1
|
Chowdari Gurram P, Satarker S, Nampoothiri M. Recent advances in the molecular signaling pathways of Substance P in Alzheimer's disease: Link to neuroinflammation associated with toll-like receptors. Biochem Biophys Res Commun 2024; 733:150597. [PMID: 39197195 DOI: 10.1016/j.bbrc.2024.150597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
A significant quantity of substance P (SP) and its receptor, the neurokinin 1 (NK1) receptors are found in the brain. SP is a neuropeptide distributed in the central nervous system and functions as a neurotransmitter, neuromodulator, and neurotrophic factor. The concentrations of SP in the brain and cerebrospinal fluid fluctuate in individuals with Alzheimer's disease (AD). SP is an endogenous ligand for NK1 receptor, enhancing the expression of toll-like receptors (TLR) and vice versa. So, both pathways are interconnected, where activation of one pathway activates the second pathway. Researchers have observed the interaction of TLR with SP in the pathophysiology of AD. Thus, this review discusses various TLRs involved in regulating amyloid processing and its interaction with SP in AD. Further, in AD pathology, SP can regulate the non-amyloidogenic pathway. Recent studies have also demonstrated the capacity of SP in regulating voltage-gated potassium channel currents, emphasizing SP's neuroprotective ability. Therefore, we corroborate the findings linking the SP, NK1R, and TLRs in AD.
Collapse
Affiliation(s)
- Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India; KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
2
|
Gutierrez-Merino C. Brain Hydrophobic Peptides Antagonists of Neurotoxic Amyloid β Peptide Monomers/Oligomers-Protein Interactions. Int J Mol Sci 2023; 24:13846. [PMID: 37762148 PMCID: PMC10531495 DOI: 10.3390/ijms241813846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Amyloid β (Aβ) oligomers have been linked to Alzheimer's disease (AD) pathogenesis and are the main neurotoxic forms of Aβ. This review focuses on the following: (i) the Aβ(1-42):calmodulin interface as a model for the design of antagonist Aβ peptides and its limitations; (ii) proteolytic degradation as the major source of highly hydrophobic peptides in brain cells; and (iii) brain peptides that have been experimentally demonstrated to bind to Aβ monomers or oligomers, Aβ fibrils, or Aβ plaques. It is highlighted that the hydrophobic amino acid residues of the COOH-terminal segment of Aβ(1-42) play a key role in its interaction with intracellular protein partners linked to its neurotoxicity. The major source of highly hydrophobic endogenous peptides of 8-10 amino acids in neurons is the proteasome activity. Many canonical antigen peptides bound to the major histocompatibility complex class 1 are of this type. These highly hydrophobic peptides bind to Aβ and are likely to be efficient antagonists of the binding of Aβ monomers/oligomers concentrations in the nanomolar range with intracellular proteins. Also, their complexation with Aβ will protect them against endopeptidases, suggesting a putative chaperon-like physiological function for Aβ that has been overlooked until now. Remarkably, the hydrophobic amino acid residues of Aβ responsible for the binding of several neuropeptides partially overlap with those playing a key role in its interaction with intracellular protein partners that mediates its neurotoxicity. Therefore, these latter neuropeptides are also potential candidates to antagonize Aβ peptides binding to target proteins. In conclusion, the analysis performed in this review points out that hydrophobic endogenous brain neuropeptides could be valuable biomarkers to evaluate the risk of the onset of sporadic AD, as well as for the prognosis of AD.
Collapse
Affiliation(s)
- Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
3
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
4
|
Press-Sandler O, Miller Y. Assessments of the Effect of Neurokinin B on Toxic Aβ Aggregates in Alzheimer's Disease with the Molecular Mechanisms' Action. ACS Chem Neurosci 2020; 11:3418-3429. [PMID: 32986399 DOI: 10.1021/acschemneuro.0c00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical trials of past and current treatments for Alzheimer's disease (AD) patients on the market suffer from the dual drawbacks of a lack of efficacy and side effects. Neuropeptides have been highlighted by their potential to protect cells against AD and can reverse the toxic effect induced by Aβ in cultured neurons. One of the neuropeptides that has insufficient attention in the literature as a potential treatment for prevention of the progression of AD is neurokinin B (NKB). There are critical and unresolved questions concerning the activation, and the molecular mechanisms underlying NKB effect on prevention of Aβ aggregation remain unknown. The current work identifies for the first time the specific interactions that contribute to the inhibition and prevention of initial seeding of polymorphic early-stage dimers. Three main conclusions are observed in this work. First, NKB inhibits formation of polymorphic early-stage fibrillar Aβ dimers. The efficiency of the inhibition depends on the concentration of NKB (i.e., NKB:Aβ ratio). Second, NKB has an excellent effect of preventing the formation of initial seeding of early-stage nonfibrillar Aβ dimers. Third, NKB peptides may self-assemble to form cross-α fibril-like structure during the inhibition activity of the polymorphic early-stage fibrillar Aβ dimers but not during the prevention activity of early-stage nonfibrillar Aβ dimers. The work provides crucial information for future experimental studies to approve the functional effect of NKB on inhibition and prevention of Aβ polymorphic early-stage oligomers.
Collapse
Affiliation(s)
- Olga Press-Sandler
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| |
Collapse
|
5
|
Chen XY, Du YF, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front Mol Neurosci 2019; 11:493. [PMID: 30687008 PMCID: PMC6336706 DOI: 10.3389/fnmol.2018.00493] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 12/21/2018] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits and neuronal loss. Deposition of beta-amyloid peptide (Aβ) causes neurotoxicity through the formation of plaques in brains of Alzheimer's disease. Numerous studies have indicated that the neuropeptides including ghrelin, neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y, substance P and orexin are closely related to the pathophysiology of Alzheimer's disease. The levels of neuropeptides and their receptors change in Alzheimer's disease. These neuropeptides exert neuroprotective roles mainly through preventing Aβ accumulation, increasing neuronal glucose transport, increasing the production of neurotrophins, inhibiting endoplasmic reticulum stress and autophagy, modulating potassium channel activity and hippocampal long-term potentiation. Therefore, the neuropeptides may function as potential drug targets in the prevention and cure of Alzheimer's disease.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China.,Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yi-Feng Du
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Fernandes J, Mudgal J, Rao CM, Arora D, Basu Mallik S, Pai KSR, Nampoothiri M. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats. Toxicol Mech Methods 2018; 28:328-334. [PMID: 29185389 DOI: 10.1080/15376516.2017.1411412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
Abstract
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl3) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.
Collapse
Affiliation(s)
- Joylee Fernandes
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Jayesh Mudgal
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | | | - Devinder Arora
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
- b School of Pharmacy , MHIQ, QUM Network, Griffith University , Goldcoast , Australia
| | - Sanchari Basu Mallik
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - K S R Pai
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Madhavan Nampoothiri
- a Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| |
Collapse
|
7
|
Peineau S, Rabiant K, Pierrefiche O, Potier B. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease. Pharmacol Res 2018; 130:385-401. [PMID: 29425728 DOI: 10.1016/j.phrs.2018.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
Synaptic plasticity is a cellular process involved in learning and memory whose alteration in its two main forms (Long Term Depression (LTD) and Long Term Potentiation (LTP)), is observed in most brain pathologies, including neurodegenerative disorders such as Alzheimer's disease (AD). In humans, AD is associated at the cellular level with neuropathological lesions composed of extracellular deposits of β-amyloid (Aβ) protein aggregates and intracellular neurofibrillary tangles, cellular loss, neuroinflammation and a general brain homeostasis dysregulation. Thus, a dramatic synaptic environment perturbation is observed in AD patients, involving changes in brain neuropeptides, cytokines, growth factors or chemokines concentration and diffusion. Studies performed in animal models demonstrate that these circulating peptides strongly affect synaptic functions and in particular synaptic plasticity. Besides this neuromodulatory action of circulating peptides, other synaptic plasticity regulation mechanisms such as metaplasticity are altered in AD animal models. Here, we will review new insights into the study of synaptic plasticity regulatory/modulatory mechanisms which could influence the process of synaptic plasticity in the context of AD with a particular attention to the role of metaplasticity and peptide dependent neuromodulation.
Collapse
Affiliation(s)
- Stéphane Peineau
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France; Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Kevin Rabiant
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| | - Brigitte Potier
- Laboratoire Aimé Cotton, CNRS-ENS UMR9188, Université Paris-Sud, Orsay, France.
| |
Collapse
|
8
|
Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2017; 10:296. [PMID: 28101005 PMCID: PMC5209380 DOI: 10.3389/fncel.2016.00296] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson's disease, Alzheimer's disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ada D Young
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
9
|
Riku Y, Watanabe H, Yoshida M, Mimuro M, Iwasaki Y, Masuda M, Ishigaki S, Katsuno M, Sobue G. Marked Involvement of the Striatal Efferent System in TAR DNA-Binding Protein 43 kDa-Related Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2016; 75:801-811. [PMID: 27346748 DOI: 10.1093/jnen/nlw053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/14/2022] Open
Abstract
Recent pathological studies indicate that neuronal loss and/or TAR DNA-binding protein-43 kDa (TDP-43) inclusions are frequent in the striatum of patients with TDP-43-related frontotemporal lobar degeneration (FTLD-TDP) and amyotrophic lateral sclerosis (ALS-TDP). However, no investigations have clarified the impact of such pathological changes on striatal neuronal outputs in these diseases. We analyzed pathological changes in the striatal efferent system of 59 consecutively autopsied patients with sporadic FTLD-TDP or ALS-TDP. The axon terminals of striatal efferent neurons were immunohistochemically assessed in the substantia nigra pars reticulata (SNr) and globus pallidus (GP). All of the FTLD-TDP patients exhibited a marked depletion of axon terminals, irrespective of disease duration. In particular, losses of substance-P-positive projections to the SNr and internal segment of GP were consistently severe. Similar findings were also observed in 69.0% of the ALS-TDP patients, although the severity was much less than that in the FTLD-TDP patients (p < 0.001). The accumulation of phosphorylated TDP-43 was observed in the striatal efferent neurons, efferent tracts, or their axon terminals in the SNr and GP in both groups. Thus, striatal efferent projections are essentially and commonly involved in the TDP-43-related FTLD/ALS disease spectrum.
Collapse
Affiliation(s)
- Yuichi Riku
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Hirohisa Watanabe
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Mari Yoshida
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Maya Mimuro
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Yasushi Iwasaki
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Michihito Masuda
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Shinsuke Ishigaki
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Masahisa Katsuno
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Gen Sobue
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI).
| |
Collapse
|
10
|
Martinez AN, Philipp MT. Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System. ACTA ACUST UNITED AC 2016; 1:29-36. [PMID: 27430034 DOI: 10.29245/2572.942x/2016/2.1020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review addresses the role that substance P (SP) and its preferred receptor neurokinin-1 (NK1R) play in neuroinflammation associated with select bacterial, viral, parasitic, and neurodegenerative diseases of the central nervous system. The SP/NK1R complex is a key player in the interaction between the immune and nervous systems. A common effect of this interaction is inflammation. For this reason and because of the predominance in the human brain of the NK1R, its antagonists are attractive potential therapeutic agents. Preventing the deleterious effects of SP through the use of NK1R antagonists has been shown to be a promising therapeutic strategy, as these antagonists are selective, potent, and safe. Here we evaluate their utility in the treatment of different neuroinfectious and neuroinflammatory diseases, as a novel approach to clinical management of CNS inflammation.
Collapse
Affiliation(s)
- Alejandra N Martinez
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Mario T Philipp
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA
| |
Collapse
|
11
|
Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, Zetterberg H, Svensson J. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer's disease. Neurosci Lett 2015; 609:58-62. [DOI: 10.1016/j.neulet.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/22/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
|
12
|
Campolongo P, Ratano P, Ciotti MT, Florenzano F, Nori SL, Marolda R, Palmery M, Rinaldi AM, Zona C, Possenti R, Calissano P, Severini C. Systemic administration of substance P recovers beta amyloid-induced cognitive deficits in rat: involvement of Kv potassium channels. PLoS One 2013; 8:e78036. [PMID: 24265678 PMCID: PMC3827079 DOI: 10.1371/journal.pone.0078036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Reduced levels of Substance P (SP), an endogenous neuropeptide endowed with neuroprotective and anti-apoptotic properties, have been found in brain and spinal fluid of Alzheimer's disease (AD) patients. Potassium (K(+)) channel dysfunction is implicated in AD development and the amyloid-β (Aβ)-induced up-regulation of voltage-gated potassium channel subunits could be considered a significant step in Aβ brain toxicity. The aim of this study was to evaluate whether SP could reduce, in vivo, Aβ-induced overexpression of Kv subunits. Rats were intracerebroventricularly infused with amyloid-β 25-35 (Aβ25-35, 20 µg) peptide. SP (50 µg/Kg, i.p.) was daily administered, for 7 days starting from the day of the surgery. Here we demonstrate that the Aβ infused rats showed impairment in cognitive performances in the Morris water maze task 4 weeks after Aβ25-35 infusion and that this impairing effect was prevented by SP administration. Kv1.4, Kv2.1 and Kv4.2 subunit levels were quantified in hippocampus and in cerebral cortex by Western blot analysis and immunofluorescence. Interestingly, SP reduced Kv1.4 levels overexpressed by Aβ, both in hippocampus and cerebral cortex. Our findings provide in vivo evidence for a neuroprotective activity of systemic administration of SP in a rat model of AD and suggest a possible mechanism underlying this effect.
Collapse
Affiliation(s)
- Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Patrizia Ratano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Fulvio Florenzano
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
- European Brain Research Institute, Rome, Italy
| | - Stefania Lucia Nori
- Department of Medicine and Surgery, University of Salerno Medicine Campus, Baronissi (SA), Italy
| | - Roberta Marolda
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Neuroscience, University of Rome “Tor Vergata”, Rome, Italy
| | - Cristina Zona
- Department of Neuroscience, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Roberta Possenti
- Department of Neuroscience, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Cinzia Severini
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
- * E-mail:
| |
Collapse
|
13
|
Reduced expression of pain mediators and pain sensitivity in amyloid precursor protein over-expressing CRND8 transgenic mice. Neuroscience 2013; 250:92-101. [DOI: 10.1016/j.neuroscience.2013.06.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/23/2013] [Accepted: 06/28/2013] [Indexed: 11/23/2022]
|
14
|
Marolda R, Ciotti MT, Matrone C, Possenti R, Calissano P, Cavallaro S, Severini C. Substance P activates ADAM9 mRNA expression and induces α-secretase-mediated amyloid precursor protein cleavage. Neuropharmacology 2012; 62:1954-63. [PMID: 22244942 DOI: 10.1016/j.neuropharm.2011.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/13/2011] [Accepted: 12/21/2011] [Indexed: 01/08/2023]
Abstract
Altered levels of Substance P (SP), a neuropeptide endowed with neuroprotective and anti-apoptotic properties, were found in brain areas and spinal fluid of Alzheimer's disease (AD) patients. One of the hallmarks of AD is the abnormal extracellular deposition of neurotoxic beta amyloid (Aβ) peptides, derived from the proteolytic processing of amyloid precursor protein (APP). In the present study, we confirmed, the neurotrophic action of SP in cultured rat cerebellar granule cells (CGCs) and investigated its effects on APP metabolism. Incubation with low (5 mM) potassium induced apoptotic cell death of CGCs and amyloidogenic processing of APP, whereas treatment with SP (200 nM) reverted these effects via NK1 receptors. The non-amyloidogenic effect of SP consisted of reduction of Aβ(1-42), increase of sAPPα and enhanced α-secretase activity, without a significant change in steady-state levels of cellular APP. The intracellular mechanisms whereby SP alters APP metabolism were further investigated by measuring mRNA and/or steady-state protein levels of key enzymes involved with α-, β- and γ-secretase activity. Among them, Adam9, both at the mRNA and protein level, was the only enzyme to be significantly down-regulated following the induction of apoptosis (K5) and up-regulated after SP treatment. In addition to its neuroprotective properties, this study shows that SP is able to stimulate non-amyloidogenic APP processing, thereby reducing the possibility of generation of toxic Aβ peptides in brain.
Collapse
Affiliation(s)
- R Marolda
- Institute of Cell Biology and Neurobiology, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Pieri M, Amadoro G, Carunchio I, Ciotti MT, Quaresima S, Florenzano F, Calissano P, Possenti R, Zona C, Severini C. SP protects cerebellar granule cells against beta-amyloid-induced apoptosis by down-regulation and reduced activity of Kv4 potassium channels. Neuropharmacology 2009; 58:268-76. [PMID: 19576909 DOI: 10.1016/j.neuropharm.2009.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/12/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
The tachykinin endecapeptide substance P (SP) has been demonstrated to exert a functional role in neurodegenerative disorders, including Alzheimer's disease (AD). Aim of the present study was to evaluate the SP neuroprotective potential against apoptosis induced by the neurotoxic beta-amyloid peptide (A beta) in cultured rat cerebellar granule cells (CGCs). We found that SP protects CGCs against both A beta(25-35)- and A beta(1-42)-induced apoptotic CGCs death as revealed by live/dead cell assay, Hoechst staining and caspase(s)-induced PARP-1 cleavage, through an Akt-dependent mechanism. Since in CGCs the fast inactivating or A-type K(+) current (I(KA)) was potentiated by A beta treatment through up-regulation of Kv4 subunits, we investigated whether I(KA) and the related potassium channel subunits could be involved in the SP anti-apoptotic activity. Patch-clamp experiments showed that the A beta-induced increase of I(KA) current amplitude was reversed by SP treatment. In addition, as revealed by Western blot analysis and immunofluorescence studies, SP prevented the up-regulation of Kv4.2 and Kv4.3 channel subunits expression. These results indicate that SP plays a role in the regulation of voltage-gated potassium channels in A beta-mediated neuronal death and may represent a new approach in the understanding and treatment of AD.
Collapse
Affiliation(s)
- M Pieri
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Willis M, Hutter-Paier B, Wietzorrek G, Windisch M, Humpel C, Knaus HG, Marksteiner J. Localization and expression of substance P in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations. Brain Res 2007; 1143:199-207. [PMID: 17328871 DOI: 10.1016/j.brainres.2007.01.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/16/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
Substance P-like immunoreactivity (-LI) is found in neuritic plaques, and is reduced in patients suffering from Alzheimer disease (AD). In this study, we examined the distribution and expression of substance P in transgenic mice overexpressing human amyloid precursor protein (hAPP) APP751 with the London (V717I) and Swedish (K670M/N671L) mutations. Immunohistochemistry was performed to localize substance P- and glial fibrillary acidic protein-LI by confocal microscopy. In hAPP transgenic mice, the number of beta-amyloid plaques significantly increased from 6 to 12 months. About 5% of beta-amyloid plaques were substance P-immunoreactive. In transgenic mice, the morphology of substance P-immunoreactive structures changed by consisting of swollen and dystrophic neurites mostly associated with beta-amyloid plaques. The overall localization and the relative substance P densities were not different between wild type and transgenic mice at 6 and 12 months. At month 12, a dramatic change in the distribution pattern of substance P-LI was observed as it was now expressed in a high number of reactive astrocytes. This expression of substance P in astrocytes was mainly found in the hippocampal formation and thalamic nuclei with a preferential association with beta-amyloid plaques, whereas in cortical regions only faintly substance P-immunoreactive astrocytes were observed. This study indicates that substance P undergoes complex changes in this animal Alzheimer disease model. Future experiments including substance P antagonists are necessary to further explore the interaction between beta-amyloid deposits and substance P.
Collapse
Affiliation(s)
- Michael Willis
- Department of General Psychiatry, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
17
|
Chin FT, Morse CL, Shetty HU, Pike VW. Automated radiosynthesis of [18F]SPA-RQ for imaging human brain NK1 receptors with PET. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.1016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Hallberg M, Kindlundh AMS, Nyberg F. The impact of chronic nandrolone decanoate administration on the NK1 receptor density in rat brain as determined by autoradiography. Peptides 2005; 26:1228-34. [PMID: 15949641 DOI: 10.1016/j.peptides.2005.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 11/17/2022]
Abstract
Adult male Sprague-Dawley rats were treated with the anabolic androgenic steroid nandrolone decanoate (15 mg/kg day) or oil vehicle (sterile arachidis oleum) during 14 days. The effect on the densities of the neurokinin NK1 receptor in brain was examined with autoradiography. An overall tendency of attenuation of NK1 receptor density was observed after completed treatment with nandrolone decanoate. The density of the NK1 receptor was found to be significantly lower compared to control animals in the nucleus accumbens core (37% density reduction), in dentate gyrus (26%), in basolateral amygdaloid nucleus (23%), in ventromedial hypothalamic nucleus (36%), in dorsomedial hypothalamic nucleus (43%) and finally in the periaqueductal gray (PAG) (24%). In the cortex region, no structures exhibited any significant reduction of NK1 receptor density. This result provides additional support to the hypothesis that substance P and the NK1 receptor may be involved as important components that participate in mediating physiological responses including the adverse behaviors often associated with chronically administrated anabolic androgenic steroids in human.
Collapse
Affiliation(s)
- Mathias Hallberg
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Box 591, 75124 Uppsala, Sweden.
| | | | | |
Collapse
|
19
|
Ahmed MM, Hoshino H, Chikuma T, Yamada M, Kato T. Effect of memantine on the levels of glial cells, neuropeptides, and peptide-degrading enzymes in rat brain regions of ibotenic acid-treated alzheimer's disease model. Neuroscience 2004; 126:639-49. [PMID: 15183513 DOI: 10.1016/j.neuroscience.2004.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 02/06/2023]
Abstract
It has been implicated that glia activation plays a critical role in the progression of Alzheimer's disease (AD). However, the precise mechanism of glia activation is not clearly understood yet. In our present studies, we confirmed our previous results where change the levels of neuropeptides and peptidases in ibotenic acid (IBO) infusion into the rat nucleus basalis magnocellularis, an animal model of AD. Furthermore, we extended our study to investigate a possible protection effect of co-administration on the changes of neuropeptides, and neuronal and glial cells in IBO-infused rat brain by memantine treatment. The levels of substance P and somatostatin were decreased in the striatum and frontal cortex 1 week after IBO infusion, and recovered to the control level by memantine treatment, indicating the involvement of neuropeptides in AD pathology. Furthermore, the immunohistochemical and enzymatic studies of GFAP and CD 11b, and peptidylarginine deiminase, markers of glia, in the striatum and frontal cortex showed the increase in IBO-treated rat brain as compared with controls, while co-administration of memantine and IBO no increase of astrocytes and microglia activation was observed. The present biochemical and immunohistochemical results suggest that glia activation might play an important role to the pathology of AD, and correlate with the changes of neuropeptide levels in AD brain that is recovered by memantine treatment.
Collapse
Affiliation(s)
- M M Ahmed
- Laboratory of Natural Information Science, Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | | | | | | | | |
Collapse
|
20
|
Yamamoto M, Chikuma T, Kato T. Changes in the levels of neuropeptides and their metabolizing enzymes in the brain regions of nucleus basalis magnocellularis-lesioned rats. J Pharmacol Sci 2003; 92:400-10. [PMID: 12939525 DOI: 10.1254/jphs.92.400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The regulation mechanism of the interrelation between neuropeptides and their metabolizing enzymes in in vivo tissues is still not clear. In the present report, we attempted to measure the levels of neuropeptides and their enzymes in the frontal cortex, hippocampus, and striatum of the rat that had been bilaterally lesioned by the infusion of ibotenic acid or amyloid beta-peptide 25 - 35 (Abeta25 - 35) into the nucleus basalis magnocellularis. In the drug-treated rats, at two weeks after the infusion, the decrease of somatostatin-like immunoreactivity (SS-LI) and the increase of cholecystokinin-8S-LI were found in some brain regions relative to vehicle-treated rats. The immunoreactivities of endopeptidase 24.15 and puromycin-sensitive aminopeptidase and the leucine aminopeptidase- and aminopeptidase B-like enzyme activities did not change in the three brain regions, suggesting that the levels of those peptide-degrading enzymes do not correlate with the changes of the neuropeptide levels. The decrease of subtilisin-like proprotein convertase (SPC)-like enzyme activity was found in the hippocampus of the Abeta25 - 35-treated rats. The SS mRNA level decreased in the hippocampus in parallel with decreases in the SS-LI level and SPC-like enzyme activity. The present data indicate that some of the neuropeptide-processing enzymes may contribute to the control of neuropeptide levels.
Collapse
Affiliation(s)
- Masaru Yamamoto
- Laboratory of Natural Information Science, Yokohama City University, Yokohama, Japan
| | | | | |
Collapse
|
21
|
Howes MJR, Houghton PJ. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav 2003; 75:513-27. [PMID: 12895669 DOI: 10.1016/s0091-3057(03)00128-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In traditional practices of Ayurvedic and Chinese medicine, numerous plants have been used to treat cognitive disorders, including neurodegenerative diseases such as Alzheimer's disease (AD). An ethnopharmacological approach has provided leads to identifying potential new drugs from plant sources, including those for cognitive disorders. Many drugs currently available in Western medicine were originally isolated from plants, or are derived from templates of compounds isolated from plants. Some anticholinesterase (anti-ChE) alkaloids isolated from plants have been investigated for their potential in the treatment of AD, and are now in clinical use. Galantamine, isolated from several plants including Lycoris radiata Herb., which was used in traditional Chinese medicine (TCM), is licensed in the United Kingdom for the treatment of mild to moderate AD. Various other plant species have shown pharmacological activities relevant to the treatment of cognitive disorders, indicating potential for therapeutic use in disorders such as AD. This article reviews some of the plants and their active constituents that have been used in traditional Ayurvedic medicine and TCM for their reputed cognitive-enhancing or antiageing effects. Plants and their constituents with pharmacological activities that may be relevant for the treatment of cognitive disorders, including enhancement of cholinergic function in the central nervous system (CNS), anti-inflammatory and antioxidant activities, are discussed.
Collapse
|
22
|
Morain P, Lestage P, De Nanteuil G, Jochemsen R, Robin JL, Guez D, Boyer PA. S 17092: a prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies. CNS DRUG REVIEWS 2002; 8:31-52. [PMID: 12070525 PMCID: PMC6741683 DOI: 10.1111/j.1527-3458.2002.tb00214.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Any treatment that could positively modulate central neuropeptides levels would provide a promising therapeutic approach to the treatment of cognitive deficits associated with aging and/or neurodegenerative diseases. Therefore, based on the activity in rodents, S 17092 (2S,3aS,7aS)-1][(R,R)-2-phenylcyclopropyl]carbonyl]-2-[(thiazolidin-3-yl)carbonyl]octahydro-1H-indole) has been selected as a potent inhibitor of cerebral prolyl-endopeptidase (PEP). By retarding the degradation of neuroactive peptides, S 17092 was successfully used in a variety of memory tasks. These tasks explored short-term, long-term, reference and working memory in aged mice, as well as in rodents and monkeys with chemically induced amnesia or spontaneous memory deficits. S 17092 has also been safely administered to humans, and showed a clear peripheral expression of its mechanism of action through its inhibitory effect upon PEP activity in plasma. S 17092 exhibited central effects, as evidenced by EEG recording in healthy volunteers, and could improve a delayed verbal memory task. Collectively, the preclinical and clinical effects of S 17092 have suggested a promising role for this compound as an agent for the treatment of cognitive disorders associated with cerebral aging.
Collapse
Affiliation(s)
- Philippe Morain
- Institut de Recherches Internationales Servier, 6 Place des pleïades, 92415 Courbevoie, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Tooney PA, Au GG, Chahl LA. Tachykinin NK1 and NK3 receptors in the prefrontal cortex of the human brain. Clin Exp Pharmacol Physiol 2000; 27:947-9. [PMID: 11071316 DOI: 10.1046/j.1440-1681.2000.03367.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The tachykinins are neuropeptides found in both the central and peripheral nervous systems that play a role in inflammation and pain mechanisms and some autonomic reflexes and behaviours. 2. Although the distribution of the tachykinin receptors has been described in the brains of various animal species, little is known about the distribution of the NK1 and NK3 receptors in the human brain. 3. The present paper examines the distribution of the NK1 and NK3 receptors in the prefrontal cortex of formalin-fixed postmortem human brain tissue by immunohistochemical techniques. 4. The majority of NK1 receptor immunoreactivity appeared as a thin band of punctate staining at the pial surface, with dark brown dots of NK1 receptor immunoreactivity predominantly scattered across the mid to upper cortical layers. 5. The NK3 receptor immunoreactivity was found in the glia limitans at the pial surface, where astrocytes and beaded fibres were intensely stained. Dots of NK3 receptor immunoreactivity were scattered across all cortical layers. In the white matter, astrocytes and beaded fibres displayed NK3 receptor immunoreactivity, particularly in areas surrounding blood vessels.
Collapse
Affiliation(s)
- P A Tooney
- Neuroscience Institute of Schizophrenia and Allied Disorders and School of Biomedical Sciences, Faculty of Medicine and Health Sciences, The University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | |
Collapse
|
24
|
Morain P, Robin JL, De Nanteuil G, Jochemsen R, Heidet V, Guez D. Pharmacodynamic and pharmacokinetic profile of S 17092, a new orally active prolyl endopeptidase inhibitor, in elderly healthy volunteers. A phase I study. Br J Clin Pharmacol 2000; 50:350-9. [PMID: 11012558 PMCID: PMC2014995 DOI: 10.1046/j.1365-2125.2000.00270.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS The aim of this study was to characterize the pharmacodynamics and the pharmacokinetics of S 17092, a new orally active prolyl endopeptidase inhibitor following single and repeated administration in elderly healthy volunteers. METHODS This was a double-blind, randomized, placebo-controlled, single and multiple dose study in elderly healthy male and female volunteers (n = 36). Four doses were investigated in sequential order: 100, 400, 800 and 1200 mg. Each dose was administered orally once a day in single administration and then, after a 1 week washout period, during 7 days. Pharmacodynamics were assessed by measurement of plasmatic prolyl endopeptidase (PEP) activity, quantitative electroencephalogram (EEG) and psychometric tests. S 17092 concentrations in plasma were quantified by high performance liquid chromatography with tandem mass spectrometric detection. RESULTS PEP activity in plasma was dose-dependently inhibited both after administration of a single dose and after repeated doses of S 17092. The mean maximal inhibition was obtained within 0.5-2 h after dosing, while inhibition lasted at least 12 h after dose administration. S 17092 appeared to be a centrally active substance as it induced statistically significant modifications in EEG compared with placebo. S 17092 at 100 mg exerted an acute increase in alpha band following single administration at 4 h and 8 h postdosing. When administered repeatedly over 7 days S 17092 did not appear to induce significant lasting central nervous system (CNS) effects. In psychometric tests, response times in the numeric working memory were significantly reduced compared with placebo, following the 800 mg dose. There were some beneficial residual effects of the 1200 mg dose on day 13: delayed word recall and word recognition sensitivity improved compared with the declines noted under placebo. Maximum measured concentration (Cmax) and area under the curve (AUC) parameters increased in proportion to the dose. The terminal half-life (t(1/2)) values ranged between 9 and 31 h on day 1 and between 7 and 18 h on day 14. A high interindividual variability was observed at all dose levels. S 17092 was well tolerated with no clinically significant changes in laboratory or physical parameters observed at any dose. CONCLUSIONS S 17092 had a potent, dose-dependent inhibitory effect on plasmatic PEP, increased alpha band EEG at the 100 mg dose and improved performance in two verbal memory tests at the 1200 mg dose while there were disruption to the vigilance task. The results obtained in elderly healthy subjects indicated that S 17092 is suitable for once-daily dosing without any serious adverse events.
Collapse
Affiliation(s)
- P Morain
- Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie, France.
| | | | | | | | | | | |
Collapse
|
25
|
Baloyannis SJ, Costa V, Deretzi G, Michmizos D. Intraventricular administration of substance p increases the dendritic arborisation and the synaptic surfaces of Purkinje cells in rat's cerebellum. Int J Neurosci 2000; 101:89-107. [PMID: 10765993 DOI: 10.3109/00207450008986495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Substance P was infused in the lateral ventricles of twenty Lewis rats for twenty days. On the twentieth day the animals were sacrificed and the cerebellar cortex was processed for electron microscopy. The ultrastructural morphometric analysis revealed that the Purkinje cell dendritic arborisation and the number of the synapses between the parallel fibres and the Purkinje cell dendritic spines were much higher than in control animals. Numerous unattached spines of the secondary and tertiary dendritic branches of the Purkinje cells were also seen in the molecular layer either free or surrounded by astrocytic sheath. The increased number of synapses between the Purkinje cell dendrites and the parallel fibres in the animals, which received substance P intraventricularly, in correlation to control animals, supports a neurotrophine-like activity of the substance P in the mammalian cerebellum, enforcing the pre-programmed capability of the Purkinje cells to develop new synaptic surfaces.
Collapse
Affiliation(s)
- S J Baloyannis
- Department of Neurology, Aristotelian University, Thessaloniki, Greece
| | | | | | | |
Collapse
|
26
|
Tooney PA, Au GG, Chahl LA. Localisation of tachykinin NK1 and NK3 receptors in the human prefrontal and visual cortex. Neurosci Lett 2000; 283:185-8. [PMID: 10754218 DOI: 10.1016/s0304-3940(00)00979-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The distribution of tachykinin NK(1) and NK(3) receptors in the prefrontal (Brodmann area 9) and visual cortex (Brodmann area 17) of formalin-fixed postmortem human brain tissue was studied by immunohistochemistry. NK(1)-like immunoreactivity (NK(1)-LI) was observed as a thin band at the cortical surface and dots of NK(1)-LI localised on small non-pyramidal cells and in the neuropil (layers I-III). NK(3)-LI was found in beaded fibres and cells with astrocyte-like morphology in the superficial cortical layers and white matter. Dots of NK(3)-LI were prominent in the neuropil and on pyramidal (layers III/V) and non-pyramidal (layers V/VI) cells. The NK(3)-LI was more abundant and widespread than the NK(1)-LI. This is the first report of the distribution of the NK(1) receptor in the prefrontal and visual cortex of the human brain by immunohistochemistry.
Collapse
Affiliation(s)
- P A Tooney
- Neuroscience Institute of Schizophrenia and Allied Disorders and School of Biomedical Sciences, Faculty of Medicine and Health Sciences, The University of, Newcastle, Australia.
| | | | | |
Collapse
|
27
|
Hurd YL, Keller E, Sotonyi P, Sedvall G. Preprotachykinin-A mRNA expression in the human and monkey brain: An in situ hybridization study. J Comp Neurol 1999; 411:56-72. [PMID: 10404107 DOI: 10.1002/(sici)1096-9861(19990816)411:1<56::aid-cne5>3.0.co;2-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mRNA expression for preprotachykinin-A (PPT-A) was studied throughout the human and cynomolgus monkey brain to assess the neuroanatomical expression pattern of the PPT-A gene in primates. In situ hybridization showed that the PPT-A mRNA is expressed highly in specific regions of the postmortem human brain, including the striatum, islands of Calleja, hypothalamus (posterior, premammillary, medial mammillary, and ventromedial nuclei), superior and inferior colliculi, periaqueductal gray, and oculomotor nuclear complex. PPT-A mRNA-expressing neurons also were present in the paranigralis (ventral tegmental area) and were scattered in the bed nucleus stria terminalis throughout the sublenticular substantia innominata region, including the diagonal band of Broca and the nucleus basalis of Meynert. In the hippocampus, high PPT-A mRNA expression was localized predominantly to the polymorphic layer of the dentate gyrus; no labeled cells were present in the granular layer. Positively labeled cells also were found scattered in the CA regions as well as in the amygdaloid complex. Neocortical expression of PPT-A mRNA was localized mainly to the deep laminae (layers V/VI), except for the striate cortex (labeling was seen also in superficial layers). The subiculum, thalamus, globus pallidus, ventral pallidum, substantia nigra pars compacta, red nucleus, pontine nuclei, and cerebellum were characterized by very weak to undetectable expression of PPT-A mRNA. An expression pattern was evident in the monkey forebrain similar to that observed in the human, except for the absence of PPT mRNA-expressing cells in the medial mammillary nucleus despite intense expression in supramammillary, lateral mammillary, and premammillary nuclei. Overall, more similarities than differences are apparent between primate species in the expression pattern of the PPT-A gene. J. Comp. Neurol. 411;56-72, 1999.
Collapse
Affiliation(s)
- Y L Hurd
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institute, S-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
28
|
Mileusnic D, Magnuson DJ, Hejna MJ, Lorens JB, Lorens SA, Lee JM. Age and species-dependent differences in the neurokinin B system in rat and human brain. Neurobiol Aging 1999; 20:19-35. [PMID: 10466890 DOI: 10.1016/s0197-4580(99)00019-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurokinin B and its cognate neurokinin-3 receptor are expressed more in the forebrain than in brain stem structures but little is known about the primary function of this peptide system in the central processing of information. In general, few studies have specifically addressed age-related changes of tachykinins, notably the changes in number and/or distribution of the neurokinin B-expressing and neurokinin-3 receptor-bearing neurons. Data on functions and changes of neurokinins in physiological aging are limited and apply mainly to the substance P/neurokinin-1 receptor system. In the present study, we analyzed neurokinin B/neurokinin-3 receptor system in young (5 months) versus middle aged (15 months) and old rats (23-25 months) and also in aging human brains. For the majority of the immunohistochemically examined regions of the rat brain, there was no statistically significant change in neuronal number and size of the neurokinin B and neurokinin-3 receptor staining. In the adult human brain, there was no age-associated change of the number or size of neurokinin-B-positive neurons. However, we found a major decline in number of neurokinin-3 receptor-expressing neurons between young/middle aged (30 years to 69 years) versus old (70 years and older) adults. Interestingly, numbers of neurokinin-3 receptor-positive microglia increased whereas the neurokinin-3 receptor-positive astrocytes remained unchanged in both aging rat and human brains. Finally, in addition to assessing the morphological and quantitative changes of the neurokinin B/neurokinin-3 receptor system in the rat and human brain, we discuss functional implications of the observed interspecies differences.
Collapse
Affiliation(s)
- D Mileusnic
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Lieberman DN, Mody I. Substance P enhances NMDA channel function in hippocampal dentate gyrus granule cells. J Neurophysiol 1998; 80:113-9. [PMID: 9658033 DOI: 10.1152/jn.1998.80.1.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Substance P (SP)-containing afferents and the NK-1 tachykinin receptor to which SP binds are present in the dentate gyrus of the rat; however, direct actions of SP on principal cells have not been demonstrated in this brain region. We have examined the effect of SP on N-methyl--aspartate (NMDA) channels from acutely isolated dentate gyrus granule cells of adult rat hippocampus to assess the ability of SP to regulate glutamatergic input. SP produces a robust enhancement of single NMDA channel function that is mimicked by the NK-1-selective agonist Sar9, Met(O2)11-SP. The SP-induced prolongation of NMDA channel openings is prevented by the selective NK-1 receptor antagonist (+)-(2S, 3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine (CP-99,994). Calcium influx or activation of protein kinase C were not required for the SP-induced increase in NMDA channel open durations. The dramatic enhancement of excitatory amino acid-mediated excitability by SP places this neuropeptide in a key position to gate activation of hippocampal network activity.
Collapse
Affiliation(s)
- D N Lieberman
- Neuroscience Graduate Program, Stanford University School of Medicine, Stanford 94305, USA
| | | |
Collapse
|
31
|
S 17092-1, A New Post-Proline Cleaving Enzyme Inhibitor: Memory Enhancing Effects and Substance P Neuromodulatory Activity. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-1-4615-5337-3_92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Waters SM, Davis TP. Alterations of peptide metabolism and neuropeptidase activity in senile dementia of the Alzheimer's type. Ann N Y Acad Sci 1997; 814:30-9. [PMID: 9160957 DOI: 10.1111/j.1749-6632.1997.tb46142.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Work in our laboratory has shown that in addition to previously characterized changes in the level of neuropeptides in SDAT brain, the activity of degradative enzymes responsible for peptide metabolism is also affected. In addition to other reported alterations in peptide metabolism, we have observed that SS-28 degradation is increased in Brodmann area 22 whereas substance P degradation is increased in temporal cortex. Changes in the degradation of these neuropeptides known to be affected in SDAT correlate well with alterations in the activity of specific neuropeptidases. Trypsin-like serine protease activity is increased in SDAT Brodmann area 22 which parallels the increased degradation of SS-28. The activity of MEP 24.15 is decreased in temporal cortex which corresponds to the decreased degradation of substance P. Changes in the activity of these degradative enzymes in SDAT brain can potentially affect the action of other neuropeptide substrates because the neuropeptidases discussed here terminate the action of several neuropeptides. As more neuropeptide and degradative peptidase alterations are discovered in SDAT, greater emphasis may be placed on the role that peptides and neuropeptidases play in the progression of SDAT.
Collapse
Affiliation(s)
- S M Waters
- Department of Pharmacology, College of Medicine, University of Arizona Health Sciences Center, Tucson 85724, USA
| | | |
Collapse
|
33
|
Khalil Z, Chen H, Helme RD. Mechanisms underlying the vascular activity of beta-amyloid protein fragment (beta A(4)25-35) at the level of skin microvasculature. Brain Res 1996; 736:206-16. [PMID: 8930326 DOI: 10.1016/0006-8993(96)00685-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Deposition of beta-amyloid protein (beta A4) in extracellular senile plaques is a pathologic hallmark of Alzheimer's disease (AD). The neurotoxic effect of beta A4 has been ascribed to a discrete 11-amino acid internal sequence (beta A(4)25-35). Substance P (SP) has been found to be depleted in the brain of AD patients while its presence was found to protect against the neurodegenerative effect of beta A(4)25-35. Our previous studies, in vivo, in aged rats showed that beta A(4)25-35 exhibits a potent vasoconstrictor (VC) effect in rat skin microvasculature and can prevent SP but not calcitonin gene-related peptide (CGRP) from inducing a vasodilator (VD) response. It was postulated that beta A(4)25-35 might be interacting with SP at the level of the second messenger system via the phosphoinositide pathway. Using a blister model of inflammation in the rat hind footpad, we examined the ability of beta A(4)25-35 to modulate the vascular activity of bradykinin (BK) and serotonin (5-HT) which also activate the phosphoinositide pathway. In addition, the role of nitric oxide (NO), endothelin (ET, an endothelium-derived constrictor factor) and protein kinase C (PKC) in the vascular effects of beta A(4)25-35 were examined using the NO synthase inhibitor, NG-nitro-L-arginine (L-NOARG), the ET-receptor antagonist, BQ-123, and the PKC inhibitor, bisindolylmaleimide (BIM) respectively. Changes in microvascular blood flow were monitored using laser Doppler flowmetry and the area within the response curve measured. The results showed that beta A(4)25-35 (10 microM) induced a VC effect and inhibited the subsequent VD response to BK (10 microM) and 5-HT (1 microM) in a similar fashion to its effect on SP (1 microM). In the presence of L-NOARG (100 microM), the VD effect of SP was reduced and further attenuated after perfusion of beta A(4)25-35. Superfusion of the blister base with BQ-123 (10 microM) or BIM (1 microM) prior to and during perfusion with beta A(4)25-35 abolished its VC effect and allowed SP to induce a normal VD response in both young and old rats. Based on these results, we suggest that the vascular activity of the active fragment, beta A(4)25-35, is mediated by ET via activation of PKC. This study provides new findings which may help to elucidate the signal transduction mechanisms involved in the vascular activity of beta A(4)25-35. The relevance of these mechanisms to those underlying the pathological effects of beta A4 and their significance in AD remains to be determined.
Collapse
Affiliation(s)
- Z Khalil
- National Ageing Research Institute, North West hospital, Parkville, Vic., Australia
| | | | | |
Collapse
|
34
|
Barker R. Tachykinins, neurotrophism and neurodegenerative diseases: a critical review on the possible role of tachykinins in the aetiology of CNS diseases. Rev Neurosci 1996; 7:187-214. [PMID: 8916292 DOI: 10.1515/revneuro.1996.7.3.187] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The tachykinins are a family of undecapeptides that are widely distributed throughout the body, including the central nervous system (CNS). They have several well defined roles in non-CNS sites as well as in the dorsal horn, where they are involved in the transmission of nociceptive information. However their function(s) in other CNS sites is unclear, but there is some evidence that they function as neuromodulators rather than neurotransmitters. This neuromodulation includes a possible role in maintaining the integrity of neuronal populations, analogous to the functions of neurotrophic factors. This review critically evaluates the role of tachykinins as neurotrophic factors, with particular reference to the common neurodegenerative diseases of the CNS.
Collapse
Affiliation(s)
- R Barker
- National Hospital for Neurology and Neurosurgery, London, U.K
| |
Collapse
|
35
|
Sprick U, Hasenöhrl RU, Krauth J, Klapdor K, Huston JP. Effects of chronic substance P treatment and intracranial fetal grafts on learning after hippocampal kainic acid lesions. Peptides 1996; 17:275-85. [PMID: 8801534 DOI: 10.1016/0196-9781(95)02105-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this experiment was to investigate whether the neurokinin substance P (SP) can enhance adaptive graft effects on learning and memory functions in animals with lesions of the hippocampus. Adult male Wistar rats received a bilateral kainic acid (KA) lesion of the dorsal hippocampus. One week postlesion, bilateral grafts of fetal hippocampal tissue suspension were applied into the damaged region in half of the animals, whereas the other half received sham transplants (physiological saline). Animals of the control group received a bilateral sham lesion of the hippocampus and sham transplants. One week after transplantation surgery, the rats were tested in the place version of the Morris water maze over a period of 9 weeks. Then they were tested for SP-induced conditioned place preference and on a step-through inhibitory avoidance task. All animals received IP injections of either SP (5 or 50 micrograms/kg) or the SP vehicle (0.5 ml/kg). The treatment with SP or the vehicle was begun 1 week after transplantation and was performed 5 days a week over a period of 10 weeks. During behavioral tests in the water maze and avoidance task, application of the substances was performed 5 h after testing. For the conditioned place preference test, the conditioning trials were performed immediately after drug administration; the test trials were given 24 h later. Chronic administration of 50 micrograms/kg SP, but not 5 micrograms/ kg SP, was found to improve water maze performance in lesioned animals with and without grafts. Unexpectedly, the lesion group with the graft without additional SP treatment was not superior to the lesion group devoid of the graft in this task. The rats without lesions of the hippocampus still showed a conditioned place preference to 50 micrograms/kg SP after 9 weeks of repeated SP applications. In the inhibitory avoidance task, the grafts facilitated retention performance independent of whether SP treatment was given. The morphological analysis of the transplants revealed higher graft volumes and a higher diameter of large pyramidal neurons (> 10 microns) in rats chronically treated with 50 micrograms/kg SP.
Collapse
Affiliation(s)
- U Sprick
- Department of Psychiatry, Heinrich-Heine-University of Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
36
|
Abstract
Most of the neurons in the subcortical white matter of the adult cerebrum are remnants of the transient subplate cortex which appears during early cortical development. The peptidergic neurons in the subcortical white matter, beneath the striate cortex were examined qualitatively and qualitatively with immunohistochemistry for substance P, cholecystokinin, somatostatin and neuropeptide Y in seven control patients and eight patients with Alzheimer's disease. The different peptidergic subcortical neurons still persisted in normal aging. In Alzheimer's disease, however, the substance P- and somatostatin-immunoreactive neurons were decreased in numbers and showed degenerative changes.
Collapse
Affiliation(s)
- L C Ang
- Department of Pathology, University of Toronto, Sunnybrook Health Science Centre, North York, Ont., Canada
| | | |
Collapse
|
37
|
Khalil Z, Sanderson K, Isberg P, Bassirat M, Livett B, Helme R. Beta A4(25-35) modulates substance P effect on rat skin microvasculature in aged rats: pharmacological manipulation using SEC-receptor ligands. Brain Res 1994; 651:227-35. [PMID: 7522933 DOI: 10.1016/0006-8993(94)90701-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The primary constituent of the senile plaque core in Alzheimer's disease (AD) is the beta-amyloid protein (beta A4). A discrete 11 amino acid fragment of the beta A4, beta A4(25-35), has been implicated in mediating in vitro neurotoxicity and an inflammatory response surrounding senile plaques in AD via interaction with the Serpin Enzyme Complex (SEC) receptor. Substance P (SP), a neuropeptide of the tachykinin family and a major mediator of neurogenic inflammation, shows sequence homology to beta A4(25-35) and has been shown to protect against the neurotoxicity of beta-amyloid. SP also competes with beta A4(25-35) for binding to the SEC-receptor. SP neurons have also been found to be depleted in AD. Using a blister model of inflammation in the rat hind footpad, we have examined the effect of beta A4(25-35) and its interaction with SP in rat skin microvasculature and determined age-related changes to these phenomena. In addition, pharmacological manipulation of these responses using SEC-receptor ligands (peptide 105Y and 105C) was also undertaken. Because of the evidence for co-existence and co-release of SP and calcitonin gene-related peptide (CGRP) from the peripheral terminals of sensory nerves, it was of interest to examine the interaction of CGRP with beta A4(25-35) on rat skin microvasculature. beta A4(25-35) (10 microM) was perfused over the base of a blister raised on the hind footpad of anaesthetised young and old rats. This was followed by perfusion of SP (1 microM) or CGRP (1 microM) after Ringer's solution. Relative blood flow was monitored using a Laser-Doppler Flowmeter.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Z Khalil
- National Research Institute of Gerontology and Geriatric Medicine, North West Hospital (Mount Royal Campus), Parkville, Melbourne, Vic., Australia
| | | | | | | | | | | |
Collapse
|
38
|
Simonian NA, Rebeck GW, Hyman BT. Functional integrity of neural systems related to memory in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 1994; 100:245-54. [PMID: 7938525 DOI: 10.1016/s0079-6123(08)60791-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Dewar D, McCulloch J. Abnormalities in Non-Cholinergic Neurotransmitter Systems in Alzheimer’s Disease. DEMENTIA 1994. [DOI: 10.1007/978-1-4615-6805-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Abstract
The potential neurotrophic effect of substance P-like immunoreactivity present in culture media was assessed in rat embryonic day 18 hippocampal cultures. The neurokinin-1 (substance P) receptor antagonist CP-96345 induced neurotoxicity that was dose dependent and attenuated by addition of substance P or the neurokinin-1 agonist [Sar9,Met(O2)11]-SP. These studies suggest that under some conditions neurokinin-1 receptor stimulation promotes neuronal survival.
Collapse
Affiliation(s)
- C J Whitty
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | |
Collapse
|
41
|
Kowall NW, Quigley BJ, Krause JE, Lu F, Kosofsky BE, Ferrante RJ. Substance P and substance P receptor histochemistry in human neurodegenerative diseases. REGULATORY PEPTIDES 1993; 46:174-85. [PMID: 7692486 DOI: 10.1016/0167-0115(93)90028-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substance P immunoreactivity is localized in discrete subsets of neurons in the human cerebral cortex and basal ganglia. In the normal human cerebral cortex, a subset of aspiny local circuit neurons in deep cortical layers and the cortical subplate contain preprotachykinin mRNA and substance P immunoreactive. These neurons, which contain NADPH diaphorase (NO synthase) activity, are strikingly depleted in Alzheimer's disease--in contrast to other local circuit neurons--suggesting that they may be an early target of the degenerative process. In the human basal ganglia, substance P immunoreactivity and mRNA are localized in a subset of spiny striatal neurons that project to the internal segment of the globus pallidus. These neurons are enriched in D1 dopamine receptors and dynorphin, and are calbindin and DARP 32 immunoreactive. A separate subset of aspiny striatal local circuit neurons also contain substance P immunoreactivity. Fiber and terminal staining is prominent in the matrix compartment of the ventromedial striatum and persists dorsally as a rim outlining patches that contain lesser amounts of immunoreactivity. Intense fiber and terminal staining is found in the pars reticulata of the substantia nigra. In Huntington's disease, substance P is depleted in the striatum in parallel with the dorsoventral gradient of neuronal loss. Terminal staining is progressively depleted in the pallidum and substantia nigra in tandem with striatal atrophy. Substance P receptor immunoreactivity, defined with two polyclonal antisera raised against synthetic peptides derived from the substance P receptor sequence, intensely labels a subset of large neurons in the nucleus basalis and striatum identical to neurons labeled with choline acetyltransferase and nerve growth factor receptor antibodies (although striatal cholinergic neurons do not contain nerve growth factor receptor immunoreactivity in the human). These cholinergic neurons resist degeneration in Huntington's disease but are sensitive to degeneration in Alzheimer's disease. Less intensely labeled neurons include pyramidal neurons in the hippocampal CA2 field, nonpyramidal neurons in CA1-4, pyramidal and nonpyramidal neurons in deep neocortical layers and in the cortical subplate. Substance P receptor immunoreactivity is not well defined in the human globus pallidus or substantia nigra.
Collapse
Affiliation(s)
- N W Kowall
- Neurology Service, Massachusetts General Hospital, Boston 02114
| | | | | | | | | | | |
Collapse
|
42
|
Holm IE, Geneser FA, Zimmer J. Cholecystokinin-, enkephalin-, and substance P-like immunoreactivity in the dentate area, hippocampus, and subiculum of the domestic pig. J Comp Neurol 1993; 331:310-25. [PMID: 7685777 DOI: 10.1002/cne.903310303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The distribution of cholecystokinin-like, enkephalin-like, and substance P-like immunoreactivities is described in the dentate area, hippocampus, and subiculum of the domestic pig (Sus scrofa domesticus) as a baseline for future experimental studies. The distributions in the pig are compared with previous observations in other species. Cholecystokinin-like immunoreactive nerve cell bodies were intensely stained and present in large numbers in all subfields studied. Cholecystokinin-like immunoreactive terminals appeared as stained puncta, whereas fibers were only rarely encountered. The puncta were mainly seen in the dentate molecular layer and dentate granule cell layer, the pyramidal cell layer of the hippocampal regio inferior, stratum moleculare of the hippocampal regio superior, and in the subiculum. Enkephalin-like immunoreactive nerve cell bodies were faintly stained and generally present in very small numbers, except for some pyramidal cells in the subicular cell layer. Enkephalin-like immunoreactive fibers were few in number, whereas stained puncta appeared with variable densities. Puncta of particularly high densities were found in the dentate molecular layer, whereas they appeared of moderate density in the dentate hilus, stratum moleculare of the hippocampal regio superior, and in the subiculum. Substance P-like immunoreactive nerve cell bodies were few and very faintly stained. They primarily occurred in the dentate hilus, stratum oriens of the hippocampus, and in the subicular cell layer. Stained fibers were few in number, whereas stained puncta were present in abundant numbers corresponding to the mossy fiber projection in the dentate hilus and the layer of mossy fibers of the hippocampal regio inferior, and in moderate numbers in stratum moleculare of the hippocampal regio superior and in the subiculum. For all three neuropeptides there were consistent and very characteristic variations in the distribution of immunoreactivity along the septotemporal axis of the hippocampus. When viewed in a comparative perspective the distribution of enkephalin-like and substance P-like terminals in the domestic pig displayed striking differences from the basic pattern observed in other species. This contrasted with the distribution of cholecystokinin-like neurons and terminals, which resembled more closely these species.
Collapse
Affiliation(s)
- I E Holm
- Department of Neurobiology, University of Aarhus, Denmark
| | | | | |
Collapse
|
43
|
Cheung NS, Small DH, Livett BG. An amyloid peptide, beta A4 25-35, mimics the function of substance P on modulation of nicotine-evoked secretion and desensitization in cultured bovine adrenal chromaffin cells. J Neurochem 1993; 60:1163-6. [PMID: 7679724 DOI: 10.1111/j.1471-4159.1993.tb03270.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The amyloid protein (beta A4) is found in the CNS of patients with Alzheimer's disease; however, the pathogenic role of this protein is not known. In the present study, a peptide fragment of beta A4 (beta A4 25-35; Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-NH2), which contains the conserved C-terminal sequence of substance P (X-Gly-Leu-Met-NH2), and the neuropeptide substance P (SP) were examined for their ability to modulate nicotine-evoked secretion from cultured bovine adrenal chromaffin cells. Secretion of the released endogenous catecholamines was monitored by electrochemical detection after separation by HPLC. Secretion induced by 10(-5) M nicotine was inhibited by SP and beta A4 25-35. The IC50 of SP and beta A4 25-35 was 3 x 10(-6) and 3 x 10(-5) M, respectively. SP and beta A4 25-35 both protected against nicotine receptor desensitization. However, beta A4 25-35 was approximately 10-fold less effective than SP in its protective effect. The present work shows that beta A4 25-35 can mimic the modulatory actions of SP on the nicotinic response of cultured bovine chromaffin cells, i.e., inhibition of the nicotinic response and protection against nicotinic desensitization. These modulatory actions may be associated with changes in nicotinic receptor levels reported to occur in Alzheimer's disease.
Collapse
Affiliation(s)
- N S Cheung
- Department of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
44
|
Kowall NW, McKee AC, Yankner BA, Beal MF. In vivo neurotoxicity of beta-amyloid [beta(1-40)] and the beta(25-35) fragment. Neurobiol Aging 1992; 13:537-42. [PMID: 1461341 DOI: 10.1016/0197-4580(92)90053-z] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined the histological changes produced by injections of beta-amyloid [beta(1-40)], and control peptides in rat and monkey cerebral cortex. beta(25-35) injections were also studied in rat cortex. Standard immunoperoxidase procedures were used to detect the distribution of tau, MAP2, beta(1-40) and ALZ 50 immunoreactivity. All injections produced localized necrosis at the injection site surrounded by a zone of neuronal loss and gliosis. In rat cortex, lesions produced by solubilized beta(1-40) and beta(25-35) in water were generally larger than those produced by control peptides. Tau and ALZ 50 antibodies labeled neurites and diffusely positive perikarya around beta(1-40) injections, whereas MAP2 staining was reduced, paralleling the distribution of neuronal loss and gliosis. In aged primate cortex, beta(1-40) lesion size was dose dependent. Hyalinized, ALZ 50 positive neurons, and abnormal neurites were prominent around the injection site. Although beta-amyloid is acutely neurotoxic in both rat and monkey cerebral cortex, neuronal degeneration in the primate more closely resembles that found in AD.
Collapse
Affiliation(s)
- N W Kowall
- Neurology Service, Massachusetts General Hospital, Boston 02115
| | | | | | | |
Collapse
|
45
|
Abstract
The medial septal nucleus provides one of the major afferents to the hippocampal formation. The two major types of neurons present in the medial septum are cholinergic and GABAergic, but other types of neurons are also present. A small population of substance P-containing neurons is present along the border between the medial and lateral septum, but it is unclear whether these project to the hippocampus. The present study, by employing both anterograde and retrograde tracing techniques, combined with immunocytochemistry for substance P, provides direct morphological evidence for a substance P projection from the lateral region of medial septum to a portion of CA2/3a, which is restricted to the mid-septotemporal portion of the hippocampus.
Collapse
Affiliation(s)
- G M Peterson
- Department of Anatomy and Cell Biology, East Carolina University School of Medicine, Greenville, NC 27858-4354
| | | |
Collapse
|
46
|
Baloyannis SJ, Costa V, Deretzi G. Intraventricular administration of substance P induces unattached Purkinje cell dendritic spines in rats. Int J Neurosci 1992; 62:251-62. [PMID: 1284826 DOI: 10.3109/00207459108999776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Substance P was infused in the lateral ventricles of twenty Lewis rats for twenty days. The animals under the influence of the substance P demonstrated grooming of the head, the body and the forepaws. On the twentieth day the animals were sacrificed and the cerebellar cortex was processed for electron microscopy. The ultrastructural analysis revealed that although the granule cells, the parallel fibers and the systems of the afferent fibers were intact, numerous unattached Purkinje cell dendritic spines were seen embedded in the soma of the astrocytes, demonstrating postsynaptic differentiation. Numerous unattached spines of the secondary and tertiary dendritic branches of the Purkinje cells were also seen in the molecular layer surrounded by astrocytic sheath. Free unattached spines were also seen not surrounded by any astrocytic process, which did not demonstrate any postsynaptic specialization. The development of unattached Purkinje cell dendritic spines, in an otherwise intact cerebellar cortex, following the intraventricular administration of substance P, suggests that it may act as local growth factor, enforcing the preprogrammed-capability of the Purkinje cells in developing new synaptic surfaces.
Collapse
Affiliation(s)
- S J Baloyannis
- 1st Department of Neurology, Aristotelian University of Thessaloniki, Greece
| | | | | |
Collapse
|
47
|
Affiliation(s)
- M Hayashi
- Department of Physiology, Primate Research Institute of Kyoto University, Aichi, Japan
| |
Collapse
|
48
|
Nihei K, Kowall NW. Neurofilament and neural cell adhesion molecule immunocytochemistry of Huntington's disease striatum. Ann Neurol 1992; 31:59-63. [PMID: 1531909 DOI: 10.1002/ana.410310111] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined normal and Huntington's disease (HD) human striatum with specific monoclonal antibodies to nonphosphorylated (SMI 32) and phosphorylated (SMI 31) neurofilament and neural cell adhesion molecule (NCAM). SMI 32 identifies medium-sized neuronal perikarya and dendrites in normal striatum. Axons are not immunoreactive. In high-grade HD striatum (grades 3 and 4) SMI 32 neurons are morphologically abnormal and significantly depleted. Dendritic arbors are intensely immunoreactive, tortuous, and fragmented, especially in the subependymal zone. Proliferative SMI 32-positive sprout-like structures and axon-like processes are seen. SMI 31 normally stains a fine meshwork of axon-like processes that become intensely immunoreactive, condensed, convoluted, and fragmented in HD. NCAM staining is minimal in normal striatum, but, in HD striatum, many dot- and thread-like structures are found, especially in the subependymal region. The abnormalities revealed by SMI 31, SMI 32, and NCAM suggest that neurofilament phosphorylation is altered and growth related proteins are reexpressed in HD. Dephosphorylation and destabilization of the cytoskeleton may contribute to neuronal injury and death in HD.
Collapse
Affiliation(s)
- K Nihei
- Experimental Neuropathology Laboratory, Massachusetts General Hospital, Boston 02114
| | | |
Collapse
|
49
|
Abstract
The causes of the neurodegenerative disorders of Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are unknown. It is proposed that all these disorders result primarily from a loss of trophic peptidergic neurotransmitter, possibly Substance P (SP). This loss in turn produces the classical neuronal degeneration seen in each of these diseases and occurs due to a combination of natural aging and chronic autoimmune destruction following a viral infection of the CNS, early in life. The loss is therefore slow and by the time of clinical presentation the inflammatory process is disappearing as the antigenic stimulus lessens with its removal. The implications of the theory in terms of future research and therapy are briefly discussed.
Collapse
Affiliation(s)
- R Barker
- Department of Experimental Psychology, Cambridge, UK
| |
Collapse
|
50
|
Kowall NW, Beal MF, Busciglio J, Duffy LK, Yankner BA. An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc Natl Acad Sci U S A 1991; 88:7247-51. [PMID: 1714596 PMCID: PMC52271 DOI: 10.1073/pnas.88.16.7247] [Citation(s) in RCA: 355] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Deposition of the beta-amyloid protein in senile plaques is a pathologic hallmark of Alzheimer disease (AD). Focal deposition of beta amyloid in the adult rat cerebral cortex caused profound neurodegenerative changes, including neuronal loss and degenerating neurons and neurites. Chronic induction of the Alz-50 antigen appeared in neurons around focal cortical deposits of beta amyloid. Immunoblot analysis showed that beta amyloid induced Alz-50-immunoreactive proteins in rat cerebral cortex that were very similar to the proteins induced in human cerebral cortex from patients with AD. The neuropeptide substance P prevented beta-amyloid-induced neuronal loss and expression of Alz-50 proteins when coadministered into the cerebral cortex. Systemic administration of substance P also provided protection against the effects of intracerebral beta amyloid. Thus, beta amyloid is a potent neurotoxin in the adult brain in vivo, and its effects can be blocked by substance P.
Collapse
Affiliation(s)
- N W Kowall
- Department of Neurology, Massachusetts General Hospital, Boston 02114
| | | | | | | | | |
Collapse
|