1
|
Ugrumov MV. Hypothalamic neurons fully or partially expressing the dopaminergic phenotype: development, distribution, functioning and functional significance. A review. Front Neuroendocrinol 2024; 75:101153. [PMID: 39128801 DOI: 10.1016/j.yfrne.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Gonzalez Abreu JA, Rosenberg AE, Fricker BA, Wallace KJ, Seifert AW, Kelly AM. Species-typical group size differentially influences social reward neural circuitry during nonreproductive social interactions. iScience 2022; 25:104230. [PMID: 35521530 PMCID: PMC9062245 DOI: 10.1016/j.isci.2022.104230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
We investigated whether nonreproductive social interactions may be rewarding for colonial but not non-colonial species. We found that the colonial spiny mouse (Acomys cahirinus) is significantly more gregarious, more prosocial, and less aggressive than its non-colonial relative, the Mongolian gerbil (Meriones unguiculatus). In an immediate-early gene study, we examined oxytocin (OT) and tyrosine hydroxylase (TH) neural responses to interactions with a novel, same-sex conspecific or a novel object. The paraventricular nucleus of the hypothalamus (PVN) OT cell group was more responsive to interactions with a conspecific compared to a novel object in both species. However, the ventral tegmental area (VTA) TH cell group showed differential responses only in spiny mice. Further, PVN OT and VTA TH neural responses positively correlated in spiny mice, suggesting functional connectivity. These results suggest that colonial species may have evolved neural mechanisms associated with reward in novel, nonreproductive social contexts to promote large group-living.
Collapse
Affiliation(s)
| | - Ashley E. Rosenberg
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Brandon A. Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Kelly J. Wallace
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, 675 Rose Street, Lexington, KY 40506, USA
| | - Aubrey M. Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Ugrumov MV. Brain neurons partly expressing dopaminergic phenotype: location, development, functional significance, and regulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:37-91. [PMID: 24054140 DOI: 10.1016/b978-0-12-411512-5.00004-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In addition to catecholaminergic neurons possessing all the enzymes of catecholamine synthesis and the specific membrane transporters, neurons partly expressing the catecholaminergic phenotype have been found a quarter of a century ago. Most of them express individual enzymes of dopamine (DA) synthesis, tyrosine hydroxylase (TH), or aromatic l-amino acid decarboxylase (AADC), lacking the DA membrane transporter and the vesicular monoamine transporter, type 2. These so-called monoenzymatic neurons are widely distributed throughout the brain in ontogenesis and adulthood being in some brain regions even more numerous than dopaminergic (DA-ergic) neurons. Individual enzymes of DA synthesis are expressed in these neurons continuously or transiently in norm and pathology. It has been proven that monoenzymatic TH neurons and AADC neurons are capable of producing DA in cooperation. It means that l-3,4-dihydroxyphenylalanine (l-DOPA) synthesized from l-tyrosine in monoenzymatic TH neurons is transported to monoenzymatic AADC neurons for DA synthesis. Such cooperative synthesis of DA is considered as a compensatory reaction under a failure of DA-ergic neurons, for example, in neurodegenerative diseases like hyperprolactinemia and Parkinson's disease. Moreover, l-DOPA, produced in monoenzymatic TH neurons, is assumed to play a role of a neurotransmitter or neuromodulator affecting the target neurons via catecholamine receptors. Thus, numerous widespread neurons expressing individual complementary enzymes of DA synthesis serve to produce DA in cooperation that is a compensatory reaction at failure of DA-ergic neurons.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Institute of Developmental Biology and Centre for Brain Research, Russian Academy of Sciences, Moscow, Russia; Institute of Normal Physiology RAMS, Moscow, Russia.
| |
Collapse
|
4
|
Kruger JL, Patzke N, Fuxe K, Bennett NC, Manger PR. Nuclear organization of cholinergic, putative catecholaminergic, serotonergic and orexinergic systems in the brain of the African pygmy mouse (Mus minutoides): organizational complexity is preserved in small brains. J Chem Neuroanat 2012; 44:45-56. [PMID: 22554581 DOI: 10.1016/j.jchemneu.2012.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/16/2022]
Abstract
This study investigated the nuclear organization of four immunohistochemically identifiable neural systems (cholinergic, catecholaminergic, serotonergic and orexinergic) within the brain of the African pygmy mouse (Mus minutoides). The African pygmy mice studied had a brain mass of around 275 mg, making these the smallest rodent brains to date in which these neural systems have been investigated. In contrast to the assumption that in this small brain there would be fewer subdivisions of these neural systems, we found that all nuclei generally observed for these systems in other rodent brains were also present in the brain of the African pygmy mouse. As with other rodents previously studied in the subfamily Murinae, we observed the presence of cortical cholinergic neurons and a compactly organized locus coeruleus. These two features of these systems have not been observed in the non-Murinae rodents studied to date. Thus, the African pygmy mouse displays what might be considered a typical Murinae brain organization, and despite its small size, the brain does not appear to be any less complexly organized than other rodent brains, even those that are over 100 times larger such as the Cape porcupine brain. The results are consistent with the notion that changes in brain size do not affect the evolution of nuclear organization of complex neural systems. Thus, species belonging to the same order generally have the same number and complement of the subdivisions, or nuclei, of specific neural systems despite differences in brain size, phenotype or time since evolutionary divergence.
Collapse
Affiliation(s)
- Jean-Leigh Kruger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
5
|
Ahmed EI, Northcutt KV, Lonstein JS. L-amino acid decarboxylase- and tyrosine hydroxylase-immunoreactive cells in the extended olfactory amygdala and elsewhere in the adult prairie vole brain. J Chem Neuroanat 2011; 43:76-85. [PMID: 22074805 DOI: 10.1016/j.jchemneu.2011.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 11/28/2022]
Abstract
Neurons synthesizing dopamine (DA) are widely distributed in the brain and implicated in a tremendous number of physiological and behavioral functions, including socioreproductive behaviors in rodents. We have recently been investigating the possible involvement of sex- and species-specific TH-immunoreactive (TH-ir) cells in the male prairie vole (Microtus ochrogaster) principal bed nucleus of the stria terminalis (pBST) and posterodorsal medial amygdala (MeApd) in the chemosensory control of their monogamous pairbonding and parenting behaviors. These TH-ir cells are not immunoreactive for dopamine-beta-hydroxylase (DBH), suggesting they are not noradrenergic but possibly DAergic. A DAergic phenotype would require them to contain aromatic L-amino acid decarboxylase (AADC) and here we examined the existence of cells immunoreactive for both TH and AADC in the pBST and MeApd of adult virgin male and female prairie voles. We also investigated the presence of TH/AADC cells in the anteroventral periventricular nucleus (AVPV), medial preoptic area (MPO), arcuate nucleus (ARH), zona incerta (ZI), substantia nigra (SN) and ventral tegmental area (VTA). Among our findings were: (1) the pBST and MeApd each contained completely non-overlapping distributions of TH-ir and AADC-ir cells, (2) the AVPV contained surprisingly few AADC-ir cells and almost no TH-ir cells contained AADC-ir, (3) approximately 60% of the TH-ir cells in the MPO, ARH, and ZI also contained AADC-ir, (4) unexpectedly, only about half of TH-ir cells in the SN and VTA contained AADC-ir, and (5) notable populations of AADC-ir cells were found outside traditional monoamine-synthesizing regions, including some sites that do not contain AADC-ir cells in adult laboratory rats or cats (medial septum and cerebral cortex). In the absence of the chemical requirements to produce DA, monoenzymatic TH-ir cells in the virgin adult prairie vole pBST, MeApd, and elsewhere in their brain may instead produce L-DOPA as an end product and use it as a neurotransmitter or neuromodulator, similar to what has been observed for monoenzymatic TH-synthesizing cells in the laboratory rat brain.
Collapse
Affiliation(s)
- Eman I Ahmed
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
6
|
Kruger JL, Dell LA, Bhagwandin A, Jillani NE, Pettigrew JD, Manger PR. Nuclear organization of cholinergic, putative catecholaminergic and serotonergic systems in the brains of five microchiropteran species. J Chem Neuroanat 2010; 40:210-22. [DOI: 10.1016/j.jchemneu.2010.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/28/2010] [Accepted: 05/28/2010] [Indexed: 11/26/2022]
|
7
|
Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J Chem Neuroanat 2009; 38:241-56. [PMID: 19698780 DOI: 10.1016/j.jchemneu.2009.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 08/06/2009] [Accepted: 08/12/2009] [Indexed: 11/23/2022]
Abstract
Besides the dopaminergic (DA-ergic) neurons possessing the whole set of enzymes of DA synthesis from l-tyrosine and the DA membrane transporter (DAT), the neurons partly expressing the DA-ergic phenotype have been first discovered two decades ago. Most of the neurons express individual enzymes of DA synthesis, tyrosine hydroxylase (TH) or aromatic l-amino acid decarboxylase (AADC) and lack the DAT. A list of the neurons partly expressing the DA-ergic phenotype is not restricted to so-called monoenzymatic neurons, e.g. it includes some neurons co-expressing both enzymes of DA synthesis but lacking the DAT. In contrast to true DA-ergic neurons, monoenzymatic neurons and bienzymatic non-dopaminergic neurons lack the vesicular monoamine transporter 2 (VMAT2) that raises a question about the mechanisms of storing and release of their final synthetic products. Monoenzymatic neurons are widely distributed all through the brain in adulthood being in some brain regions even more numerous than DA-ergic neurons. Individual enzymes of DA synthesis are expressed in these neurons continuously or transiently in norm or under certain physiological conditions. Monoenzymatic neurons, particularly those expressing TH, appear to be even more numerous and more widely distributed in the brain during ontogenesis than in adulthood. Most populations of monoenzymatic TH neurons decrease in number or even disappear by puberty. Functional significance of monoenzymatic neurons remained uncertain for a long time after their discovery. Nevertheless, it has been shown that most monoenzymatic TH neurons and AADC neurons are capable to produce l-3,4-dihydroxyphenylalanine (L-DOPA) from l-tyrosine and DA from L-DOPA, respectively. L-DOPA produced in monoenzymatic TH neurons is assumed to play a role of a neurotransmitter or neuromodulator acting on target neurons via catecholamine receptors. Moreover, according to our hypothesis L-DOPA released from monoenzymatic TH neurons is captured by monoenzymatic AADC neurons for DA synthesis. Such cooperative synthesis of DA is considered as a compensatory reaction under a failure of DA-ergic neurons, e.g. in neurodegenerative diseases like hyperprolactinemia and Parkinson's disease.Thus, a substantial number of the brain neurons express partly the DA-ergic phenotype, mostly individual complementary enzymes of DA synthesis, serving to produce DA in cooperation that is supposed to be a compensatory reaction under the failure of DA-ergic neurons.
Collapse
|
8
|
Zhu H, Clemens S, Sawchuk M, Hochman S. Expression and distribution of all dopamine receptor subtypes (D(1)-D(5)) in the mouse lumbar spinal cord: a real-time polymerase chain reaction and non-autoradiographic in situ hybridization study. Neuroscience 2007; 149:885-97. [PMID: 17936519 DOI: 10.1016/j.neuroscience.2007.07.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 07/18/2007] [Accepted: 08/06/2007] [Indexed: 12/26/2022]
Abstract
Dopamine is a catecholaminergic neuromodulatory transmitter that acts through five molecularly-distinct G protein-coupled receptor subtypes (D(1)-D(5)). In the mammalian spinal cord, dopaminergic axon collaterals arise predominantly from the A11 region of the dorsoposterior hypothalamus and project diffusely throughout the spinal neuraxis. Dopaminergic modulatory actions are implicated in sensory, motor and autonomic functions in the spinal cord but the expression properties of the different dopamine receptors in the spinal cord remain incomplete. Here we determined the presence and the regional distribution of all dopamine receptor subtypes in mouse spinal cord cells by means of quantitative real time polymerase chain reaction (PCR) and digoxigenin-label in situ hybridization. Real-time PCR demonstrated that all dopamine receptors are expressed in the spinal cord with strongly dominant D(2) receptor expression, including in motoneurons and in the sensory encoding superficial dorsal horn (SDH). Laser capture microdissection (LCM) corroborated the predominance of D(2) receptor expression in SDH and motoneurons. In situ hybridization of lumbar cord revealed that expression for all dopamine receptors was largely in the gray matter, including motoneurons, and distributed diffusely in labeled cell subpopulations in most or all laminae. The highest incidence of cellular labeling was observed for D(2) and D(5) receptors, while the incidence of D(1) and D(3) receptor expression was least. We conclude that the expression and extensive postsynaptic distribution of all known dopamine receptors in spinal cord correspond well with the broad descending dopaminergic projection territory supporting a widespread dopaminergic control over spinal neuronal systems. The dominant expression of D(2) receptors suggests a leading role for these receptors in dopaminergic actions on postsynaptic spinal neurons.
Collapse
Affiliation(s)
- H Zhu
- Emory University School of Medicine, Department of Physiology, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
9
|
Saraf A, Virshup DM, Strack S. Differential expression of the B'beta regulatory subunit of protein phosphatase 2A modulates tyrosine hydroxylase phosphorylation and catecholamine synthesis. J Biol Chem 2006; 282:573-80. [PMID: 17085438 DOI: 10.1074/jbc.m607407200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, is stimulated by N-terminal phosphorylation by several kinases and inhibited by protein serine/threonine phosphatase 2A (PP2A). PP2A is a family of heterotrimeric holoenzymes containing one of more than a dozen different regulatory subunits. In comparison with rat forebrain extracts, adrenal gland extracts exhibited TH hyperphosphorylation at Ser(19), Ser(31), and Ser(40), as well as reduced phosphatase activity selectively toward phosphorylated TH. Because the B'beta regulatory subunit of PP2A is expressed in brain but not in adrenal glands, we tested the hypothesis that PP2A/B'beta is a specific TH phosphatase. In catecholamine-secreting PC12 cells, inducible expression of B'beta decreased both N-terminal Ser phosphorylation and in situ TH activity, whereas inducible silencing of endogenous B'beta had the opposite effect. Furthermore, PP2A/B'beta directly dephosphorylated TH in vitro. As to specificity, other PP2A regulatory subunits had negligible effects on TH activity and phosphorylation in situ and in vitro. Whereas B'beta was highly expressed in dopaminergic cell bodies in the substantia nigra, the PP2A regulatory subunit was excluded from TH-positive terminal fields in the striatum and failed to colocalize with presynaptic markers in general. Consistent with a model in which B'beta enrichment in neuronal cell bodies helps confine catecholamine synthesis to axon terminals, TH phosphorylation was higher in processes than in somata of dopaminergic neurons. In summary, we show that B'beta recruits PP2A to modulate TH activity in a tissue- and cell compartment specific fashion.
Collapse
Affiliation(s)
- Amit Saraf
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
10
|
Lemoine S, Leroy D, Warembourg M. Progesterone receptor and dopamine synthesizing enzymes in hypothalamic neurons of the guinea pig: an immunohistochemical triple-label analysis. J Chem Neuroanat 2005; 29:13-20. [PMID: 15589698 DOI: 10.1016/j.jchemneu.2004.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 08/26/2004] [Accepted: 08/26/2004] [Indexed: 11/30/2022]
Abstract
Interactions among gonadal steroid hormones and the dopamine synthesizing enzymes, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC), participate in hypothalamic functions. Several findings suggest that the expression patterns of the progesterone receptor (PR), TH and AADC overlap in the guinea pig brain. However, it remained to be determined whether or not these two enzymes coexist in the same neurons which contain the PR. To test this hypothesis and quantify these colocalization relationships in the hypothalamus, we used a triple-labeling immunofluorescence procedure. Only PR/AADC-immunoreactive cells were seen in the preoptic area but no PR/TH cells and, therefore, no triple immunoreactive cells were found. An occasional colocalization between PR and the two enzymes was observed throughout the rostrocaudal extent of the arcuate nucleus with the greatest concentration of triple-labeled cells in the medial subdivision. In this region, quantitative estimation of cellular immunoreactivity showed that the triple immunoreactive cells represented about 29% of PR/TH cells, 9% of PR/AADC cells and 22% of TH/AADC cells in spite of a very low percentage in relation to total populations of neurons expressing only PR, TH or AADC. Thus, the PR are only present in monoenzymatic AADC expressing neurons in the preoptic area while they can be observed in neurons expressing both enzymes in the arcuate nucleus.
Collapse
|
11
|
Ugrumov MV, Melnikova VI, Lavrentyeva AV, Kudrin VS, Rayevsky KS. Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats. Neuroscience 2004; 124:629-35. [PMID: 14980733 DOI: 10.1016/j.neuroscience.2004.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2004] [Indexed: 11/29/2022]
Abstract
This study was aimed to test our hypothesis about dopamine (DA) synthesis by non-DAergic neurons expressing individual complementary enzymes of the DA synthetic pathway in cooperation, i.e. L-dihydroxyphenylalanine (L-DOPA) synthesized in tyrosine hydroxylase (TH)-expressing neurons is transported to aromatic L-amino acid decarboxylase (AADC)-expressing neurons for conversion to DA. The mediobasal hypothalamus of rats at the 21st embryonic day was used as an experimental model because it contains mainly monoenzymatic TH neurons and AADC neurons (>99%) whereas the fraction of bienzymatic (DAergic) neurons does not exceed 1%. The fetal substantia nigra containing DAergic neurons served as a control. DA and L-DOPA were measured by high performance liquid chromatography in: (1) cell extracts of the cell suspension prepared ex tempora; (2) cell extracts and incubation medium after the static incubation of the cell suspension with, or without exogenous L-tyrosine; (3) effluents of the incubation medium during perifusion of the cell suspension in the presence, or the absence of L-tyrosine. Total amounts of DA and L-DOPA in the incubation medium and cell extracts after the static incubation were considered as the indexes of the rates of their syntheses. L-Tyrosine administration caused the increased L-DOPA synthesis in the mediobasal hypothalamus and substantia nigra. Moreover, L-tyrosine provoked an increase of DA synthesis in the substantia nigra and its decrease in the mediobasal hypothalamus. This contradiction is most probably explained by the L-tyrosine-induced competitive inhibition of the L-DOPA transport to the monoenzymatic AADC-neurons after its release from the monoenzymatic TH neurons. Thus, this study provides convincing evidence of cooperative DA synthesis by non-DAergic neurons expressing TH or AADC in fetal rats at the end of the intrauterine development.
Collapse
Affiliation(s)
- M V Ugrumov
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 117334, Russia.
| | | | | | | | | |
Collapse
|
12
|
Misu Y, Kitahama K, Goshima Y. L-3,4-Dihydroxyphenylalanine as a neurotransmitter candidate in the central nervous system. Pharmacol Ther 2003; 97:117-37. [PMID: 12559386 DOI: 10.1016/s0163-7258(02)00325-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Historically, 3,4-dihydroxyphenylalanine (DOPA) has been believed to be an inert amino acid that alleviates the symptoms of Parkinson's disease by its conversion to dopamine via the enzyme aromatic L-amino acid decarboxylase. In contrast to this generally accepted idea, we propose that DOPA itself is a neurotransmitter and/or neuromodulator, in addition to being a precursor of dopamine. Several criteria, such as synthesis, metabolism, active transport, existence, physiological release, competitive antagonism, and physiological or pharmacological responses, must be satisfied before a compound is accepted as a neurotransmitter. Recent evidence suggests that DOPA fulfills these criteria in its involvement mainly in baroreflex neurotransmission in the lower brainstem and in delayed neuronal death by transient ischemia in the striatum and the hippocampal CA1 region of rats.
Collapse
Affiliation(s)
- Yoshimi Misu
- Department of Pharmacology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | |
Collapse
|
13
|
Hasue RH, Shammah-Lagnado SJ. Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 2002; 454:15-33. [PMID: 12410615 DOI: 10.1002/cne.10420] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The origin of the dopaminergic innervation of the central extended amygdala (EAc; i.e., the lateral bed nucleus of the stria terminalis [BSTl]-central amygdaloid nucleus [Ce] continuum) and accumbens shell (AcSh) was studied in the rat by combining retrograde transport of Fluoro-Gold (FG) with tyrosine hydroxylase (TH) immunofluorescence. Perikaryal profiles (PP) immunoreactive to FG and to both FG and TH were counted in A8-A14 dopaminergic districts. Our results suggest that dopaminergic inputs to the EAc and AcSh arise from the ventral tegmental area-A10, substantia nigra, pars compacta-A9, and retrorubral nucleus-A8 groups as well as from the dorsal raphe nucleus and periaqueductal gray substance, housing the dorsocaudal part of A10 group (A10dc). Quantitative estimates reveal that the A10dc group contains approximately half of the total number of FG/TH double-labeled PP projecting to Ce and BSTl. By using an anti-dopamine serum, DR/PAG projections to Ce were confirmed to be in part dopaminergic. In contrast, modest numbers of FG/TH double-labeled PP were seen in the A10dc group after injections in the sublenticular extended amygdala, interstitial nucleus of the posterior limb of the anterior commissure or AcSh. Ventral mesencephalic projections to the EAc display a crude mediolateral topographic organization, whereas those to the AcSh are topographically organized along a mediolateral and an inverted dorsoventral dimension. The diencephalic dopaminergic groups do not innervate the EAc or AcSh, except for the periventricular gray-A11 which sends light dopaminergic projections to Ce and BSTl. Overall, the present results provide additional details on the organization of the mesolimbic dopaminergic system that critically controls behavioral responsiveness to salient environmental stimuli.
Collapse
Affiliation(s)
- Renata H Hasue
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | |
Collapse
|
14
|
Ershov PV, Ugrumov MV, Calas A, Makarenko IG, Krieger M, Thibault J. Neurons possessing enzymes of dopamine synthesis in the mediobasal hypothalamus of rats. Topographic relations and axonal projections to the median eminence in ontogenesis. J Chem Neuroanat 2002; 24:95-107. [PMID: 12191726 DOI: 10.1016/s0891-0618(02)00019-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We evaluated the topographic relations between tyrosine hydroxylase (TH)- and/or aromatic L-amino acid decarboxylase (AADC)-immunoreactive neurons in the arcuate nucleus (AN), as well as between TH- and/or AADC-immunoreactive axons in the median eminence (ME) in rats at the 21st embryonic day, 9th postnatal day, and in adulthood. The double-immunofluorescent technique in combination with confocal microscopy was used. Occasional bienzymatic neurons but numerous monoenzymatic TH- or AADC-immunoreactive neurons were observed in fetuses. There was almost no overlap in the distribution of monoenzymatic neurons, and therefore few appositions were observed in between. In postnatal animals, numerous bienzymatic neurons appeared in addition to monoenzymatic neurons. They were distributed throughout the AN resulting in the increased frequency of appositions. Furthermore, specialized-like contacts between monoenzymatic TH- and AADC-immunoreactive neurons appeared. The quantification of the fibers in the ME showed that there were large specific areas of the monoenzymatic TH-immunoreactive fibers and bienzymatic fibers in fetuses, followed by the gradual reduction of the former and the increase of the latter to adulthood. The specific area of the monoenzymatic AADC-immunoreactive fibers in fetuses was rather low, and thereafter increased progressively to adulthood. The fibers of all the types were in apposition in the ME at each studied age. Close topographic relations between the neurons containing individual complementary enzymes of dopamine synthesis at the level of cell bodies and axons suggest functional interaction in between.
Collapse
Affiliation(s)
- Petr V Ershov
- Laboratory of Neurohistology, Institute of Normal Physiology, Russian Academy of Medical Sciences, 8 Baltiiskaya St., Moscow, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Ugrumov M, Melnikova V, Ershov P, Balan I, Calas A. Tyrosine hydroxylase- and/or aromatic L-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance. Psychoneuroendocrinology 2002; 27:533-48. [PMID: 11965353 DOI: 10.1016/s0306-4530(01)00091-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study has evaluated in vivo, ex vivo and in vitro the ontogenesis and functional significance of the neurons of the arcuate nucleus (AN) expressing either individual enzymes of dopamine (DA) synthesis, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC) as well as both of them in rats from the 17th embryonic day (E) till adulthood. Immunocytochemistry, image analysis, confocal microscopy, high performance liquid chromatography with electrochemical detection and radioimmunoassay were used to solve this problem. Monoenzymatic TH-containing neurons were initially observed on E18 located in the ventrolateral AN whereas the neurons expressing only AADC or both AADC and TH first appeared on E20 in the dorsomedial AN. On E21, the monoenzymatic TH- or AADC-expressing neurons comprised more than 99% of the whole neuron population expressing the DA-synthesizing enzymes. In spite of an extremely small number (<1%) of the neurons expressing both enzymes (DArgic neurons), the dissected AN (ex vivo) and its primary cell culture (in vitro) contained a surprisingly high amount of DA and L-dihydroxyphenylalanine (L-DOPA) which were released in response to membrane depolarization. Furthermore, DA production in the AN of fetuses occurred to be sufficient to provide an inhibitory control of prolactin secretion, as in adults. The above data suggest that DA could be synthesized, at least in the AN of fetuses, by monoenzymatic neurons containing either TH or AADC, in co-operation. This hypothesis may be extended to adult animals as their AN contained the same populations of the neurons expressing DA-synthesizing enzymes as in fetuses though the proportion of true DArgic neurons increased up to 38%. During ontogenesis, the monoenzymatic TH- and AADC-containing neurons established axosomatic and axo-axonal junctions that might facilitate the L-DOPA transport from the former to the latter. Moreover, the monoenzymatic AADC-expressing neurons project their axons to the median eminence, thereby, providing the pathway for the DA transport toward the hypophysial portal circulation. Thus, DA appears to be synthesized in the AN not only by DArgic neurons but also by monoenzymatic TH- and AADC-expressing neurons in co-operation.
Collapse
Affiliation(s)
- M Ugrumov
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 26 Vavilov St., Moscow 117808, Russia.
| | | | | | | | | |
Collapse
|
16
|
Ugryumov MV, Mel'nikova VI, Ershov PV, Balan IS, Kalas A. Non-dopaminergic neurons expressing dopamine synthesis enzymes: differentiation and functional significance. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:299-307. [PMID: 12135344 DOI: 10.1023/a:1015018508998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development and functional significance of neurons in the arcuate nucleus expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase were studied in rat fetuses, neonates, and adults using immunocytochemical (single and double immunolabeling of tyrosine hydroxylase and aromatic L-amino acid decarboxylase) methods with a confocal microscope and computerized image analysis, HPLC with electrochemical detection, and radioimmunological analysis. Single-enzyme neurons containing tyrosine hydroxylase were first seen on day 18 of embryonic development in the ventrolateral part of the arcuate nucleus. Neurons expressing only aromatic L-amino acid decarboxylase or both enzymes of the dopamine synthesis pathway were first seen on day 20 of embryonic development, in the dorsomedial part of the nucleus. On days 20-21 of embryonic development, dopaminergic (containing both enzymes) neurons amounted to less than 1% of all neurons expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase. Nonetheless, in the ex vivo arcuate nucleus and in primary neuron cultures from this structure, there were relatively high leveLs of dopamine and L-dihydroxyphenylalanine (L-DOPA), and these substances were secreted spontaneously and in response to stimulation. In addition. dopamine levels in the arcuate nucleus in fetuses were sufficient to support the inhibitory regulation of prolactin secretion by the hypophysis, which is typical of adult animals. During development, the proportion of dopaminergic neurons increased, reaching 38% in adult rats. Specialized contacts between single-enzyme tyrosine hydroxylase-containing and aromatic L-amino acid decarboxylase-containing neurons were present by day 21 of embryonic development; these were probably involved in transporting L-DOPA from the former neurons to the latter. It was also demonstrated that the axons of single-enzyme decarboxylase-containing neurons projected into the median eminence, supporting the secretion of dopamine into the hypophyseal portal circulation. Thus, dopamine is probably synthesized in the arcuate nucleus not only by dopaminergic neurons, but also by neurons expressing only tyrosine hydroxylase or aromatic L-amino acid decarboxylase.
Collapse
Affiliation(s)
- M V Ugryumov
- Laboratory of Hormonal Regulation, N. K. Kol'tsov Institute of Developmental Biology, Moscow, Russia
| | | | | | | | | |
Collapse
|
17
|
Ershov PV, Ugrumov MV, Calas A, Krieger M, Thibault J. Differentiation of tyrosine hydroxylase-synthesizing and/or aromatic L-amino acid decarboxylase-synthesizing neurons in the rat mediobasal hypothalamus: quantitative double-immunofluorescence study. J Comp Neurol 2002; 446:114-22. [PMID: 11932930 DOI: 10.1002/cne.10173] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this double-immunofluorescence study, we first quantified the neurons of the arcuate nucleus as immunoreactive (+) for tyrosine hydroxylase (TH) and/or aromatic L-amino acid decarboxylase (AADC) in rats at embryonic day 21 (E21), at postnatal day 9 (P9), and in adulthood by using conventional fluorescent or confocal microscopy. On E21, monoenzymatic (TH(+)AADC immunonegative (-) and TH(-)AADC(+)) neurons and bienzymatic (TH(+)AADC(+)) neurons accounted for 99% and 1%, respectively, of the whole neuron population expressing enzymes of dopamine synthesis. Further development was characterized by the dramatic increase in TH(+)AADC(-) dorsomedial and TH(+)AADC(+) dorsomedial populations from E21 to P9 as well as by the increase in the TH(+)AADC(+) dorsomedial population (in females) and a drop in the TH(+)AADC(-) ventrolateral and TH(+)AADC(-) dorsomedial (in males) populations from P9 to adulthood. In contrast to TH(+)AADC(-) (in males) and TH(+)AADC(+) neurons, the TH(-)AADC(+) neurons did not change in number from E21 to adulthood. Thus, in rat fetuses, the neurons synthesizing TH and/or AADC were mainly monoenzymatic, whereas during postnatal life the fraction of bienzymatic neurons increased by up to 60%.
Collapse
Affiliation(s)
- Petr V Ershov
- Laboratory of Neurohistology, Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
| | | | | | | | | |
Collapse
|
18
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
19
|
Balan IS, Ugrumov MV, Calas A, Mailly P, Krieger M, Thibault J. Tyrosine hydroxylase-expressing and/or aromatic L-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: differentiation and sexual dimorphism. J Comp Neurol 2000; 425:167-76. [PMID: 10954837 DOI: 10.1002/1096-9861(20000918)425:2<167::aid-cne1>3.0.co;2-k] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this quantitative and semiquantitative immunocytochemical study, the authors evaluated the differentiation of neurons expressing tyrosine hydroxylase (TH) and/or aromatic L-amino acid decarboxylase (AADC) in the mediobasal hypothalamus (MBH) of male and female rats on embryonic day 18 (E18), E20, and postnatal day 9 (P9). Four neuronal populations were distinguished according to either enzyme expression or neuron location. The earliest and most prominent first population was represented by TH-immunoreactive (IR)/AADC-immunonegative (IN) neurons that were detected initially at E18 and always were located in the ventrolateral region of the MBH. The second population of TH-IN/AADC-IR neurons was observed first at E20 and, after that time, was distributed dorsomedially. The third minor population of TH-IR/AADC-IR neurons initially was detected at E20 and was located dorsomedially. The fourth population was represented by TH-IR/AADC-IN neurons that were distributed in the dorsomedial region at any studied age. The numbers of TH-IR and AADC-IR neurons increased from their initial detection at E18 and E20 until P9. The area of TH-IR and AADC-IR neurons also increased from E18 to E20 and from E20 to P9, respectively. Both TH-IR and AADC-IR neurons showed sex differences in the neuron number, size, and optic density (OD). The numbers of TH-IR neurons in males exceeded those of females at E20 and at P9, although, at P9, sexual dimorphism was a characteristic only of the ventrolateral population. The area and OD of TH-IR neurons from females exceeded those from males in the entire mediobasal hypothalamus (MBH) at E18 and E20 but only in its dorsomedial region at P9. Sexual dimorphism also was an attribute of AADC-IR neurons at E20 and P9. Their number, size, and OD were significantly higher in females than in males. Thus, the MBH of perinatal rats contained two major populations of TH-IR/AADC-IN or TH-IN-AADC-IR neurons and a minor population of TH-IR/AADC-IR neurons. The differentiating neurons expressing either enzyme showed sexual dimorphism.
Collapse
Affiliation(s)
- I S Balan
- Laboratory of Neurohistology, Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow 117808, Russia
| | | | | | | | | | | |
Collapse
|
20
|
Singh S, Johnson PI, Javed A, Gray TS, Lonchyna VA, Wurster RD. Monoamine- and histamine-synthesizing enzymes and neurotransmitters within neurons of adult human cardiac ganglia. Circulation 1999; 99:411-9. [PMID: 9918529 DOI: 10.1161/01.cir.99.3.411] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cardiac ganglia were originally thought to contain only cholinergic neurons relaying parasympathetic information from preganglionic brain stem neurons to the heart. Accumulating evidence, however, suggests that cardiac ganglia contain a heterogeneous population of neurons that synthesize or respond to several different neurotransmitters and neuropeptides. Reports regarding monoamine and histamine synthesis and neurotransmission within cardiac ganglia, however, present conflicting information or are limited in number. Furthermore, very few studies have examined the neurochemistry of adult human cardiac ganglia. The purpose of this study was, therefore, to determine whether monoamine- and histamine-synthesizing enzymes and neurotransmitters exist within neurons of adult human cardiac ganglia. METHODS AND RESULTS Human heart tissue containing cardiac ganglia was obtained during autopsies of patients without cardiovascular pathology. Avidin-biotin complex immunohistochemistry was used to demonstrate tyrosine hydroxylase, L-dopa decarboxylase, dopamine beta-hydroxylase, phenylethanolamine-N-methyltransferase, tryptophan hydroxylase, and histidine decarboxylase immunoreactivity within neurons of cardiac ganglia. Dopamine, norepinephrine, serotonin, and histamine immunoreactivity was also found in ganglionic neurons. Omission or preadsorption of primary antibodies from the antisera and subsequent incubation with cardiac ganglia abolished specific staining in all cases examined. CONCLUSIONS Our results suggest that neurons within cardiac ganglia contain enzymes involved in the synthesis of monoamines and histamine and that they contain dopamine, norepinephrine, serotonin, and histamine immunoreactivity. Our findings suggest a putative role for monoamine and histamine neurotransmission within adult human cardiac ganglia. Additional, functional evidence will be necessary to evaluate what the physiological role of monoamines and histamine may be in neural control of the adult human heart.
Collapse
Affiliation(s)
- S Singh
- Neuroscience Program and Department of Physiology, Loyola University Medical Center, Maywood, Ill 60153-3500, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
A segmental mapping of brain tyrosine-hydroxylase-immunoreactive (TH-IR) neurons in human embryos between 4.5 and 6 weeks of gestation locates with novel precision the dorsoventral and anteroposterior topography of the catecholamine-synthetizing primordia relative to neuromeric units. The data support the following conclusions. (1) All transverse sectors of the brain (prosomeres in the forebrain, midbrain, rhombomeres in the hindbrain, spinal cord) produce TH-IR neuronal populations. (2) Each segment shows peculiarities in its contribution to the catecholamine system, but there are some overall regularities, which reflect that some TH-IR populations develop similarly in different segments. (3) Dorsoventral topology of the TH-IR neurons indicates that at least four separate longitudinal zones (in the floor and basal plates and twice in the alar plate) found across most segments are capable of producing the TH-IR phenotype. (4) Basal plate TH-IR neurons tend to migrate intrasegmentally to a ventrolateral superficial position, although some remain periventricular; those in the brainstem are related to motoneurons of the oculomotor and branchiomotor nuclei. (5) Some alar TH-IR populations migrate superficially within the segmental boundaries. (6) Most catecholaminergic anatomical entities are formed as fusions of smaller segmental components, each of which show similar histogenetic patterns. A nomenclature is proposed that partly adheres to previous terminology but introduces the distinction of embryologically different cell populations and unifies longitudinally analogous entities. Such a model, as presented in the present study, is convenient for resolving problems of homology of the catecholamine system across the diversity of vertebrate forms.
Collapse
Affiliation(s)
- L Puelles
- Department of Morphological Sciences, University of Murcia, Spain.
| | | |
Collapse
|
22
|
Holstege JC, Van Dijken H, Buijs RM, Goedknegt H, Gosens T, Bongers CM. Distribution of dopamine immunoreactivity in the rat, cat and monkey spinal cord. J Comp Neurol 1996; 376:631-52. [PMID: 8978475 DOI: 10.1002/(sici)1096-9861(19961223)376:4<631::aid-cne10>3.0.co;2-p] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study, the distribution of dopamine (DA) was identified light microscopically in all segments of the rat, cat, and monkey spinal cord by using immunocytochemistry with antibodies directed against dopamine. Only fibers and (presumed) terminals were found to be immunoreactive for DA. Strongest DA labeling was present in the sympathetic intermediolateral cell column (IML). Strong DA labeling, consisting of many varicose fibers, was found in all laminae of the dorsal horn, including the central canal area (region X), but with the exception of the substantia gelatinosa, which was only sparsely labeled, especially in rat and monkey. In the motoneuronal cell groups DA labeling was also strong and showed a fine granular appearance. The sexually dimorphic cremaster nucleus and Onuf's nucleus (or its homologue) showed a much stronger labeling than the surrounding somatic motoneurons. In the parasympathetic area at sacral levels, labeling was moderate. The remaining areas, like the intermediate zone (laminae VI-VIII), were only sparsely innervated. The dorsal nucleus (column of Clarke) showed the fewest DA fibers, as did the central cervical nucleus, suggesting that cerebellar projecting cells were avoided by the DA projection. In all species, the descending fibers were located mostly in the dorsolateral funiculus, but laminae I and III also contained many rostrocaudally oriented fibers. It is concluded that DA is widely distributed within the spinal cord, with few differences between species, emphasizing that DA plays an important role as one of the monoamines that influences sensory input as well as autonomic and motor output at the spinal level.
Collapse
Affiliation(s)
- J C Holstege
- Department of Anatomy, Erasmus University Medical School, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
L-DOPA is proposed to be a neurotransmitter and/or neuromodulator in CNS. It is released probably from neurons, which may contain L-DOPA as an end-product, and/or from some compartment other than catecholamine-containing vesicles. The L-DOPA itself produces presynaptic and postsynaptic responses. All are stereoselective and most are antagonized by competitive antagonist. In striatum, L-DOPA is neuromodulator, mother of catecholamines, not only a precursor for dopamine but also a potentiator of children for presynaptic beta-adrenoceptors to facilitate dopamine release and postsynaptic D2 receptors, and ACh release inhibitor. All may cooperate for Parkinson's disease. Meanwhile, supersensitization of increase in L-glutamate release to nanomolar levodopa was seen in Parkinson's model rats, which may relate to dyskinesia or "on-off" during chronic therapy. In lower brainstem, L-DOPA tonically activates postsynaptic depressor sites of NTS and CVLM and pressor sites of RVLM. L-DOPA is probably a neurotransmitter of primary baroreceptor afferents terminating in NTS. GABA, the inhibitory neuromodulator for baroreflex in NTS, tonically functions to inhibit, via GABAA receptors, L-DOPA release and depressor responses to levodopa. Levodopa inversely releases GABA. L-DOPAergic monosynaptic relay from NTS to CVLM and from PHN to RVLM is suggested. Tonic L-DOPAergic baroreceptor-aortic nerve-NTS-CVLM relay seems to carry baroreflex information. Disturbance of neuronal activity to release L-DOPA in NTS, loss of the activity in CVLM, enhancement of the activity with decreased decarboxylation and increase in sensitivity to levodopa in RVLM may be involved in maintenance of hypertension in SHR. This is a story of "L-DOPAergic receptors" with extremely high affinity and low density.
Collapse
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
24
|
Warembourg M, Deneux D, Krieger M, Jolivet A. Progesterone receptor immunoreactivity in aromatic L-amino acid decarboxylase-containing neurons of the guinea pig hypothalamus and preoptic area. J Comp Neurol 1996; 367:477-90. [PMID: 8731220 DOI: 10.1002/(sici)1096-9861(19960415)367:4<477::aid-cne1>3.0.co;2-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A double-labeling immunofluorescence procedure was used to determine whether progesterone receptor (PR)-immunoreactive (IR) neurons in the preoptic area and hypothalamus of female guinea pigs also contained aromatic L-amino acid decarboxylase (AADC), an enzyme involved in the synthesis of both catecholamines and serotonin. Immunostaining was performed on cryostat sections prepared from ovariectomized guinea pigs primed by estradiol to induce PR. The nuclear presence of PR was visualized by a red fluorescence while the AADC-containing perikarya showed a yellow-green fluorescence. The topographic distribution of AADC-IR neurons was investigated by using a specific antiserum obtained by immunization of rabbits with a recombinant protein beta-galactosidase-AADC in the two regions known to contain the densest populations of estradiol-induced PR-IR cells: the preoptic area and the mediobasal hypothalamus. The localization of PR-IR and AADC-IR cell populations showed considerable overlap in these areas, mainly in the medial and periventricular preoptic nuclei and in the arcuate nucleus. A quantitative analysis of double-labeled cells estimated that about 15% to 23% of AADC-IR cells in the preoptic area and about 11% to 21% of AADC-IR cells in the arcuate nucleus possessed PR. This colocalization persisted throughout the rostrocaudal extent of these areas and represented 3% to 9% of the population of PR-IR cells. These findings provide neuroanatomical evidence that a subset of AADC neurons is directly regulated by progesterone. The exact physiological role of this enzyme in target cells for progesterone is not understood. AADC may be involved in functions other than that for the synthesis of the classical neurotransmitters.
Collapse
|
25
|
van Dijken H, Dijk J, Voom P, Holstege JC. Localization of dopamine D2 receptor in rat spinal cord identified with immunocytochemistry and in situ hybridization. Eur J Neurosci 1996; 8:621-8. [PMID: 8963454 DOI: 10.1111/j.1460-9568.1996.tb01247.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study the distribution of dopamine D2 receptors in rat spinal cord was determined by means of immunocytochemistry using an anti-peptide antibody, directed against the putative third intracellular loop of the D2 receptor and in situ hybridization (ISH) using a [35S]UTP labelled anti-sense riboprobe. With the immunocytochemical technique, labelling was confined to neuronal cell bodies and their proximal dendrites. Strongest labelling was present in the parasympathetic area of the sacral cord and in two sexually dimorphic motor nuclei of the lumbosacral cord, the spinal nucleus of the bulbocavernosus and the dorsolateral nucleus. Moderately labelled cells were present in the intermediolateral cell column, the area around the central canal and lamina I of the dorsal horn. Weak labelling was present in the lateral spinal nucleus and laminae VII and VIII of the ventral horn. Except for the two sexually dimorphic motornuclei of the lumbosacral cord labelled motoneurons were not encountered. With the ISH technique radioactive labelling was present in many neurons, indicating that they contained D2 receptor mRNA. The distribution of these neurons was very similar to the distribution obtained with immunocytochemistry, but with ISH additional labelled cells were detected in laminae III and IV of the dorsal horn, which were never labelled with immunocytochemistry. The present study shows that the D2 receptor is expressed in specific areas of the rat spinal cord. This distribution provides anatomical support for the involvement of D2 receptors in modulating nociceptive transmission and autonomic control. Our data further indicate that D2 receptors are not directly involved in modulating motor functions with the exception, possibly, of some sexual motor functions.
Collapse
Affiliation(s)
- H van Dijken
- Department of Anatomy, Erasmus University Medical School, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
26
|
Zhu MY, Juorio AV. Aromatic L-amino acid decarboxylase: biological characterization and functional role. GENERAL PHARMACOLOGY 1995; 26:681-96. [PMID: 7635243 DOI: 10.1016/0306-3623(94)00223-a] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Aromatic L-amino acid decarboxylase is the enzyme responsible for the decarboxylation step in both the catecholamine and the indolamine synthetic pathways. Immunological and molecular biological studies suggest that it is a single enzyme with one catalytic site but with different locations for attachment of the substrates. The enzyme is widely distributed in the brain and in peripheral tissues. 2. Recent investigations have shown that the enzyme is regulated by short term mechanisms that may involve activation of adenyl cyclase or protein kinase C. In addition, a long-term mechanism of activation by altered gene expression has also been suggested.
Collapse
Affiliation(s)
- M Y Zhu
- Neuropsychiatric Research Unit, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
27
|
Moons L, van Gils J, Ghijsels E, Vandesande F. Immunocytochemical localization of L-dopa and dopamine in the brain of the chicken (Gallus domesticus). J Comp Neurol 1994; 346:97-118. [PMID: 7962714 DOI: 10.1002/cne.903460107] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A light microscopic immunocytochemical study, with antisera against dihydroxyphenylalanine (L-DOPA) and dopamine (DA), revealed the dopaergic and dopaminergic systems in the brain of the chicken (Gallus domesticus). L-DOPA- and DA-immunoreactive (ir) elements are similarly distributed throughout the entire brain. Virtually all regions of the brain contained a dense innervation by L-DOPA- and DA-immunopositive varicose fibers. The neuronal cell bodies immunoreactive for the two monoamines were confined to more restricted regions, the hypothalamus, the midbrain and the brainstem. In the hypothalamus, DA- and L-DOPA-ir neurons were subdivided into a medial periventricular and a lateral group. The medial group starts at the level of the anterior commissure, in the ventral part of the nucleus periventricularis hypothalami, and continues in a more dorsal periventricular position caudally into the dorsal tuberal hypothalamic region. Densely labeled cerebrospinal fluid contacting cells can be observed in the paraventricular organ. The lateral group consists of immunopositive neurons loosely arranged in the lateral hypothalamic area and in the nucleus mamillaris lateralis. Most of the dopaminergic cell groups, identified in the hypothalamus of mammals, could be observed in the chicken, with the exception of the tuberoinfundibular group. The majority of L-DOPA- and DA-ir perikarya is, however, situated in the mesencephalic tegmentum, in the area ventralis of Tsai and in the nucleus tegmenti pedunculo-pontinus, pars compacta, the avian homologues of, respectively, the ventral tegmental area and the substantia nigra of mammals. In the pons, dense groups of cells are found in the locus coeruleus and in the nucleus subcoeruleus ventralis and dorsalis. A few labeled cells appear in and around the nucleus olivaris superior in the most caudal part of the metencephalic tegmentum. In the medulla oblongata, L-DOPA- and DA-ir cells can be seen at the level of the nucleus of the solitary tract and in a ventrolateral complex. A comparison with tyrosine hydroxylase (TH) immunocytochemistry revealed TH-immunopositive neurons greatly outnumbering the cells exhibiting DA and L-DOPA immunoreactivity. These results are discussed in relation to catecholaminergic systems previously reported in avian species and in the mammalian brain.
Collapse
Affiliation(s)
- L Moons
- Laboratory of Neuroendocrinology, Zoological Institute, Leuven, Belgium
| | | | | | | |
Collapse
|
28
|
Keast JR. Catecholamine innervation of the intestine of flying foxes (Pteropus spp.): a substantial supply from enteric neurons. Cell Tissue Res 1994; 276:403-10. [PMID: 7912656 DOI: 10.1007/bf00306126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of catecholamines in the small and large intestine of flying foxes (Pteropus spp.) was investigated using glyoxylic-acid-induced fluorescence and immunohistochemical staining of tyrosine hydroxylase and dopamine-beta-hydroxylase. Dense networks of varicose axons stained by each of these methods supplied blood vessels, the mucosa and both submucous and myenteric ganglia, but were scarce in the circular and longitudinal muscle. The majority (> 90%) of submucous neuronal perikarya contained both enzymes and most of these also exhibited catecholamine fluorescence. Somata of similar staining characteristics were less common in the myenteric plexus, where single cells were found in only the minority of ganglia. All of the stained submucosal somata and mucosal axons contained vasoactive intestinal peptide, whereas catecholamine-containing axons that supplied the ganglia, external muscle and blood vessels did not. It is concluded that (1) there is dense catecholamine innervation of most tissues in the flying-fox intestine, similar to many other mammals, (2) mucosal axons originate from enteric catecholamine neurons, not found in other mammals, and (3) axons supplying the blood vessels and enteric ganglia are probably of sympathetic origin and can be distinguished from the intrinsic catecholamine-containing axons by their lack of vasoactive intestinal peptide. The roles and interactions of these two types of catecholamine innervation in the control of secretion and motility remain to be identified.
Collapse
Affiliation(s)
- J R Keast
- Department of Physiology and Pharmacology, University of Queensland, Australia
| |
Collapse
|
29
|
Dixon JS, Canning DA, Gearhart JP, Gosling JA. An immunohistochemical study of the innervation of the ureterovesical junction in infancy and childhood. BRITISH JOURNAL OF UROLOGY 1994; 73:292-7. [PMID: 8162509 DOI: 10.1111/j.1464-410x.1994.tb07521.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To use histological and immunohistochemical methods to study the structure and innervation of the human ureterovesical junction (UVJ). MATERIALS AND METHODS A series of 24 post-natal specimens taken from patients ranging in age from 1 month to 6 years were examined. Routine histological slides were stained with Masson's trichrome. In addition, an indirect immunohistochemical method was used to study the occurrence and distribution of nerves immunoreactive for the neuropeptides vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), substance P (SP) and calcitonin gene-related peptide (CGRP). Immunoreactivity to tyrosine hydroxylase (TH), dopamine-B-hydroxylase (DBH) and to protein gene product (PGP) 9.5, a general nerve marker, were also studied. RESULTS The UVJ comprised a ureteric muscle component (the intramural ureter) and a detrusor component (the immediately adjacent region of the urinary bladder). In the majority of specimens a third or intermediate layer was also present. This additional component consisted of tightly-packed smooth muscle cells which formed an incomplete layer that partially surrounded the juxta-vesical and intramural parts of the ureter. Numerous PGP-, VIP-, NPY, DBH- and TH- like immunoreactive (-LIR) nerves were associated with the smooth muscle bundles which comprised the intramural ureter. Such nerves ran in the connective tissue separating ureteric smooth muscle bundles and rarely coursed amongst individual smooth muscle cell comprising each bundle. SP- and CGRP- containing nerves were rarely observed in association with the intramural ureter and none were detected in the ureteric submucosa. The intermediate muscle layer was richly innervated by PGP-, TH-, DBH- and NPY- containing nerves which ran amongst the smooth muscle cells comprising this layer. VIP-, SP- and CGRP-LIR nerves were not observed within the intermediate layer. The detrusor component of the UVJ was innervated by PGP-, NPY- and VIP-LIR nerves which frequently extended between the smooth muscle cells forming the detrusor muscle bundles. TH-, DBH-, SP- and CGRP-LIR nerve fibres were rarely encountered. CONCLUSION These findings indicate that noradrenergic nerves play a major role in the control of the ureteric component of the UVJ. In addition, the present results form baseline morphological data with which to compare the results of future studies on the structure of the UVJ in cases of vesicoureteric reflux.
Collapse
Affiliation(s)
- J S Dixon
- Department of Anatomy, Chinese University of Hong Kong, Shatin, New Territories
| | | | | | | |
Collapse
|
30
|
Eaton MJ, Gudehithlu KP, Quach T, Silvia CP, Hadjiconstantinou M, Neff NH. Distribution of aromatic L-amino acid decarboxylase mRNA in mouse brain by in situ hybridization histology. J Comp Neurol 1993; 337:640-54. [PMID: 7904615 DOI: 10.1002/cne.903370409] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aromatic L-amino acid decarboxylase (AAAD) is the second enzyme in the sequence leading to the synthesis of catecholamines or serotonin. Antisense riboprobes for aromatic L-amino acid decarboxylase mRNA were used to map the gene in mouse brain by in situ hybridization. The substantia nigra, the ventral tegmental nucleus, the dorsal raphe nucleus, the locus coeruleus, and the olfactory bulb contained the highest signal for AAAD mRNA. After treatment with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the signal disappeared in the substantia nigra, decreased somewhat in the ventral tegmental area, and remained unchanged in the dorsal raphe nucleus. Hypothalamic and cerebellar Purkinje neurons known to contain histidine decarboxylase or glutamic acid decarboxylase, respectively, were unlabeled by the probes. However, neurons in the deep layers of the frontal cortex, many thalamic nuclei, and the pyramidal neurons of the hippocampus were lightly to moderately labeled for mouse AAAD mRNA. The presence of AAAD message in these neurons suggests that the enzyme has functions other than that for the synthesis of the classical biogenic amine neurotransmitters.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/analogs & derivatives
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Animals
- Aromatic-L-Amino-Acid Decarboxylases/metabolism
- Blotting, Northern
- Blotting, Southern
- Brain/anatomy & histology
- Brain/enzymology
- Brain Mapping
- Cloning, Molecular
- Dopamine Agents/pharmacology
- Immunohistochemistry
- In Situ Hybridization
- Male
- Mice
- RNA Probes
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- M J Eaton
- Department of Pharmacology, Ohio State University College of Medicine, Columbus 43210
| | | | | | | | | | | |
Collapse
|
31
|
Orazzo C, Pieribone VA, Ceccatelli S, Terenius L, Hökfelt T. CGRP-like immunoreactivity in A11 dopamine neurons projecting to the spinal cord and a note on CGRP-CCK cross-reactivity. Brain Res 1993; 600:39-48. [PMID: 8422589 DOI: 10.1016/0006-8993(93)90399-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using the indirect immunofluorescence technique and double labelling procedures combined with retrograde tracing it could be demonstrated that the A11 dopamine cell group, located at the border between the diencephalon and mesencephalon of the rat brain and some of which project to the spinal cord, contains calcitonin gene-related peptide (CGRP)-like immunoreactivity. Thus, another catecholamine group in the rat brain has been shown to have a coexisting peptide. One of the CGRP antisera used in the present study also stained cholecystokinin (CCK) containing neurons in various brain areas. Absorption and displacement experiments using immunohistochemistry and radioimmunoassay showed that this cross-reactivity was confined to the C-terminal portion of the peptide molecule. Therefore, the present results suggest that CGRP antisera used for immunohistochemistry and radioimmunoassay should be tested for possible cross-reactivity with CCK.
Collapse
Affiliation(s)
- C Orazzo
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
32
|
Gonzalo-Ruiz A, Alonso A, Sanz JM, Llinás RR. A dopaminergic projection to the rat mammillary nuclei demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase and tyrosine hydroxylase immunohistochemistry. J Comp Neurol 1992; 321:300-11. [PMID: 1380016 DOI: 10.1002/cne.903210209] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The presence and distribution of dopaminergic neurons and terminals in the hypothalamus of the rat were studied by tyrosine hydroxylase (TH) immunohistochemistry. Strongly labelled TH-immunoreactive neurons were seen in the dorsomedial hypothalamic nucleus, periventricular region, zona incerta, arcuate nucleus, and supramammillary nucleus. A few TH-positive neurons were also identified in the dorsal and ventral premammillary nucleus, as well as the lateral hypothalamic area. TH-immunoreactive fibres and terminals were unevenly distributed in the mammillary nuclei; small, weakly labelled terminals were scattered in the medial mammillary nucleus, while large, strongly labelled, varicose terminals were densely concentrated in the internal part of the lateral mammillary nucleus. A few dorsoventrally oriented TH-positive axon bundles were also identified in the lateral mammillary nucleus. A dopaminergic projection to the mammillary nuclei from the supramammillary nucleus and lateral hypothalamic area was identified by double labelling with retrograde transport of wheat germ agglutinin-horseradish peroxidase and TH-immunohistochemistry. The lateral mammillary nucleus receives a weak dopaminergic projection from the medial, and stronger projections from the lateral, caudal supramammillary nucleus. The double-labelled neurons in the lateral supramammillary nucleus appear to encapsulate the caudal end of the mammillary nuclei. The medial mammillary nucleus receives a very light dopaminergic projection from the caudal lateral hypothalamic area. These results suggest that the supramammillary nucleus is the principal source of the dopaminergic input to the mammillary nuclei, establishing a local TH-pathway in the mammillary complex. The supramammillary cell groups are able to modulate the limbic system through its dopaminergic input to the mammillary nuclei as well as through its extensive dopaminergic projection to the lateral septal nucleus.
Collapse
Affiliation(s)
- A Gonzalo-Ruiz
- Department of Anatomy, University College of Soria, Spain
| | | | | | | |
Collapse
|
33
|
Edyvane KA, Trussell DC, Jonavicius J, Henwood A, Marshall VR. Presence and regional variation in peptide-containing nerves in the human ureter. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1992; 39:127-37. [PMID: 1385511 DOI: 10.1016/0165-1838(92)90053-j] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The occurrence, distribution and regional variation of neurones immunoreactive for the neuropeptides, vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), enkephalin (ENK), calcitonin gene-related peptide (CGRP), and substance P (SP) were investigated in human ureters by indirect immunohistochemistry. In addition, immunoreactivities to tyrosine hydroxylase (TH), a marker of noradrenergic neurones and to protein gene product (PGP) 9.5, a general marker of neurones, were also studied. Neurones displaying PGP-, NPY-, VIP- and TH-like immunoreactivity (-LIR) provided a rich innervation to the smooth muscle and blood vessels of the ureter, where they formed dense muscular and perivascular nerve plexuses. In contrast, there was only a moderate to sparse innervation by SP and CGRP-LIR neurones, most of which were distributed to blood vessels and to the sub mucosal layer, and only rarely to smooth muscle bundles. No ENK-LIR was detected in this study. Nerve fibre bundle densities were estimated for each of the localized neurochemicals according to a method described. NPY-LIR nerve fibre bundles were found to account for 80% of the total nerve fibre bundles (i.e. PGP-LIR) in the ureter. On the other hand, TH-LIR and VIP-LIR nerve fibre bundles each accounted for 50% of the total ureteral innervation, whereas SP- and CGRP-LIR nerve fibre bundles each comprised 20% of the total innervation. The abundance and pattern of tissues innervated by these immunoreactive neurones is consistent with the view that some of these neuropeptide substances co-exist with other peptide substances and/or with other known neurotransmitters, such as noradrenaline or acetylcholine. A gradient of innervation was found to exist for all the neurochemicals demonstrated in the ureter, whereby the lower ureter receives a greater density of innervation than the upper ureter. This finding suggests the human ureter is primarily innervated by fibres arising from or via the lower pelvis, i.e. the pelvic plexus. It also supports the view that the lower ureter may perform an important physiological role, such as coordinating the tone of this region during bladder filling and emptying.
Collapse
Affiliation(s)
- K A Edyvane
- Department of Surgical Services, Repatriation General Hospital, Daw Park, Adelaide, Australia
| | | | | | | | | |
Collapse
|
34
|
Asmus SE, Kincaid AE, Newman SW. A species-specific population of tyrosine hydroxylase-immunoreactive neurons in the medial amygdaloid nucleus of the Syrian hamster. Brain Res 1992; 575:199-207. [PMID: 1349252 DOI: 10.1016/0006-8993(92)90080-s] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The medial amygdaloid nucleus (Me) is part of a neural pathway that regulates sexual behavior in the male Syrian hamster. To characterize the neurochemical content of neurons in this nucleus, brains from colchicine-treated adult male and female hamsters were immunocytochemically labeled using antibodies that recognize the catecholamine-synthesizing enzymes, tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT), as well as dopamine. A large population of TH-immunoreactive (TH-IR) neurons was observed throughout Me of male and female hamsters, primarily concentrated in the midrostral and caudal portions of the nucleus. The somata were generally small to medium in size and bipolar. Brains from animals that did not receive colchicine contained a limited number of TH-IR neurons in Me as reported previously. The DBH and PNMT antisera did not label any cells in Me of colchicine-treated animals, and the dopamine antiserum labeled neurons in the same location as the caudal group of TH-IR cells. Therefore, these caudal TH-IR neurons are interpreted to be dopaminergic. The rostral group of TH-IR neurons, on the other hand, may be producing only the immediate precursor of dopamine, L-3,4-dihydroxyphenylalanine (L-DOPA). The TH-synthesizing neurons in Me of the Syrian hamster appear to be a species-specific group of cells located outside of the previously described catecholaminergic cell groups.
Collapse
Affiliation(s)
- S E Asmus
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
35
|
Mons N, Dubourg P, Tramu G. Preparation and characterization of a specific antibody for the immunohistochemical detection of L-dopa in paraformaldehyde-fixed rodent brains. Brain Res 1991; 554:122-9. [PMID: 1681987 DOI: 10.1016/0006-8993(91)90179-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A rat polyclonal antiserum has been obtained after coupling of L-3,4-dihydroxyphenylalanine (L-DOPA) to larger proteins using a low concentration of glutaraldehyde. The antiserum was tested for its affinity and specificity using an enzyme-linked-immunosorbent-assay (ELISA). From competition experiments, the most immunoreactive compound was found to be the non-reduced L-DOPA conjugate. Our specific L-DOPA antiserum enables us to visualize L-DOPA molecule on brain of guinea pigs and rats. We examined the immunohistochemical distribution of the polyclonal L-DOPA antiserum after the fixation of brains with a mixture of paraformaldehyde and picric acid. The presence of L-DOPA-immunoreactive (IR) neurons and fibers was described in the posterior, dorsal and periventricular hypothalamic areas and in the arcuate nucleus. Finally, the distribution of L-DOPA-IR cells was compared to that of tyrosine hydroxylase (TH)-IR cells, by means of a double staining procedure. The presence of two populations of TH-IR cells (TH-positive/L-DOPA-negative and TH-positive/L-DOPA-positive cells) was described in the dorsal part of the hypothalamus.
Collapse
Affiliation(s)
- N Mons
- Laboratoire de Neurocytochimie fonctionnelle, URA C.N.R.S. Université de Bordeaux I, Talence France
| | | | | |
Collapse
|
36
|
Tison F, Normand E, Jaber M, Aubert I, Bloch B. Aromatic L-amino-acid decarboxylase (DOPA decarboxylase) gene expression in dopaminergic and serotoninergic cells of the rat brainstem. Neurosci Lett 1991; 127:203-6. [PMID: 1679228 DOI: 10.1016/0304-3940(91)90794-t] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ hybridization was performed in the rat brain to detect aromatic L-amino acid decarboxylase (AADC) mRNA using 35S-labeled oligonucleotide probes derived from rat kidney AADC cDNA. Results demonstrated AADC mRNA in areas containing dopaminergic and serotoninergic cell bodies. Combined immunohistochemistry for tyrosine- or tryptophan hydroxylase and in situ hybridization for AADC mRNA demonstrated the dopaminergic or serotoninergic nature of cells containing AADC mRNA. Tyrosine hydroxylase-positive mesencephalic neurons containing a very low or no AADC mRNA signal were also observed.
Collapse
Affiliation(s)
- F Tison
- URA CNRS 1200 Laboratoire d'Histologie-Embryologie, Université de Bordeaux II, France
| | | | | | | | | |
Collapse
|
37
|
De Vitry F, Hillion J, Catelon J, Thibault J, Benoliel JJ, Hamon M. Dopamine increases the expression of tyrosine hydroxylase and aromatic amino acid decarboxylase in primary cultures of fetal neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 59:123-31. [PMID: 1680579 DOI: 10.1016/0165-3806(91)90092-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous studies, aimed at identifying which diffusible signals may influence the differentiation of embryonic neurons towards the monoaminergic phenotypes during brain development, have shown that serotonin itself could promote the 'serotoninergic-like properties' of hypothalamic cells from mouse embryos. We presently reinvestigated such 'autocrine/paracrine' regulatory mechanisms by exposing dissociated cell cultures from embryonic rat hypothalamus and brain stem to dopamine--or related agonists--in an attempt to influence their differentiation towards the catecholaminergic phenotype. Chronic treatment of cells by dopamine or apomorphine (a mixed D1/D2 agonist), but not selective D1 and D2 agonists, significantly increased the number of cells that expressed tyrosine hydroxylase (TH: as assessed with a specific anti-TH antiserum) and the activity of aromatic L-amino acid decarboxylase (AADC) in the cultures. Furthermore, apomorphine treatment also decreased the levels of cholecystokinin-like material in primary cultures from the brainstem (but not the hypothalamus) where both dopamine and cholecystokinin are--partly--colocalized in mesencephalic dopaminergic neurons. The maximal effects of both dopamine and apomorphine on TH expression and AADC activity occurred earlier in the brainstem (on cells from 14- to 15-day-old embryos) than in the hypothalamus (on cells from 15- to 16-day-old embryos), in line with the well established caudo-rostral maturation of the rat brain. Furthermore both the expression and the dopamine-induced modulation of AADC activity and TH immunoreactivity appeared to occur independently of each other. Present and previous data are in agreement with a possible autocrine/paracrine action of dopamine and serotonin during brain development.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F De Vitry
- Groupe de Neuroendocrinologie Cellulaire et Moléculaire, CNRS-URA 1115, Collège de France, Paris
| | | | | | | | | | | |
Collapse
|
38
|
Halliday GM, McLachlan EM. A comparative analysis of neurons containing catecholamine-synthesizing enzymes and neuropeptide Y in the ventrolateral medulla of rats, guinea-pigs and cats. Neuroscience 1991; 43:531-50. [PMID: 1681467 DOI: 10.1016/0306-4522(91)90313-d] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurons in the ventrolateral medulla oblongata of rats, guinea-pigs and cats that contain tyrosine hydroxylase, dopamine-beta-hydroxylase, phenylethanolamine-N-methyltransferase and neuropeptide Y have been demonstrated immunohistochemically in serial coronal sections of tissue taken from the level of the cervical spinal cord to the level of the facial nucleus. The anatomical distribution of these neurons has been described, quantified and reconstructed in three dimensions to compare the neuron populations between species. In all species, between 50 and 90% of immunoreactive neurons lay rostral to the level of the obex. There were no significant differences in the number and distribution of neurons containing catecholamine-synthesizing enzymes between control animals and those pretreated with colchicine, with two exceptions: all dopamine-beta-hydroxylase neurons were weakly immunoreactive without colchicine pretreatment in cats, and pretreatment with colchicine revealed a small rostral group of tyrosine hydroxylase-positive neurons in guinea-pigs. There were remarkable similarities in the rostrocaudal distributions of neurons containing tyrosine hydroxylase, dopamine-beta-hydroxylase and neuropeptide Y in relation to comparable anatomical landmarks across the species. However, the distributions of neurons containing tyrosine hydroxylase. Phenylethanolamine-N-methyltransferase-positive neurons, while densely stained in rats, were only faintly stained in cats and absent in guinea-pigs; the distribution of these neurons was similar to the distribution of neurons containing only tyrosine hydroxylase. The similarity of the distribution of neurons demonstrated using tyrosine hydroxylase, dopamine-beta-hydroxylase and neuropeptide Y immunohistochemistry implies that homologous catecholamine-containing neuron groups do exist in the ventrolateral medulla despite the variation in phenylethanolamine-N-methyltransferase between species. In contrast to the previous classification of neuron groups into A1 and C1 based on the presence or absence of this latter enzyme, the data suggest that a discrete group of tyrosine hydroxylase-immunoreactive neurons, which probably do not contain dopamine-beta-hydroxylase or neuropeptide Y, can be distinguished in the rostral ventrolateral medulla of all species. The absence of detectable dopamine-beta-hydroxylase in this group of neurons suggests that they may not synthesize either adrenaline or noradrenaline.
Collapse
Affiliation(s)
- G M Halliday
- Department of Pathology, University of Sydney, N.S.W., Australia
| | | |
Collapse
|
39
|
Halliday GM, McLachlan EM. Four groups of tyrosine hydroxylase-immunoreactive neurons in the ventrolateral medulla of rats, guinea-pigs and cats identified on the basis of chemistry, topography and morphology. Neuroscience 1991; 43:551-68. [PMID: 1681468 DOI: 10.1016/0306-4522(91)90314-e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The data in the preceding paper [Halliday G. M. and McLachlan E. M. (1991) Neuroscience 43, 531-550] suggest that some neurons in the rostral ventrolateral medulla contain some catecholamine-synthesizing enzymes but may not produce catecholamines. The present study addresses this question directly by comparing the anatomical location and morphology of these neurons with those revealed by formaldehyde-induced fluorescence. Catecholamine-containing somata of rats and guinea-pigs have been demonstrated following FAGLU-perfusion in normal untreated animals, in animals pretreated with pargyline (a monoamine oxidase inhibitor), and in animals pretreated with colchicine (to block axoplasmic transport). The number and location of fluorescent somata in the ventrolateral medulla have been determined in serial coronal sections of tissue from the cervical spinal cord to the level of the facial nucleus. Catecholamine-fluorescent neurons at different levels of the ventrolateral medulla varied in their topography and sensitivity to pharmacological manipulation. However, the rostrocaudal distributions in rats and guinea-pigs were quantitatively remarkably similar implying that homologous groups of catecholamine-containing neurons exist. Comparison between these distributions and those of somata stained immunohistochemically for catecholamine-synthesizing enzymes and neuropeptide Y [Halliday G. M. and McLachlan E. M. (1991) Neuroscience 43, 531-550] revealed that the majority of fluorescent neurons in both species probably contain dopamine-beta-hydroxylase and neuropeptide Y as well as tyrosine hydroxylase. Those neurons lying just caudal to the facial nucleus immunoreactive for tyrosine hydroxylase and phenylethanolamine-N-methyltransferase but not dopamine-beta-hydroxylase and neuropeptide Y also lack catecholamine fluorescence. This rostral group of somata can be identified immunohistochemically in cats. The size and morphology of catecholamine-fluorescent neurons have been analysed in detail, and compared with the same features of the immunohistochemically stained neurons. Three morphological types of catecholamine-containing neurons could be distinguished in material prepared by both techniques from rats and guinea-pigs, and in immunohistochemical material from cats. Rostral tyrosine hydroxylase-positive neurons, which differed morphologically from these three types, were present in all three species. On the basis of anatomical location, neuronal morphology and chemical characteristics, four groups of tyrosine hydroxylase-immunoreactive neurons have been identified in the ventrolateral medulla of rats, guinea-pigs and cats. Only the caudal three of these four groups appear to synthesize catecholamine, probably noradrenaline. From published data it seems likely that these four groups of tyrosine hydroxylase-positive neurons have distinct projections and functions related to cardiovascular and respiratory control.
Collapse
Affiliation(s)
- G M Halliday
- School of Physiology and Pharmacology, University of New South Wales, Kensington, Australia
| | | |
Collapse
|
40
|
Kummer W, Gibbins IL, Stefan P, Kapoor V. Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell Tissue Res 1990; 261:595-606. [PMID: 1978803 DOI: 10.1007/bf00313540] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cranial and spinal sensory ganglia of the guinea-pig were investigated by means of histochemistry and biochemistry for the presence of catecholamines and catecholamine-synthesizing enzymes. Sensory neurons exhibiting immunoreactivity to the rate-limiting enzyme of catecholamine synthesis, tyrosine hydroxylase (TH), were detected by immunohistochemistry in lumbo-sacral dorsal root ganglia, the nodose ganglion and the petrosal/jugular ganglion complex. The carotid body was identified as a target of TH-like-immunoreactive (TH-LI) neurons by the use of combined retrograde tracing and immunohistochemistry. Double-labelling immunofluorescence revealed that most TH-LI neurons also contained somatostatin-LI, but TH-LI did not coexist with either calcitonin gene-related peptide- or substance P-LI. TH-LI neurons did not react with antibodies to other enzymes involved in catecholamine synthesis, i.e., aromatic amino acid decarboxylase (AADC), dopamine-beta-hydroxylase (D beta H), and phenylethanolamine-N-methyl-transferase (PNMT). Petrosal neurons as well as their endings in the carotid body lacked dopamine- and L-DOPA-LI. Sensory neurons did not display glyoxylic acid-induced catecholamine fluorescence. Ganglia containing TH-LI neurons were kept in short-term organ culture after crushing their roots and the exiting nerve in order to enrich intra-axonal transmitter content at the ganglionic side of the crush. However, even under these conditions, catecholamine fluorescence was not detected in axons projecting peripherally or centrally from the ganglia. Sympathetic noradrenergic nerves entered the ganglia and terminated within them. Accordingly, biochemical analyses of guinea-pig sensory ganglia revealed noradrenaline but no dopamine. In conclusion, catecholamines within guinea-pig sensory ganglia are confined to sympathetic nerves, which fulfill presently unknown functions. The TH-LI neurons themselves, however, lack any additional sign of catecholamine synthesis, and the presence of enzymatically active TH within these neurons is questionable.
Collapse
Affiliation(s)
- W Kummer
- Institute for Anatomy and Cell Biology, University of Heidelberg, FRG
| | | | | | | |
Collapse
|
41
|
Takada M, Campbell KJ, Moriizumi T, Hattori T. On the origin of the dopaminergic innervation of the paraventricular thalamic nucleus. Neurosci Lett 1990; 115:33-6. [PMID: 1699175 DOI: 10.1016/0304-3940(90)90513-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The origin of the dopaminergic innervation of the paraventricular thalamic nucleus was examined in the rat. Employing a combination of fluorescent retrograde tracing and immunofluorescence histochemistry for tyrosine hydroxylase, we found that this innervation predominantly takes origin from the mesencephalic A8 and A10 catecholamine cell groups.
Collapse
Affiliation(s)
- M Takada
- Department of Anatomy, University of Toronto, Ont., Canada
| | | | | | | |
Collapse
|
42
|
Kitahama K, Geffard M, Okamura H, Nagatsu I, Mons N, Jouvet M. Dopamine- and dopa-immunoreactive neurons in the cat forebrain with reference to tyrosine hydroxylase-immunohistochemistry. Brain Res 1990; 518:83-94. [PMID: 1975219 DOI: 10.1016/0006-8993(90)90957-d] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The distribution of cell bodies containing immunoreactivities to dopamine (DA), L-3,4-dihydroxyphenylalanine (DOPA) and tyrosine hydroxylase (TH) was studied immunohistochemically in the cat forebrain especially in the hypothalamus with or without intraventricular administration of colchicine. In normal cats, DA-immunoreactive (IR) neurons, whose intensity of immunostainings was variable from one to another, were localized exclusively in the hypothalamus and showed a distribution pattern similar to that of TH-IR ones. They were distributed in the posterior, dorsal and periventricular hypothalamic areas. Arcuate cells showed no or very weak DA-immunoreactivity. Weak to intense DOPA-IR cells were distributed in a similar manner to DA-IR ones but were far smaller in number. In colchicine-treated animals, DA- and DOPA-immunoreactivities were enhanced particularly in arcuate and dorsal hypothalamic cells. A cluster composed of small DA- and DOPA-IR cells was identified in the area ventral to the mamillothalamic tract equivalent to rat A13c TH-IR cell group. Colchicine treatment enabled us to visualize a large number of TH-IR perikarya in the medial and lateral preoptic areas, anterior commissure nucleus, basal forebrain, area closely related to the organum vasculosum laminae terminalis, and some in the bed nucleus of the stria terminalis as has been reported in other species. However, virtually none of these cells contained detectable DA- and DOPA-immunoreactivities.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, C.N.R.S. U.R.A.1195, I.N.S.E.R.M. U.52, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | | | | | |
Collapse
|
43
|
Suzuki N, Hardebo JE, Skagerberg G, Owman C. Central origins of preganglionic fibers to the sphenopalatine ganglion in the rat. A fluorescent retrograde tracer study with special reference to its relation to central catecholaminergic systems. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1990; 30:101-9. [PMID: 2370417 DOI: 10.1016/0165-1838(90)90133-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The brainstem origin of preganglionic fibers to the sphenopalatine ganglion in rat was revealed by the aid of the retrograde axonal tracer True Blue (which does not traverse to a second order neuron) applied deep in the sphenopalatine ganglion or the Vidian nerve on one side. The majority of fibers originate in the ipsilateral lacrimo-muconasal nucleus in the ventrolateral rostral medulla oblongata and caudal pons. A smaller number of fibers originate more dorsomedially and caudally in the medullary reticular formation. After application to the ganglion a third small group of labelled neurons was found more rostrally in the brainstem, in the reticular formation ventrolateral to the caudal part of the dorsal raphe nucleus. Simultaneous visualization of catecholaminergic nerves revealed that the labelled neurons in the lacrimo-muconasal nucleus were heavily innervated by catecholaminergic fibers. It appears from previous studies that the preganglionic neurons may not be cholinergic. None of the labelled neurons in the brainstem stained positively for catecholamines. Thus, further studies are required to elucidate the transmitter(s) used in these neurons.
Collapse
Affiliation(s)
- N Suzuki
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | | | |
Collapse
|
44
|
Vincent SR, Hope BT. Tyrosine hydroxylase containing neurons lacking aromatic amino acid decarboxylase in the hamster brain. J Comp Neurol 1990; 295:290-8. [PMID: 1972709 DOI: 10.1002/cne.902950211] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have recently described populations of tyrosine hydroxylase-immunoreactive neurons in the hamster brain in regions not known to contain catecholamine cell bodies. In the present study, the nature of the tyrosine hydroxylase immunoreactivity in the hamster brain was determined. In addition, these tyrosine hydroxylase-immunoreactive cell groups were examined for their ability to express aromatic amino acid decarboxylase. Immunohistochemistry with two different antibodies to tyrosine hydroxylase identified immunoreactive cell bodies in regions known to contain catecholamine neurons, including the substantia nigra and locus ceruleus. In addition, tyrosine hydroxylase-immunoreactive neurons were observed in other regions, including the basal forebrain, inferior colliculus, lateral parabrachial nucleus, and dorsal motor nucleus of the vagus. Western blotting indicated that hamster brain contained only one immunoreactive molecule, very similar in size to rat tyrosine hydroxylase. Thus it is likely that the immunohistochemical studies stained authentic hamster tyrosine hydroxylase. Indeed, in situ hybridization studies using a synthetic oligonucleotide probe against tyrosine hydroxylase mRNA resulted in specific and heavy labelling of these novel tyrosine hydroxylase-immunoreactive neurons. When adjacent sections were stained with antibodies to aromatic amino acid decarboxylase, known catecholamine cell groups were stained. However, the novel tyrosine hydroxylase cell groups did not display any aromatic amino acid decarboxylase immunoreactivity. These results suggest that neurons are present in the hamster brain that are able to hydroxylate tyrosine to L-DOPA, but that lack the ability to decarboxylate aromatic amino acids to produce dopamine or other catecholamines.
Collapse
Affiliation(s)
- S R Vincent
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
45
|
Geeraedts LM, Nieuwenhuys R, Veening JG. Medial forebrain bundle of the rat: IV. Cytoarchitecture of the caudal (lateral hypothalamic) part of the medial forebrain bundle bed nucleus. J Comp Neurol 1990; 294:537-68. [PMID: 2341625 DOI: 10.1002/cne.902940404] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the preceding study (Geeraedts et al.: J. Comp. Neurol. 294:507-536, '90), the rostral or telencephalic portion of the rat's bed nucleus of the medial forebrain bundle (MFB) has been parcellated into several cytoarchitectonically distinct cellular groups and subgroups. The purpose of the present investigation is to subject the caudal or lateral hypothalamic (LH) portion of the MFB bed nucleus to a detailed cytoarchitectonic analysis. This analysis is based on the same materials, methods, and cytoarchitectonic criteria that were also employed in the preceding study. In contrast to descriptions in the literature, it was found that the LH-region constitutes a very heterogeneous population of neurons with an evident arrangement into groups, several of which have not been identified previously. Many of these cellular groups are partly or entirely located within the boundary of the LH-trajectory of the MFB as previously established by Nieuwenhuys et al. (J. Comp. Neurol. 206:49-81, '82). These groups are designated here as the MFB-related cellular groups. They appear to be arranged into two longitudinal zones. Both zones are caudally replaced by the ventral tegmental area (VTA) and a part of the mesencephalic tegmentum (TEGM1). The lateral zone lies in close proximity to the internal capsule/cerebral peduncle and comprises the following cellular groups: the ventrolateral subarea of the lateral hypothalamic area (LHVL), the anterolateral subarea of the lateral hypothalamic area (LHAL), the lateral tuberal nucleus (TUL), the pre-subthalamic nucleus (PSUT), the retro-subthalamic nucleus (RSUT), the anterodorsal subarea of the lateral hypothalamic area (LHAD), and the lateral hypothalamic nucleus (LHN). The medial zone consists of the following cellular groups: the intermediate hypothalamic area (IHA), the medial tuberal nucleus (TUM), the perifornical nucleus (PFX), the lateral supramammillary nucleus (SUL), the submammillothalamic nucleus (SMT), and the nucleus geminus posterior (GEP). The cellular groups of the medial zone together with the tuberomammillary nucleus groups of the medial zone together with the tuberomammillary nucleus (TUMM) are positioned at the interface between the lateral and the medial hypothalamus, and form an array of cellular groups indicated in our study as the intermediate division of the hypothalamus. The MFB-related cellular groups are dorsally, medially, ventrally, and laterally surrounded by rather well-known brain structures. Both the MFB-related cellular groups and the surrounding structures have been identified and delimited. This resulted in a new, elaborate cytoarchitectonic atlas of the rat's lateral hypothalamic region.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L M Geeraedts
- Department of Anatomy and Embryology, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
46
|
Tison F, Mons N, Geffard M, Henry P. Immunohistochemistry of endogenous L-DOPA in the rat posterior hypothalamus. HISTOCHEMISTRY 1990; 93:655-60. [PMID: 2329062 DOI: 10.1007/bf00272209] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this work was to study L-DOPA-containing neuronal structures of the rat posterior and dorsal hypothalamus by means of immunohistochemistry using antiserum against glutaraldehyde conjugated L-DOPA. Aspects and distribution of L-DOPA immunoreaction among cells of the supramammillary nucleus and the A11, A13c and A13 cell groups are described and compared to dopamine immunoreactivity, mainly through a double colored labelling procedure employing a color modification of the DAB reaction by metallic ions. Differences between L-DOPA and dopamine stainings within cell groups as the presence of cells with predominant or exclusive L-DOPA coloration are tentatively explained under the light of previous findings using immunohistochemistry of catecholamines synthesizing enzymes and catecholamines histofluorescence.
Collapse
Affiliation(s)
- F Tison
- Département de Neurologie, Hôpital Pellegrin, Bordeaux, France
| | | | | | | |
Collapse
|
47
|
Di Porzio U, Zuddas A, Cosenza-Murphy DB, Barker JL. Early appearance of tyrosine hydroxylase immunoreactive cells in the mesencephalon of mouse embryos. Int J Dev Neurosci 1990; 8:523-32. [PMID: 1980787 DOI: 10.1016/0736-5748(90)90044-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of mesencephalic catecholaminergic neurons in the embryonic and fetal mouse was analysed in tissues fixed with 5% acrolein using polyclonal rabbit antibodies against tyrosine hydroxylase (TH), the first enzyme in catecholamine synthesis. The first TH positive cells were identified as early as day 8.5-9 of gestation and some expressed TH while apparently still migrating from the proliferative layer. The number of catecholamine cells increased dramatically by embryonic day 9.5-10; at gestation days 10.5-11 numerous TH positive cells bearing many neurites were localized in the ventral part of the mesencephalon but they were not yet separated into two different groups (A9 and A10). After 13 days of gestation two separate catecholaminergic groups could be visualized, although many TH positive cells with long neurites (putative dopaminergic neurons) could still be seen at the edges of the ventricle, and appeared to be moving towards the ventral mesencephalon. On the basis of these results the possibility that catecholamine cells that are produced early during the development of the midbrain may have neurotrophic and/or morphogenetic roles is discussed.
Collapse
Affiliation(s)
- U Di Porzio
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
48
|
Keast JR, de Groat WC. Immunohistochemical characterization of pelvic neurons which project to the bladder, colon, or penis in rats. J Comp Neurol 1989; 288:387-400. [PMID: 2571623 DOI: 10.1002/cne.902880303] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Retrograde-tracing and immunohistochemical techniques were used in combination to investigate the types of putative transmitters in pelvic neurons that project to the bladder, colon or penis of rats. In addition, populations of axon varicosities associated with these neurons were characterized. Subpopulations of neurons in colchicine-treated major pelvic ganglia and accessory ganglia of male rats contained immunoreactivity (IR) for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), or enkephalin (ENK), while types of immunoreactivity found in major groups of varicose axons were ENK, cholecystokinin (CCK), and somatostatin (SOM). Substance P (SP)-IR varicose axons were much less common. Bladder and colon neurons were similar in a number of ways. Many neurons contained NPY-IR (greater than or equal to 50%), fewer contained TH-IR (25-30%), and even fewer contained ENK-IR (5-15%) or VIP-IR (5-10%); many neurons were associated with baskets of ENK-IR varicosities (50-65%) and fewer neurons were surrounded by CCK- or SOM-IR varicosities (30-35%). Colon neurons differed from penis neurons in having a slightly larger proportion that contained ENK-IR (10-15%, compared with 1-3%). Penis neurons were markedly different from the other two groups in additional ways. More than 90% of them contained VIP-IR, whereas only 5-7% contained NPY-IR and none were immunoreactive for TH. Furthermore, although the proportion of penile neurons associated with many ENK-IR varicosities was similar to the bladder and colon neurons (45-50%), they were rarely seen close to CCK- or SOM-IR varicose axons. These studies describe similarities and differences in the histochemical properties of neurons which project to the bladder, colon, or penis and of the varicose axons associated with those neurons. This gives further insights into the possible transmitter mechanisms involved in the regulation of different pelvic functions.
Collapse
Affiliation(s)
- J R Keast
- Department of Pharmacology, University of Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
49
|
Mons N, Tison F, Geffard M. Identification of L-dopa-dopamine and L-dopa cell bodies in the rat mesencephalic dopaminergic cell systems. Synapse 1989; 4:99-105. [PMID: 2781469 DOI: 10.1002/syn.890040203] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An immunocytochemical technique for simultaneously visualizing two different antigens, dihydroxyphenylalanine (L-DOPA) and dopamine (DA), has been used to investigate the presence of cell bodies containing both compounds L-DOPA and DA and those having only L-DOPA in rat mesencephalon areas. The brain slices were processed with a double peroxidase-antiperoxidase method using simultaneously an incubation of a rabbit anti-L-DOPA serum and a monoclonal anti-DA antibody raised in mouse. Both antigens were revealed by the peroxidase reaction but with different chromogens that are easily distinguishable. In this staining procedure, the first antigen, conjugated DA was stained using the 3,3'-diaminobenzidine (DAB)-Nickel complex; while the second antigen, conjugated L-DOPA, was localized using DAB. The yellow-brown color due to DAB was masked by that of DAB-nickel. The possible existence of both single and double labelings could be worked. We have found many L-DOPA-positive/DA-positive and a few L-DOPA-positive/DA-negative cell bodies in dopaminergic regions in the rat midbrain: substantia nigra, ventral tegmental area, and raphe nuclei. In the locus coeruleus, we noted only L-DOPA-positive/DA-positive cell bodies. These results confirm those previously described for rat and cat hypothalamus, where both immunoreactive-cell body types have been detected: L-DOPA positive/DA positive and L-DOPA positive/DA negative. The existence of neuronal cells containing only L-DOPA is a new neuroanatomic finding, accounting better for the heterogeneity of dopamine systems with respect to physiologic, pharmacologic, and molecular data.
Collapse
Affiliation(s)
- N Mons
- Laboratoire de Neuroimmunologie, IBCN-CNRS, Université de Bordeaux II, France
| | | | | |
Collapse
|
50
|
Takada M, Li ZK, Hattori T. Single thalamic dopaminergic neurons project to both the neocortex and spinal cord. Brain Res 1988; 455:346-52. [PMID: 2900059 DOI: 10.1016/0006-8993(88)90093-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells in the rat subparafascicular thalamic nucleus (Spf) belonging to the diencephalic A11 cell group, were immunohistochemically stained with antibodies against tyrosine hydroxylase (TH) and dopamine itself. Employing a combination of retrograde fluorescent double-labeling and TH immunofluorescence techniques, we revealed the existence of dopaminergic Spf cells, giving rise to collateral projections to the neocortex and spinal cord.
Collapse
Affiliation(s)
- M Takada
- Department of Anatomy, University of Toronto, Ont., Canada
| | | | | |
Collapse
|