ. Relationships of the Dendritic Arborizations of Ventral Striatomesencephalic Projection Neurons With Boundaries of Striatal Compartments. An In Vitro Intracellular Labelling Study in the Rat. Eur J Neurosci 2002; 4:574-588. [PMID: 12106343 DOI: 10.1111/j.1460-9568.1992.tb00907.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied the relationships of the dendrites of ventral striatomesencephalic projection neurons with the compartmental structure of the ventral striatum, as revealed by enkephalin immunohistochemistry. Lightly fixed slices were employed in which Lucifer yellow was intracellularly injected into neurons that were retrogradely labelled following Fast Blue injections in the ventral tegmental area. Double immunohistochemical staining was carried out using antisera to Lucifer yellow and Leu-enkephalin. Most of the 226 injected cells were located in the core region of the nucleus accumbens. All these neurons were of the small- to medium-sized spiny type. The dendritic arborizations of over 90% of the cells remained within the compartment in which the parent cell bodies resided. The dendrites of most of these neurons abutted the border of the compartment, whereas a smaller number of neurons had dendrites that were distant from any compartmental boundary. The dendrites of fewer than 10% of the neurons crossed the borders of compartments. Only a few cells were injected in the shell region of the nucleus accumbens. None of these neurons extended its dendrites into the core region of the nucleus or into the territory of the clusters of small cells which characterize the shell. The present results demonstrate that the dendrites of the great majority of ventral striatomesencephalic neurons comply with the boundaries of ventral striatal enkephalin compartments. Together with the results of previous studies showing that such compartments are selectively innervated by thalamic and cortical afferents, and have outputs to different areas in the ventral mesencephalon, the present data suggest the existence of discrete channels through the ventral striatum.
Collapse
Affiliation(s)
- Monique P. M. Arts
- Department of Anatomy and Embryology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | |
Collapse
|
44
|
Cicchetti F, Prensa L, Wu Y, Parent A. Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington's disease. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:80-101. [PMID: 11086188 DOI: 10.1016/s0165-0173(00)00039-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper reviews the major anatomical and chemical features of the various types of interneurons in the human striatum, as detected by immunostaining procedures applied to postmortem tissue from normal individuals and patients with Huntington's disease (HD). The human striatum harbors a highly pleomorphic population of aspiny interneurons that stain for either a calcium-binding protein (calretinin, parvalbumin or calbindin D-28k), choline acetyltransferase (ChAT) or NADPH-diaphorase, or various combinations thereof. Neurons that express calretinin (CR), including multitudinous medium and a smaller number of large neurons, are by far the most abundant interneurons in the human striatum. The medium CR+ neurons do not colocalize with any of the known chemical markers of striatal neurons, except perhaps GABA, and are selectively spared in HD. Most large CR+ interneurons display ChAT immunoreactivity and also express substance P receptors. The medium and large CR+ neurons are enriched with glutamate receptor subunit GluR2 and GluR4, respectively. This difference in AMPA GluR subunit expression may account for the relative resistance of medium CR+ neurons to glutamate-mediated excitotoxicity that may be involved in HD. The various striatal chemical markers display a highly heterogeneous distribution pattern in human. In addition to the classic striosomes/matrix compartmentalization, the striosomal compartment itself is composed of a core and a peripheral region, each subdivided by distinct subsets of striatal interneurons. A proper knowledge of all these features that appear unique to humans should greatly help our understanding of the organization of the human striatum in both health and disease states.
Collapse
Affiliation(s)
- F Cicchetti
- Centre de Recherche Université Laval Robert-Giffard, 2601 Chemin de la Canardière, Local F-6500, Québec, G1J 2G3, Beauport, Canada
| | | | | | | |
Collapse
|
45
|
Waldvogel HJ, Kubota Y, Fritschy J, Mohler H, Faull RL. Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: An autoradiographic and immunohistochemical study. J Comp Neurol 1999; 415:313-40. [PMID: 10553118 DOI: 10.1002/(sici)1096-9861(19991220)415:3<313::aid-cne2>3.0.co;2-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The regional and cellular localisation of gamma-aminobutyric acid(A) (GABA(A)) receptors was investigated in the human basal ganglia using receptor autoradiography and immunohistochemical staining for five GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3), beta(2, 3), and gamma(2)) and other neurochemical markers. The results demonstrated that GABA(A) receptors in the striatum showed considerable subunit heterogeneity in their regional distribution and cellular localisation. High densities of GABA(A) receptors in the striosome compartment contained the alpha(2), alpha(3), beta(2, 3), and gamma(2) subunits, and lower densities of receptors in the matrix compartment contained the alpha(1), alpha(2), alpha(3), beta(2,3), and gamma(2) subunits. Also, six different types of neurons were identified in the striatum on the basis of GABA(A) receptor subunit configuration, cellular and dendritic morphology, and chemical neuroanatomy. Three types of alpha(1) subunit immunoreactive neurons were identified: type 1, the most numerous (60%), were medium-sized aspiny neurons that were immunoreactive for parvalbumin and alpha(1), beta(2,3), and gamma(2) subunits; type 2 (38%) were medium-sized to large aspiny neurons immunoreactive for calretinin and alpha(1), alpha(3), beta(2,3), and gamma(2) subunits; and type 3 (2%) were large sparsely spiny neurons immunoreactive for alpha(1), alpha(3), beta(2,3), and gamma(2) subunits. Type 4 neurons were calbindin-positive and immunoreactive for alpha(2), alpha(3), beta(2,3), and gamma(2) subunits. The remaining neurons were immunoreactive for choline acetyltransferase (ChAT) and alpha(3) subunit (type 5) or were neuropeptide Y-positive with no GABA(A) receptor subunit immunoreactivity (type 6). The globus pallidus contained three types of neurons: types 1 and 2 were large neurons and were immunoreactive for alpha(1), alpha(3), beta(2,3), and gamma(2) subunits and for parvalbumin alone (type 1) or for both parvalbumin and calretinin (type 2); type 3 neurons were medium-sized and immunoreactive for calretinin and alpha(1), beta(2, 3), and gamma(2) subunits. These results show that the subunit composition of GABA(A) receptors displays considerable regional and cellular variation in the human striatum but are more homogeneous in the globus pallidus.
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
46
|
Leontovich TA, Mukhina JK, Fedorov AA, Belichenko PV. Morphological study of the entorhinal cortex, hippocampal formation, and basal ganglia in Rett syndrome patients. Neurobiol Dis 1999; 6:77-91. [PMID: 10343323 DOI: 10.1006/nbdi.1998.0234] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Entorhinal cortex (EC), fascia dentata (FD), hippocampus (HP), and basal ganglia (BG) were studied in Rett syndrome (RS) cases and compared with control brains and an autism case. Kluver-Barrera and Golgi methods were used. In RS most of the areas of EC, HP, and FD showed severe cell hypochromia. In the EC all cells of layer II and most in layer III were in a state of total chromatolysis or were "ghost" cells, but the cells of layers V and VI were preserved and moderately hyperchromic. In FD and HP the majority of the granular cells and cells of CA3 and CA4 fields were severely hypochromic, whereas in the CA1 field most cells were normal or slightly hypercaryochromic. In BG mostly mild or moderate aberration from normal cell structure was observed: in striatum, mild hypercaryochromia of small neurons and more expressive hyperchromia of large neurons were found; and in pallidum, mild or moderate hypercaryochromia to severe hyperchromia in pallidum internum was found. Degeneration of thick myelinated fibers was evident in pallidum. Large striatal and pallidal neurons showed signs of constructive changes in Golgi slices. These data allow the determination of the cause of the main symptoms of RS. The motor disorders, including specific stereotyped movements, could be related to the enhanced activity of BG cells due to their deafferentation from the side of the neocortex and to supposed hyperactivity of the EC-striatal pathway; the mental retardation and epileptic seizures could be due to FD-HP involvement.
Collapse
Affiliation(s)
- T A Leontovich
- Laboratory of Neuronal Structure, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
47
|
Waldvogel HJ, Fritschy JM, Mohler H, Faull RL. GABA(A) receptors in the primate basal ganglia: an autoradiographic and a light and electron microscopic immunohistochemical study of the alpha1 and beta2,3 subunits in the baboon brain. J Comp Neurol 1998; 397:297-325. [PMID: 9674559 DOI: 10.1002/(sici)1096-9861(19980803)397:3<297::aid-cne1>3.0.co;2-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The distribution of gamma-aminobutyric acid(A) (GABA(A)) receptors was investigated in the basal ganglia in the baboon brain by using receptor autoradiography and the immunohistochemical localisation of the alpha1 and beta2,3 subunits of the GABA(A) receptor by light and electron microscopy. In the caudate-putamen, the alpha1 subunit was distributed in high densities in the matrix compartment, and the beta2,3 subunits were more homogeneously distributed; the globus pallidus showed lower levels of the alpha1 and beta2,3 subunits. Four types of alpha1 subunit immunoreactive neurons were identified in the baboon striatum: the most numerous (75%) were type 1 medium-sized aspiny neurons; type 2 (2%) were large aspiny neurons with an indented nuclear membrane located in the ventral striatum; type 3 neurons were the least numerous (1%) and were comprised of large neurons in the ventromedial regions of the striatum; and type 4 (22%) neurons were medium to large aspiny neurons located in striosomes. At the ultrastructural level, alpha1 and beta2,3 subunit immunoreactivity was localised in the neuropil of the striatum in both symmetrical and asymmetrical synaptic contacts. In the globus pallidus, alpha1 and beta2,3 subunits were localised on large neurons and were found in three types of synaptic terminals: type 1 terminals were small and established symmetrical synapses; type 2 terminals were large; and type 3 terminals formed small synaptic terminals with subjunctional dense bodies. These results show that the subunit composition of GABA(A) receptors varies between the striosome and the matrix compartments in the striatum and that there is receptor subunit homogeneity in the globus pallidus.
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, University of Auckland, New Zealand.
| | | | | | | |
Collapse
|
48
|
Hanley JJ, Bolam JP. Synaptology of the nigrostriatal projection in relation to the compartmental organization of the neostriatum in the rat. Neuroscience 1997; 81:353-70. [PMID: 9300427 DOI: 10.1016/s0306-4522(97)00212-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The patch-matrix organization of the striatal complex, which is fundamental to the structural and functional organization of the basal ganglia, is characterized on the basis of both connections and neurochemistry. In order to determine whether differences in the connections and neurochemistry are reflected in differences in synaptic organization, we examined the synaptology of the dopaminergic nigrostriatal projection in the patch-matrix complex of the rat. Three approaches were used. First, deposits of the anterograde tracer, biotinylated dextran amine, were placed in the substantia nigra. Sections of perfuse-fixed neostriatum were then processed to reveal anterogradely-labelled nigrostriatal axons and calbindin-D28k immunoreactivity, a marker for the patch-matrix complex. Secondly, sections of perfuse-fixed neostriatum were immunolabelled to reveal both tyrosine hydroxylase, a marker for dopaminergic structures and calbindin-D28k. Labelled axons in the patches and the matrix were examined at both the light and the electron microscopic levels. Finally, in order to test for the presence of fixed GABA in sub-type of anterogradely-labelled terminals in the neostriatum, ultrathin sections were immunolabelled by the post-embedding immunogold method. Based on morphological analysis, anterogradely-labelled nigrostriatal axons were divided into two types (Type I and Type II). The density of tyrosine hydroxylase labelling in the neostriatum prevented the classification of immunolabelled nigrostriatal axons. The Type I anterogradely-labelled axons and tyrosine hydroxylase-positive axons were found both in the patches and in the matrix. They both formed symmetrical synapses with spines, dendrites and occasionally somata. The morphology, dimensions, type of synaptic specialization and the distribution of postsynaptic targets of axons labelled by both methods were similar in the patches and the matrix. The Type I anterogradely-labelled axons were immunonegative for GABA. The Type II anterogradely-labelled axons were GABA-immunopositive, were found only in the matrix and were only present in those animals in which retrograde labelling was observed in the globus pallidus, they are thus not part of the dopaminergic nigrostriatal projection. It is concluded that although the patch-directed and matrix-directed dopaminergic projections from the ventral mesencephalon arise from different populations of dopaminergic neurons, their innervation of neurons in the patches and matrix is similar. The anatomical substrate, and therefore probably also the mechanism, for dopaminergic modulation of the flow of cortical information through the striatal complex in essentially the same in the patch and in the matrix sub-divisions of the striatal complex.
Collapse
Affiliation(s)
- J J Hanley
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, U.K
| | | |
Collapse
|
49
|
Abstract
In the caudate-putamen of the rat, two subpopulations of medium aspiny neurons exist that contain somatostatin. The first subpopulation contains somatostatin 14, somatostatin 28, and somatostatin 28(1-12). The other subpopulation contains only somatostatin 28. To examine the relationship between somatostatin-containing neurons and the patch/matrix compartments, a series of double-labelling experiments using antisera directed against different somatostatin peptides and calbindin were used. Sections stained in this manner were examined with the aid of a confocal microscope. The results of these experiments indicate that somatostatin 28(1-12)-containing neurons may play a role in matrix integration, with some input directed from the patch compartment. In addition, somatostatin 28-containing neurons are more numerous in the patch compartment than somatostatin 28(1-12)-containing neurons, suggesting a possible role for these neurons in patch integration.
Collapse
Affiliation(s)
- W Rushlow
- Department of Anatomy, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
50
|
|